
THE PRO-ÉTALE COHOMOLOGY OF Z`

MAXIM MORNEV

To facilitate reading of [1] we go into more details than what is actually needed to
compute the cohomology of Z`. Some degree of familiarity with derived categories
is assumed. In the following when we mention derived categories we silently assume
that they exist.1

1. How it fails in the étale setting

Let X be a scheme, and ` a prime not divisible in X. Consider the sheaf Z` =
limn Z/`n on Xét. If X is a smooth connected projective curve of geometric genus
g over an algebraically closed field then

Hk(Xét,Z`) =


Z`, k = 0,
0, k = 1,
(Q`/Z`)2g, k = 2,
Q`/Z`, k = 3,
0, k > 3

See [3], chapter I, paragraph 12.

2. Products in derived categories

Proposition 2.1. Let A be an abelian category, {Kn}n∈N a family of complexes in
A. If countable products are exact in A then the termwise product

∏
nKn represents

the product of Kn in D(A).

Proof. Let L ∈ D(A), and let {αn : L → Kn}n∈N be a family of morphisms
in D(A). So for each n ∈ N there is a complex Mn, a morphism of complexes
fn : L → Mn, and a quasi-isomorphism sn : Kn → Mn. By exactness of countable
products

∏
n sn is a quasi-isomorphism, so that we get a morphism α : L→

∏
nKn

whose compositions with projections πn :
∏
nKn → Kn are equal to αn. Another

application of exactness of products shows that this morphism is independent of
the choice of fractions representing αn’s. So it only remains to show unicity.

Assume that we are given another complex L′, a morphism of complexes g : L→ L′,
and a quasi-isomorphism s :

∏
nKn → L′. The fact that the composition of this

fraction with projection πn :
∏
nKn → Kn is equal to αn in D(A) means that

there exists a morphism gn : L′ → L′n, and a quasi-isomorphism tn : Kn → L′n of

1Unfortunately the meaning of the word “exists” depends on the choice of foundations.
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complexes such that gns = tnπn, and the fraction defined by gng, and tn represents
αn.

Now,
∏
n tn :

∏
nKn →

∏
n L
′
n is a quasi-isomorphism by exactness of products.

Let g′ : L′ →
∏
n L
′
n be the morphism of complexes defined by the family {gn : L′ →

L′n}n∈N. The fraction defined by
∏
n tn, and g′g represents α because our construc-

tion of a morphism L→
∏
nKn in D(A) is independent of the choice of representing

fractions.

At the same time this fraction is equivalent to the one defined by g : L → L′, and
s :
∏
nKn → L′. To see this notice that g′ is a quasi-isomorphism. Indeed the

diagram

L′
g′ // ∏

n L
′
n

∏
nKn

s

OO

1 // ∏
nKn

∏
n tn

OO

commutes up to homotopy. �

3. The shift map

Let C be a category, F : N◦ → C a diagram. Suppose that the product
∏
n∈N Fn

exists. Consider the unique morphism τ :
∏
n Fn →

∏
n Fn such that the diagrams

Fn+1

F (n+1←n) // Fn

∏
n

Fn
τ //

πn+1

OO

∏
n

Fn

πn

OO

commute for all n.

Proposition 3.1. The equalizer of the diagram∏
n

Fn
1 //

τ
//
∏
n

Fn

is limF .

Proof. Omitted. �

4. Derived limits

Let A be an abelian category with exact countable products. Let A(N) be the
category of functors N◦ → A. It is also an abelian category.

Let πn : A(N)→ A be the functor which sends a diagram A : N◦ → A to A(n), and
let πn+1 → πn be the natural transformation induced by the arrow n → (n + 1).
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The functors πn pass to the level of categories of complexes. Moreover they descend
to the level of derived categories as exact functors.

Define a functor Rlim: Comp(A(N))→ Comp(A) as:

RlimA = cone
(∏
n

πn(A)
1−τ−−→

∏
n

πn(A)
)
[−1].

Proposition 4.1. (1) Rlim descends to the level of homotopy categories.

(2) Rlim is exact on the level of homotopy categories.

(3) Rlim sends acyclic complexes to acyclic complexes.

Proof. (1), (2) Omitted. Hint: decompose Rlim into functors Comp(A(N)) →
Comp(A(→))→ Comp(A).

(3) Follows from exactness of countable products. �

We therefore obtain a functor Rlim: D(A(N))→ D(A). As its name suggests it is
the derived functor of lim: A(N)→ A. A proof can be found in [8], appendix A.3.
However we will not need this fact.

