The Weil conjectures

Noah Held

09.05.2019

1ℓ-adic cohomology

Let X be a scheme and ℓ a prime number.
Definition 1. The ℓ-adic cohomology modules of X are

$$
\mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right):=\lim _{n \in \mathbb{N}} \mathrm{H}^{i}\left(X, \mathbb{Z} / \ell^{n} \mathbb{Z}\right) ;
$$

they are naturally \mathbb{Z}_{ℓ}-modules, so we can extend coefficients to \mathbb{Q}_{ℓ} :

$$
\mathrm{H}^{i}\left(X, \mathbb{Q}_{\ell}\right):=\mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} .
$$

1.1 Finiteness theorem

Theorem 2. If X is proper over a separably closed field K, then $\mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right)$ is a finitely generated \mathbb{Z}_{ℓ}-module for every i.

Lemma 3. Let $M=\lim _{n} M_{n}$ be a limit of finite torsion \mathbb{Z}_{ℓ}-modules. Then M is finitely generated if and only if $M / \ell M$ is finite.

Proof. "Only if" is clear, so we assume that $M / \ell M$ is finite.
We first prove that M is ℓ-adically complete, i.e. that the canonical morphism of topological \mathbb{Z}_{ℓ}-modules

$$
\gamma: M \rightarrow \widehat{M}:=\lim _{n \in \mathbb{N}} M / \ell^{n} M
$$

is an isomorphism. The subgroups $\ell^{n} M$ are closed, because they are quasi-compact in the Hausdorff space M. Hence \widehat{M} is Hausdorff in the limit topology. Note that $\gamma(M)$ is dense in \widehat{M}; because γ maps from a quasi-compact to a Hausdorff space, it is closed, and thus surjective. It now suffices to show that γ is injective. But

$$
\operatorname{ker}(\gamma)=\bigcap_{n=0}^{\infty} \ell^{n} M
$$

consists of those elements of M which are divisible by arbitrary powers of ℓ; the only such element is 0 , because each M_{n} is annihilated by a power of ℓ.

Choose a continuous \mathbb{Z}_{ℓ}-linear surjection

$$
\mathbb{Z}_{\ell}^{\oplus r} \longrightarrow(\mathbb{Z} / \ell \mathbb{Z})^{\oplus r} \longrightarrow M / \ell M
$$

It lifts to some

$$
\mathbb{Z}_{\ell}^{\oplus r} \longrightarrow\left(\mathbb{Z} / \ell^{2} \mathbb{Z}\right)^{\oplus r} \longrightarrow M / \ell^{2} M
$$

which must be surjective by Nakayama's Lemma. Continuing inductively, we find a continuous \mathbb{Z}_{ℓ}-linear map $\mathbb{Z}_{\ell}^{\oplus r} \rightarrow \widehat{M}$ that is surjective by the same topological arguments as above.

Lemma 4. Cofiltered limits of profinite groups are exact.
Proof. Basically because cofiltered limits of nonempty quasi-compact Hausdorff spaces are nonempty.
Proof of Theorem 2. By Lemma 3, it suffices to show that there is an exact sequence

$$
\begin{equation*}
\mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right) \xrightarrow{\ell} \mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right) \rightarrow \mathrm{H}^{i}(X, \mathbb{Z} / \ell \mathbb{Z}) \tag{*}
\end{equation*}
$$

Because of the indirect definition of $\mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right)$ we cannot use the short exact sequence

$$
0 \rightarrow \mathbb{Z}_{\ell} \xrightarrow{\ell} \mathbb{Z}_{\ell} \rightarrow \mathbb{Z} / \ell \mathbb{Z} \rightarrow 0
$$

directly. But multiplication by ℓ on \mathbb{Z}_{ℓ} is the limit of multiplication by ℓ on $\mathbb{Z} / \ell^{n} \mathbb{Z}$, so we first consider these finite levels and then pass to the limit. For every $n \geqslant 2$ we have the commutative diagram

where the two paths of length 4 between 0 's are short exact sequences. Note that $\lim _{n} \mathrm{H}^{i}\left(X, \ell^{n-1} \mathbb{Z} / \ell^{n} \mathbb{Z}\right)=0$ for each i, because the transition morphisms are 0 . Taking the limit of the long exact sequence induced by the diagonal short exact sequence, it follows that the induced morphism

$$
\mathrm{H}^{i}\left(X, \mathbb{Z}_{\ell}\right) \rightarrow \lim _{n \in \mathbb{N}} \mathrm{H}^{i}\left(X, \ell \mathbb{Z} / \ell^{n} \mathbb{Z}\right)
$$

is an isomorphism. Thus we get the desired exact sequence $(*)$ by taking the limit of the long exact sequences associated to the second short exact sequence in the diagram.

