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All references of the form [Tag ****] are to the Stacks Project [Stacks]. The aim of
these notes is to prove the following

Theorem 1 ([Tag 095U]). Let f : X → S be a proper morphism of noetherian schemes
with fibers of dimension ⩽ d and let F be a torsion sheaf on Xét. Then Rqf∗F = 0 for
q > 2d.

1 Reductions
Lemma 2. It suffices to show Theorem 1 for the case when S is the spectrum of an
algebraically closed field.

Proof. Let s̄ be a geometric point of S. We have the following cartesian diagram:

Xs̄
s̄′

//

f ′

��

X

f
��

s̄
s̄ // S

.

By the proper base change theorem [Tag 095T] we have

(Rqf∗F)s̄ = (s̄−1Rqf∗F)s̄ ∼= (Rqf ′
∗s̄

′−1F)s̄.

Therefore, if Theorem 1 is true for schemes proper over s̄ it is true for schemes proper
over S.

From now on, we assume that S = Spec k, where k is an algebraically closed field and
dimX = d. By the topological invariance of the étale site [Tag 03SI], we may assume
that X is reduced.

Remark By [Tag 03Q9], we have (Rqf∗F)Spec k̄ = Hq
ét(X,F). Hence, Theorem 1 is

equivalent to Hq
ét(X,F) = 0 for all q > 2d.

Lemma 3 (Domination Trick). Let X ′ be a scheme of dimension d. Let π : X ′ → X
be a proper morphism such that there is a dense open subscheme U ⊆ X such that
πU : X ′ ×X U → U is an isomorphism and codimX X ∖ U ⩾ m and the fibers of π have
dimension < m. Suppose that Theorem 1 is true for
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1. dimensions < d and

2. for f ◦ π.

Then it is true for f .

Proof. Note that π is surjective, since it is closed and its image contains a dense subset.
Write G := π−1F . Then the natural map F → π∗G is injective and we obtain a short
exact sequence

0 → F → π∗G → Q → 0

for some Q ∈ Ab(Xét) with Q|U = 0. Let Y := X ∖ U and let i : Y → X denote the
closed embedding. By [Tag 04CA] we have Q ∼= i∗i

−1Q. Because we assume Theorem 1
is true for dimension < d and codimX Y > 0 we have Hp(Y, i−1Q) = 0 for p > 2(d−m).
Since i is finite, the Leray spectral sequence [Tag 0733] yields (see also Noah’s talk from
last semester) Hp(X,Q) = Hp(Y, i−1Q) = 0 for p > 2(d − m). Hence the above short
exact sequence yields the following long exact sequence

· · · → 0 → Hp(X,F) → Hp(X, π∗G) → 0 → . . .

for all p > 2d. Hence, it suffices to prove Hp(X, π∗G) = 0 for p > 2d. To prove this,
we will use the Leray spectral sequence [Tag 0732]. Its object on the second page are
Ep,q

2 = Hp(X,Rqπ∗G) the differentials are of bidegree (r,−r + 1) and it converges to
Hp+q(X ′,G).

By assumption we have Rqπ∗G = 0 for q > 2(m− 1) and hence

Ep,q
r = Ep,q

2 = Hp(X,Rqπ∗G) = 0 for q > 2(m− 1) and r ⩾ 2 and any p. (1)

Furthermore, for q > 0 we have (Rqπ∗G)|U = 0 since π is an isomorphism over U . Hence,
as above, we obtain

Ep,q
r = Ep,q

2 = Hp(X,Rqπ∗G) = 0 for q > 0 and p > 2(d−m) and r ⩾ 2. (2)

Suppose from now on that p > 2d. We want to show that the Ep,0
r = Ep,0

r+1 = . . . in the
Leray spectral sequence for r ⩾ 2. The r-th differential gives the following complex

· · · → Ep−r,r−1
r → Ep,0

r → Ep+r,1−r
r = 0 → . . .

The right-hand side is 0 as r > 1. By (1), the left-hand side is 0 if r ⩾ 2m. If r < 2m,
then r−1 > 0 and p−r > p−2m > 2(d−m) and the left-hand side is 0 by (2). Therefore
Ep,0

r stabilizes from r = 2 and therefore Hp(X, π∗G) = Hp(X ′,G) = 0 by assumption.

Lemma 4 (Composition Trick). Let f : X → Y and g : Y → Spec k be proper morphisms
such that dimXy ⩽ dimX − dimY for all y ∈ Y . If Theorem 1 holds for f and g, then
it holds for g ◦ f .