We will use notation Rilim for i-th cohomology of Rlim.

Proposition 4.2. Let A : N◦ → A be a diagram. R0limA = limAn, and RilimA =
0 whenever i 6∈ {0, 1}.

Proof. Omitted. �

Proposition 4.3. Let A ∈ D(A(N)). There is a canonical distinguished triangle

(1) RlimA→
∏
n

πn(A)
1−τ−−→

∏
n

πn(A)→ RlimA[1]

in D(A).

Proof. Follows since products in D(A) are termwise. �

5. Mittag-Leffler criterion

Definition 5.1. We say that a diagram A : N◦ → A satisfies the Mittag-Leffler
condition if for every n and every m > n large enough the image of Am in An is
independent of m.

Now we switch to the case A = Ab.

Proposition 5.2 (Mittag-Leffler criterion for Ab). Let A : N◦ → Ab be a diagram.
If A satisfies Mittag-Leffler condition then R1limA = 0.
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Proof. Taken from [10], section 3.5.

(1) Let A′n ⊂ An denote the stable image of Am, m > n. Note that the modules
A′n form a subdiagram of A, and the transition maps A′n+1 → A′n are surjections.
Therefore A/A′ is a diagram. This diagram has the property that for every n the
image of (A/A′)m in (A/A′)n is zero for m large enough.

Since Rlim is an exact functor between triangulated categories the short exact
sequence

0→ A′ → A→ A/A′ → 0

induces a cohomology exact sequence

R1limA′ → R1limA→ R1lim(A/A′)→ 0.

Therefore to show that R1limA = 0 it is enough to show that R1limA′ = 0, and
R1lim(A/A′) = 0.

(2) Assume that for every n, and m > n large enough the image of Am in An is
zero. We will show that the map∏

nAn
1−τ // ∏

nAn

is onto. Let (an) ∈
∏
nAn. Fix n ∈ N, and m > n such that Am → An is zero.

Set αn = an + an+1 + . . . + am−1 where ai denotes the image of ai in An via the
composite map Ai → An. The result is straighforward to check.

(3) Assume that all the maps An+1 → An are surjective. Given (an) ∈
∏
nAn let

α0 ∈ A0 be arbitrary, and let αn+1 be a lift of αn − an for n > 1. �

Thanks to Amnon Neeman and Pierre Deligne [7] it is now known that there are
abelian categories A with exact products in which the Mittag-Leffler criterion does
not hold. More concretely, there are diagrams A : N◦ → A with epimorphic tran-
sition maps, and R1limA 6= 0. Note, however that Jan Erik Roos [9] and Ofer
Gabber proved the following theorem (theorem 3.1 in [9]):

Theorem. Let A be an abelian category with AB3, AB4*, and a generator. If
A : N◦ → A is a diagram satisfying Mittag-Leffler condition then R1limA = 0.

6. Homotopy limits

Let T be a triangulated category, F : N◦ → T a diagram. Suppose that the product∏
n∈N Fn exists. We define holimF as an object which fits into a distinguished

triangle

(2) holimF →
∏
n

Fn
1−τ−−→

∏
n

Fn → holimF [1].

In general holimF is defined only up to a non-unique isomorphism.
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Example 6.1. A homotopy limit is not expected to represent the limit of F in T .
Here is a simple example. Take T = D(Z) the derived category of Z-modules. Let
` be a prime, and F the diagram

→ Z `−→ Z `−→ Z `−→ Z.
in Ab. Let K = RlimF ∈ D(Z). The object K is a homotopy limit of the diagram
F viewed as a diagram in D(Z).

The diagram F sits in a short exact sequence of diagrams

`
��

1
�� ��

0 // Z `3 //

`

��

Z //

1

��

Z/`3 //

��

0

0 // Z `2 //

`

��

Z //

1

��

Z/`2 //

��

0

0 // Z ` // Z // Z/` // 0

Applying Rlim to this short exact sequence and taking cohomology we obtain an
exact sequence

0→ H0(K)→ Z→ Z` → H1(K)→ 0

since R1lim of the diagram → Z 1−→ Z vanishes. Clearly H0(K) = limF = 0, so
H1(K) = Z`/Z 6= 0, and K is isomorphic in D(Z) to Z`/Z placed in degree 1.

