Local Kummer theory for Drinfeld modules

M. Mornev[∗] (joint with Richard Pink)

EPFL

2nd Joint Meeting of UMI – AMS Palermo 2024

[∗] Supported by Swiss National Science Foundation (SNSF Ambizione project 202119)

K local field of characteristic $p > 0$ Algebraic closure K^a , $G_K := Aut(K^a/K)$, inertia $I_K \subset G_K$

Drinfeld module $\varphi: A \to K[\tau], \quad \partial \varphi: A \to K$

Assumption: $\partial \varphi(A) \subset \mathcal{O}_K$, i.e. φ has finite residual characteristic

$$
\bar{\mathfrak{p}}:=\partial\varphi^{-1}(\mathfrak{m}_K)
$$

Local monodromy of Drinfeld modules $(p \neq \overline{p})$

Aim: Understand the local monodromy representation

 $I_K \longrightarrow GL(T_p(\varphi))$

 φ has stable reduction: $\varphi = \psi/M$

$$
0 \longrightarrow T_{\mathfrak{p}}(\psi) \longrightarrow T_{\mathfrak{p}}(\varphi) \longrightarrow A_{\mathfrak{p}} \otimes_A M \longrightarrow 0
$$

The action differs from the identity by

$$
I_K \longrightarrow \text{Hom}_A(M, T_{\mathfrak{p}}(\psi))
$$

$$
J_K := I_K^{\text{ab}} / (I_K^{\text{ab}})^{\times p}
$$

Need a convenient version of the adelic Tate module:

$$
T_{\mathrm{ad}}^{\circ}(\varphi):=\mathsf{Hom}_{A}\Big(F/A,\; (K^{a}/\mathfrak{m}_{K^{a}},\;\varphi)\Big).
$$

This is a module over $A_{\text{ad}} := \text{End}_A(F/A)$.

Properties:

$$
T^{\circ}_{\text{ad}}(\varphi) = \prod_{\mathfrak{p}} T^{\circ}_{\mathfrak{p}}(\varphi), \quad T^{\circ}_{\mathfrak{p}}(\varphi) = T_{\mathfrak{p}}(\varphi), \quad \mathfrak{p} \neq \overline{\mathfrak{p}}
$$

$$
T_{\overline{\mathfrak{p}}}(\varphi) \longrightarrow T^{\circ}_{\overline{\mathfrak{p}}}(\varphi).
$$

The image of inertia

$$
\varphi = \psi/M, \quad J_K := I_K^{\text{ab}} / (I_K^{\text{ab}})^{\times p}, \quad B_{\text{ad}}^{\circ} := \mathbb{F}_p[[G_k]]
$$

$$
\rho \colon J_K \longrightarrow \text{Hom}_A(M, T_{\text{ad}}^{\circ}(\psi))
$$

Theorem 1 (M. – Pink)

The image $\rho(J_K)$ is a free B_{ad}° -module of rank divisible by $d := [k/\mathbb{F}_p]$ and is a direct summand of $Hom(\dots)$ up to finite index.

The image of the ramification filtration

$$
\varphi = \psi/M, \quad J_K := I_K^{\text{ab}} / (I_K^{\text{ab}})^{\times p}, \quad B_{\text{ad}}^{\circ} := \mathbb{F}_p[[G_k]], \quad d := [k/\mathbb{F}_p]
$$

$$
\rho \colon J_K \longrightarrow \text{Hom}_A(M, T_{\text{ad}}^{\circ}(\psi))
$$

Ramification subgroup J_K^i , $i \in \mathbb{Z}_{\geq 0}$.

Theorem 2 (M. – Pink)

There is a *finite* subset $S \subset \mathbb{Z}_{\geq 0} \setminus p\mathbb{Z}_{\geq 0}$ such that:

► If
$$
i \notin S
$$
 then $\rho(J_K^i)/\rho(J_K^{i+1})$ is finite.

▶ If $i \in S$ then $\rho(J_K^i)/\rho(J_K^{i+1})$ is a free B_{ad}° -module of rank d.

The B_{ad}° -module $\rho(J_K^i)$ is free of rank $d\cdot|\{j\in S\mid j\geqslant i\}|$ and is a direct summand of $Hom(\dots)$ up to finite index.

In particular, $\rho(J_K^i)=0$ for $i\gg 0$.

