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1 Introduction

Let B := (B1, . . . , Bd) denote a d-dimensional N -parameter Brownian sheet.
That is, B is a d-dimensional, N -parameter, centered Gaussian process with

Cov(Bi(s) , Bj(t)) = δi,j ·
N∏
k=1

(sk ∧ tk), (1.1)

where δi,j = 1 if i = j and 0 otherwise, and s, t ∈ RN
+ , s = (s1, . . . , sN ),

t = (t1, . . . , tN ). Here and throughout, we define

T :=
{

(s , t) ∈ (0 ,∞)2N : si 6= ti for all i = 1, . . . , N
}
. (1.2)

The following is the main result of this paper.

Theorem 1.1. Choose and fix a Borel set A ⊆ Rd. Then,

P {∃ (u1 ,u2) ∈ T : B(u1) = B(u2) ∈ A} > 0 (1.3)

if and only if

P {∃ (u1 ,u2) ∈ T : W1(u1) = W2(u2) ∈ A} > 0, (1.4)

where W1 and W2 are independent N -parameter Brownian sheets in Rd

(unrelated to B).

Theorem 1.1 helps answer various questions about the multiplicities of
the random surface generated by the Brownian sheet. We introduce some
notation in order to present some of these issues.

Recall that x ∈ Rd is a k-multiple point of B if there exist distinct points
s1, . . . , sk ∈ (0 ,∞)N such that B(s1) = · · · = B(sk) = x. We write Mk for
the collection of all k-multiple points of B. Note that Mk+1 ⊆ Mk for all
k ≥ 2.

In this paper, we are concerned mainly with the case k = 2; elements of
M2 are the double points of B. In Section 5 below, we derive the following
ready consequence of Theorem 1.1.
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Corollary 1.2. Let A denote a nonrandom Borel set in Rd. If d > 2N ,
then

P{M2 ∩A 6= ∅} > 0 if and only if Cap2(d−2N)(A) > 0, (1.5)

where Capβ denotes the Bessel–Riesz capacity in dimension β ∈ R; see §2
below. If d = 2N , then P{M2 ∩ A 6= ∅} > 0 if and only if there exists a
probability measure µ, compactly supported in A, such that∫∫ ∣∣∣∣log+

(
1

|x− y|

)∣∣∣∣2 µ(dx)µ(dy) <∞. (1.6)

Finally, if d < 2N , then P{Mk ∩ A 6= ∅} > 0 for all k ≥ 2 and all nonvoid
nonrandom Borel sets A ⊂ Rd.

We apply Corollary 1.2 with A := Rd and appeal to Taylor’s theorem
[12, pp. 523–525] to deduce the following.

Corollary 1.3. An N -parameter, d-dimensional Brownian sheet has double
points if and only if d < 4N . In addition, M2 has positive Lebesgue measure
almost surely if and only if d < 2N .

When N = 1, B is d-dimensional Brownian motion, and this corollary
has a rich history in that case: Lévy [18] was the first to prove that Brownian
motion has double points [M2 6= ∅] when d = 2; this is also true in one
dimension, but almost tautologically so. Subsequently, Kakutani [11] proved
that Brownian motion in Rd does not have double points when d ≥ 5;
see also Ville [25]. Dvoretzky, Erdős, and Kakutani [8] then showed that
Brownian motion has double points when d = 3, but does not have double
points in the case that d = 4. Later on, Dvoretzky, Erdős, and Kakutani [9]
proved that in fact, Mk 6= ∅ for all k ≥ 2, when d = 2. The remaining case
is that M3 6= ∅ if and only if d ≤ 2; this fact is due to Dvoretzky, Erdős,
Kakutani, and Taylor [10].

When N > 1 and k = 2, Corollary 1.3 is new only in the critical case
where d = 4N . The remaining [noncritical] cases are much simpler to derive,
and were worked out earlier by one of us [14]. In the critical case, Corollary
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1.3 asserts that Brownian sheet has no double points. This justifies the title
of the paper and solves an old problem in the folklore of the subject. For an
explicit mention—in print—of this problem, see B. Fristedt’s review of the
article of Chen [3] in The Mathematical Reviews, where most of the assertion
about M2 (and even Mk) having positive measure was conjectured.