Assume that K represents limF in D(Z). Then for every i ∈ Z>1 we must have

HomD(Z)(Z[−i],K) = lim
n

HomD(Z)(Z[−i],Z[0]) = 0

since Z is projective. On the other hand, K ∼= Z`/Z[−1] so

HomD(Z)(Z[−1],K) = HomAb(Z,Z`/Z) 6= 0,

a contradiction. �

Proposition 6.2. Let F : N◦ → T be a diagram. There is a short exact sequence

0→ R1lim HomT (−[1], Fn)→ HomT (−,holimF )→ lim HomT (−, Fn)→ 0.

Proof. The distinguished triangle 2 induces an exact sequence∏
n Hom(−[1], Fn)

1−τ
��∏

n Hom(−[1], Fn) // Hom(−,holimF ) // ∏
n Hom(−, Fn)

1−τ
��∏

n Hom(−, Fn)

from which the statement is clear. �
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Proposition 6.3. Let A be an abelian category. Assume that countable products
exist in A, and are exact. Let F : N◦ → D(A) be a diagram. For every i ∈ Z there
is a short exact sequence

0→ R1lim
n
Hi−1(Fn)→ Hi(holimF )→ lim

n
Hi(Fn)→ 0.

Proof. Follows from the cohomology long exact sequence. �

Proposition 6.4. Let T , S be triangulated categories with countable products, and
F : T → S an exact functor. Let K : N◦ → T be a diagram. If F commutes with
countable products then F (holimK) ∼= holim(F ◦K).

Proof. Follows from applying F to the distinguished triangle 2. �

7. Limits in Ab(Xproét)

Let X be a scheme, and Xproét the small pro-étale site over X.

One of the main properties of Xproét is that it is locally weakly contractible. As a
consequence the category Ab(Xproét) has several nice homological properties. The
reason is that weakly contractible objects behave at the same time as if they are
opens (taking sections commutes with limits), and as if they are points (taking
sections is exact). So questions about limits in Ab(Xproét) can be translated to
questions about limits in Ab.

Proposition 7.1. Arbitrary products in Ab(Xproét) are exact.

Proof. Let {Fi → Gi}i∈I be a family of epimorphisms of abelian sheaves in Xproét,
and let U ∈ Xproét be a w-contractible object. As it is true for every object of
Xproét taking sections over U commutes with limits. Hence we only need to check
that the morphism ∏

i

Fi(U)→
∏
i

Gi(U)

is onto. This follows since products in Ab are exact. �

The fact that Xproét is locally weakly contractible implies that the Mittag-Leffler
criterion is valid in Ab(Xproét).

Lemma 7.2. Let F : N◦ → Ab(Xproét) be a diagram of abelian sheaves. If F
satisfies the Mittag-Leffler condition then R1limF = 0.

Proof. Let U ∈ Xproét be w-contractible. Since taking sections over U is exact the
system F(U) : N◦ → Ab satisfies the Mittag-Leffler condition. Hence the morphism∏

n∈N Fn(U)
1−τ // ∏

n∈N Fn(U)

is an epimorphism. Since it holds for every w-contractible U , we are done. �

Essentially the same proof shows that Sh(Xproét) is replete, i.e. if F : N◦ →
Sh(Xproét) is a diagram with epimorphic transition maps then limF → Fn is an
epimorphism for every n ∈ N.
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8. The sheaf Zl

Let X be a scheme, and ` a prime. We work with the small pro-étale site of X.

Definition 8.1. Define presheaves Z/`n, and Z` on Xproét as

Z/`n(S) = HomTop(S,Z/`n),

Z`(S) = HomTop(S,Z`)

(Z/`n has discrete topology).

If U is connected then Z`(U) = Z` because Z` is totally disconnected.

In the previous talk Jinbi explained that presheaves so defined are sheaves ([5],
proposition 2.8, or [1], lemma 4.2.12). In any case we will see in a moment that
they are representable, so are sheaves by faithfully flat descent.

Proposition 8.2. There is an isomorphism

Z` = lim
n

Z/`n,

where the transition maps are induced by reduction Z/`n+1 → Z/`n. Moreover the
transition maps are epimorphisms of presheaves.

Proof. Z` is the limit of Z/`n in the category of topological spaces. Moreover,
the reduction map Z/`n+1 → Z/`n is a split surjection as a map of topological
spaces. �

For X a scheme and S a set we denote X ⊗ S the X-scheme which is the disjoint
union of S copies of X.

Proposition 8.3. The presheaf Z/`n is represented by the X-scheme X ⊗ Z/`n.

Proof. Omitted. �

Proposition 8.4. The limit X` := limn(X ⊗ Z/`n) exists in SchX , represents Z`,
and is weakly étale over X.

