Local monodromy of Drinfeld modules

M. Mornev*

ETH Zürich

WWU Münster Online Seminar 2021

* Supported by ETH Zürich Postdoctoral Fellowship Program, Marie Skłodowska-Curie Actions COFUND program

Setting

- K, a local field of residual characteristic p
- $K^{\text {sep }}$, a separable closure of K
- $G=\operatorname{Gal}\left(K^{\text {sep }} / K\right)$

Structure of G

$$
\begin{gathered}
1 \rightarrow I \rightarrow G \rightarrow \operatorname{Gal}(\bar{k} / k) \rightarrow 1 \\
1 \rightarrow I^{0+} \rightarrow I \rightarrow \prod_{p^{\prime} \neq p} \mathbb{Z}_{p^{\prime}}(1) \rightarrow 1 \\
{\underset{\mathbb{Z}}{ } / n \mathbb{Z}(1)=\left\{x \in K^{\text {sep }} \mid x^{n}=1\right\}, \quad \pi \text { uniformizes } K}_{\lim _{(n, p)=1}\left\{I \rightarrow \mathbb{Z} / n \mathbb{Z}(1), \quad g \mapsto \frac{g(\sqrt[n]{\pi})}{\sqrt{\pi}}\right\}}
\end{gathered}
$$

Local monodromy of ℓ-adic representations

$\ell \neq p$, a prime; $\quad \mathbb{Q}_{\ell}$-representations of G

The ℓ-adic monodromy theorem (Grothendieck)

Every ℓ-adic representation $\rho: G \rightarrow \mathrm{GL}(V)$ has the following properties:
(1) The restriction of ρ to an open subgroup of l is unipotent.
(2) The image $\rho\left(I^{0+}\right)$ is finite.

In effect:

- $\rho\left(I^{0+}\right)=\{1\}$
- the group $I / I^{0+}=\prod_{p^{\prime} \neq p} \mathbb{Z}_{p^{\prime}}(1)$ acts through $\mathbb{Z}_{\ell}(1)$
- the action of $\mathbb{Z}_{\ell}(1) \cong \mathbb{G}_{a}\left(\mathbb{Z}_{\ell}\right)$ is algebraic

Weil-Deligne representations

$W \subset G$, the Weil group is the preimage of $\mathbb{Z} \subset \widehat{\mathbb{Z}}=\operatorname{Gal}(\bar{k} / k)$ under the reduction homomorphism $G \rightarrow \operatorname{Gal}(\bar{k} / k)$.

Fix:

- $\Phi \in W$ a Frobenius element;
- $t \in \mathbb{Z}_{\ell}(1)$ a generator $\rightsquigarrow \chi_{t}: I \rightarrow \mathbb{Z}_{\ell}$

WD: $V \mapsto(V, N)$

- $N: V(1) \rightarrow V, \quad \rho(g)=\exp \left(\chi_{t}(g) N\right), \quad \forall g \in I$ small
- $\mathrm{WD}(\rho): \Phi^{n} g \mapsto \rho\left(\Phi^{n} g\right) \exp \left(-\chi_{t}(g) N\right)$

Theorem (Deligne)

The functor WD from the category of ℓ-adic representations of G to the category of Weil-Deligne representations in \mathbb{Q}_{ℓ}-vector spaces is fully faithful.
(and the essential image of WD is easy to describe).

Application: ℓ-independence

The Weil group W acts on V continuously in the discrete topology. (V, N) is an "algebraic" object. WD-representations make sense for V over any field (of characteristic 0).
$X \rightarrow$ Spec K proper smooth $\rightsquigarrow\left\{H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right\}_{\ell}$
Pick ℓ, ℓ^{\prime}, embeddings $\mathbb{Q}_{\ell}, \mathbb{Q}_{\ell^{\prime}} \hookrightarrow \mathbb{C}$.

l-independence conjecture

The representations $\mathrm{WD}\left(\mathrm{H}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right)$ and $\mathrm{WD}\left(\mathrm{H}^{i}\left(\bar{X}, \mathbb{Q}_{\ell^{\prime}}\right)\right)$ become isomorphic after base change to \mathbb{C}.

Known for abelian varieties and some other classes.