$1.2 \quad \ell$-adic Galois representations from cohomology

Let K be a field, \bar{K} a separable closure of K, G_{K} the absolute Galois group of K, $\varphi: X \rightarrow \operatorname{Spec}(K)$ a proper morphism of schemes. Form the cartesian square

We wish to equip the finite-dimensional vector spaces $\mathrm{H}^{i}\left(\bar{X}, \mathrm{Q}_{\ell}\right)$ with the structure of a continuous G_{K}-module. By the theorem of proper base change applied to the cartesian square above, there is a natural isomorphism

$$
\mathrm{R}^{i} \bar{\varphi}_{*}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right) \cong\left(\mathrm{R}^{i} \varphi_{*}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)_{\bar{K}} .
$$

But the group on the right-hand side is naturally a continuous dicrete G_{K}-module via the equivalence of categories

$$
\mathbf{E} \mathbf{t}(\operatorname{Spec}(K)) \cong G_{K}-\operatorname{Mod}, \quad \mathcal{F} \mapsto \mathcal{F}_{\bar{K}} .
$$

In particular, taking limits, we obtain a continuous action of G_{K} on $\mathrm{H}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$, at least if the latter is endowed with the profinite topology; but the profinite topology on $\mathrm{H}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ agrees with its natural ℓ-adic topology by Lemma 3. Now extend coefficients to get a continuous homomorphism

$$
G_{K} \rightarrow \operatorname{GL}\left(\mathrm{H}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right),
$$

as desired.

2 Zeta functions of schemes

2.1 The ζ-function

Let $X \rightarrow \operatorname{Spec}(\mathbb{Z})$ be a morphism of finite type, and denote by $|X|$ the set of closed points of X.

Lemma 5. The residue field $\kappa(x)$ of any $x \in|X|$ is finite.
Proof. Let $A:=\mathcal{O}_{X}(U)$ for an affine open neighborhood of U of x in X, and let \mathfrak{m}_{x} be the maximal ideal of A corresponding to x. Since the composite morphism

$$
\mathbb{Z} \longrightarrow A \longrightarrow A / \mathfrak{m}_{x}=\kappa(x)
$$

is of finite type, $\kappa(x)$ cannot contain \mathbb{Q}. Hence x lies over a prime p, and its residue field must be a finite extension of \mathbb{F}_{p}.

Definition 6. The Hasse-Weil zeta function of X is the Euler product

$$
\zeta(X, s):=\prod_{x \in|X|}\left(1-\operatorname{Card}(\kappa(x))^{-s}\right)^{-1}
$$

Example 7. If X is the spectrum of the ring of integers of a number field K, then $\zeta(X, s)$ is the Dedekind zeta function of K.

2.2 The Z-function

Assume now that X is of finite type over a finite field \mathbb{F}_{q}, and write

$$
\operatorname{deg}(x):=\left[\kappa(x): \mathbb{F}_{q}\right] \quad(x \in|X|)
$$

Lemma 8. For any $n \in \mathbb{Z}^{\geqslant 0}$ there are only finitely many $x \in|X|$ with $\operatorname{deg}(x) \leqslant n$.
Proof. Because this is true for any affine space over \mathbb{F}_{q}, it is also true if X is affine; for the general case, cover X by finitely many affine open subsets.

Definition 9. We define

$$
Z(X, T):=\prod_{x \in|X|}\left(1-T^{\operatorname{deg}(x)}\right)^{-1}
$$

Remark 10. $Z\left(X, q^{-s}\right)=\zeta(X, s)$.
Lemma 11. The above formula for $Z(X, T)$ defines an element of $Z \llbracket T \rrbracket$.
Proof. Observe that

$$
Z(X, T)=\prod_{x \in|X|} \sum_{i=0}^{\infty} T^{i \operatorname{deg}(x)}
$$

Modulo T^{n}, only those finitely many $x \in|X|$ with $\operatorname{deg}(x) \leqslant n$ contribute to the product. Hence the formula for $Z(X, T)$ defines an element of

$$
Z \llbracket T \rrbracket=\lim _{n \in \mathbb{N}} \mathbb{Z}[T] /\left(T^{n}\right)
$$

Remark 12. $Z(X, T)$ is the generating function associated with the sequence $a_{n}:=$ the number of effective 0 -cycles on X of degree n.

