Tate conjectures in function field arithmetic

M. Mornev*

ETH Zürich

Upstate New York Online Number Theory Colloquium 2020

* Supported by ETH Zürich Postdoctoral Fellowship Program, Marie Skłodowska-Curie Actions COFUND program
- \mathbb{F}_{q}, a field of finite cardinality q.
- $A=\mathbb{F}_{q}[t]$, the ring of coefficients. $F=\mathbb{F}_{q}(t)$, the fraction field of A.
- K, a field over \mathbb{F}_{q}.

Usual motives have coefficient ring \mathbb{Z} : the category is \mathbb{Z}-linear. E.g. abelian varieties, algebraic tori.

Anderson modules and motives

An A-module scheme E is

- an abelian group scheme E over $\operatorname{Spec} K$,
- equipped with an action of the ring $A=\mathbb{F}_{q}[t]$.

Anderson's motive of E

$$
M(E)=\operatorname{Hom}_{\mathbb{F}_{q}}\left(E, \mathbb{G}_{a, K}\right) .
$$

$E \mapsto M(E)$ is a contravariant functor.

$$
\begin{aligned}
K[t] & =K \otimes_{\mathbb{F}_{q}} A, \quad \sigma: x \otimes a \mapsto x^{q} \otimes a \\
K[t]\{\tau\} & =\left\{y_{0}+y_{1} \tau+\ldots+y_{n} \tau^{n} \mid y_{i} \in K[t]\right\} \\
\tau \cdot y & =\sigma(y) \cdot \tau \quad \forall y \in K[t]
\end{aligned}
$$

- $K\{\tau\}=\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a, K}\right)$ acts by composition on the left.
- A acts by composition on the right.

An Anderson A-module is

an A-module scheme E over Spec K such that

- E is isomorphic to a finite product of copies of $\mathbb{G}_{a, K}$.
- the motive $M(E)$ is finitely generated projective over $K[t]$.
$M(E)$ is finitely generated projective over $K\{\tau\} \subset K[t]\{\tau\}$. NB: $K[t]\{\tau\}=K[t] \otimes_{K} K\{\tau\}$.
- The rank of E is the rank of $M(E)$ over $K[t]$.
- The dimension of E is the rank of $M(E)$ over $K\{\tau\}$.

A Drinfeld A-module is an Anderson A-module of dimension 1.

Pick $\alpha \in K$.

Example

- $E=\mathbb{G}_{a, K}$
- Action of t on E is given by $\alpha+\tau+\tau^{2}$.
$\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a, K}\right)=K\{\tau\}$, hence $M(E)=K\{\tau\}$. Claim: $M(E)$ is generated by $1, \tau$ over $K[t]$.

$$
\begin{aligned}
t \cdot \tau^{n} & =\tau^{n} \cdot\left(\alpha+\tau+\tau^{2}\right)=\alpha^{q^{n}} \tau^{n}+\tau^{n+1}+\tau^{n+2} \\
\tau^{n+2} & =\left(t-\alpha^{q^{n}}\right) \cdot \tau^{n}-\tau^{n+1}
\end{aligned}
$$

Conclusion: E is an Anderson module of dimension 1 and rank 2.

The tangent space at 0

$\operatorname{Lie}(E)$ is an $K[t]$-module of finite length.
Anderson: $\operatorname{Lie}(E)$ is supported at a rational point of the curve Spec $K[t] / \operatorname{Spec} K$. We do not demand this.

A nonzero prime $\mathfrak{p} \subset A$ is special if $\operatorname{Lie}(E)[\mathfrak{p}] \neq 0$.
Otherwise \mathfrak{p} is called generic.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

In the example: a prime $\mathfrak{p}=(f)$ is special if and only if $f(\alpha)=0$.
If α is transcendental over \mathbb{F}_{q} then every prime is generic.

A nonzero prime ideal $\mathfrak{p} \subset A$. Completion $A_{\mathfrak{p}}$, local field $F_{\mathfrak{p}}$. A separable closure K^{s} / K. The \mathfrak{p}-adic Tate module:

$$
T_{\mathfrak{p}} E=\operatorname{Hom}_{A}\left(F_{\mathfrak{p}} / A_{\mathfrak{p}}, E\left(K^{s}\right)\right)
$$

- Finitely generated free over A_{p}.
- Continuous action of $G_{K}=\operatorname{Gal}\left(K^{s} / K\right)$.
- rk $T_{\mathrm{p}} E \leqslant \mathrm{rk} M(E)$
- $\mathrm{rk} T_{\mathfrak{p}} E=\mathrm{rk} M(E) \Leftrightarrow \mathfrak{p}$ is generic.