The proof of Theorem 1.1 leads to another interesting property, whose
description requires us first to introduce some notation. We identify subsets
of {1 , . . . , N} with partial orders on RN as follows [17]: For all s, t ∈ RN

and π ⊆ {1 , . . . , N},

s ≺π t iff

si ≤ ti for all i ∈ π,

si ≥ ti for all i 6∈ π.
(1.7)

Clearly every s and t in RN can be compared via some π. In fact, s ≺π t,
where π is the collection of all i ∈ {1 , . . . , N} such that si ≤ ti. We might
write s ≺π t and t �π s interchangeably. Sometimes, we will also write
s fπ t for the N -vector whose jth coordinate is min(sj , tj) if j ∈ π and
max(sj , tj) otherwise.

Given a partial order π ⊂ {1, . . . , N} and s, t ∈ (0,∞)N we write s�π t

if s ≺π t and si 6= ti, for all i ∈ {1, . . . , N}. Define

M̃k :=

{
x ∈ Rd

∣∣∣∣∣ ∃ s1, . . . , sk ∈ (0 ,∞)N : B(s1) = · · · = B(sk) = x

and s1 �π · · · �π sk for some π ⊂ {1, . . . , N}

}
.

(1.8)

Proposition 1.4. Let A ⊂ Rd be a nonrandom Borel set. Then for all
k ≥ 2,

P
{
M̃k ∩A 6= ∅

}
> 0 if and only if Capk(d−2N)(A) > 0. (1.9)

In particular, there are (strictly) π-ordered k-tuples on which B takes a
common value if and only if k(d− 2N) < d.

Theorem 1.1 can also be used to study various geometric properties of
the random set M2 of double points of B. Of course, we need to study
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only the case where M2 6= ∅ almost surely. That is, we assume hereforth
that d < 4N . With this convention in mind, let us start with the following
formula:

dimH M2 = d− 2(d− 2N)+ almost surely. (1.10)

This formula appears in Chen [3] (with a gap in his proof that was filled by
Khoshnevisan, Wu, and Xiao [16]). In fact, a formula for dimH Mk analogous
to (1.10) holds for all k ≥ 2 [3, 16] and has many connections to the well-
known results of Orey and Pruitt [21], Mountford [19], and Rosen [24].

As yet another application of Theorem 1.1 we can refine (1.10) by de-
termining the Hausdorff dimension of M2 ∩A for any nonrandom closed set
A ⊂ Rd. First, let us remark that a standard covering argument (similar
to the proof of Part (i) of Lemma 5.2) shows that for any fixed nonrandom
Borel set A ⊂ Rd

dimH(M2 ∩A) ≤ dimH A− 2(d− 2N) almost surely. (1.11)

The following corollary provides an essential lower bound for dimH(M2 ∩
A). Recall that the essential supremum ‖Z‖L∞(P) of a nonnegative random
variable Z is defined as

‖Z‖L∞(P) := inf {λ > 0 : P{Z > λ} = 0} (inf ∅ := +∞). (1.12)

Corollary 1.5. Choose and fix a nonrandom closed set A ⊂ Rd. If dimH A <

2(d − 2N), then with probability one A does not contain any double points
of the Brownian sheet. On the other hand, if dimH A ≥ 2(d− 2N), then

‖dimH(M2 ∩A)‖L∞(P) = dimH A− 2(d− 2N)+. (1.13)

Equation (1.10) follows from Corollary 1.5 and the fact that dimH M2

is a.s. a constant. The proof of this “zero-one law” follows more-or-less
standard methods, which we skip.

There is a rich literature of decoupling, wherein expectation function-
als for sums of dependent random variables are analyzed by making clever
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comparisons to similar expectation functionals that involve only sums of in-
dependent [sometimes conditionally independent] random variables. For a
definitive account, see the recent book of de la Peña and Giné [7].