Weight-monodromy (1)

Pure ℓ-adic rep V of G :

- V is unramified, i.e. arises from $\operatorname{Gal}(\bar{k} / k)$.
- V has weight w: the eigenvalues of the geometric Frobenius are algebraic over \mathbb{Q} and have norm $q^{w / 2}$ for every $\mathbb{Q}_{\ell} \hookrightarrow \mathbb{C} .(q=\# k)$
$X \rightarrow$ Spec K has a smooth proper model over $\mathcal{O}_{K} \rightsquigarrow$ $H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$ is pure of weight i (Deligne).
$X \rightarrow$ Spec K smooth proper, but not necessary of good reduction.
Rapoport-Zink (up to technicalities): there is a unique increasing filtration on $\mathrm{H}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$ such that
- the subquotients are pure,
- the weights grow strictly with the level.

Weight-monodromy (2)

$$
V=H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)
$$

Weight-monodromy conjecture

The monodromy operator N determines the weight filtration on V
Jacobson-Morozov: there is a unique increasing filtration $\left\{M_{r}\right\}_{r \in \mathbb{Z}}$ on V such that

- $N M_{r} \subset M_{r-2}$ for $r \in \mathbb{Z}$,
- the induced map $N^{r}: \operatorname{gr}_{r}^{M} V(r) \xrightarrow{\sim} \operatorname{gr}_{-r}^{M} V$ is an isomorphism for $r \geqslant 0$.

From now on: the characteristic of K is equal to p.
Instead of \mathbb{Q}_{ℓ} work with F, a local field of characteristic p.
E a Drinfeld module over Spec $K \rightsquigarrow V_{\mathfrak{p}} E$ (more generally, t-motives).

Everything breaks down!
(1) The image of I^{0+} is typically infinite.
(2) The group I^{0+} is a free pro- p-group on countably many generators \rightsquigarrow An F-representation of I^{0+} is an essentially arbitrary infinite sequence of elements of $\mathrm{GL}_{n}(F)$.
End of story? No.

Isocrystals

- \mathbb{F}_{q}, a finite field of cardinality q.
- F, a local field over \mathbb{F}_{q}, ring of integers \mathcal{O}_{F}, maximal ideal \mathfrak{m}_{F}.
- K, a field over \mathbb{F}_{q} (not necessarily local).
$\mathcal{E}_{K, F}=\left(\lim _{n>0} K \otimes_{\mathbb{F}_{q}} \mathcal{O}_{F} / \mathfrak{m}_{F}^{n}\right) \otimes_{\mathcal{O}_{F}} F$
$F=\mathbb{F}_{q}((z)) \rightsquigarrow \mathcal{E}_{K, F}=K((z))$
Endomorphism $\sigma: \mathcal{E}_{K, F} \rightarrow \mathcal{E}_{K, F}$ induced by the q-Frobenius of K.

Definition

An $\mathcal{E}_{K, F-i s o c r y s t a l}$ is

- a finitely generated free $\mathcal{E}_{K, F}$-module M
- equipped with an isomorphism $\tau_{M}^{\text {lin }}: \sigma^{*} M \xrightarrow{\sim} M$.

Morphisms are σ-equivariant morphisms of underlying modules.

Isocrystals and F-representations (1)

Tate module:

$$
T(M)=\left(\mathcal{E}_{K^{\operatorname{sep}, F}, F} \otimes_{\mathcal{E}_{K, F}} M\right)^{\tau}, \quad \tau: x \otimes m \mapsto \sigma(x) \otimes \tau_{M}^{\operatorname{lin}}(1 \otimes m)
$$

Definition

An isocrystal M is unit-root if $\operatorname{dim}_{F} T(M)=\operatorname{rank}_{\mathcal{E}_{K, F}} M$.

Theorem (Katz)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- unit-root $\mathcal{E}_{K, F}$-isocrystals,
- F-representations of G.

Isocrystals and F-representations (2)

Assumption: K is local. Ring of integers \mathcal{O}_{K}.
$\mathcal{E}_{K, F}^{+}=\left(\lim _{n>0} \mathcal{O}_{K} \otimes_{\mathbb{F}_{q}} \mathcal{O}_{F} / \mathfrak{m}_{F}^{n}\right) \otimes_{\mathcal{O}_{F}} F$
$F=\mathbb{F}_{q}((z)) \rightsquigarrow \mathcal{E}_{K, F}^{+}=\mathcal{O}_{K}((z))$

Theorem

The functor $M \mapsto T\left(\mathcal{E}_{K, F} \otimes_{\mathcal{E}_{K, F}^{+}} M\right)$ is an equivalence of cat-s of

- unit-root $\mathcal{E}_{K, F^{-}}^{+}$-isocrystals,
- unramified F-representations of G.