Tate conjectures, first version (generic \mathfrak{p})
Assume that K is finitely generated. Then the functor $E \mapsto T_{p} E$ is

- (FF) fully faithful after $A_{\mathfrak{p}} \otimes_{A}$-,
- (SS) preserves semi-simple objects on the rational level.

$$
A_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}\left(E_{1}, E_{2}\right) \xrightarrow{\sim} \operatorname{Hom}\left(T_{\mathfrak{p}} E_{1}, T_{\mathfrak{p}} E_{2}\right)
$$

Anderson: the functor $E \mapsto M(E)$ is fully faithful.

An (effective) A-motive over K is

a left $K[t]\{\tau\}$-module M such that

- M is finitely generated projective over $K[t]$.
- The submodule $K[t] \cdot \tau(M)$ is of finite K-codimension in M.

The conormal module $\Omega_{M}=M / K[t] \tau(M)$.

$$
\Omega_{M(E)} \xrightarrow{\sim} \operatorname{Hom}_{K}(\operatorname{Lie}(E), K) \text { over } K[t]
$$

The same notion of generic and special primes.

- The category is abelian after $F \otimes_{A}-$.
- There is a tensor product $M \otimes N$.
- No duality; easy to repair.

NB: not every motive arises from E.

Dieudonné-Manin theory

Local field \hat{F} over \mathbb{F}_{q}, ring of integers \mathcal{O}, maximal ideal \mathfrak{m}.

$$
\mathcal{E}_{K}=\mathcal{E}_{K, \hat{F}}=\left(\lim _{n \rightarrow \infty} K \otimes_{\mathbb{F}_{q}} \mathcal{O} / \mathfrak{m}^{n}\right) \otimes_{\mathcal{O}} \hat{F}
$$

Endomorphism $\sigma: \mathcal{E}_{K} \rightarrow \mathcal{E}_{K}$ induced by the q-Frobenius of K.
Example: $\hat{F}=\mathbb{F}_{q}((z)), \mathcal{E}=K((z)), \sigma\left(\sum x_{n} z^{n}\right)=\sum x_{n}^{q} z^{n}$.

An \mathcal{E}_{K}-isocrystal is

a left $\mathcal{E}_{K}\{\tau\}$-module M such that

- M is finitely generated projective over \mathcal{E}_{K}.
- $\mathcal{E}_{K} \cdot \tau(M)=M$.
- The category is abelian \hat{F}-linear.
- There is a tensor product and duality.

Dieudonné-Manin classification theorem

Assume that K is algebraically closed. Then

- The category of \mathcal{E}_{K}-isocrystals is semi-simple.
- Simple objects M_{λ} are classified by slope $\lambda \in \mathbb{Q}$.

In the case $\hat{F}=\mathbb{F}_{q}((z))$:

- Write $\lambda=\frac{s}{r}$ with $r>0$ and $(s, r)=1$.
- $M_{\lambda}=\left\langle e_{1}, \ldots, e_{r}\right\rangle$
- $e_{1} \xrightarrow{\tau} \ldots \xrightarrow{\tau} e_{r} \xrightarrow{\tau} z^{s} e_{1}$

An isocrystal M is pure if at most one slope appears in the DM decomposition over an algebraic closure.

If M, N are pure then so is $M \otimes N$ and $\lambda(M \otimes N)=\lambda(M)+\lambda(N)$. Similarly $\lambda\left(M^{*}\right)=-\lambda(M)$.

Filtration theorem (for arbitrary K)

Every \mathcal{E}_{K}-isocrystal M carries a unique filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M
$$

such that:

- Every M_{i+1} / M_{i} is pure and not zero.
- The slopes are strictly increasing with i.

This is called the Harder-Narasimhan filtration.
Splits if K is perfect (and does not split otherwise).

Let M be a pure \mathcal{E}-isocrystal of slope 0 .

$$
T(M)=\left(\mathcal{E}_{K^{s}} \otimes_{\mathcal{E}_{K}} M\right)^{\tau}
$$

- Finite-dimensional over \hat{F}.
- Carries a continuous action of G_{K}.

Representation theorem

The functor $M \mapsto T(M)$ is an equivalence of

- the category of pure isocrystals of slope 0 ,
- the category of continuous G_{K}-representations in finite-dimensional \hat{F}-vector spaces.

Can extend this to pure modules of any slope! The Weil group W_{K} appears instead of G_{K}. The target category is more complicated.

Rational \mathfrak{p}-adic completion of motives

Let M be a motive, and \mathfrak{p} a place of $F=\mathbb{F}_{q}(t)$.