Theorem 1.1 of the present paper follows the general philosophy of de-
coupling, but applies it to random fractals rather than random variables
[or vectors]. A “one-parameter” version of these ideas appear earlier in the
work of Peres [23]. From a technical point of view, Theorem 1.1 is rather
different from the results of decoupling theory.

This paper is organized as follows. Section 2 recalls the main notions of
potential theory and presents our main technical result concerning condi-
tional laws of the Brownian sheet (Theorem 2.4). In Section 3, we present
a sequence of estimates concerning the pinned Brownian sheet. Section 4
contains the proof of Theorem 2.4. Finally, Section 5 contains the proofs of
Theorem 1.1, of its corollaries and of Proposition 1.4.

2 Potential theory

In this section, we first introduce some notation for capacities, energies, and
Hausdorff dimension, and we also recall some basic facts about them. Then
we introduce the main technical result of this paper, which is a theorem of
“conditional potential theory,” and is of independent interest.

2.1 Capacity, energy, and dimension

For all real numbers β, we define a function κβ : Rd → R+∪{∞} as follows:

κβ(x) :=


‖x‖−β if β > 0,

log+(‖x‖−1) if β = 0,

1 if β < 0,

(2.1)

where, as usual, 1/0 :=∞ and log+(z) := 1 ∨ log(z) for all z ≥ 0.
Let P(G) denote the collection of all probability measures that are sup-

ported by the Borel set G ⊆ Rd, and define the β-dimensional capacity of
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G as

Capβ(G) :=

 inf
µ∈P(K):

K⊂G is compact

Iβ(µ)

−1

, (2.2)

where inf ∅ := ∞, and Iβ(µ) is the β-dimensional energy of µ, defined as
follows for all µ ∈ P(Rd) and β ∈ R:

Iβ(µ) :=
∫∫

κβ(x− y)µ(dx)µ(dy). (2.3)

In the cases where µ(dx) = f(x) dx, we may also write Iβ(f) in place of
Iβ(µ).

Let us emphasize that for all probability measures µ on Rd and all Borel
sets G ⊆ Rd,

Iβ(µ) = Capβ(G) = 1 when β < 0. (2.4)

According to Frostman’s theorem [12, p. 521], the Hausdorff dimension
of G satisfies

dimH G = sup
{
β > 0 : Capβ(G) > 0

}
= inf

{
β > 0 : Capβ(G) = 0

}
.

(2.5)

The reader who is unfamiliar with Hausdorff dimension can use the preced-
ing as its definition. The usual definition can be found in Appendix C of
Khoshnevisan [12], where many properties of dimH are also derived. We will
also need the following property:

Capn(Rn) = 0 for all n ≥ 1. (2.6)

See Corollary 2.3.1 of Khoshnevisan [12, p. 525] for a proof.

2.2 Conditional potential theory

Throughout, we assume that our underlying probability space (Ω ,F ,P) is
complete. Given a partial order π and a point s ∈ RN

+ , we define Fπ(s) to
be the σ-algebra generated by {B(u), u ≺π s} and all P-null sets. We then
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make the filtration (Fπ(s), s ∈ RN
+ ) right-continuous in the partial order π,

so that Fπ(s) = ∩t�πsFπ(t).

Definition 2.1. Given a sub-σ-algebra G of F and a set-valued function
A—mapping Ω into subsets of Rd—we say that A is a G-measurable random
set if Ω×Rd 3 (ω , x) 7→ 1A(ω)(x) is (G ×B(Rd))-measurable, where B(Rd)
denotes the Borel σ-algebra on Rd.

We are also interested in two variants of this definition. The first follows:

Definition 2.2. Given a σ-algebra G of F , we say that f : Ω×Rd → R+ is
a G-measurable random probability density function when f is (G ×B(Rd))-
measurable and P{

∫
Rd f(x) dx = 1} = 1.