Proof. The limit exists in the category of schemes since the transition maps are
affine (Stacks 01YX). Such a limit is also a limit in the category of schemes over X.
The limit represents Z` because Z` is the limit of Z/`n. Finally X` is weakly étale

over X since it is a limit of schemes étale over X (Stacks 094S + Stacks 092N). �

If the base X is qcqs then on the level of topological spaces X` is X × Z` (Stacks
01YY). As a consequence X` is not locally of finite type over X. Indeed, if X is
the spectrum of a field, then all points of X` are closed, and there are uncountably
many of them in every neighbourhood of every point of X`, so it can not be locally
noetherian. It remains to notice that formation of X` commutes with base change.

The sheaf Z` is not the constant sheaf with value Z`. Indeed, the latter sheaf is
represented by X ⊗ Z` which is weakly étale over X but not affine. On the other
hand X` is affine over X.

http://stacks.math.columbia.edu/tag/01YX
http://stacks.math.columbia.edu/tag/094S
http://stacks.math.columbia.edu/tag/092N
http://stacks.math.columbia.edu/tag/01YY
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However the restriction of Z` to the small étale site Xét is precisely the usual étale
sheaf Z`.

9. Generalities on RΓ

An abelian category A is called Grothendieck if it has coproducts, filtered colimits
are exact, and if it has a generator. A generator is an object U such that for every
nonzero morphism f : A→ B there exists a morphism g : U → A with fg 6= 0.

Grothendieck abelian categories have particularly nice properties. Every object of a
Grothendieck category has a set of subobjects, the category has enough injectives,
every complex has a K-injective (homotopy injective) resolution, and the collection
of quasi-isomorphisms is locally small. So the derived category exists, as well as
arbitrary right derived functors.

The category of abelian sheaves on a site is always Grothendieck. Existence and
exactness of filtered colimits is Stacks 03CO, and existence of a generator follows
from existence of extension by zero functor (Stacks 04BE). As a consequence for
every scheme X the derived category D(Xproét) of Ab(Xproét) exists, as well as
the right derived functor RΓ(Xproét,−) : D(Xproét) → D(Z) of the global sections
functor Γ(Xproét,−). Moreover RΓ(Xproét,−) is computed by Γ(Xproét,−) on K-
injective complexes.

Proposition 9.1. For K ∈ D(Z) let K denote the corresponding complex of con-
stant pro-étale sheaves. There is a natural isomorphism

RHom(K,L) = RHom(K,RΓ(Xproét, L)).

In particular RΓ(X,−) is right adjoint.

Proof. We temporarily omit the subscript proét for brevity. By adjunction of con-
stant sheaf functor and Γ(X,−) we have a natural isomorphism

Hom•(K,Γ(X,L)) = Hom•(K,L).

If K is acyclic then K is also acyclic by exactness of the constant sheaf functor.
Thus if L is K-injective then the Hom complex on the right is acyclic. Hence
Γ(X,L) is K-injective. As a consequence

RHom(K,RΓ(X,L)) = Hom•(K,Γ(X,L)) = Hom•(K,L) = RHom(K,L)

if L is K-injective. �

10. The cohomology

Proposition 10.1. Z` ∼= Rlimn Z/`n in D(Xproét).

Proof. Follows from the Mittag-Leffler criterion. �

Proposition 10.2. For every i ∈ Z there are short exact sequences

0→ R1lim
n
Hi−1(Xproét,Z/`n)→ Hi(Xproét,Z`)→ lim

n
Hi(Xproét,Z/`n)→ 0.

http://stacks.math.columbia.edu/tag/03CO
http://stacks.math.columbia.edu/tag/04BE
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Proof. Applying RΓ to the triangle (1), and using the fact that RΓ commutes with
products we conclude that

RΓ(Xproét,Z`) ∼= holim
n

RΓ(Xproét,Z/`n).

Now the short exact sequences follow from proposition 6.3. �

Remark 10.3. One can prove that

lim
n
Hi(Xproét,Z`)/`n = lim

n
Hi(Xproét,Z/`n),

and that R1limnH
i−1(Xproét,Z/`n) vanishes if and only if Hi(Xproét,Z`) is `-

adically separated.

Proposition 10.4. For every n there are natural isomorphisms

RΓ(Xproét,Z/`n) ∼= RΓ(Xét,Z/`n)

in D(Z).

Proof. The inclusion of Xét to Xproét gives a morphism of sites ε : Xproét → Xét.
The sheaf Z/`n on Xét is represented by X ⊗ Z/`n. Hence its pullback by ε is the

pro-étale Z/`n. The result now follows from Stacks 099W. �

Remark 10.5. In general if K ∈ D+(Xét) then RΓ(Xét,K) = RΓ(Xproét, ε
−1K).

