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1 {-adic cohomology

Let X be a scheme and £ a prime number.

Definition 1. The {-adic cohomology modules of X are
H' (X, Z;) = lim H' (X, Z/{"Z);
nelN
they are naturally Z.g-modules, so we can extend coefficients to Qq:

H (X, Q) := H (X, Z¢) ®z, Q.

1.1 Finiteness theorem

Theorem 2. If X is proper over a separably closed field K, then H: (X, Z;) is a
finitely generated Z.g-module for every i.

Lemma 3. Let M = lim,, M,, be a limit of finite torsion Zg-modules. Then M is
finitely generated if and only if M/{M is finite.

Proof. “Only if” is clear, so we assume that M /{ M is finite.

We first prove that M is £-adically complete, i.e. that the canonical morphism
of topological Zy-modules

viM — M = lim M/"M
nelN

is an isomorphism. The subgroups E/n\ M are closed, because they are quasi-compact
in the Hausdorff space M. Hence M is Hausdorff in the limit topology. Note that
y(M) is dense in M ; because y maps from a quasi-compact to a Hausdorff space,
it is closed, and thus surjective. It now suffices to show that y is injective. But

o0
ker(y) = ﬂ oM
n=0

consists of those elements of M which are divisible by arbitrary powers of £; the
only such element is 0, because each M,, is annihilated by a power of £.
Choose a continuous Z-linear surjection



23" —> (ZJ0Z)®" —> M/IM.
It lifts to some
13" — (Z/0P7)® — M/0* M,

which must be surjective by Nakayama’s Lemma. Continuing inductively, we find
a continuous Zy-linear map Z;}Br — M that is surjective by the same topological
arguments as above. O

Lemma 4. Cofiltered limits of profinite groups are exact.

Proof. Basically because cofiltered limits of nonempty quasi-compact Hausdorff
spaces are nonempty. O

Proof of Theorem 2. By Lemma 3, it suffices to show that there is an exact sequence
H (X, Z¢) 5 H (X, Z¢) — H (X, Z/1Z). (%)

Because of the indirect definition of H'(X,Z,) we cannot use the short exact
sequence

0—Zy5 7y — 77 —0
directly. But multiplication by £ on Z, is the limit of multiplication by £ on Z/{" Z,
so we first consider these finite levels and then pass to the limit. For every n > 2
we have the commutative diagram
0 \ / 0
L2,/ 7

N

707 707 Z/UZ 0.

e

170"z

e

0

where the two paths of length 4 between 0’s are short exact sequences. Note that
lim, H* (X, £"~17/¢"Z) = 0 for each i, because the transition morphisms are 0.
Taking the limit of the long exact sequence induced by the diagonal short exact
sequence, it follows that the induced morphism

H (X,Z;) — lim H' (X, (Z/("Z)
ne

is an isomorphism. Thus we get the desired exact sequence () by taking the limit
of the long exact sequences associated to the second short exact sequence in the
diagram. O



1.2 {-adic Galois representations from cohomology

Let K be a field, K a separable closure of K, G the absolute Galois group of K,
¢: X — Spec(K) a proper morphism of schemes. Form the cartesian square

X X
‘w |<p
Spec(K) —— Spec(K).

We wish to equip the finite-dimensional vector spaces H* (X, Q) with the structure
of a continuous Gg-module. By the theorem of proper base change applied to the
cartesian square above, there is a natural isomorphism

R0, (Z/0"7) = (R ¢.(Z/" L)) %

But the group on the right-hand side is naturally a continuous dicrete G g-module
via the equivalence of categories

Et(Spec(K)) = Gg-Mod, F — Fg.

In particular, taking limits, we obtain a continuous action of Gg on H! (Y, Zy), at
least if the latter is endowed with the profinite topology; but the profinite topology
on H' (X, Z;) agrees with its natural £-adic topology by Lemma 3. Now extend
coeflicients to get a continuous homomorphism

Gk — GL(H (X, Qy)).

as desired.

2 Zeta functions of schemes

2.1 The ¢-function

Let X — Spec(Z) be a morphism of finite type, and denote by | X | the set of closed
points of X.

Lemma 5. The residue field k (x) of any x € | X| is finite.