And the second variant is:

Definition 2.3. Given a σ-algebra G of F , we say that ρ : Ω×B(Rd)→ [0 , 1]
is a G-measurable random probability measure when both of the following
hold:

1. Ω 3 ω 7→ ρ(ω ,A) is G-measurable for every A ∈ B(Rd); and

2. A 7→ ρ(ω ,A) is a Borel probability measure on Rd for almost every
ω ∈ Ω.

For all π ⊆ {1 , . . . , N} and s ∈ RN
+ , let Pπs be a regular conditional

distribution for B given Fπ(s), with the corresponding expectation operator
written as Eπs . That is,

Eπsf :=
∫
f dPπs = E(f | Fπ(s)). (2.7)

Consider two nonnegative random variables Z1 and Z2. Then we define

Z1 E Z2 to mean P
{
1{Z1>0} ≤ 1{Z2>0}

}
= 1, (2.8)

and Z1 D Z2 to mean Z2 E Z1. We also write Z1 � Z2 when Z1 E Z2 and
Z1 D Z2. That is,

Z1 � Z2 if and only if P
{
1{Z1>0} = 1{Z2>0}

}
= 1. (2.9)
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The following generalizes Theorem 1.1 of Khoshnevisan and Shi [15].
See also Dalang and Nualart [6, Theorem 3.1]. This is the main technical
contribution of the present paper. We use the term upright box for a cartesian
product Θ :=

∏N
j=1[aj , bj ] of intervals, where aj < bj , for j = 1, . . . , N .

Theorem 2.4. Choose and fix an upright box Θ :=
∏N
j=1[aj , bj ] in (0 ,∞)N .

For any partial order π ⊆ {1 , . . . , N}, choose and fix some vector s ∈
(0 ,∞)N \Θ such that s ≺π t for every t ∈ Θ. Then for all Fπ(s)-measurable
bounded random sets A,

Pπs {B(u) ∈ A for some u ∈ Θ} � Capd−2N (A). (2.10)

We conclude this section with a technical result on “potential theory of
random sets.” It should be “obvious” and/or well-known. But we know of
neither transparent proofs nor explicit references. Therefore, we supply a
proof.

Lemma 2.5. Let G denote a sub-σ-algebra on the underlying probability
space. Then for all random G-measurable closed sets A ⊆ Rd and all non-
random β ∈ R,

Capβ(A) � [inf Iβ(θ)]−1 , (2.11)

where the infimum is taken over all random G-measurable probability mea-
sures θ that are compactly supported in A. In addition, there is a G-measurable
random probability measure µ such that Capβ(A) � 1/Iβ(µ).

Proof. Let cβ(A) denote the right-hand side of (2.11). Evidently, Capβ(A) ≥
cβ(A) almost surely, and hence Capβ(A) D cβ(A). It remains to prove that
Capβ(A) E cβ(A). With this in mind, we may—and will—assume without
loss of generality that Capβ(A) > 0 with positive probability. In particular,
by (2.6), this implies that β < d.

Let X1, . . . , XM denote M independent isotropic stable processes in Rd

that are independent of the set A, and have a common stability index α ∈
(0 , 2]. Notice that we can always choose the integer M ≥ 1 and the real
number α such that

d− αM = β. (2.12)
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Thus, we choose and fix (M,α).
Define X to be the additive stable process defined by

X(t) := X1(t1) + · · ·+XM (tM ) for all t ∈ RM
+ , (2.13)

where we write t = (t1, . . . , tM ). Theorem 4.1.1 of Khoshnevisan [12, p. 423]
tells us that for all nonrandom compact sets E ⊆ Rd,

P{X([1 , 2]M ) ∩ E 6= ∅} > 0 ⇔ Capd−αM (E) > 0

⇔ Capβ(E) > 0;
(2.14)

see (2.12) for the final assertion. The proof of that theorem (loc. cit.) tells us
more. Namely, that whenever Capβ(E) > 0, there exists a random variable
T , with values in [1 , 2]M ∪ {∞}, which has the following properties:

- T 6=∞ if and only if X([1 , 2]M ) ∩ E 6= ∅;

- X(T ) ∈ E almost surely on {T 6=∞}; and

- µ(•) := P(X(T ) ∈ • |T 6=∞) is in P(E) and Iβ(µ) <∞.

