Vanishing of proper higher direct images

Nicolas Müller

May 2, 2019

All references of the form [Tag ****] are to the Stacks Project [Stacks]. The aim of these notes is to prove the following

Theorem 1 ([Tag 095U]). Let $f: X \to S$ be a proper morphism of noetherian schemes with fibers of dimension $\leq d$ and let \mathcal{F} be a torsion sheaf on $X_{\text{\acute{e}t}}$. Then $R^q f_* \mathcal{F} = 0$ for q > 2d.

1 Reductions

Lemma 2. It suffices to show Theorem 1 for the case when S is the spectrum of an algebraically closed field.

Proof. Let \bar{s} be a geometric point of S. We have the following cartesian diagram:

$$\begin{array}{c|c} X_{\bar{s}} & \longrightarrow \\ F' & & & \\ \bar{s} & \xrightarrow{\bar{s}} & S \end{array}$$

By the proper base change theorem [Tag 095T] we have

$$(R^q f_* \mathcal{F})_{\bar{s}} = (\bar{s}^{-1} R^q f_* \mathcal{F})_{\bar{s}} \cong (R^q f'_* \bar{s}'^{-1} \mathcal{F})_{\bar{s}}.$$

Therefore, if Theorem 1 is true for schemes proper over \bar{s} it is true for schemes proper over S.

From now on, we assume that $S = \operatorname{Spec} k$, where k is an algebraically closed field and dim X = d. By the topological invariance of the étale site [Tag 03SI], we may assume that X is reduced.

Remark By [Tag 03Q9], we have $(R^q f_* \mathcal{F})_{\text{Spec }\bar{k}} = H^q_{\text{\'et}}(X, \mathcal{F})$. Hence, Theorem 1 is equivalent to $H^q_{\text{\'et}}(X, \mathcal{F}) = 0$ for all q > 2d.

Lemma 3 (Domination Trick). Let X' be a scheme of dimension d. Let $\pi : X' \to X$ be a proper morphism such that there is a dense open subscheme $U \subseteq X$ such that $\pi_U : X' \times_X U \to U$ is an isomorphism and $\operatorname{codim}_X X \setminus U \ge m$ and the fibers of π have dimension < m. Suppose that Theorem 1 is true for

1. dimensions < d and

2. for $f \circ \pi$.

Then it is true for f.

Proof. Note that π is surjective, since it is closed and its image contains a dense subset. Write $\mathcal{G} := \pi^{-1} \mathcal{F}$. Then the natural map $\mathcal{F} \to \pi_* \mathcal{G}$ is injective and we obtain a short exact sequence

$$0 \to \mathcal{F} \to \pi_* \mathcal{G} \to \mathcal{Q} \to 0$$

for some $\mathcal{Q} \in Ab(X_{\text{ét}})$ with $\mathcal{Q}|_U = 0$. Let $Y := X \setminus U$ and let $i : Y \to X$ denote the closed embedding. By [Tag 04CA] we have $\mathcal{Q} \cong i_*i^{-1}\mathcal{Q}$. Because we assume Theorem 1 is true for dimension $\langle d \rangle$ and $\operatorname{codim}_X Y > 0$ we have $H^p(Y, i^{-1}\mathcal{Q}) = 0$ for p > 2(d - m). Since *i* is finite, the Leray spectral sequence [Tag 0733] yields (see also Noah's talk from last semester) $H^p(X, \mathcal{Q}) = H^p(Y, i^{-1}\mathcal{Q}) = 0$ for p > 2(d - m). Hence the above short exact sequence yields the following long exact sequence

$$\cdots \to 0 \to H^p(X, \mathcal{F}) \to H^p(X, \pi_*\mathcal{G}) \to 0 \to \ldots$$

for all p > 2d. Hence, it suffices to prove $H^p(X, \pi_*\mathcal{G}) = 0$ for p > 2d. To prove this, we will use the Leray spectral sequence [Tag 0732]. Its object on the second page are $E_2^{p,q} = H^p(X, R^q \pi_*\mathcal{G})$ the differentials are of bidegree (r, -r + 1) and it converges to $H^{p+q}(X', \mathcal{G})$.