The rational \mathfrak{p}-adic completion is

$$
M_{\mathfrak{p}}=\mathcal{E}_{K, F_{\mathfrak{p}}} \otimes_{K[t]} M
$$

- $\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0 .

For $M=M(E)$ we have a natural isomorphism

$$
T\left(M_{\mathfrak{p}}\right) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}\left(V_{\mathfrak{p}} E, \Omega_{\mathfrak{p}}\right)
$$

where $\Omega_{\mathfrak{p}}=F_{\mathfrak{p}} \otimes_{A} \Omega_{A / \mathbb{F}_{\mathfrak{q}}}^{1}$.

- $\mathfrak{p} \subset A$ special: $M_{\mathfrak{p}}$ need not be pure. The slopes are non-negative and at least one is strictly positive.

$$
T\left(M_{\mathfrak{p}}^{0}\right) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}\left(V_{\mathfrak{p}} E, \Omega_{\mathfrak{p}}\right)
$$

Weights: the ∞-adic completion

Definition (Anderson '86)

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is pure if so is M_{∞}.

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights are strictly positive.

A Tate object L : rank 1 , weight 1.
$M \otimes L^{\otimes n}$ is finitely generated over $K\{\tau\}$ for $n \gg 0$.

Theorem (Drinfeld '77)

A motive of rank $r>0$ arises from a Drinfeld module if and only if it is pure of weight $\frac{1}{r}$.

Tate conjectures

Tate conjectures for A-motives over K

Assume that K is finitely generated. Then the functor $M \mapsto M_{\mathfrak{p}}$ is

- (FF) fully faithful after $F_{\mathfrak{p}} \otimes_{A}-$,
- (SS) preserves semi-simple objects at the rational level.

$$
F_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}(M, N) \xrightarrow{\sim} \operatorname{Hom}\left(M_{\mathfrak{p}}, N_{\mathfrak{p}}\right)
$$

Folklore theorem

Assume that K is finite. Then the Tate conjecture (FF) holds for all motives M and places \mathfrak{p}.

Reason: $\mathcal{E}_{K, F_{\mathfrak{p}}}=F_{\mathfrak{p}} \otimes_{A} K[t]$. Implies injectivity for arbitrary K.

- Taguchi '91, '93: SS for Drinfeld modules, $\mathfrak{p} \neq \infty$.
- Taguchi '95: FF for generic \mathfrak{p} and $\operatorname{tr} \operatorname{deg} K=1$. Details omitted.
- A. Tamagawa '94, '95, '96: FF+SS for generic \mathfrak{p}. Details omitted.
- Pink '95: FF+SS for generic \mathfrak{p}.

Deduced from the isogeny conjecture. Never published.

- Watson '03: FF for Drinfeld modules, special \mathfrak{p}.
- Stalder '10: FF+SS for generic \mathfrak{p}.
- Zywina '16: FF for pure motives, $\mathfrak{p}=\infty$.
M.'20: counterexample to FF for mixed motives, $\mathfrak{p}=\infty$.

The work still continues: $\mathrm{FF}_{\mathfrak{p}=\infty}$ is true for many mixed motives.

Full faithfulness: the algebraic part

Focus on the case $\operatorname{tr} \operatorname{deg} K=1$.
$X / \operatorname{Spec} \mathbb{F}_{q}=$ the smooth projective model of K.
Goal: understand what is $F_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}(M, N)$.

Gardeyn's theory

$C=\operatorname{Spec} A, X \times C$, endomorphism σ.
A left $\mathcal{O}_{X \times C}\{\tau\}$-module: a pair (\mathcal{F}, τ) where \mathcal{F} is an $\mathcal{O}_{X \times C}$-module, $\tau: \mathcal{F} \rightarrow \sigma_{*} \mathcal{F}$ is a morphism.
An A-motive M gives rise to a coherent sheaf \tilde{M} on $(\operatorname{Spec} K) \times C$ together with a σ-linear endomorphism τ.
Embedding ι : $(\operatorname{Spec} K) \times C \hookrightarrow X \times C$. Pushforward $\iota_{*} \tilde{M}$.

Gardeyn's maximal model

There is a unique left $\mathcal{O}_{X \times c}\{\tau\}$-submodule $\mathcal{M} \subset \iota_{*} \tilde{M}$ which is

- locally free of finite type over $\mathcal{O}_{X \times C}$,
- maximal with respect to the inclusion relation.