Proof. Let A := Ox(U) for an affine open neighborhood of U of x in X, and let
m, be the maximal ideal of A corresponding to x. Since the composite morphism

Z—> A—> A/my = Kk(X)

is of finite type, k (x) cannot contain Q. Hence x lies over a prime p, and its residue
field must be a finite extension of I,. ]



Definition 6. The Hasse-Weil zeta function of X is the Euler product

’(X,s) = 1_[ (1 — Card(k(x))~*)" 1.

xe|X|

Example 7. If X is the spectrum of the ring of integers of a number field K, then
(X, s) is the Dedekind zeta function of K.

2.2 The Z-function
Assume now that X is of finite type over a finite field Iy, and write
deg(x) = [k(x) : ] (x € [X]).
Lemma 8. For any n € 7.>° there are only finitely many x € | X | with deg(x) < n.

Proof. Because this is true for any affine space over IF g, it is also true if X is affine;
for the general case, cover X by finitely many affine open subsets. O

Definition 9. We define

Z(X.T)= [] (1— 7)1,
xe| X|

Remark 10. Z(X,q7°%) = {(X,s).
Lemma 11. The above formula for Z (X, T ) defines an element of Z[T].

Proof. Observe that

o0
Z(X.T)= [ > 1t

xe|X|i=0

Modulo 7™, only those finitely many x € |X| with deg(x) < n contribute to the
product. Hence the formula for Z (X, T') defines an element of

Z[T] = lim Z[T)/(T™). 0

Remark 12. Z (X, T) is the generating function associated with the sequence

an = the number of effective O-cycles on X of degree .

2.3 The logarithmic derivative

Lemma 13. Let R be a ring. The map
dlog: (1 + R[T]T, -, 1) — (R[T], +,0), F+— F'/F,

where F' denotes the formal derivative of F, is a continuous group homomorphism.

4



Proof. Because R[T] is a normed ring, inversion is continuous. The map F +— F’
is also continuous, so continuity of dlog follows. If F,G € 1 + R[T]T, then

FG) F'G+FG F G
(FG) _ + _ — = dlog(F) + dlog(G).

doe(FG) = %6 ="F¢  ~F ' G

Hence dlog is also compatible with the group structures. O
Lemma 14. If R is torsion-free as a Zi-module, then dlog is injective.
Proof. Then F + F’ is injective. O

Proposition 15. We have
T dlog(Z Z Card(X

Proof. Since dlog is a continuous group homomorphism,

Tdlog(Z(X.T)) =T »_ dlog((1— 7)1,
xe|X|

A direct calculation, using the fact that dlog is a group homomorphism, shows that

deg(x)Tdee(x)—1

dlog((1 — T%e™))~1) =

1 — Tdeg(x)
Thus
w .
Tdlog(Z(X.T)) = ) deg(x)T%e) Y 7o)
xe|X| i=0
w .
= Z deg(x) Z T! deg(x)
xele i=1
= Z Z deg(x
n=1deg(x)|n
o0
Z Card(X NT",
as desired. =



Example 16. (a) If X = A%“q, then

o0 o0
> Card(X (Fgn))T" =) g™ T"
n=1 n=1

T 1_gmT
q
__4q"T
1 —gmT

T dlog((1 —¢™T)™ ).
Hence Z(X,T) = (1 —q¢™T)~ L.

b IfX = Iqu, then the stratification of X by affine spaces yields the decom-

position
m

x| =] JIAE, I,

d=0
and therefore
1

m m
z(x.T)=[] z@&f,. 7) =] et
d=0 a—o - 4

3 The conjectures

We now fix:
X a scheme, proper and smooth of relative dimension d over Iy,
IF an algebraic closure of Iy,
X the base change of X to T,
14 a prime not dividing ¢,
o the geometric Frobenius, i.e. the inverse of x — x? in Gal(F/F).

Weil conjectured, in his article [Weil], that:
(1) Z(X,T) is arational function in 7.
(2) Z(X,T) satisfies the functional equation
Z(X.(¢T)") = ™ T*Z(X.T).

where y is the Euler—Poincaré characteristic of X.



(3) We have
PiP3-- Py

PoPy---Pyy '

Z(X.T) =

with Po=1—-T, Py =1— qd T, and more generally

B;
P =[] —eyT)
j=1

for algebraic integers «;; of complex absolute value qi/ 2,

(4) If X arises as the reduction of a nonsingular projective variety X, over a
number field, then B; is the i ™ Betti number of X, (C).