Proof. Let F ∈ Ab(Xét) be a torsion sheaf, let d := dimX and e := dimY . We again
use the Leray spectral sequence [Tag 0732]. We have Ep,q

2 = Hp(Y,Rqπ∗F). If p > 2e or
q > 2(d − e), then Hp(Y,Rqπ∗F) = 0, by assumption. Hence Ep,q

r = 0 for all r ⩾ 2 in
this case. As the sequence converges to Hp+q(X,F) we obtain Hn(X,F) = 0 for n > 2d,
as desired.
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Lemma 5. It suffices to prove Theorem 1 for the case when X is integral normal proper
over an algebraically closed field.

Proof. We proceed by induction on d = dimX. The base case d = 0 is the case of finite
morphisms [Tag 03QP]. Suppose that d > 0. Let π : X ′ → X be the normalization of X.
Since X is reduced, there is an open dense subset U ⊆ X such that πU : X ′ ×X U → U
is an isomorphism ([Tag 0BXR], [Tag 0BAC]). By [Tag 0BXR], the morphism π is finite,
hence proper. The normalization X ′ is the disjoint union of integral normal schemes.
By Lemma 3 it suffices to prove the Theorem for f ′ := f ◦ π. Let G := π−1F . Let
ji : Ui → X ′ denote the connected components of X ′. Note that G ∼=

⊕n
i=1 ji∗j

−1G.
By the Leray spectral sequence [Tag 01F4] we have Hq(X ′, ji∗j

−1G) ∼= Hq(Ui, j
−1G) and

hence we may assume without loss of generality that X ′ is connected.

Suppose from now on that X is integral normal proper over an algebraically closed
field k.

Lemma 6. It suffices to prove the theorem for X = P1
k.

Proof. By the previous lemmas we may assume that X is integral normal proper over
an algebraically closed field. For d = 0, this is the case of finite morphisms, proved in
Emil’s talk ([Tag 03QP]). We prove the claim by induction. Suppose that d > 0: Choose
a rational function f : X 99K A1

k ⊂ P1
k. Let U ⊂ X be its domain of definition. Let

X ′ ⊆ X×Spec kP1
k be the graph of f , that is the closure of the graph of f |U . Let b : X ′ → X

denote the first projection and let g : X ′ → P1
k denote the second projection. Note that b

is an isomorphism above U . Let Y := X∖U . Then codimX Y ⩾ 2 (since normal schemes
are regular of codimension 1 and hence f extends to codim 1 points by the valuative
criterion of properness for P1

k). Since X ′ ↪→ X ×Spec k P1
k is a closed immersion, hence

proper and X ×Spec k P1
k is the base change of the proper morphism X → Spec k, the

morphism g is proper. By Lemma 3 it suffices to prove Theorem 1 for X ′.
Let G be a torsion sheaf on X ′. The fibers of g have dimension < d. By Lemma 4 for

X ′ g−→ P1
k → Spec k and the induction hypothesis Theorem 1 follows for X ′ if it holds for

P1
k.

2 The étale fundamental group
To prove Theorem 1 for P1

k, we will need some facts about the étale fundamental group.
A reference is [Tag 0BQ8] and [Tag 0BQ6]. Let X be a connected scheme and let x̄ be
a geometric point of X. Let FÉtX denote the category of finite étale coverings of X and
let Fx̄ : FÉt → (Finite Sets) denote the fiber functor that maps U ∈ Ob(FÉt) to the
underlying set of the topological space of Ux̄.

Definition The fundamental group of X with base point x̄ is the group

π1(X, x̄) = Aut(Fx̄) = {group of natural equivalences between Fx̄ and itself}

Remark One has the embedding

π1(X, x̄) ↪→
∏

U∈Ob(FÉt)

Aut(Fx̄(U)).
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When endowing Aut(A) with the discrete topology, the image of the embedding is closed
and π1(X, x̄) becomes a profinite group.

Theorem 7 (see [Tag 0BND], [Tag 0DV5], [Tag 0DV6]).

1. The fiber functor defines an equivalence of categories

Fx̄ : FÉtX → Finite−π1(X, x̄)−Sets.