Motives $M, N \rightsquigarrow$ Gardeyn models \mathcal{M}, \mathcal{N}

Néron property

$\operatorname{Hom}(M, N)=\operatorname{Hom}(\mathcal{M}, \mathcal{N})$
$\mathcal{M}_{\mathfrak{p}}, \mathcal{N}_{\mathfrak{p}}$: the pullback to $X \times \operatorname{Spec} F_{\mathfrak{p}}$.

Theorem

$$
F_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}(M, N)=\operatorname{Hom}\left(\mathcal{M}_{\mathfrak{p}}, \mathcal{N}_{\mathfrak{p}}\right)
$$

Instant consequence of proper base change.

Local field $\hat{F}=\mathbb{F}_{q}((z))$.
Scheme $\mathcal{X}=X \times \operatorname{Spec} \hat{F}$ with an endomorphism σ. Best viewed as a rigid analytic space over Spec \hat{F}.

We have \mathcal{M}, a left $\mathcal{O}_{\mathcal{X}}\{\tau\}$-module which is locally free of finite type over $\mathcal{O}_{\mathcal{X}}$.
Generic fiber functor $\mathcal{M} \mapsto \mathcal{M}_{\eta}$: base change to $\mathcal{E}_{K}=K \widehat{\otimes} \hat{F}$. We know that \mathcal{M}_{η} is an isocrystal.

When the functor $\mathcal{M} \mapsto \mathcal{M}_{\eta}$ is fully faithful?

Local analysis

Closed point $x \in X \leftrightarrow$ valuation ring $R \subset K$.
$\mathcal{E}_{R}=R((z))=R[[z]]\left[z^{-1}\right]$, a subring of $\mathcal{E}_{K}=K((z))$.
$\mathrm{NB}: \mathcal{E}_{R}$ is a PID.
Base change from \mathcal{X} to $\mathcal{E}_{R}: \mathcal{M} \mapsto \mathcal{M}_{x}$. Produces a left $\mathcal{E}_{R}\{\tau\}$-module with the following properties:

- \mathcal{M}_{X} is finitely generated projective over \mathcal{E}_{R}.
- The quotient $\mathcal{M}_{x} / \mathcal{E}_{R} \tau\left(\mathcal{M}_{x}\right)$ is of finite length.
- \mathcal{M}_{x} has a maximality proerty to be discussed later.

To prove full faithfulness it is enough to show that every morphism $\mathcal{M}_{\eta} \rightarrow \mathcal{N}_{\eta}$ maps \mathcal{M}_{x} to \mathcal{N}_{x} for all $x \in X$.

Unramified case (excellent reduction)

An $\mathcal{E}_{R^{-}}$isocrystal is

a left $\mathcal{E}_{R}\{\tau\}$-module M such that

- M is finitely generated free over \mathcal{E}_{R},
- $M=\mathcal{E}_{R} \tau(M)$.

For almost all points x the module \mathcal{M}_{x} is an \mathcal{E}_{R}-isocrystal.

Theorem (Watson '03)

The base change functor $\mathcal{E}_{K} \otimes_{\mathcal{E}_{R}}$ - is fully faithful on isocrystals.
Open subset $U \subset X \rightsquigarrow$ subspace $\mathcal{U} \subset \mathcal{X}$, a complement of finitely many residue disks. The natural morphism

$$
\operatorname{Hom}\left(\left.\mathcal{M}\right|_{\mathcal{U}},\left.\mathcal{N}\right|_{\mathcal{U}}\right) \xrightarrow{\sim} \operatorname{Hom}\left(\mathcal{M}_{\eta}, \mathcal{N}_{\eta}\right)
$$

is an isomorphism.

Overconvergence

Split the base change problem in two parts: $\mathcal{E}_{R} \hookrightarrow \mathcal{E}_{R}^{\dagger} \hookrightarrow \mathcal{E}_{K}$ Closed point $x \in X \Leftrightarrow$ normalized valuation $v: K^{\times} \rightarrow \mathbb{Z}$.
$\Gamma_{R}^{\dagger} \subset K[[z]]$, the subring of series with nonzero radius of convergence w.r.t. v.
The overconvergent ring

$$
\mathcal{E}_{R}^{\dagger}=\Gamma_{R}^{\dagger}\left[z^{-1}\right]
$$

The z-adic analog of the p-adic overconvergent ring $\left(\hat{F}=\mathbb{Q}_{p}\right)$.
NB: $\mathcal{E}_{R} \subset \mathcal{E}_{R}^{\dagger}$. Furthermore $\mathcal{E}_{R}^{\dagger}$ is a field.