By assumption we have $R^q \pi_* \mathcal{G} = 0$ for q > 2(m-1) and hence

$$E_r^{p,q} = E_2^{p,q} = H^p(X, R^q \pi_* \mathcal{G}) = 0 \text{ for } q > 2(m-1) \text{ and } r \ge 2 \text{ and any } p.$$
 (1)

Furthermore, for q > 0 we have $(R^q \pi_* \mathcal{G})|_U = 0$ since π is an isomorphism over U. Hence, as above, we obtain

$$E_r^{p,q} = E_2^{p,q} = H^p(X, R^q \pi_* \mathcal{G}) = 0 \text{ for } q > 0 \text{ and } p > 2(d-m) \text{ and } r \ge 2.$$
 (2)

Suppose from now on that p > 2d. We want to show that the $E_r^{p,0} = E_{r+1}^{p,0} = \ldots$ in the Leray spectral sequence for $r \ge 2$. The r-th differential gives the following complex

$$\dots \to E_r^{p-r,r-1} \to E_r^{p,0} \to E_r^{p+r,1-r} = 0 \to \dots$$

The right-hand side is 0 as r > 1. By (1), the left-hand side is 0 if $r \ge 2m$. If r < 2m, then r-1 > 0 and p-r > p-2m > 2(d-m) and the left-hand side is 0 by (2). Therefore $E_r^{p,0}$ stabilizes from r = 2 and therefore $H^p(X, \pi_*\mathcal{G}) = H^p(X', \mathcal{G}) = 0$ by assumption. \Box

Lemma 4 (Composition Trick). Let $f : X \to Y$ and $g : Y \to \text{Spec } k$ be proper morphisms such that $\dim X_y \leq \dim X - \dim Y$ for all $y \in Y$. If Theorem 1 holds for f and g, then it holds for $g \circ f$.

Proof. Let $\mathcal{F} \in Ab(X_{\text{ét}})$ be a torsion sheaf, let $d := \dim X$ and $e := \dim Y$. We again use the Leray spectral sequence [Tag 0732]. We have $E_2^{p,q} = H^p(Y, R^q \pi_* \mathcal{F})$. If p > 2e or q > 2(d - e), then $H^p(Y, R^q \pi_* \mathcal{F}) = 0$, by assumption. Hence $E_r^{p,q} = 0$ for all $r \ge 2$ in this case. As the sequence converges to $H^{p+q}(X, \mathcal{F})$ we obtain $H^n(X, \mathcal{F}) = 0$ for n > 2d, as desired. \Box

Lemma 5. It suffices to prove Theorem 1 for the case when X is integral normal proper over an algebraically closed field.

Proof. We proceed by induction on $d = \dim X$. The base case d = 0 is the case of finite morphisms [Tag 03QP]. Suppose that d > 0. Let $\pi : X' \to X$ be the normalization of X. Since X is reduced, there is an open dense subset $U \subseteq X$ such that $\pi_U : X' \times_X U \to U$ is an isomorphism ([Tag 0BXR], [Tag 0BAC]). By [Tag 0BXR], the morphism π is finite, hence proper. The normalization X' is the disjoint union of integral normal schemes. By Lemma 3 it suffices to prove the Theorem for $f' := f \circ \pi$. Let $\mathcal{G} := \pi^{-1} \mathcal{F}$. Let $j_i : U_i \to X'$ denote the connected components of X'. Note that $\mathcal{G} \cong \bigoplus_{i=1}^n j_{i*j} j^{-1} \mathcal{G}$. By the Leray spectral sequence [Tag 01F4] we have $H^q(X', j_{i*}j^{-1}\mathcal{G}) \cong H^q(U_i, j^{-1}\mathcal{G})$ and hence we may assume without loss of generality that X' is connected. \Box

Suppose from now on that X is integral normal proper over an algebraically closed field k.

Lemma 6. It suffices to prove the theorem for $X = \mathbb{P}^1_k$.