In fact, T can be defined on {X([1 , 2]M ) ∩ E 6= ∅} as follows: First define
T1 to be the smallest s1 ∈ [1 , 2] such that there exist s2, . . . , sM ∈ [1 , 2]
that satisfy X(s1 , . . . , sM ) ∈ E. Then, having defined T1, . . . , Tj for j ∈
{1 , . . . ,M − 2}, we define Tj+1 to be the smallest sj+1 ∈ [1 , 2] such that
there exist sj+2, . . . , sM ∈ [1 , 2] that collectively satisfy

X(T1 , . . . , Tj , sj+1 , . . . , sM ) ∈ E. (2.15)

Finally, we define TM to be the smallest sM ∈ [1 , 2] such that

X(T1 , . . . , TM−1 , sM ) ∈ E. (2.16)

This defines T := (T1 , . . . , TM ) on {X([1 , 2]M ) ∩ E 6= ∅}. We also define
T :=∞ on {X([1 , 2]M ) ∩ E 6= ∅}. Then T has the desired properties.

To finish the proof, note that, since Capβ(A) > 0 with positive proba-
bility, we can find n > 0 such that Capβ(An) > 0 with positive probability,
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where An := A∩[−n , n]d is (obviously) a random G-measurable compact set.
Because An is independent of X, we may apply the preceding with E := An.
The mentioned construction of the resulting [now-random] probability mea-
sure µ [on An] makes it clear that µ is G-measurable, and Iβ(µ) <∞ almost
surely on {Capβ(An) > 0}. The lemma follows readily from these observa-
tions.

3 Analysis of pinned sheets

For all s ∈ (0 ,∞)N and t ∈ RN
+ , define

Bs(t) := B(t)− δs(t)B(s), (3.1)

where

δs(t) :=
N∏
j=1

(
sj ∧ tj
sj

)
. (3.2)

One can think of the random field Bs as the sheet pinned to be zero at s.
[Khoshnevisan and Xiao [17] called Bs a “bridge.”]

It is not too difficult to see that

Bs(t) = B(t)− E
[
B(t)

∣∣B(s)
]
. (3.3)

Next we recall some of the fundamental features of the pinned sheet Bs.

Lemma 3.1 (Khoshnevisan and Xiao [17, Lemmas 5.1 and 5.2]). Choose
and fix a partial order π ⊆ {1 , . . . , N} and a time point s ∈ (0 ,∞)N .
Then {Bs(t)}t�πs is independent of Fπ(s). Moreover, for every nonrandom
upright box I ⊂ (0 ,∞)N and π ⊆ {1 , . . . , N}, there exists a finite constant
c > 1 such that uniformly for all s,u,v ∈ I,

c−1‖u− v‖ ≤ Var
(
B1

s(u)−B1
s(v)

)
≤ c‖u− v‖, (3.4)

where B1
s(t) denotes the first coordinate of Bs(t) for all t ∈ RN

+ .

The next result is the uniform Lipschitz continuity property of the δ’s.
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Lemma 3.2. Choose and fix an upright box Θ :=
∏N
j=1[aj , bj ]. Then there

exists a constant c <∞—depending only on N , minj aj, and maxj bj—such
that

|δs(u)− δs(v)| ≤ c‖u− v‖ for all s,u,v ∈ Θ. (3.5)

Proof. Notice that δs(t) is the product of N bounded and Lipschitz con-
tinuous functions fj(tj) = 1 ∧ (tj/sj), and the Lipschitz constants of these
functions are all bounded by 1/minj aj . The lemma follows.

Next, we present a conditional maximal inequality which extends the
existing multiparameter-martingale inequalities of the literature in several
directions.

Lemma 3.3. For every π ⊆ {1 , . . . , N}, s ∈ RN
+ , and bounded σ(B)-

measurable random variable f ,

Eπs
(

sup |Eπt f |
2
)
≤ 4NEπs

(
|f |2

)
almost surely [P], (3.6)

where the supremum is taken over all t ∈ QN
+ such that t �π s.