An overconvergent isocrystal is

a left $\mathcal{E}_{R}^{\dagger}\{\tau\}$-module M such that

- M is finite-dimensional over $\mathcal{E}_{R}^{\dagger}$.
- $M=\mathcal{E}_{R}^{\dagger} \cdot \tau(M)$.

For each x the module $\mathcal{M}_{x}^{\dagger}=\mathcal{E}_{R}^{\dagger} \otimes \mathcal{E}_{R} \mathcal{M}_{x}$ is an overconvergent isocrystal.
We shall study the inclusion $\operatorname{Hom}\left(\mathcal{M}_{x}, \mathcal{N}_{x}\right) \subset \operatorname{Hom}\left(\mathcal{M}_{x}^{\dagger}, \mathcal{N}_{x}^{\dagger}\right)$.

Local maximal models

A local maximal model over R is

a left $\mathcal{E}_{R}\{\tau\}$-module M such that

- M is finitely generated free over \mathcal{E}_{R},
- the conormal module $M / \mathcal{E}_{R} \tau(M)$ is of finite length,
- M is the maximal submodule of $K \otimes_{R} M$ having these properties.

This is a simultaneous generalization of \mathcal{E}_{R}-isocrystals, Gardeyn maximal models and local shtukas of Hartl.

NB: \mathcal{M}_{x} is a local maximal model for every x.
This follows from the fact that \mathcal{M} is a Gardeyn model.

theorem (M., in progress)

The base change functor $\mathcal{E}_{R}^{\dagger} \otimes \mathcal{E}_{R}$ - is fully faithful on local maximal models.

Corollary

For all A-motives M, N over K and all places \mathfrak{p} of F we have

$$
F_{\mathfrak{p}} \otimes_{A} \operatorname{Hom}(M, N)=\left\{f: M_{\mathfrak{p}} \rightarrow N_{\mathfrak{p}} \mid \forall x f\left(M_{\mathfrak{p}, x}^{\dagger}\right) \subset N_{\mathfrak{p}, x}^{\dagger}\right\} .
$$

Here $M_{\mathfrak{p}, x}^{\dagger}=\mathcal{E}_{R, F_{\mathfrak{p}}}^{\dagger} \otimes_{K[t]} M$. Note that $K(t) \subset \mathcal{E}_{R, F_{\mathfrak{p}}}^{\dagger}$ for all R, \mathfrak{p}.
By Watson the condition holds for almost all x.

Kedlaya's base change theorem

Consider the base change $\mathcal{E}_{R}^{\dagger} \hookrightarrow \mathcal{E}_{K}$.
In the p-adic setting the \mathcal{E}_{K}-isocrystals carry extra data:
a connection ∇.
In the p-adic cohomology theory this comes from the Gauß-Manin connection.
∇ is essentially unique (e.g. it is unique on pure objects).
Theorem (Kedlaya '03)
In the p-adic setting the base change functor $\mathcal{E}_{K} \otimes_{\mathcal{E}_{R}^{\dagger}}$ - is fully faithful.

Monodromy

The Robba ring for the valuation v

$$
\mathcal{R}_{v}=\left\{\sum_{n \in \mathbb{Z}} x_{n} z^{n} \mid \text { converges on a punctured open disk w.r.t. } v\right\}
$$

The p-adic monodromy theorem describes the structure of the Frobenius module $\mathcal{R}_{v} \otimes_{\mathcal{E}_{R}^{\dagger}} M$.
The base change is fully faithful on the level of Frobenius structure if one assumes that $\mathcal{R}_{v} \otimes_{\mathcal{E}_{R}^{\dagger}} M$ is as prescribed by the p-adic monodromy theorem.

What if we do not restrict $\mathcal{R}_{v} \otimes_{\mathcal{E}_{R}^{\dagger}} M$?
The base change functor is not full, both in the p-adic and the z-adic setting.
This leads to a counterexample to FF for $\mathfrak{p}=\infty$.

Known cases of base change

Theorem (folklore)

The base change functor $\mathcal{E} \otimes_{\mathcal{E}_{R}^{\dagger}}$ - is fully faithful on pure isocrystals.

Yields FF for generic \mathfrak{p}, and $\mathfrak{p}=\infty$ for pure motives.
Theorem (Ambrus Pal - M. '20)
The base change functor $\mathcal{E} \otimes_{\mathcal{E}_{R}^{\dagger}}$ - is fully faithful on isocrystals with "good" monodromy.
"good" $=$ the result of the p-adic monodromy theorem translated to the z-adic setting.

Yields Watson's base change theorem, and FF for Drinfeld modules, special \mathfrak{p}. Also applies to $\mathfrak{p}=\infty$ when the motive has potential good reduction everywhere.