2.3 The logarithmic derivative

Lemma 13. Let R be a ring. The map

$$
\operatorname{dlog}:(1+R \llbracket T \rrbracket T, \cdot, 1) \rightarrow(R \llbracket T \rrbracket,+, 0), \quad F \mapsto F^{\prime} / F,
$$

where F^{\prime} denotes the formal derivative of F, is a continuous group homomorphism.

Proof. Because $R \llbracket T \rrbracket$ is a normed ring, inversion is continuous. The map $F \mapsto F^{\prime}$ is also continuous, so continuity of dlog follows. If $F, G \in 1+R \llbracket T \rrbracket T$, then

$$
\mathrm{d} \log (F G)=\frac{(F G)^{\prime}}{F G}=\frac{F^{\prime} G+F G^{\prime}}{F G}=\frac{F^{\prime}}{F}+\frac{G^{\prime}}{G}=\mathrm{d} \log (F)+\mathrm{d} \log (G)
$$

Hence dlog is also compatible with the group structures.
Lemma 14. If R is torsion-free as a \mathbb{Z}-module, then dlog is injective.
Proof. Then $F \mapsto F^{\prime}$ is injective.
Proposition 15. We have

$$
T \mathrm{~d} \log (Z(X, T))=\sum_{n=1}^{\infty} \operatorname{Card}\left(X\left(\mathbb{F}_{q^{n}}\right)\right) T^{n}
$$

Proof. Since dlog is a continuous group homomorphism,

$$
T \operatorname{dlog}(Z(X, T))=T \sum_{x \in|X|} \operatorname{dlog}\left(\left(1-T^{\operatorname{deg}(x)}\right)^{-1}\right)
$$

A direct calculation, using the fact that dlog is a group homomorphism, shows that

$$
\operatorname{dlog}\left(\left(1-T^{\operatorname{deg}(x)}\right)^{-1}\right)=\frac{\operatorname{deg}(x) T^{\operatorname{deg}(x)-1}}{1-T^{\operatorname{deg}(x)}}
$$

Thus

$$
\begin{aligned}
T \operatorname{dlog}(Z(X, T)) & =\sum_{x \in|X|} \operatorname{deg}(x) T^{\operatorname{deg}(x)} \sum_{i=0}^{\infty} T^{i \operatorname{deg}(x)} \\
& =\sum_{x \in|X|} \operatorname{deg}(x) \sum_{i=1}^{\infty} T^{i \operatorname{deg}(x)} \\
& =\sum_{n=1}^{\infty} \sum_{\operatorname{deg}(x) \mid n} \operatorname{deg}(x) T^{n} \\
& =\sum_{n=1}^{\infty} \operatorname{Card}\left(X\left(\mathbb{F}_{q^{n}}\right)\right) T^{n}
\end{aligned}
$$

as desired.

Example 16. (a) If $X=\mathbb{A}_{\mathbb{F}_{q}}^{m}$, then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \operatorname{Card}\left(X\left(\mathbb{F}_{q^{n}}\right)\right) T^{n} & =\sum_{n=1}^{\infty} q^{m n} T^{n} \\
& =\frac{1}{1-q^{m} T}-1 \\
& =\frac{q^{m} T}{1-q^{m} T} \\
& =T \operatorname{dlog}\left(\left(1-q^{m} T\right)^{-1}\right)
\end{aligned}
$$

Hence $Z(X, T)=\left(1-q^{m} T\right)^{-1}$.
(b) If $X=\mathbb{P}_{\mathbb{F}_{q}}^{m}$, then the stratification of X by affine spaces yields the decomposition

$$
|X|=\coprod_{d=0}^{m}\left|\mathbb{A}_{\mathbb{F}_{q}}^{d}\right|,
$$

and therefore

$$
Z(X, T)=\prod_{d=0}^{m} Z\left(\mathbb{A}_{\mathbb{F}_{q}}^{d}, T\right)=\prod_{d=0}^{m} \frac{1}{1-q^{d} T}
$$

