t-motives (pre-talk)

M. Mornev*
ETH Zürich
UCSD Number Theory Seminar 2020

* Supported by ETH Zürich Postdoctoral Fellowship Program, Marie Skłodowska-Curie Actions COFUND program

Rings of coefficients

Let K be a field.

- Triangulated category of geometric motives over K.
- Original goal: abelian category of mixed motives over K.
- Abelian varieties, algebraic tori.

Motives of this kind have coefficient ring \mathbb{Z} : the Hom-sets are naturally \mathbb{Z}-modules.
t-motives: coefficient ring $\mathbb{F}_{q}[t]$ (and generalizations).
Only for K over \mathbb{F}_{q}.

- \mathbb{F}_{q}, a finite field of cardinality q.
- $A=\mathbb{F}_{q}[t]$, the ring of coefficients. $F=\mathbb{F}_{q}(t)$, the fraction field of A.
- K, a field over \mathbb{F}_{q}.

$$
\begin{gathered}
A_{K}=K \otimes_{\mathbb{F}_{q}} A, \quad \sigma: A_{K} \rightarrow A_{K}, \quad x \otimes a \mapsto x^{q} \otimes a . \\
A_{K}\{\tau\}=\left\{y_{0}+y_{1} \tau+\ldots+y_{n} \tau^{n} \mid y_{i} \in A_{K}, n \geqslant 0\right\} \\
\tau \cdot y=\sigma(y) \cdot \tau
\end{gathered}
$$

Definition

An (effective) A-motive over K is a left $A_{K}\{\tau\}$-module M such that

- M is finitely generated projective over A_{K}.
- The cotangent module

$$
\Omega_{M}=M /\left(A_{K}\right) \cdot \tau M
$$

is finite-dimensional over K.

- The category is abelian after $F \otimes_{A}-$.
- There is a tensor product $M \otimes N$.
- Objects are not dualizable; easy to repair \rightsquigarrow tannakian category of A-motives.

Abelian A-modules (1)

An A-module scheme E is

- an abelian group scheme E over $\operatorname{Spec} K$,
- equipped with an action of the ring $A=\mathbb{F}_{q}[t]$.

Anderson's motive of E

$$
M(E)=\operatorname{Hom}_{\mathbb{F}_{q}}\left(E, \mathbb{G}_{\mathrm{a}}\right) .
$$

$E \mapsto M(E)$ is a contravariant functor.
$M(E)$ carries a left action of the ring $A_{K}\{\tau\}=A \otimes_{\mathbb{F}_{q}}(K\{\tau\})$

- $K\{\tau\}=\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{\mathrm{a}}\right)$ acts by composition on the left.
- A acts by composition on the right.

Abelian A-modules (2)

An abelian A-module is

an A-module scheme E over Spec K such that

- E is isomorphic to a finite product of copies of \mathbb{G}_{a}.
- the motive $M(E)$ is finitely generated projective over A_{K}.
$M(E)$ is finitely generated projective over $K\{\tau\} \subset A_{K}\{\tau\}$.
$A_{K}\{\tau\}=A_{K} \otimes_{K}(K\{\tau\})$

$$
\Omega_{M(E)}=\operatorname{Hom}_{K}(\operatorname{Lie} E, K)
$$

- The rank of E is the rank of $M(E)$ over A_{K}.
- The dimension of E is the rank of $M(E)$ over $K\{\tau\}$.

A Drinfeld A-module is an Anderson A-module of dimension 1.

Abelian A-modules (3)

Pick $\alpha \in K$.

Example

- $E=\mathbb{G}_{\mathrm{a}}$
- The action of t on E is given by $\alpha+\tau+\tau^{2}$.
$\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{\mathrm{a}}\right)=K\{\tau\}$, hence $M(E)=K\{\tau\}$.
Claim: $M(E)$ is generated by $1, \tau$ over A_{K}.

$$
\begin{aligned}
& t \cdot \tau^{n}=\tau^{n} \cdot\left(\alpha+\tau+\tau^{2}\right)=\alpha^{q^{n}} \tau^{n}+\tau^{n+1}+\tau^{n+2} \\
& \tau^{n+2}=\left(t-\alpha^{q^{n}}\right) \cdot \tau^{n}-\tau^{n+1}
\end{aligned}
$$

Conclusion: E is an Anderson module of dimension 1 and rank 2.

Dieudonné-Manin theory (1)

Local field \hat{F} over \mathbb{F}_{q}, ring of integers \mathcal{O}, maximal ideal \mathfrak{m}.

$$
\mathcal{E}_{K}=\mathcal{E}_{K, \hat{F}}=\left(\lim _{n \rightarrow \infty} K \otimes_{\mathbb{F}_{q}} \mathcal{O} / \mathfrak{m}^{n}\right) \otimes_{\mathcal{O}} \hat{F}
$$

Endomorphism $\sigma: \mathcal{E}_{K} \rightarrow \mathcal{E}_{K}$ induced by the q-Frobenius of K.
Example: $\hat{F}=\mathbb{F}_{q}((z)), \mathcal{E}=K((z)), \sigma\left(\sum x_{n} z^{n}\right)=\sum x_{n}^{q} z^{n}$.