This formula does not hold for unbounded complexes, and should not hold. See [1],
remark 5.1.8, and section 3.3 for details.

Proposition 10.6. For every i ∈ Z there are short exact sequences

0→ R1lim
n
Hi−1(Xét,Z/`n)→ Hi(Xproét,Z`)→ lim

n
Hi(Xét,Z/`n)→ 0.

Proof. Omitted. �

Remark 10.7. Compare the formula above with the formula 0.2 in [4].

Proposition 10.8. If X is of finite type over a separably closed field, and if ` is
invertible in X then

Hi(Xproét,Z`) = lim
n
Hi(Xét,Z/`n)

for every i.

Proof. By Deligne’s finiteness theorem ([2], chapitre 7, théorème 1.1) the cohomol-
ogy groups Hi(Xét,Z/`n) are finite for all i. A projective system of finite groups

automatically satisfies the Mittag-Leffler condition, so R1lim vanishes. �

http://stacks.math.columbia.edu/tag/099W
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11. A broader context

The computation from the previous section fits into a broader context presented in
[1] subsection 3.4. Let us describe it.

Let A = Ab(Xproét), x ∈ Z, and let ix : Comp(A) → Comp(A(N)) be the functor
which sends a complex K to the diagram of complexes

→ K
x−→ K

x−→ K.

The functor ix descends to the level of derived categories as an exact functor.

There is a natural transformation ηx : ix → i1 defined by the diagram

�� ��
K

x3
//

x

��

K

1

��
K

x2
//

x

��

K

1

��
K

x // K.

Let px : Comp(A) → Comp(A(N)) be the functor which sends a complex K to
the cone of ηx : ix(K) → i1(K). The functor px descends to the level of derived
categories as an exact functor. By construction for each K ∈ D(A) there is a
canonical distinguished triangle ix(K) → i1(K) → px(K) → ix(K)[1] natural in
K.

Notice that πn(px(K)) = cone(K
x−→ K) = K ⊗LZ Z/xn, and that the natural mor-

phisms πn+1(px(K)) → πn(px(K)) come from restriction maps Z/xn+1 → Z/xn.

Hence Rlimn px(K) is a homotopy limit of the diagram

→ K ⊗LZ Z/x3 → K ⊗LZ Z/x2 → K ⊗LZ Z/x

where the transition maps are induced by restrictions. In the following we will write
RlimnK ⊗LZ Z/xn instead of Rlim px(K).

Since Rlim i1(K) = K the natural map i1(K) → px(K) induces a natural map
K → RlimnK ⊗LZ Z/xn.

Definition 11.1. Let ` be a prime. An object K ∈ D(Xproét) is called derived
`-complete if the natural map K → RlimnK ⊗LZ Z/`n is an isomorphism.

Writing T (K, `) = Rlim i`(K) we obtain a canonical distinguished triangle

T (K, `)→ K → Rlim
n

K ⊗LZ Z/`n → T (K, `)[1].

So K is derived `-complete if and only if T (K, `) = 0. From this it is clear that
derived `-complete objects form a full triangulated subcategory of D(Xproét).
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If Y is another scheme, and F : D(Xproét) → D(Yproét) a functor which com-
mutes with countable produts, then F sends dervided `-complete objects to de-
rived `-complete objects. For example the derived pushforward Rf∗ : D(Xproét)→
D(Yproét) coming from a morphism f : X → Y commutes with products since it is
right adjoint.

Similarly one introduces a notion of a derived `-complete object in D(Z) by re-
placing all the Z’s and Z/`n’s above with Z, and Z/`n respectively. The functor

RΓ: D(Xproét)→ D(Z) commutes with products, and so sends derived `-complete
objects to derived `-complete ones.

In the previous section we first prove that Z` is derived `-complete. As a con-
sequence RΓ(Xproét,Z`) is derived `-complete, and the exact sequence connecting
Hi(RΓ(Xproét,Z`)) with the pro-étale cohomology of Z/`n’s follows purely formally.

To avoid treating D(Xproét), and D(Z) as different cases one can pass to the topoi
Sh(Xproét), and Sh(pt). Here the repleteness property enters the picture. Both
Sh(Xproét), and Sh(pt) are replete, so the theory of derived limits, and derived `-
complete objects in these topoi is a specialization of such a theory for replete topoi
in general (section 3 of [1]).
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