3 The conjectures

We now fix:
$X \quad$ a scheme, proper and smooth of relative dimension d over \mathbb{F}_{q},
F an algebraic closure of \mathbb{F}_{q},
$\bar{X} \quad$ the base change of X to \mathbb{F},
$\ell \quad$ a prime not dividing q,
$\sigma \quad$ the geometric Frobenius, i.e. the inverse of $x \mapsto x^{q}$ in $\operatorname{Gal}\left(\mathbb{F} / \mathbb{F}_{q}\right)$.
Weil conjectured, in his article [Weil], that:
(1) $Z(X, T)$ is a rational function in T.
(2) $Z(X, T)$ satisfies the functional equation

$$
Z\left(X,\left(q^{d} T\right)^{-1}\right)= \pm q^{d \chi} T^{\chi} Z(X, T)
$$

where χ is the Euler-Poincaré characteristic of X.
(3) We have

$$
Z(X, T)=\frac{P_{1} P_{3} \cdots P_{2 d-1}}{P_{0} P_{2} \cdots P_{2 d}}
$$

with $P_{0}=1-T, P_{2 d}=1-q^{d} T$, and more generally

$$
P_{i}=\prod_{j=1}^{B_{i}}\left(1-\alpha_{i j} T\right)
$$

for algebraic integers $\alpha_{i j}$ of complex absolute value $q^{i / 2}$.
(4) If X arises as the reduction of a nonsingular projective variety X_{η} over a number field, then B_{i} is the $i^{\text {th }}$ Betti number of $X_{\eta}(\mathbb{C})$.

The excellent review [Katz] of [Deligne] by Katz summarizes the subsequent developments. Rationality of $Z(X, T)$ was first proven by Dwork in [Dwork], for arbitrary schemes of finite type over \mathbb{F}_{q}. Grothendieck later gave a cohomological interpretation of $Z(X, T)$ and a proof of its rationality. Abbreviate $\mathrm{H}^{i}:=\mathrm{H}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$. For every i, define

$$
P_{i}:=\operatorname{det}\left(\mathrm{id}_{\mathrm{H}^{i}}-\sigma T\right) \in 1+\mathbb{Q}_{\ell}[T]
$$

Theorem 17 (Grothendieck). We have

$$
Z(X, T)=\frac{P_{1} P_{3} \cdots P_{2 d-1}}{P_{0} P_{2} \cdots P_{2 d}}
$$

in $\mathbb{Q}_{\ell} \llbracket T \rrbracket$.
Corollary 18. $Z(X, T) \in \mathbb{Q}(T)$.
This follows immediately from the following general fact:
Lemma 19 (Hankel ${ }^{1}$). Let K be a field, $F=\sum_{i=0}^{\infty} a_{i} T^{i} \in K \llbracket T \rrbracket$, and L a field extension of K. Then F is rational over K if and only if it is rational over L.

Proof. Note that F is rational over K if and only if there exist nonnegative integers M and N such that the linear subspace V_{K} of K^{N+1} spanned by the vectors

$$
\left(a_{i}, a_{i+1}, \ldots, a_{i+N}\right) \quad(i \geqslant M)
$$

lies in a linear hypersurface, i.e. $\operatorname{dim}_{K}\left(V_{K}\right)<N+1$; same with L in place of K. But $V_{L}=L \otimes_{K} V_{K}$, so $\operatorname{dim}_{K}\left(V_{K}\right)<N+1$ if and only if $\operatorname{dim}_{L}\left(V_{L}\right)<N+1$.

Grothendieck also proved the following theorem, which together with the preceding one implies conjecture (2):

[^0]Theorem 20 (Grothendieck). The map $\lambda \mapsto q^{d} / \lambda$ induces a bijection between the eigenvalues of σ on H^{i} and the eigenvalues of σ on $\mathrm{H}^{2 d-i}$, preserving algebraic multiplicity.

In view of Grothendieck's theorems, conjecture (3) follows from:
Theorem 21 (Deligne). Every eigenvalue λ of σ on H^{i} is an algebraic number, and the absolute value of each of its complex conjugates is $q^{i / 2}$.