Proof. By the previous lemmas we may assume that X is integral normal proper over an algebraically closed field. For d = 0, this is the case of finite morphisms, proved in Emil's talk ([Tag 03QP]). We prove the claim by induction. Suppose that d > 0: Choose a rational function $f : X \dashrightarrow \mathbb{A}_k^1 \subset \mathbb{P}_k^1$. Let $U \subset X$ be its domain of definition. Let $X' \subseteq X \times_{\operatorname{Spec} k} \mathbb{P}_k^1$ be the graph of f, that is the closure of the graph of $f|_U$. Let $b: X' \to X$ denote the first projection and let $g: X' \to \mathbb{P}_k^1$ denote the second projection. Note that bis an isomorphism above U. Let $Y := X \setminus U$. Then $\operatorname{codim}_X Y \ge 2$ (since normal schemes are regular of codimension 1 and hence f extends to codim 1 points by the valuative criterion of properness for \mathbb{P}_k^1). Since $X' \to X \times_{\operatorname{Spec} k} \mathbb{P}_k^1$ is a closed immersion, hence proper and $X \times_{\operatorname{Spec} k} \mathbb{P}_k^1$ is the base change of the proper morphism $X \to \operatorname{Spec} k$, the morphism g is proper. By Lemma 3 it suffices to prove Theorem 1 for X'.

Let \mathcal{G} be a torsion sheaf on X'. The fibers of g have dimension $\langle d$. By Lemma 4 for $X' \xrightarrow{g} \mathbb{P}^1_k \to \operatorname{Spec} k$ and the induction hypothesis Theorem 1 follows for X' if it holds for \mathbb{P}^1_k .

2 The étale fundamental group

To prove Theorem 1 for \mathbb{P}_k^1 , we will need some facts about the étale fundamental group. A reference is [Tag 0BQ8] and [Tag 0BQ6]. Let X be a connected scheme and let \bar{x} be a geometric point of X. Let $F \acute{E}t_X$ denote the category of finite étale coverings of X and let $F_{\bar{x}}$: $F\acute{E}t \rightarrow$ (Finite Sets) denote the fiber functor that maps $U \in Ob(F\acute{E}t)$ to the underlying set of the topological space of $U_{\bar{x}}$.

Definition The fundamental group of X with base point \bar{x} is the group

 $\pi_1(X, \bar{x}) = \operatorname{Aut}(F_{\bar{x}}) = \{ \text{group of natural equivalences between } F_{\bar{x}} \text{ and itself} \}$

Remark One has the embedding

$$\pi_1(X, \bar{x}) \hookrightarrow \prod_{U \in Ob(F \to t)} Aut(F_{\bar{x}}(U)).$$

When endowing Aut(A) with the discrete topology, the image of the embedding is closed and $\pi_1(X, \bar{x})$ becomes a profinite group.

Theorem 7 (see [Tag 0BND], [Tag 0DV5], [Tag 0DV6]).

1. The fiber functor defines an equivalence of categories

 $F_{\bar{x}}$: FÉt_X \rightarrow Finite $-\pi_1(X, \bar{x})$ -Sets.

2. Let R be a finite ring. There is an equivalence of categories

(finite locally constant sheaves of R-modules on $X_{\text{\acute{e}t}}$) \leftrightarrow (finite $R[\pi_1(X, \bar{x})]$ -modules)

3. Given a morphism $f: Y \to X$ of connected schemes with $\bar{x} = f(\bar{y})$ there is a canonical continuous homomorphism $f_*: \pi_1(Y, \bar{y}) \to \pi_1(X, \bar{x})$ such that

$$\begin{array}{c} \operatorname{F\acute{e}t}_{X} & \xrightarrow{\quad base \ change} & \operatorname{F\acute{e}t}_{Y} \\ & \downarrow^{F_{\bar{x}}} & \downarrow^{F_{\bar{y}}} \\ finite \ \pi_{1}(X,\bar{x}) \text{-sets} & \xrightarrow{f_{*}} finite \ \pi_{1}(Y,\bar{y}) \text{-sets} \end{array}$$

and

commute

Proposition 8 ([Tag 03SF]). Let G be a finite $\pi_1(X, \bar{x})$ -set of the form $G = \pi_1(X, \bar{x})/H$ for some normal open subgroup H. Then G corresponds via Theorem 7 to a connected finite étale covering $Y \to X$ such that $\operatorname{Aut}_X(Y) \cong G$. Such a Y is called Galois cover.

