
Chapter 5

Strong Duality

With the help of perturbation that we applied in Chapter 4, we can now prove the

duality theorem. Recall that we are given a linear program

min{cT x : x ∈R
n , Ax = b, x > 0}, (41)

called the primal and its dual

max{bT y : y ∈R
m , AT y 6 c}. (42)

The theorem of weak duality tells us that cT x∗ > bT y∗ if x∗ and y∗ are primal

and dual feasible solutions respectively. The strong duality theorem tell us that if

there exist feasible primal and dual solutions, then there exist feasible primal and

dual solutions which have the same objective value.

Theorem 5.1. If the primal linear program has an optimal solution, then so does

the dual linear program and the objective values coincide.

Proof. The simplex method terminates on the perturbed problem (37)

min{cT x : x ∈R
n , Ax = b′, x > 0},

and outputs an optimal basis B which is also an optimal basis of the primal. The

reduced cost are nonnegative, i.e.,

cT
−cT

B A−1
B A > 0.

The vector y∗ = A−1
B

T
cB is a feasible dual solution which has the same objective

function value as the basic feasible solution x∗ of the primal which is defined as

x∗
B
= A−1

B
b and x∗

B
= 0, see proof of Lemma 3.5. ⊓⊔

We can formulate dual linear programs also if the linear program is not in

equation standard form. Consider for example a linear program

max{cT x : x ∈R
n , Ax 6 b, x > 0}. (43)
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We transform this into standard form via slack variables z > 0

min{−cT x +0T z : x ∈R
n , z ∈R

m , Ax + z = b, x, z > 0}.

The dual of this linear program in equation standard form is

max{bT y : [A | Im ]T y 6
(

−c
0

)

}

This can be re-formulated as

max{bT y : AT y 6−c, y 6 0}.

Again, this is the same as

min{bT (−y) : AT (−y) > c, −y > 0}

and this finally is equivalent to

min{bT y : AT y > c, y > 0}. (44)

The procedure above can be described as follows. We transform a linear pro-

gram into a linear program in equation standard form and construct its dual lin-

ear program. This dual is then transformed into an equivalent linear program

again which is conveniently described.

Let us perform such operations on the dual linear program

max{bT y : y ∈R
m , AT y 6 c}

of the primal min{cT x : x ∈Rn , Ax = b, x > 0}. We transform it into equation stan-

dard form
min−bT y++bT y−+0T z

AT y+− AT y−+ z = c

y+, y−, z+ > 0.

The dual linear program of this is

maxcT x

Ax 6 −b

−Ax 6 b

x 6 0.

This is equivalent to

min cT (−x)

A(−x) > b

A(−x) 6 b

−x > 0

which is equivalent to the primal linear program
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min cT x

Ax = b

x > 0.

Loosely formulated one could say that “The dual of the dual is the primal”. But

this, of course, is not to be understood as a mathematical statement. In any case

we can state the following corollary.

Corollary 5.1. If the dual linear program has an optimal solution, then so does the

primal linear program and the objective values coincide.

A proof of the duality theorem via Farkas’ lemma

Remember Farkas’ lemma (Theorem 2.9) which states that Ax = b, x > 0 has a

solution if and only if for all λ ∈ Rm with λ
T A > 0 one also has λ

T b > 0. In fact

the duality theorem follows from this. First, we derive another variant of Farkas’

lemma.

Theorem 5.2 (Second variant of Farkas’ lemma). Let A ∈ Rm×n and b ∈ Rm . The

system Ax 6 b has a solution if and only if for all λ > 0 with λ
T A = 0 one has

λ
T b > 0.

Proof. Necessity is clear: If x∗ is a feasible solution, λ > 0 and λ
T A = 0, then

λ
T Ax∗ 6λ

T b implies 0 6λ
T b.

On the other hand, Ax 6 b has a solution if and only if

Ax+
− Ax−

+ z = b, x+, x−, z > 0 (45)

has a solution. So, if Ax 6 b does not have a solution, then also (45) does not have

a solution. By Farkas’ lemma, there exists a λ ∈ Rm with λ
T [A | −A | Im ] > 0 and

λ
T b < 0. For this λ one also has λT A = 0 and λ> 0. ⊓⊔

We are now ready to prove the theorem of strong duality via the second vari-

ant of Farkas’ lemma. In fact we prove Corollary 5.1, which serves our purpose,

since, by the discussion preceding Corollary 5.1, Theorem 5.1 and Corollary 5.1

are equivalent.

Proof (of Corollary 5.1 via Farkas’ lemma). Let δ be the objective function value

of an optimal solution of the dual max{bT y : y ∈ Rm, AT y 6 c}. For all ε > 0, the

system AT y 6 c,−bT y 6 −δ− ε does not have a solution. By the second variant

of Farkas’ lemma, there exists a λ > 0 with λ
T
(

−bT

AT

)

= 0 and λ
T
(

−δ−ε
c

)

< 0. Write

λ as λ =
(

λ1

λ
′

)

with λ
′ ∈ Rn . If λ1 were zero, we could apply the second variant of

Farkas’ lemma to the system AT y 6 c and λ
′, since we know that AT y 6 c has

a solution. Therefore, we can conclude λ1 > 0. Furthermore, by scaling, we can

assume λ1 = 1. One has λ
′T AT = bT and λ

′T c < δ+ε. The first equation implies
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that λ′ is a feasible solution of the primal (recall λ′ > 0). The second equation

shows that the objective function value of λ′ is less than δ+ ε. This means that

the optimum value of the primal linear program is also δ, since the primal has an

optimal solution (see Corollary 3.1) and ε can be chosen arbitrarily small. ⊓⊔

Exercises

1. Formulate the dual linear program of

max2x1 +3x2 −7x3

x1 +3x2 +2x3 = 4

x1 + x2 6 8

x1 − x3 > −15

x1, x2 > 0

2. Consider the following linear program

max x1 + x2

2x1 + x2 6 6

x1 +2x2 6 8

3x1 +4x2 6 22

x1 +5x2 6 23

Show that (4/3,10/3) is an optimal solution by providing a suitable feasible

dual solution.
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