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1 `-adic cohomology

Let X be a scheme and ` a prime number.

Definition 1. The `-adic cohomology modules of X are

Hi pX;Z`q W“ lim
nPN

Hi pX;Z=`nZqI

they are naturally Z`-modules, so we can extend coefficients to Q`:

Hi pX;Q`q W“ Hi pX;Z`q bZ`
Q`:

1.1 Finiteness theorem

Theorem 2. If X is proper over a separably closed field K, then Hi pX;Z`q is a
finitely generated Z`-module for every i .

Lemma 3. LetM “ limnMn be a limit of finite torsion Z`-modules. ThenM is
finitely generated if and only ifM=`M is finite.

Proof. “Only if” is clear, so we assume thatM=`M is finite.
We first prove thatM is `-adically complete, i.e. that the canonical morphism

of topological Z`-modules


 WM xM W“ lim
nPN

M=`nM

is an isomorphism. The subgroups `nM are closed, because they are quasi-compact
in the Hausdorff spaceM . Hence xM is Hausdorff in the limit topology. Note that

pM q is dense in xM ; because 
 maps from a quasi-compact to a Hausdorff space,
it is closed, and thus surjective. It now suffices to show that 
 is injective. But

kerp
q “
1
č

n“0

`nM

consists of those elements of M which are divisible by arbitrary powers of `; the
only such element is 0, because eachMn is annihilated by a power of `.

Choose a continuous Z`-linear surjection
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Z‘r
`

pZ=`Zq‘r M=`M:

It lifts to some

Z‘r
`

pZ=`2Zq‘r M=`2M;

which must be surjective by Nakayama’s Lemma. Continuing inductively, we find
a continuous Z`-linear map Z‘r

`
xM that is surjective by the same topological

arguments as above.

Lemma 4. Cofiltered limits of profinite groups are exact.

Proof. Basically because cofiltered limits of nonempty quasi-compact Hausdorff
spaces are nonempty.

Proof of Theorem 2. ByLemma 3, it suffices to show that there is an exact sequence

Hi pX;Z`q ` Hi pX;Z`q Hi pX;Z=`Zq: (˚)

Because of the indirect definition of Hi pX;Z`q we cannot use the short exact
sequence

0 Z`
` Z` Z=`Z 0

directly. But multiplication by ` onZ` is the limit of multiplication by ` onZ=`nZ,
so we first consider these finite levels and then pass to the limit. For every n ě 2

we have the commutative diagram

0 0

`Z=`nZ

Z=`nZ Z=`nZ Z=`Z 0;

`n´1Z=`nZ

0

`

where the two paths of length 4 between 0’s are short exact sequences. Note that
limnHi pX; `n´1Z=`nZq “ 0 for each i , because the transition morphisms are 0.
Taking the limit of the long exact sequence induced by the diagonal short exact
sequence, it follows that the induced morphism

Hi pX;Z`q lim
nPN

Hi pX; `Z=`nZq

is an isomorphism. Thus we get the desired exact sequence (˚) by taking the limit
of the long exact sequences associated to the second short exact sequence in the
diagram.
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1.2 `-adic Galois representations from cohomology

Let K be a field, K a separable closure of K, GK the absolute Galois group of K,
'WX SpecpKq a proper morphism of schemes. Form the cartesian square

X X

SpecpKq SpecpKq:

' '

Wewish to equip the finite-dimensional vector spaces Hi pX;Q`qwith the structure
of a continuous GK-module. By the theorem of proper base change applied to the
cartesian square above, there is a natural isomorphism

Ri'˚pZ=`
nZq – pRi'˚pZ=`nZqqK :

But the group on the right-hand side is naturally a continuous dicrete GK-module
via the equivalence of categories

ÉtpSpecpKqq » GK-Mod; F FK :

In particular, taking limits, we obtain a continuous action of GK on Hi pX;Z`q, at
least if the latter is endowed with the profinite topology; but the profinite topology
on Hi pX;Z`q agrees with its natural `-adic topology by Lemma 3. Now extend
coefficients to get a continuous homomorphism

GK GLpHi pX;Q`qq;

as desired.

2 Zeta functions of schemes

2.1 The �-function

LetX SpecpZq be a morphism of finite type, and denote by jX j the set of closed
points of X .

Lemma 5. The residue field �pxq of any x P jX j is finite.