Proposition 9 (Proposition 2.18 in [Hel18]). Let Y be a Galois cover of X and let $H < \operatorname{Aut}_X(Y)$. Then $\operatorname{Aut}_{Y/H}(Y) = H$.

Proposition 10. Let $\rho: G \to \operatorname{Aut}(V)$ be a representation of a finite ℓ -group G on a finitedimensional \mathbb{F}_{ℓ^n} -vector space V. Then there is a G-stable filtration $0 = V_0 \subset \cdots \subset V_n = V$ of subspaces with dim $V_i/V_{i-1} = 1$.

Proof. We proceed by induction. The cases $n \in \{0, 1\}$ are clear. Suppose that $n \ge 2$. Then $V^G \ne \{0\}$ since otherwise $V \smallsetminus \{0\}$ is disjoint the union of orbits of sizes of positive powers of ℓ , which is a contradiction. Let $V_1 \subset V^G$ be a 1-dimensional subspace. Then G linearly on V/V_1 and, by induction we obtain a G-stable filtration

$$0 = V_1' \subset \cdots \subset V_n' = V/V_1$$

with $\dim(V'_i)/(V'_{i-1}) = 1$. This lifts to a the desired filtration.

Proposition 11 ([Tag 0A3R]). Let ℓ be a prime number and let \mathcal{F} be a finite type, locally constant sheaf of \mathbb{F}_{ℓ} -vector spaces on $X_{\text{\acute{e}t}}$. Then, there exists a finite étale morphism $f: Y \to X$ of degree prime to ℓ such that $f^{-1}\mathcal{F}$ has a finite filtration whose successive quotients are isomorphic to $\mathbb{Z}/\ell\mathbb{Z}$.

Proof. By Theorem 7 the sheaf \mathcal{F} corresponds to a finite $\mathbb{F}_{\ell}[\pi_1(X, \bar{x})]$ module V. That is, we obtain a representation $\rho: \pi_1(X, \bar{x}) \to \operatorname{Aut}(V)$. Let $G := \operatorname{im} \rho$. Let $H \subset G$ be an ℓ -Sylow subgroup. Let $Z \to X$ be a Galois cover with $\operatorname{Aut}_Z(X) \cong G$. Let Y := Z/H. Then $f: Y \to X$ is a connected finite étale cover. We have $\operatorname{gcd}(\operatorname{deg} f, \ell) = \operatorname{gcd}(|G/H|, \ell) = 1$.

Let $\bar{y} \in Y$ be a geometric point over \bar{x} . By Theorem 7 the action of $\pi_1(Y, \bar{y})$ on G factors through $\pi_1(X, \bar{x})$. But since $\operatorname{Aut}_Y(G) = \operatorname{Aut}_Y(Z) = H$ by Proposition 9, we obtain

$$\operatorname{im}(\pi_1(Y,\bar{y}) \to \pi_1(X,\bar{x})) \subset \rho^{-1}(H).$$

Since $\pi_1(Y, \bar{y}) \to \pi_1(X, \bar{x}) \to \operatorname{Aut}(V)$ corresponding to $f^{-1}\mathcal{F}$, we have $\operatorname{im}(\pi_1(Y, \bar{y}) \to \operatorname{Aut}(V)) \subset H$. Since H is an ℓ -group, by Proposition 10, we obtain a filtration of V with successive quotients $\cong \mathbb{Z}/\ell\mathbb{Z}$. By the equivalence of categories in Theorem 7 we obtain a filtration of $f^{-1}\mathcal{F}$ with successive quotients isomorphic to $\mathbb{Z}/\ell\mathbb{Z}$. \Box

3 The trace method

Proposition 12 ([Tag 03QP]). Let $f: Y \to X$ be a finite morphism. For $\mathcal{F} \in Ab(Y_{\text{\acute{e}t}})$ and any geometric point $\bar{x} \in X$ we have

$$(f_*\mathcal{F})_{\bar{x}} = \bigoplus_{\bar{y}\in Y:\ f(\bar{y})=\bar{x}} \mathcal{F}_{\bar{y}}$$