The excellent review [Katz] of [Deligne] by Katz summarizes the subsequent de-
velopments. Rationality of Z (X, T') was first proven by Dwork in [Dwork], for ar-
bitrary schemes of finite type over IF;. Grothendieck later gave a cohomological in-
terpretation of Z (X, T') and a proof of its rationality. Abbreviate H := H (X, Q).
For every i, define

P; :=det(idy —oT) e 1+ Q[T].
Theorem 17 (Grothendieck). We have

PiP3-- Pry_
Z(X,T) = 13 2d—1
PoPy--- Prg
in Qe[T].

Corollary 18. Z(X,T) € Q(T).

This follows immediately from the following general fact:

Lemma 19 (Hankel!). Let K be a field, F = Y.7°,a;T* € K[T], and L a field
extension of K. Then F is rational over K if and only if it is rational over L.

Proof. Note that F is rational over K if and only if there exist nonnegative integers
M and N such that the linear subspace Vi of KV +1 spanned by the vectors

(@i ait1,....ai4n) (i =M)

lies in a linear hypersurface, i.e. dimg (Vg ) < N + 1; same with L in place of K.
ButV;, = L®k Vk,sodimg (V) < N +1ifandonlyifdimz (V7)) < N+1. O

Grothendieck also proved the following theorem, which together with the preceding
one implies conjecture (2):

thttp://www-personal .umich.edu/~mmustata/zeta_book.pdf, Proposition 4.13.


http://www-personal.umich.edu/~mmustata/zeta_book.pdf

Theorem 20 (Grothendieck). The map A +— q@ /A induces a bijection between the
eigenvalues of o on H' and the eigenvalues of o on H2d—1 preserving algebraic
multiplicity.

In view of Grothendieck’s theorems, conjecture (3) follows from:

Theorem 21 (Deligne). Every eigenvalue A of o on H! is an algebraic number,
and the absolute value of each of its complex conjugates is q’/ 2,

Corollary 22. Each P; has integral coefficients and is independent of £.

Lemma 23. The content

,
cont: Z[T| — Z7°, ZaiTi — ged(a;)
i=0

extends to a multiplicative map

oo
cont: Z[T] — 7>°, ZaiTi > ged(a;).
i=0

Proof. As for polynomials, it suffices to show that the product of primitive (i.e.,
of content 1) power series is primitive. That is so because IF,[T] is an integral
domain for any prime p. O

Lemma 24 (Fatou?). If F € Z[T] n Q(T), then there exist coprime P, Q € Z|[T |
such that F = P/Q and Q(0) = 1.

Proof. We can write F = P/Q with P, Q € Z[T] coprime. We will show that
Q(0) = +1; the lemma follows upon replacing (P, Q) by (Q(0)P, Q(0)Q).

Let us first prove that Q is primitive. Indeed, if m were to divide each coeflicient
of Q,ie. (1/m)Q € Z[T], then (1/m)QF = (1/m)P € Z|[T], contradicting the
assumption that P and Q are coprime.

Since P and Q are coprime in Q[T], there are U,V € Z[T] and a positive
integer m such that UP + VQ =m. ButUP + VQ = (UF +V)Q, so

cont(UF + V) =cont(UF + V)Q) =m

since Q is primitive. Hence m | (UF + V')(0) and m = (UF + V')(0)Q(0), which
can only happen if Q(0) = +1. O

Proof of Corollary 22. Note that the polynomials P; are pairwise coprime, because
they don’t share any roots in Q;. Applying the preceding lemma, write Z(X, T) =
P/Q for coprime P, Q € Z|T] with P(0) = 1 = Q(0). Since P and Q are still
coprime in Q¢ [7'], we must have

P =P P3Py 1, Q=PoPr--Pyy.

2http://www-math.mit.edu/~rstan/ec/ecl.pdf, p. 629.


http://www-math.mit.edu/~rstan/ec/ec1.pdf

(equality holds because the constant coefficients agree). Let K — Q be the splitting
field of PQ over Q. The roots of P; in K are the roots of PQ of complex absolute
value ¢ /2. Because this condition is Galois-invariant, P; is stable under the action
of Gal(K/Q), i.e. Pi € Q[T]. By Gauss’s Lemma, P; € Z[T]. Finally, because
this description of the roots of P;—among the roots of PQ, which do not depend
on {—is independent of £, so is P; itself. O
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