It is possible to use Lemma 3.5 below in order to remove the restriction
that t lies in QN

+ .

Proof. First we recall Cairoli’s inequality:

E

(
sup

t∈QN
+

|Eπt f |
2

)
≤ 4NE

(
|f |2

)
. (3.7)

When π = {1 , . . . , N}, this was proved by Cairoli and Walsh [2]. The
general case is due to Khoshnevisan and Shi [15, Corollary 3.2]. The proof
of (3.7) hinges on the following projection property [“commutation”]:

P
{

EπuEπt f = Eπu f
π

tf

}
= 1, (3.8)

where, we recall, ufπ t denotes the N -vectors whose jth coordinate is uj∧tj
if j ∈ π, and uj ∨ tj if j 6∈ π. Now we may observe that if s ≺π u, t, then
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P-almost surely,

Pπs

{
EπuEπt f = Eπu f

π
tf

}
= 1. (3.9)

Thus, we apply the same proof that led to (3.7), but use the regular condi-
tional distribution Pπs in place of P, to finish the proof.

Next we mention a simple aside on certain Wiener integrals.

Lemma 3.4. Choose and fix a nonrandom compactly-supported bounded
Borel function h : Rd → Rd, and a partial order π ⊆ {1 , . . . , N}. Define

G(s) :=
∫

r≺πs
h(r)B(dr), (3.10)

where the stochastic integral is defined in the sense of Wiener [26, 27], and
s ranges over RN

+ . Then G has a continuous modification that is also con-
tinuous in L2(P).

Proof. Define S(s) to be the π-shadow of s ∈ RN
+ :

S(s) :=
{
r ∈ RN

+ : r ≺π s
}
. (3.11)

Then for all s, t ∈ RN
+ ,

E
(
|G(t)−G(s)|2

)
=
∫

S(s)4S(t)
|h(r)|2 dr

≤ sup |h|2 ×meas (supph ∩ (S(s)4S(t))) ,
(3.12)

where “supph” denotes the support of h, and “meas” stands for the standard
N -dimensional Lebesgue measure. Consequently, E(|G(t)−G(s)|2) ≤ const·
|s− t|, where the constant depends only on (N,h). Because G is a Gaussian
random field, it follows that

E
(
|G(t)−G(s)|2p

)
≤ const · |s− t|p for all p > 0, (3.13)

and the implied constant depends only on (N,h, p). The lemma follows from
a suitable form of the Kolmogorov continuity lemma; see, for example, the
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arguments in Čencov [4] or Proposition A.1 and Remark A.2 of Dalang et
al. [5, Proposition A.1 and Remark A.2].

Lemma 3.5. Choose and fix a partial order π ⊆ {1 , . . . , N}. If Z is σ(B)-
measurable and E(Z2) <∞, then s 7→ EπsZ has a continuous modification.

Proof. In the special case that π = {1 , . . . , N}, this is Proposition 2.3 of
Khoshnevisan and Shi [15]. Now we adapt the proof to the present setting.

Suppose h : Rd → R is compactly supported and infinitely differentiable.
Define B(h) :=

∫
hdB, and note that

Eπs
(

eB(h)
)

= exp
{∫

r≺πs
h(r)B(dr) +

1
2

∫
r 6≺πs

|h(r)|2 dr

}
. (3.14)

Thanks to Lemma 3.4, s 7→ Eπs [exp(B(h))] is continuous almost surely. We
claim that we also have continuity in L2(P). Indeed, we observe that it
suffices to prove that s 7→ exp(Jh(s)) is continuous in L2(P), where

Jh(s) :=
∫

r≺πs
h(r)B(dr). (3.15)

By the Wiener isometry, E(exp(4Jh(s))) ≤ exp(8
∫
|h(r)|2 dr) < ∞. By

splitting the integral over r ≺π s into an integral over r ∈ S(s)\S(t) and a
remainder term, a direct calculation of E([exp(Jh(s))− exp(Jh(t))]2) using
this inequality yields the stated L2(P) convergence.