Proposition 13 ([Tag 03S5]). Let $f: Y \to X$ be an étale morphism. For $\mathcal{F} \in Ab(Y_{\acute{e}t})$ and any geometric point $\bar{x} \in X$ we have

$$(f_!\mathcal{F})_{\bar{x}} = \bigoplus_{\bar{y}\in Y:\ f(\bar{y})=\bar{x}} \mathcal{F}_{\bar{y}}.$$

Hence, if f is finite étale, then $f_* = f_!$. As $f_!$ is the left adjoint of f^* and f_* is its right adjoint, for $\mathcal{F} \in Ab(X_{\text{ét}})$ we obtain a map $\mathcal{F} \to f_*f^{-1}\mathcal{F} = f_!f^{-1}\mathcal{F} \to \mathcal{F}$. By [Tag 04HN], locally we have $Y = \coprod_{i=1}^n X$. Then $f_*f^{-1}\mathcal{F} = \mathcal{F}^{\oplus n}$ and for an étale neighborhood $U \to X$ we have

$$\mathcal{F}(U) \to f_* f^{-1} \mathcal{F}(U) \to \mathcal{F}(U)$$
$$s \mapsto (s, \dots, s) \mapsto n \cdot s$$

This is an isomorphism, if multiplication with n is an isomorphism.

4 The case of \mathbb{P}^1_k

Lemma 14. It suffices to prove Theorem 1 for the case when \mathcal{F} is constructible.

Proof. By [Tag 03SA] \mathcal{F} is a filtered colimit of constructible abelian sheaves. By [Tag 03QF] taking cohomology commutes with filtered colimits. Therefore, it suffices to prove Theorem 1 for the case when \mathcal{F} is constructible.

Let ℓ be a prime number.

Proposition 15. For Y proper over Spec k of dimension 1, we have $H^q(Y, \underline{\mathbb{Z}/\ell\mathbb{Z}}) = 0$ for q > 2.

Proof. The case when $\ell \neq \operatorname{char} k$ was proved in Sebastian's talk. Suppose that $\ell = \operatorname{char} k$. We have the Artin-Schreier sequence on \mathbb{P}^1_k :

$$0 \to \mathbb{Z}/\ell\mathbb{Z} \to \mathbb{G}_a \xrightarrow{\text{Frob} -1} \mathbb{G}_a \to 0.$$

Since $H^i_{\text{ét}}(Y, \mathbb{G}_a) = H^i(Y, \mathcal{O}_Y) = 0$ for i > 1 the long exact sequence yields the result. \Box

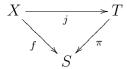
Lemma 16. Let Y be proper over Spec k of dimension 1. Let $j : U \to Y$ be a dense open embedding. Let $\mathcal{F} := j_! \mathbb{Z}/\ell\mathbb{Z}$. Then $H^q(Y, \mathcal{F}) = 0$ for q > 2.

Proof. Set $Z := Y \setminus U$. Consider the short exact sequence

$$0 \to j_! \mathbb{Z}/\ell \mathbb{Z} \to \mathbb{Z}/\ell \mathbb{Z} \to \mathcal{Q} \to 0,$$

where \mathcal{Q} is supported on Z. As before we have $H^q(Y, \mathcal{Q}) = 0$ for q > 0. By Proposition 15 the long exact sequence yields the result.

Theorem 17 (Zariski's Main Theorem, [Tag 05K0]). Let $f : Y \to Z$ be a morphism of schemes. Assume that f is quasi-finite and separated and Z is quasi-compact and quasi-separated. Then, there exists a factorization



with j a quasi-compact open immersion and π finite.

Lemma 18. Let $j : U \to \mathbb{P}^1_k$ be an open immersion with U non-empty and let \mathcal{G} be a finite locally constant sheaf of \mathbb{F}_{ℓ} -vector spaces on U. Then $H^q(\mathbb{P}^1_k, j_!\mathcal{G}) = 0$ for q > 2.