An \mathcal{E}_{K}-isocrystal is

a left $\mathcal{E}_{K}\{\tau\}$-module M such that

- M is finitely generated projective over \mathcal{E}_{K}.
- $\mathcal{E}_{K} \cdot \tau(M)=M$.
- The category is abelian \hat{F}-linear.
- There is a tensor product; every object is dualizable.

Dieudonné-Manin theory (2)

Dieudonné-Manin classification theorem

Assume that K is algebraically closed. Then

- The category of \mathcal{E}_{K}-isocrystals is semi-simple.
- Simple objects M_{λ} are classified by slope $\lambda \in \mathbb{Q}$.

In the case $\hat{F}=\mathbb{F}_{q}((z))$:

- Write $\lambda=\frac{s}{r}$ with $r>0$ and $(s, r)=1$.
- $M_{\lambda}=\left\langle e_{1}, \ldots, e_{r}\right\rangle$
- $e_{1} \xrightarrow{\tau} \ldots \xrightarrow{\tau} e_{r} \xrightarrow{\tau} z^{s} e_{1}$

Dieudonné-Manin theory (3)

An isocrystal M is pure if at most one slope appears in the DM decomposition over an algebraic closure.
M, N pure $\rightsquigarrow M \otimes N$ is pure, and $\lambda(M \otimes N)=\lambda(M)+\lambda(N)$.
Similarly $\lambda\left(M^{*}\right)=-\lambda(M)$.

Filtration theorem (for arbitrary K)

Every \mathcal{E}_{K}-isocrystal M carries a unique filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M
$$

such that:

- Every M_{i+1} / M_{i} is pure and not zero.
- The slopes are strictly increasing with i.

This is called the Harder-Narasimhan filtration. Splits if K is perfect (and does not split otherwise).

Dieudonné-Manin theory (4)

Let M be a pure \mathcal{E}-isocrystal of slope 0 and K^{s} a separable closure of K.

$$
T(M)=\left(\mathcal{E}_{K^{s}} \otimes_{\mathcal{E}_{K}} M\right)^{\tau}
$$

- Finite-dimensional over \hat{F}.
- Carries a continuous action of G_{K}.

Representation theorem

The functor $M \mapsto T(M)$ is an equivalence of

- the category of pure isocrystals of slope 0 ,
- the category of continuous G_{K}-representations in finite-dimensional \hat{F}-vector spaces.

Can extend this to pure modules of any slope! The Weil group W_{K} appears instead of G_{K}. The target category is more complicated.

Rational \mathfrak{p}-adic completion of motives (1)

Let M be a motive, and \mathfrak{p} a place of $F=\mathbb{F}_{q}(t)$.
The rational \mathfrak{p}-adic completion is

$$
M_{\mathfrak{p}}=\mathcal{E}_{K, F_{\mathfrak{p}}} \otimes_{A_{K}} M
$$

A nonzero prime $\mathfrak{p} \subset A$ is special if $\Omega_{M}[\mathfrak{p}] \neq 0$. Otherwise \mathfrak{p} is called generic.

- There are only finitely many special primes.
- Special primes always exist if K is finite.
- For Drinfeld modules there is at most one special prime.

Rational \mathfrak{p}-adic completion of motives (2)

$\mathfrak{p} \subset A$ generic: $M_{\mathfrak{p}}$ is pure of slope 0 .
Galois representation $T\left(M_{\mathfrak{p}}\right)$. Dimension $=$ rank of M.
For an abelian A-module E we have the \mathfrak{p}-adic Tate module

$$
T_{\mathfrak{p}}(E)=\operatorname{Hom}_{A}\left(F_{\mathfrak{p}} / A_{\mathfrak{p}}, E\left(K^{s}\right)\right)
$$

Compare: $T_{p}(E)=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, E\left(K^{s}\right)\right)$
For $M=M(E)$ we have a natural isomorphism

$$
T\left(M_{\mathfrak{p}}\right) \xrightarrow{\sim} \operatorname{Hom}_{F_{\mathfrak{p}}}\left(V_{\mathfrak{p}} E, \Omega_{\mathfrak{p}}\right)
$$

where $\Omega_{\mathfrak{p}}=F_{\mathfrak{p}} \otimes_{A} \Omega_{A / \mathbb{F}_{q}}^{1}$ and $V_{\mathfrak{p}}(E)=F_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} T_{\mathfrak{p}}(E)$.

Weights: the ∞-adic completion

Definition (Anderson '86)

The weights of M are the slopes of M_{∞} taken with the opposite sign. We say that M is pure if so is M_{∞}.

Theorem (Taelman '10)

A motive arises from an Anderson module if and only if its weights are strictly positive.

A Tate object L : rank 1 , weight 1.
$M \otimes L^{\otimes n}$ is finitely generated over $K\{\tau\}$ for $n \gg 0$.

Theorem (Drinfeld '77)

A motive of rank $r>0$ arises from a Drinfeld module if and only if it is pure of weight $\frac{1}{r}$.

Selected results

- Tate conjectures: Y. Taguchi, A. Tamagawa.
- Mumford-Tate conjecture for Drinfeld modules: R. Pink.
- Birch and Swinnerton-Dyer conjecture: L. Taelman.