Corollary 22. Each P_{i} has integral coefficients and is independent of ℓ.
Lemma 23. The content

$$
\operatorname{cont}: \mathbb{Z}[T] \rightarrow \mathbb{Z}^{\geqslant 0}, \quad \sum_{i=0}^{r} a_{i} T^{i} \mapsto \operatorname{gcd}\left(a_{i}\right)
$$

extends to a multiplicative map

$$
\text { cont: } Z \llbracket T \rrbracket \rightarrow \mathbb{Z}^{\geqslant 0}, \quad \sum_{i=0}^{\infty} a_{i} T^{i} \mapsto \operatorname{gcd}\left(a_{i}\right)
$$

Proof. As for polynomials, it suffices to show that the product of primitive (i.e., of content 1) power series is primitive. That is so because $\mathbb{F}_{p} \llbracket T \rrbracket$ is an integral domain for any prime p.

Lemma 24 (Fatou 2). If $F \in \mathbb{Z} \llbracket T \rrbracket \cap \mathbb{Q}(T)$, then there exist coprime $P, Q \in \mathbb{Z}[T]$ such that $F=P / Q$ and $Q(0)=1$.

Proof. We can write $F=P / Q$ with $P, Q \in \mathbb{Z}[T]$ coprime. We will show that $Q(0)= \pm 1$; the lemma follows upon replacing (P, Q) by $(Q(0) P, Q(0) Q)$.

Let us first prove that Q is primitive. Indeed, if m were to divide each coefficient of Q, i.e. $(1 / m) Q \in \mathbb{Z}[T]$, then $(1 / m) Q F=(1 / m) P \in \mathbb{Z}[T]$, contradicting the assumption that P and Q are coprime.

Since P and Q are coprime in $\mathbb{Q}[T]$, there are $U, V \in \mathbb{Z}[T]$ and a positive integer m such that $U P+V Q=m$. But $U P+V Q=(U F+V) Q$, so

$$
\operatorname{cont}(U F+V)=\operatorname{cont}((U F+V) Q)=m
$$

since Q is primitive. Hence $m \mid(U F+V)(0)$ and $m=(U F+V)(0) Q(0)$, which can only happen if $Q(0)= \pm 1$.

Proof of Corollary 22. Note that the polynomials P_{i} are pairwise coprime, because they don't share any roots in $\overline{\mathbb{Q}}_{\ell}$. Applying the preceding lemma, write $Z(X, T)=$ P / Q for coprime $P, Q \in \mathbb{Z}[T]$ with $P(0)=1=Q(0)$. Since P and Q are still coprime in $\mathbb{Q}_{\ell}[T]$, we must have

$$
P=P_{1} P_{3} \cdots P_{2 d-1}, \quad Q=P_{0} P_{2} \cdots P_{2 d}
$$

[^1](equality holds because the constant coefficients agree). Let $K \subset \overline{\mathbb{Q}}_{\ell}$ be the splitting field of $P Q$ over \mathbb{Q}. The roots of P_{i} in K are the roots of $P Q$ of complex absolute value $q^{i / 2}$. Because this condition is Galois-invariant, P_{i} is stable under the action of $\operatorname{Gal}(K / \mathbb{Q})$, i.e. $P_{i} \in \mathbb{Q}[T]$. By Gauss's Lemma, $P_{i} \in \mathbb{Z}[T]$. Finally, because this description of the roots of P_{i}-among the roots of $P Q$, which do not depend on ℓ-is independent of ℓ, so is P_{i} itself.

References

[Deligne] Deligne, Pierre, La conjécture de Weil I, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273-307.
[Dwork] Dwork, Bernard, On the Rationality of the Zeta Function of an Algebraic Variety, Amer. J. Math., 82 (1960), 631-648
[Groth] Grothendieck, Alexander, Formule de Lefschetz et rationalité des fonctions L, Séminaire Bourbaki, Vol. 9, Exp. No. 279 (1966), 41-55
[Katz] Katz, Nicholas M., MR0340258, https://mathscinet.ams.org/ mathscinet-getitem?mr=340258
[Weil] Weil, André, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508

[^0]: ${ }^{1}$ http://www-personal.umich.edu/~mmustata/zeta_book.pdf, Proposition 4.13.

[^1]: ${ }^{2}$ http://www-math.mit.edu/~rstan/ec/ec1.pdf, p. 629.