The local Kummer pairing

$$
\varphi = \psi/M, \quad J_K := I_K^{\text{ab}}/(I_K^{\text{ab}})^{\times p}, \quad B_{\text{ad}}^{\circ} := \mathbb{F}_p[[G_k]], \quad d := [k/\mathbb{F}_p]
$$

$$
\rho \colon J_K \longrightarrow \text{Hom}_A(M, T_{\text{ad}}^{\circ}(\psi))
$$

The local Kummer pairing of $\overline{\psi}$

$$
[\ ,\)_{\psi}\colon K\times J_{K}\ \longrightarrow\ T_{\mathrm{ad}}^{\circ}(\psi)
$$

$$
[\xi,\ g)_{\psi}\colon\ \left[\frac{b}{a}\right]\mapsto g\big(\psi_{b}(\xi_{a})\big)-\psi_{b}(\xi_{a}),\quad\psi_{a}(\xi_{a})=\xi
$$

$$
[~,~)_\psi\colon \mathcal{P}_\mathsf{K}\times J_\mathsf{K}~\longrightarrow~ T_\mathrm{ad}^\circ(\psi),\quad \mathcal{P}_\mathsf{K}:=\mathsf{K}/\mathcal{O}_\mathsf{K}
$$

Perfectness of the Kummer pairing

$$
B := \mathbb{F}_p[s], \quad \overline{\omega} : B \to k[\tau], \quad \overline{\omega}_s := \tau^d, \quad B^\circ := B[s^{-1}], \quad k \hookrightarrow K
$$

$$
\mathcal{P}_K := K/\mathcal{O}_K \qquad [\ , \]_{\overline{\omega}} : \mathcal{P}_K \times J_K \longrightarrow \mathcal{T}_{ad}^\circ(\overline{\omega})
$$

 $R :=$ End $(\overline{\omega}) = k[\tau]$

Theorem 3 (M. – Pink)

The local Kummer pairing of $\bar{\omega}$ induces an isomorphism

$$
J_K \; \xrightarrow{\sim} \; \mathsf{Hom}_R \big(\mathcal{P}_K, \; T^{\circ}_{\mathrm{ad}}(\overline{\omega}) \big)
$$

that identifies J_K^i with the subgroup of homomorphisms vanishing on

$$
W_i \mathcal{P}_K := \langle [\xi] | \xi \in K \smallsetminus \mathcal{O}_K, v(\xi) > -i \rangle
$$

 $W_i \mathcal{P}_K$ is a free left R-module of finite rank

Comparison with the classical theory

For \mathbb{G}_m , have the local Kummer pairing

$$
(\ ,\)_{\mathbb{G}_m}\colon \mathcal{V}_K\times \mathcal{T}_K\ \longrightarrow \mathcal{T}_{\mathrm{ad}}^{\circ}(\mathbb{G}_m)
$$

with

$$
\mathcal{V}_K:=\mathbb{G}_m(K)/\mathbb{G}_m(\mathcal{O}_K)\ \stackrel{\sim}{\longrightarrow}\ \mathbb{Z}.
$$

and

$$
T_{\mathrm{ad}}^{\circ}(\mathbb{G}_m)=\prod\nolimits_{\ell\neq p}\mathbb{Z}_{\ell}(1).
$$

Theorem

The local Kummer pairing of \mathbb{G}_m induces an isomorphism

$$
\mathcal{T}_{\mathsf{K}} \; \xrightarrow{\sim} \; \mathsf{Hom}_{\mathbb{Z}}(\mathcal{V}_{\mathsf{K}}, \; \mathcal{T}_{\mathrm{ad}}^{\circ}(\mathbb{G}_{m}))
$$

Corollary 4 (M. – Pink)

$$
\mathrm{gr}^i(J_K) \cong \left\{ \begin{array}{ll} (B^\circ_{\mathrm{ad}})^{\oplus d}, & p \nmid i, \\ 0, & p \mid i. \end{array} \right.
$$

In particular the B_{ad}° -module J_K/J_K^i is finitely generated free for all $i\geqslant 0$.

