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Rings of coefficients

Let K be a field.

Triangulated category of geometric motives over K .

Original goal: abelian category of mixed motives over K .

Abelian varieties, algebraic tori.

Motives of this kind have coefficient ring Z:
the Hom-sets are naturally Z-modules.

t-motives: coefficient ring Fq[t] (and generalizations).
Only for K over Fq.



The setting

Fq, a finite field of cardinality q.

A = Fq[t], the ring of coefficients.
F = Fq(t), the fraction field of A.

K , a field over Fq.

AK = K ⊗Fq A, σ : AK → AK , x ⊗ a 7→ xq ⊗ a.

AK{τ} = {y0 + y1τ + . . .+ ynτ
n | yi ∈ AK , n > 0}

τ · y = σ(y) · τ



Effective A-motives

Definition

An (effective) A-motive over K is a left AK{τ}-module M
such that

M is finitely generated projective over AK .

The cotangent module

ΩM = M/(AK ) · τM
is finite-dimensional over K .

The category is abelian after F ⊗A −.

There is a tensor product M ⊗ N.

Objects are not dualizable; easy to repair  
tannakian category of A-motives.



Abelian A-modules (1)

An A-module scheme E is

an abelian group scheme E over SpecK ,

equipped with an action of the ring A = Fq[t].

Anderson’s motive of E

M(E ) = HomFq(E , Ga).

E 7→ M(E ) is a contravariant functor.

M(E ) carries a left action of the ring AK{τ} = A⊗Fq (K{τ})
K{τ} = EndFq(Ga) acts by composition on the left.

A acts by composition on the right.



Abelian A-modules (2)

An abelian A-module is

an A-module scheme E over SpecK such that

E is isomorphic to a finite product of copies of Ga.

the motive M(E ) is finitely generated projective over AK .

M(E ) is finitely generated projective over K{τ} ⊂ AK{τ}.
AK{τ} = AK ⊗K (K{τ})

ΩM(E) = HomK (LieE , K )

The rank of E is the rank of M(E ) over AK .

The dimension of E is the rank of M(E ) over K{τ}.

A Drinfeld A-module is an Anderson A-module of dimension 1.



Abelian A-modules (3)

Pick α ∈ K .

Example

E = Ga

The action of t on E is given by α + τ + τ2.

EndFq(Ga) = K{τ}, hence M(E ) = K{τ}.
Claim: M(E ) is generated by 1, τ over AK .

t · τn = τn · (α + τ + τ2) = αqnτn + τn+1 + τn+2

τn+2 = (t − αqn) · τn − τn+1

Conclusion: E is an Anderson module of dimension 1 and rank 2.



Dieudonné-Manin theory (1)

Local field F̂ over Fq, ring of integers O, maximal ideal m.

EK = EK ,F̂ = (limn→∞ K ⊗Fq O/mn)⊗O F̂

Endomorphism σ : EK → EK induced by the q-Frobenius of K .

Example: F̂ = Fq((z)), E = K ((z)), σ(
∑

xnz
n) =

∑
xqn zn.

An EK -isocrystal is

a left EK{τ}-module M such that

M is finitely generated projective over EK .

EK · τ(M) = M.

The category is abelian F̂ -linear.

There is a tensor product; every object is dualizable.



Dieudonné-Manin theory (2)

Dieudonné-Manin classification theorem

Assume that K is algebraically closed. Then

The category of EK -isocrystals is semi-simple.

Simple objects Mλ are classified by slope λ ∈ Q.

In the case F̂ = Fq((z)):

Write λ = s
r with r > 0 and (s, r) = 1.

Mλ = 〈e1, . . . , er 〉
e1

τ−→ . . .
τ−→ er

τ−→ zse1



Dieudonné-Manin theory (3)

An isocrystal M is pure if at most one slope appears in the DM
decomposition over an algebraic closure.

M, N pure  M ⊗ N is pure, and λ(M ⊗ N) = λ(M) + λ(N).
Similarly λ(M∗) = −λ(M).

Filtration theorem (for arbitrary K )

Every EK -isocrystal M carries a unique filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M
such that:

Every Mi+1/Mi is pure and not zero.

The slopes are strictly increasing with i .

This is called the Harder-Narasimhan filtration.
Splits if K is perfect (and does not split otherwise).



Dieudonné-Manin theory (4)

Let M be a pure E-isocrystal of slope 0 and
K s a separable closure of K .

T (M) = (EK s ⊗EK M)τ

Finite-dimensional over F̂ .

Carries a continuous action of GK .

Representation theorem

The functor M 7→ T (M) is an equivalence of

the category of pure isocrystals of slope 0,

the category of continuous GK -representations in
finite-dimensional F̂ -vector spaces.

Can extend this to pure modules of any slope!
The Weil group WK appears instead of GK .
The target category is more complicated.



Rational p-adic completion of motives (1)

Let M be a motive, and p a place of F = Fq(t).

The rational p-adic completion is

Mp = EK ,Fp ⊗AK
M

A nonzero prime p ⊂ A is special if ΩM [p] 6= 0.
Otherwise p is called generic.

There are only finitely many special primes.

Special primes always exist if K is finite.

For Drinfeld modules there is at most one special prime.



Rational p-adic completion of motives (2)

p ⊂ A generic: Mp is pure of slope 0.
Galois representation T (Mp). Dimension = rank of M.

For an abelian A-module E we have the p-adic Tate module

Tp(E ) = HomA(Fp/Ap, E (K s))

Compare: Tp(E ) = HomZ(Qp/Zp, E (K s))

For M = M(E ) we have a natural isomorphism

T (Mp) ∼−→ HomFp(VpE , Ωp)

where Ωp = Fp ⊗A Ω1
A/Fq and Vp(E ) = Fp ⊗Ap Tp(E ).



Weights: the ∞-adic completion

Definition (Anderson ’86)

The weights of M are the slopes of M∞ taken with the opposite
sign. We say that M is pure if so is M∞.

Theorem (Taelman ’10)

A motive arises from an Anderson module if and only if its weights
are strictly positive.

A Tate object L: rank 1, weight 1.
M ⊗ L⊗n is finitely generated over K{τ} for n� 0.

Theorem (Drinfeld ’77)

A motive of rank r > 0 arises from a Drinfeld module if and only if
it is pure of weight 1

r .



Selected results

Tate conjectures: Y. Taguchi, A. Tamagawa.

Mumford-Tate conjecture for Drinfeld modules: R. Pink.

Birch and Swinnerton-Dyer conjecture: L. Taelman.