Proof. Let A W“ OX pU q for an affine open neighborhood of U of x in X , and let
mx be the maximal ideal of A corresponding to x. Since the composite morphism

Z A A=mx “ �pxq

is of finite type, �pxq cannot containQ. Hence x lies over a prime p, and its residue
field must be a finite extension of Fp.
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Definition 6. The Hasse-Weil zeta function of X is the Euler product

�pX; sq W“
Y
xPjX j

p1´ Cardp�pxqq´sq´1:

Example 7. If X is the spectrum of the ring of integers of a number field K, then
�pX; sq is the Dedekind zeta function of K.

2.2 The Z-function

Assume now that X is of finite type over a finite field Fq , and write

degpxq W“ r�pxq W Fqs px P jX jq:

Lemma 8. For any n P Zě0 there are only finitely many x P jX j with degpxq ď n.

Proof. Because this is true for any affine space over Fq , it is also true ifX is affine;
for the general case, cover X by finitely many affine open subsets.

Definition 9. We define

ZpX; T q W“
Y
xPjX j

p1´ T degpxqq´1:

Remark 10. ZpX; q´sq “ �pX; sq.

Lemma 11. The above formula for ZpX; T q defines an element of ZJT K.

Proof. Observe that

ZpX; T q “
Y
xPjX j

1X
i“0

T i degpxq:

Modulo T n, only those finitely many x P jX j with degpxq ď n contribute to the
product. Hence the formula for ZpX; T q defines an element of

ZJT K “ lim
nPN

ZrT s=pT nq:

Remark 12. ZpX; T q is the generating function associated with the sequence

an W“ the number of effective 0-cycles on X of degree n.

2.3 The logarithmic derivative

Lemma 13. Let R be a ring. The map

dlogW p1`RJT KT; ¨; 1q pRJT K;`; 0q; F F 1=F;

whereF 1 denotes the formal derivative ofF , is a continuous group homomorphism.
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Proof. BecauseRJT K is a normed ring, inversion is continuous. The map F F 1

is also continuous, so continuity of dlog follows. If F;G P 1`RJT KT , then

dlogpFGq “
pFGq1

FG
“
F 1G ` FG1

FG
“
F 1

F
`
G1

G
“ dlogpF q ` dlogpGq:

Hence dlog is also compatible with the group structures.

Lemma 14. If R is torsion-free as a Z-module, then dlog is injective.

Proof. Then F F 1 is injective.

Proposition 15. We have

T dlogpZpX; T qq “
1X
n“1

CardpXpFqnqqT n:

Proof. Since dlog is a continuous group homomorphism,

T dlogpZpX; T qq “ T
X
xPjX j

dlogpp1´ T degpxqq´1q:

A direct calculation, using the fact that dlog is a group homomorphism, shows that

dlogpp1´ T degpxqq´1q “
degpxqT degpxq´1

1´ T degpxq :

Thus

T dlogpZpX; T qq “
X
xPjX j

degpxqT degpxq
1X
i“0

T i degpxq

“
X
xPjX j

degpxq
1X
i“1

T i degpxq

“

1X
n“1

X
degpxq�n

degpxqT n

“

1X
n“1

CardpXpFqnqqT n;

as desired.
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Example 16. (a) If X “ AmFq
, then

1X
n“1

CardpXpFqnqqT n “

1X
n“1

qmnT n

“
1

1´ qmT
´ 1

“
qmT

1´ qmT

“ T dlogpp1´ qmT q´1q:

Hence ZpX; T q “ p1´ qmT q´1.

(b) If X “ PmFq
, then the stratification of X by affine spaces yields the decom-

position

jX j “

ma
d“0

jAdFq
j;

and therefore

ZpX; T q “

mY
d“0

ZpAdFq
; T q “

mY
d“0

1

1´ qdT
:

3 The conjectures

We now fix:

X a scheme, proper and smooth of relative dimension d over Fq;
F an algebraic closure of Fq;

X the base change of X to F;
` a prime not dividing q;
� the geometric Frobenius, i.e. the inverse of x xq in GalpF=Fqq:

Weil conjectured, in his article [Weil], that:

(1) ZpX; T q is a rational function in T .

(2) ZpX; T q satisfies the functional equation

ZpX; pqdT q´1q “ ˘qd�T �ZpX; T q;

where � is the Euler–Poincaré characteristic of X .
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(3) We have

ZpX; T q “
P1P3 ¨ ¨ ¨P2d´1

P0P2 ¨ ¨ ¨P2d
;

with P0 “ 1´ T , P2d “ 1´ qdT , and more generally

Pi “

BiY
j“1

p1´ ˛ijT q

for algebraic integers ˛ij of complex absolute value qi=2.

(4) If X arises as the reduction of a nonsingular projective variety X� over a
number field, then Bi is the i th Betti number of X�pCq.