Proof. Let $f: V \to U$ be finite étale morphism of degree prime to ℓ as in Proposition 11 and set $\mathcal{F} := f^{-1}\mathcal{G}$. The composition of the natural maps $\mathcal{G} \to f_*\mathcal{F} \to \mathcal{G}$ is an isomorphism. Since $j_!$ is exact it suffices to prove that $H^q(\mathbb{P}^1_k, j_!f_*\mathcal{F}) = 0$ for q > 2. Note that V is reduced since is finite étale over U (and hence locally just copies of opens of the reduced scheme U). By Zariski's Main Theorem 17 we obtain a commutative diagram

with j' and open immersion and f' finite and Y reduced. By looking at the stalks and applying Propositions 12 and 13 we see that $j_!f_*\mathcal{F} = f'_*j'_!\mathcal{F}$. Since f' is finite, we have $H^q(Y, j'_!\mathcal{F}) = H^q(\mathbb{P}^1_k, f'_*j'_!\mathcal{F}) = H^q(\mathbb{P}^1_k, j_!f_*\mathcal{F})$ for $q \ge 0$.

By Proposition 11 we obtain a finite filtration $0 = \mathcal{F}_0 \subset \cdots \subset \mathcal{F}_n = \mathcal{F}$ with short exact sequences

$$0 \to \mathcal{F}_{i-1} \to \mathcal{F}_i \to \mathbb{Z}/\ell\mathbb{Z} \to 0$$

for i > 0. Since j'_i is exact, we obtain short exact sequences

$$0 \to j'_{!}\mathcal{F}_{i-1} \to j'_{!}\mathcal{F}_{i} \to j'_{!}\underline{\mathbb{Z}/\ell\mathbb{Z}} \to 0$$

By Lemma 16 we have $H^q(Y, j'_! \mathbb{Z}/\ell\mathbb{Z}) = 0$ for q > 2 and hence, inductively $H^q(Y, j'_! \mathcal{F}_i) = 0$ for q > 2, as desired.

Proof of Theorem 1. Without loss of generality we assume that $X = \mathbb{P}_k^1$ and \mathcal{F} is constructible. By [Tag 005K] (every constructible partition of an irreducible scheme has one part which contains a dense open subset) there is an open dense subset $j: U \to \mathbb{P}_k^1$ such that $\mathcal{F}|_U$ is a finite locally constant torsion sheaf. Consider the short exact sequence

$$0 \to j_! j^{-1} \mathcal{F} \to \mathcal{F} \to \mathcal{Q} \to 0$$

for some torsion sheaves \mathcal{Q} supported on $\mathbb{P}^1_k \smallsetminus U$. As above, we have $H^q(X, \mathcal{Q}) = 0$ for q > 0 and hence it suffices to show that $H^q(X, j_! j^{-1} \mathcal{F}) = 0$ for q > 2.

We write $j^{-1}\mathcal{F} = \mathcal{F}|_U = \mathcal{F}_1 \oplus \cdots \oplus \mathcal{F}_r$ such that \mathcal{F}_i is locally constant $\ell_i^{n_i}$ -torsion for some prime ℓ_i . Since have short exact sequences

$$0 \to j_!(\mathcal{F}_i[\ell_i]) \to j_!\mathcal{F}_i \to j_!(\mathcal{F}_i/\mathcal{F}_i[\ell_i]) \to 0,$$

to show that $H^q(\mathbb{P}^1_k, j_!\mathcal{F}_i) = 0$, we may assume that \mathcal{F}_i is ℓ_i -torsion. Since $j_!$ and $H^q(\mathbb{P}^1_k, -)$ commutes with direct sums, we may assume that $\mathcal{F}|_U$ is ℓ -torsion. In other words $\mathcal{F}|_U$ is a finite locally constant sheaf of \mathbb{F}_ℓ -vector spaces on U. By Lemma 18 we have $H^q(\mathbb{P}^1_k, \mathcal{F}|_U) = 0$ for q > 2, as desired. \Box

References

- [Hel18] N. Held. "Fundamental Groups of Schemes". Bachelor thesis. ETH Zürich, 2018. URL: https://people.math.ethz.ch/~pink/Theses/2018-Bachelor-Noah-Held.pdf.
- [Stacks] The Stacks Project Authors. *Stacks Project*. https://stacks.math.columbia.edu. 2019.