Reason:

$$
\text{gr}^i(J_K) \; \simeq \; \text{Hom}_R\big(\text{gr}_i^W(\mathcal{P}_K), \; T^{\circ}_{\text{ad}}(\bar{\omega})\big).
$$

The reduced case

$$
\bar{\varphi} \colon A \to k[\tau], \quad k \hookrightarrow K
$$

Proposition 5 (M. – Pink)

There is a canonical B°_{ad} -linear isomorphism

$$
T^{\circ}_{\text{ad}}(\bar{\omega}) \ \stackrel{\sim}{\longrightarrow} \ T^{\circ}_{\text{ad}}(\bar{\varphi})
$$

that is compatible with the local Kummer pairing.

$$
J_K \, \hookrightarrow \, \text{Hom}_A((\mathcal{P}_K, \, \overline{\varphi}), \, T^{\circ}_{\text{ad}}(\overline{\varphi}))
$$

The fundamental isomorphism

Any $\varphi: A \to K[\tau]$ extends uniquely to

$$
\varphi_\infty\colon F_\infty\;\longrightarrow K^{\mathrm{perf}}\big((\tau^{-1})\big)
$$

Theorem 6 (M. – Pink)

There is a canonical isomorphism

$$
\chi \colon \bar{\varphi}_{\infty} \; \xrightarrow{\; \sim \;} \; \psi_{\infty}
$$

that induces an isomorphism

$$
\chi \colon (\mathcal{P}_{K^{\mathrm{perf}}}, \, \bar{\varphi}) \; \xrightarrow{\; \sim \;} \; (\mathcal{P}_{K^{\mathrm{perf}}}, \, \psi)
$$

and is compatible with the local Kummer pairing.

$$
\chi = \sum_{j\leqslant 0} x_j \tau^j, \quad x_j \in \mathfrak{m}_K \text{ for } j < 0
$$

Theorem 7 (M. – Pink)

For each $\xi \in K$ of $v(\xi) = -i$ and $p \nmid i$ we have an isomorphism $[\xi, \;)_\psi : \; \text{gr}^i(J_K) \; \xrightarrow{\sim} \; \mathcal{T}_{\text{ad}}^{\circ}(\psi).$

The general case

 $\varphi = \psi/M, \quad \bar{M} := R \cdot \chi^{-1}(M)$ $J_K \xrightarrow{\rho}$ Hom_A $(M, T^{\circ}_{ad}(\psi))$ $\mathsf{Hom}_R\big(\bar{M},\ T^\circ_{\text{ad}}(\bar{\omega})\big)\ \longleftrightarrow \mathsf{Hom}_A\big(M,\ T^\circ_{\text{ad}}(\bar{\omega})\big)$ $\rho_{\overline{M}}$ $\Big\vert \qquad \qquad \Big\vert \qquad \qquad$ $\rho_{\overline{M}}$ is surjective up to finite index, \longrightarrow is split. $W_i\overline{M} := W_i\mathcal{P}_{K\text{perf}} \cap \overline{M}$, $S := \text{breaks of } W_{\bullet}\overline{M}$

Corollary 8 (M. – Pink)

The image $\rho(J_K)$ is open if and only if rank $_A(M) = \text{rank}_R(M)$.

In particular, $\rho(J_K)$ is open if rank $_A(M) = 1$.

A sufficient condition for open image

$$
v(\xi) := -p^n j, \quad j(\xi) := j
$$

$$
j(M) := \{j(\xi) : \xi \in M \setminus \{0\}\}
$$

Theorem 9 (M. – Pink)

We have

$$
|j(M)|\leqslant {\sf rank}_R(\bar{M})\leqslant {\sf rank}_A(M)
$$

and if $|j(M)| = \text{rank}_A(M)$ then $\rho(J_K)$ is open.

p-independence of the conductor $(p \neq \overline{p})$

$$
\rho_{\mathfrak{p}} \colon J_K \ \longrightarrow \ \mathsf{GL}\left(\mathcal{T}_{\mathfrak{p}}(\varphi)\right)
$$
\n
$$
\mathfrak{f}_{\mathfrak{p}} := \min\left\{ i \colon \rho_{\mathfrak{p}}(J_K^{i+1}) = \{1\} \right\}
$$

Theorem 10 (M. – Pink)

 f_p is independent of p .

Furthermore, for each $i \geqslant 0$ either $\rho_{\mathfrak{p}}(J_K^i) = \{1\}$ or $|\rho_{\mathfrak{p}}(J_K^i)| = \infty$.

Inertia invariants $(p \neq \overline{p})$

 $\varphi = \psi/M$

$$
0 \longrightarrow T_{\mathfrak{p}}(\psi) \longrightarrow T_{\mathfrak{p}}(\varphi) \longrightarrow A_{\mathfrak{p}} \otimes_A M \longrightarrow 0
$$

Theorem 11
$$
(M. - Pink)
$$

$$
T_{\mathfrak{p}}(\varphi)^{l_{K}}=T_{\mathfrak{p}}(\psi)
$$

Gardeyn: same for coinvariants