Isocrystals and F-representations (3)

$\mathcal{E}_{K, F}^{b}=K \otimes \mathcal{O}_{K} \mathcal{E}_{K, F}^{+}$
$F=\mathbb{F}_{q}((z)) \rightsquigarrow \mathcal{E}_{K, F}^{b} \subset \mathcal{E}_{K, F}$ is the subring of series with bounded coefficients.

Power series \rightsquigarrow functions which are bounded on the open unit disk.

Theorem (M.)

The functor $M \mapsto \mathcal{E}_{K, F} \otimes_{\mathcal{E}_{K, F}^{b}} M$ is fully faithful on unit-root $\mathcal{E}_{K, F}^{b}$-isocrystals.

Get a full subcategory of F-representations of G.
$A=\mathbb{F}_{q}[t]$, the ring of coefficients.

$$
A_{K}=K \otimes_{\mathbb{F}_{q}} A, \quad \sigma: A_{K} \rightarrow A_{K}, \quad x \otimes a \mapsto x^{q} \otimes a
$$

Definition

An (effective) A-motive over K is an A_{K}-module M equipped with a morphism $\sigma^{*} M \rightarrow M$ such that

- M is finitely generated projective over A_{K}.
- The cotangent module

$$
\Omega_{M}=\operatorname{coker}\left(\sigma^{*} M \rightarrow M\right)
$$

is finite-dimensional over K.
Related to shtukas. Anderson: Drinfeld modules $\rightsquigarrow A$-motives.

F-representations arising from A-motives (2)

$\mathfrak{p} \subset A$ a prime $\rightsquigarrow F_{\mathfrak{p}}$, the local field of A at \mathfrak{p}.
The rational \mathfrak{p}-adic completion is

$$
M_{\mathfrak{p}}=\mathcal{E}_{K, F_{\mathfrak{p}}} \otimes_{A_{K}} M
$$

\mathfrak{p} generic $\rightsquigarrow M_{\mathfrak{p}}$ is a unit-root isocrystal.

Proposition (M.)

For every

- A-motive M over K
- prime $\mathfrak{p} \subset A, \neq$ the residual characteristic of M the isocrystal $M_{\mathfrak{p}}$ arises from $\mathcal{E}_{K, F_{\mathfrak{p}}}^{b}$.
$\mathfrak{p} \neq$ res. char. $(M) \sim \ell \neq p$

z-adic monodromy (1)

Upper index ramification filtration $I^{v}, v \in \mathbb{Q} \geqslant 0$
$I^{0+}=$ closure of $\bigcup_{v>0} I^{v}$

Conjecture (the z-adic monodromy theorem)

An F-representation $\rho: G \rightarrow \mathrm{GL}(V)$ arises from $\mathcal{E}_{K, F}^{b}$ if and only if
(1) the restriction of ρ to an open subgroup of I is unipotent, (2) $\rho\left(I^{v}\right)=\{1\}$ for $v \gg 0$.

In the ℓ-adic case: $\rho\left(I^{0+}\right)$ is finite.
Property (1) holds for Anderson modules by Gardeyn's analytic monodromy theorem.

Theorem (M.)

Property (2) holds for Drinfeld modules.

z-adic monodromy (2)

Under development:

- analog of Weil-Deligne construction,
- ℓ-independence conjecture,
- weight-monodromy conjecture.
- z-adic de Rham representations.

Classical theory: ℓ-adic and p-adic representations.
z-adic case: there are analogous types of representations, but they share the coefficient field.

Hartl-Kim: Local shtukas \Leftrightarrow a class of z-adic Galois representations (the z-adic analog of crystalline representations).
z-adic de Rham $=$ potentially semi-stable

z-adic monodromy (3)

$\rho: G \rightarrow G L(V)$, an F-representation of G
$V_{0} \subset V$ an unramified representation such that V / V_{0} is also unramified. This holds for Drinfeld modules.
z-adic monodromy theorem: $\rho\left(I^{v}\right)=\{1\}$ for some $v \gg 0$.

- J^{v}, an abelian quotient of I depending only on v,
- J^{v} is finitely generated over $\mathbb{F}_{p}[[\phi]]$ where $1+\phi$ acts as the Frobenius
- Finite-dimensional $\mathbb{F}_{p}((\phi))$-vector space

$$
H=\operatorname{Hom}_{F}\left(V_{0}, V / V_{0}\right)
$$

- $\left.\rho\right|_{\prime}$ is encoded by an $\mathbb{F}_{p}[[\phi]]$-linear homomorphism

$$
\chi: J^{v} \rightarrow H
$$