The excellent review [Katz] of [Deligne] by Katz summarizes the subsequent de-
velopments. Rationality of ZpX; T q was first proven by Dwork in [Dwork], for ar-
bitrary schemes of finite type overFq . Grothendieck later gave a cohomological in-
terpretation ofZpX; T q and a proof of its rationality. Abbreviate Hi W“ Hi pX;Q`q.
For every i , define

Pi W“ detpidHi ´ �T q P 1`Q`rT s:

Theorem 17 (Grothendieck). We have

ZpX; T q “
P1P3 ¨ ¨ ¨P2d´1

P0P2 ¨ ¨ ¨P2d

in Q`JT K.

Corollary 18. ZpX; T q P QpT q.

This follows immediately from the following general fact:

Lemma 19 (Hankel1). Let K be a field, F “
P1
i“0 aiT

i P KJT K, and L a field
extension of K. Then F is rational over K if and only if it is rational over L.

Proof. Note that F is rational overK if and only if there exist nonnegative integers
M and N such that the linear subspace VK of KN`1 spanned by the vectors

pai ; ai`1; : : : ; ai`N q pi ěM q

lies in a linear hypersurface, i.e. dimKpVKq ă N ` 1; same with L in place of K.
But VL “ LbK VK , so dimKpVKq ă N `1 if and only if dimLpVLq ă N `1.

Grothendieck also proved the following theorem, which together with the preceding
one implies conjecture (2):

1http://www-personal.umich.edu/~mmustata/zeta_book.pdf, Proposition 4.13.
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Theorem 20 (Grothendieck). The map � qd=� induces a bijection between the
eigenvalues of � on Hi and the eigenvalues of � on H2d´i , preserving algebraic
multiplicity.

In view of Grothendieck’s theorems, conjecture (3) follows from:

Theorem 21 (Deligne). Every eigenvalue � of � on Hi is an algebraic number,
and the absolute value of each of its complex conjugates is qi=2.

Corollary 22. Each Pi has integral coefficients and is independent of `.

Lemma 23. The content

contWZrT s Zě0;

rX
i“0

aiT
i gcdpai q

extends to a multiplicative map

contWZJT K Zě0;

1X
i“0

aiT
i gcdpai q:

Proof. As for polynomials, it suffices to show that the product of primitive (i.e.,
of content 1) power series is primitive. That is so because FpJT K is an integral
domain for any prime p.

Lemma 24 (Fatou2). If F P ZJT KXQpT q, then there exist coprime P;Q P ZrT s

such that F “ P=Q andQp0q “ 1.

Proof. We can write F “ P=Q with P;Q P ZrT s coprime. We will show that
Qp0q “ ˘1; the lemma follows upon replacing pP;Qq by pQp0qP;Qp0qQq.

Let us first prove thatQ is primitive. Indeed, ifmwere to divide each coefficient
ofQ, i.e. p1=mqQ P ZrT s, then p1=mqQF “ p1=mqP P ZrT s, contradicting the
assumption that P andQ are coprime.

Since P and Q are coprime in QrT s, there are U; V P ZrT s and a positive
integer m such that UP ` VQ “ m. But UP ` VQ “ pUF ` V qQ, so

contpUF ` V q “ contppUF ` V qQq “ m

sinceQ is primitive. Hencem | pUF `V qp0q andm “ pUF `V qp0qQp0q, which
can only happen ifQp0q “ ˘1.

Proof of Corollary 22. Note that the polynomialsPi are pairwise coprime, because
they don’t share any roots inQ`. Applying the preceding lemma, writeZpX; T q “
P=Q for coprime P;Q P ZrT s with P p0q “ 1 “ Qp0q. Since P and Q are still
coprime in Q`rT s, we must have

P “ P1P3 ¨ ¨ ¨P2d´1; Q “ P0P2 ¨ ¨ ¨P2d :

2http://www-math.mit.edu/~rstan/ec/ec1.pdf, p. 629.

8

http://www-math.mit.edu/~rstan/ec/ec1.pdf


(equality holds because the constant coefficients agree). LetK Ă Q` be the splitting
field of PQ overQ. The roots of Pi inK are the roots of PQ of complex absolute
value qi=2. Because this condition is Galois-invariant, Pi is stable under the action
of GalpK=Qq, i.e. Pi P QrT s. By Gauss’s Lemma, Pi P ZrT s. Finally, because
this description of the roots of Pi—among the roots of PQ, which do not depend
on `—is independent of `, so is Pi itself.
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