2. Let R be a finite ring. There is an equivalence of categories

(finite locally constant sheaves of R-modules on Xét) ↔ (finite R[π1(X, x̄)]-modules)

3. Given a morphism f : Y → X of connected schemes with x̄ = f(ȳ) there is a
canonical continuous homomorphism f∗ : π1(Y, ȳ) → π1(X, x̄) such that

FÉtX base change
//

Fx̄

��

FÉtY

Fȳ

��
finite π1(X, x̄)-sets f∗ // finite π1(Y, ȳ)-sets

and

f.l.c. sheaves of R-modules on Xét
f−1

//

��

f.l.c. sheaves of R-modules on Yét

��
finite R[π1(X, x̄)] modules f∗ // finite R[π1(Y, ȳ)] modules

commute

Proposition 8 ([Tag 03SF]). Let G be a finite π1(X, x̄)-set of the form G = π1(X, x̄)/H
for some normal open subgroup H. Then G corresponds via Theorem 7 to a connected
finite étale covering Y → X such that AutX(Y ) ∼= G. Such a Y is called Galois cover.

Proposition 9 (Proposition 2.18 in [Hel18]). Let Y be a Galois cover of X and let
H < AutX(Y ). Then AutY/H(Y ) = H.

Proposition 10. Let ρ : G → Aut(V ) be a representation of a finite ℓ-group G on a finite-
dimensional Fℓn-vector space V . Then there is a G-stable filtration 0 = V0 ⊂ · · · ⊂ Vn = V
of subspaces with dimVi/Vi−1 = 1.

Proof. We proceed by induction. The cases n ∈ {0, 1} are clear. Suppose that n ⩾ 2.
Then V G ̸= {0} since otherwise V ∖ {0} is disjoint the union of orbits of sizes of positive
powers of ℓ, which is a contradiction. Let V1 ⊂ V G be a 1-dimensional subspace. Then
G linearly on V/V1 and, by induction we obtain a G-stable filtration

0 = V ′
1 ⊂ · · · ⊂ V ′

n = V/V1

with dim(V ′
i )/(V

′
i−1) = 1. This lifts to a the desired filtration.
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Proposition 11 ([Tag 0A3R]). Let ℓ be a prime number and let F be a finite type, locally
constant sheaf of Fℓ-vector spaces on Xét. Then, there exists a finite étale morphism
f : Y → X of degree prime to ℓ such that f−1F has a finite filtration whose successive
quotients are isomorphic to Z/ℓZ.

Proof. By Theorem 7 the sheaf F corresponds to a finite Fℓ[π1(X, x̄)] module V . That
is, we obtain a representation ρ : π1(X, x̄) → Aut(V ). Let G := im ρ. Let H ⊂ G be an ℓ-
Sylow subgroup. Let Z → X be a Galois cover with AutZ(X) ∼= G. Let Y := Z/H. Then
f : Y → X is a connected finite étale cover. We have gcd(deg f, ℓ) = gcd(|G/H|, ℓ) = 1.

Let ȳ ∈ Y be a geometric point over x̄. By Theorem 7 the action of π1(Y, ȳ) on
G factors through π1(X, x̄). But since AutY (G) = AutY (Z) = H by Proposition 9, we
obtain

im(π1(Y, ȳ) → π1(X, x̄)) ⊂ ρ−1(H).

Since π1(Y, ȳ) → π1(X, x̄) → Aut(V ) corresponding to f−1F , we have im(π1(Y, ȳ) →
Aut(V )) ⊂ H. Since H is an ℓ-group, by Proposition 10, we obtain a filtration of V with
successive quotients ∼= Z/ℓZ. By the equivalence of categories in Theorem 7 we obtain a
filtration of f−1F with successive quotients isomorphic to Z/ℓZ.

3 The trace method
Proposition 12 ([Tag 03QP]). Let f : Y → X be a finite morphism. For F ∈ Ab(Yét)
and any geometric point x̄ ∈ X we have

(f∗F)x̄ =
⊕

ȳ∈Y : f(ȳ)=x̄

Fȳ.

Proposition 13 ([Tag 03S5]). Let f : Y → X be an étale morphism. For F ∈ Ab(Yét)
and any geometric point x̄ ∈ X we have

(f!F)x̄ =
⊕

ȳ∈Y : f(ȳ)=x̄

Fȳ.

Hence, if f is finite étale, then f∗ = f!. As f! is the left adjoint of f ∗ and f∗ is its
right adjoint, for F ∈ Ab(Xét) we obtain a map F → f∗f

−1F = f!f
−1F → F . By [Tag

04HN], locally we have Y =
⨿n

i=1 X. Then f∗f
−1F = F⊕n and for an étale neighborhood

U → X we have

F(U) → f∗f
−1F(U) → F(U)

s 7→ (s, . . . , s) 7→ n · s

This is an isomorphism, if multiplication with n is an isomorphism.

4 The case of P1
k

Lemma 14. It suffices to prove Theorem 1 for the case when F is constructible.
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Proof. By [Tag 03SA] F is a filtered colimit of constructible abelian sheaves. By [Tag
03QF] taking cohomology commutes with filtered colimits. Therefore, it suffices to prove
Theorem 1 for the case when F is constructible.

Let ℓ be a prime number.

Proposition 15. For Y proper over Spec k of dimension 1, we have Hq(Y,Z/ℓZ) = 0
for q > 2.

Proof. The case when ℓ ̸= char k was proved in Sebastian’s talk. Suppose that ℓ = char k.
We have the Artin-Schreier sequence on P1

k:

0 → Z/ℓZ → Ga
Frob−1−−−−→ Ga → 0.

Since H i
ét(Y,Ga) = H i(Y,OY ) = 0 for i > 1 the long exact sequence yields the result.

Lemma 16. Let Y be proper over Spec k of dimension 1. Let j : U → Y be a dense open
embedding. Let F := j!Z/ℓZ. Then Hq(Y,F) = 0 for q > 2.

Proof. Set Z := Y ∖ U . Consider the short exact sequence

0 → j!Z/ℓZ → Z/ℓZ → Q → 0,

where Q is supported on Z. As before we have Hq(Y,Q) = 0 for q > 0. By Proposition
15 the long exact sequence yields the result.

Theorem 17 (Zariski’s Main Theorem, [Tag 05K0]). Let f : Y → Z be a morphism
of schemes. Assume that f is quasi-finite and separated and Z is quasi-compact and
quasi-separated. Then, there exists a factorization

X
j

//

f ��@
@@

@@
@@

@ T

π
����
��
��
��

S

with j a quasi-compact open immersion and π finite.

Lemma 18. Let j : U → P1
k be an open immersion with U non-empty and let G be a

finite locally constant sheaf of Fℓ-vector spaces on U . Then Hq(P1
k, j!G) = 0 for q > 2.

Proof. Let f : V → U be finite étale morphism of degree prime to ℓ as in Proposition
11 and set F := f−1G. The composition of the natural maps G → f∗F → G is an
isomorphism. Since j! is exact it suffices to prove that Hq(P1

k, j!f∗F) = 0 for q > 2. Note
that V is reduced since is finite étale over U (and hence locally just copies of opens of the
reduced scheme U). By Zariski’s Main Theorem 17 we obtain a commutative diagram

V
j′

//

f

��

Y

f ′

��
U

j // P1
k
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with j′ and open immersion and f ′ finite and Y reduced. By looking at the stalks and
applying Propositions 12 and 13 we see that j!f∗F = f ′

∗j
′
!F . Since f ′ is finite, we have

Hq(Y, j′!F) = Hq(P1
k, f

′
∗j

′
!F) = Hq(P1

k, j!f∗F) for q ⩾ 0.
By Proposition 11 we obtain a finite filtration 0 = F0 ⊂ · · · ⊂ Fn = F with short

exact sequences
0 → Fi−1 → Fi → Z/ℓZ → 0.

for i > 0. Since j′! is exact, we obtain short exact sequences

0 → j′!Fi−1 → j′!Fi → j′!Z/ℓZ → 0.

By Lemma 16 we haveHq(Y, j′!Z/ℓZ) = 0 for q > 2 and hence, inductivelyHq(Y, j′!Fi) = 0
for q > 2, as desired.

Proof of Theorem 1. Without loss of generality we assume that X = P1
k and F is con-

structible. By [Tag 005K] (every constructible partition of an irreducible scheme has one
part which contains a dense open subset) there is an open dense subset j : U → P1

k such
that F|U is a finite locally constant torsion sheaf. Consider the short exact sequence

0 → j!j
−1F → F → Q → 0

for some torsion sheaves Q supported on P1
k ∖ U . As above, we have Hq(X,Q) = 0 for

q > 0 and hence it suffices to show that Hq(X, j!j
−1F) = 0 for q > 2.

We write j−1F = F|U = F1 ⊕ · · · ⊕ Fr such that Fi is locally constant ℓni
i -torsion for

some prime ℓi. Since have short exact sequences

0 → j!(Fi[ℓi]) → j!Fi → j!(Fi/Fi[ℓi]) → 0,

to show that Hq(P1
k, j!Fi) = 0, we may assume that Fi is ℓi-torsion. Since j! and

Hq(P1
k,−) commutes with direct sums, we may assume that F|U is ℓ-torsion. In other

words F|U is a finite locally constant sheaf of Fℓ-vector spaces on U . By Lemma 18 we
have Hq(P1

k,F|U) = 0 for q > 2, as desired.
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