We now use the preceding observation, together with an approximation
argument, as follows:

Thanks to Lemma 1.1.2 of Nualart [20, p. 5], and by the Stone–Weierstrass
theorem, for all integers m > 0 we can find nonrandom compactly-supported
functions h1, . . . , hkm ∈ C∞(Rd) and z1, . . . , zkm ∈ R such that

E
(
|Zm − Z|2

)
< e−m, where Zm :=

km∑
j=1

zj eB(hj). (3.16)
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Because conditional expectations are contractions on L2(P), it follows that

E
(
|EπsZ − EπtZ|

2
)
≤ 9

(
2e−m + E

(
|EπsZm − EπtZm|

2
))

, (3.17)

and hence s 7→ EπsZ is continuous in L2(P), therefore continuous in proba-
bility.

Thanks to (3.16) and Cairoli’s maximal inequality (3.7),

E

(
sup

s∈QN
+

|EπsZm − EπsZ|
2

)
≤ 4N sup

s∈RN
+

E
(
|EπsZm − EπsZ|

2
)

≤ 4NE
(
|Zm − Z|2

)
< 4Ne−m.

(3.18)

By the Borel–Cantelli lemma,

lim
m→∞

sup
s∈QN

+

|EπsZm − EπsZ| = 0 almost surely [P]. (3.19)

Therefore, a.s. [P], the continuous random field s 7→ EπsZm converges uni-
formly on QN

+ to s 7→ EπsZ. Therefore, s 7→ EπsZ is uniformly continuous on
QN

+ , and so it has a continuous extension to RN
+ . Since s 7→ EπsZ is continu-

ous in probability by (3.17), this extension defines a continuous modification
of s 7→ EπsZ.

Henceforth, we always choose a continuous modification of EπsZ when Z
is square-integrable. With this convention in mind, we immediately obtain
the following consequence of Lemmas 3.3 and 3.5.

Lemma 3.6. For every bounded σ(B)-measurable random variable f , there
exists a P-null event off which the following holds: For every π ⊆ {1 , . . . , N},
s ∈ RN

+ ,

Eπs

(
sup

t�π s
|Eπt f |

2

)
≤ 4NEπs

(
|f |2

)
. (3.20)
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For all σ > 0, t ∈ RN , and z ∈ Rd define

Γσ(t ; z) :=
1

(2πσ2)d/2‖t‖d/2
exp

(
− ‖z‖

2

2σ2‖t‖

)
. (3.21)

Variants of the next result are well known. We supply a detailed proof
because we will need to have good control over the constants involved.

Lemma 3.7. Let Θ :=
∏N
j=1[aj , bj ] denote an upright box in (0 ,∞)N , and

choose and fix positive constants τ1 < τ2 and M > 0. Then there exists
a finite constant c > 1—depending only on d, N , M τ1, τ2, minj aj, and
maxj bj—such that for all σ ∈ [τ1 , τ2] and z ∈ [−M ,M ]d,

c−1κd−2N (z) ≤
∫

Θ−Θ
Γσ(t ; z) dt ≤ cκd−2N (z). (3.22)

We recall that Θ − Θ denotes the collection of all points of the form
t − s, where s and t range over Θ. Moreover, the proof below shows that
the upper bound in (3.22) holds for all z ∈ Rd.

Proof. Let D(ρ) denote the centered ball in Rd whose radius is ρ > 0. Then
we can integrate in polar coordinates to deduce that∫

D(ρ)
Γσ(t ; z) dt = const ·

∫ ρ

0
rN−1−(d/2) exp

(
−‖z‖

2

2σ2r

)
dr

=
const
‖z‖d−2N

·
∫ 2σ2ρ/‖z‖2

0
sN−1−(d/2)e−1/s ds,

(3.23)

where the implied constants depend only on the parameters σ, N and d.
This proves the result in the case where Θ − Θ is a centered ball, since we
can consider separately the cases d < 2N , d = 2N , and d > 2N directly; see
the proof of Lemma 3.4 of Khoshnevisan and Shi [15], for instance.

The general case follows from the preceding spherical case, because we
can find ρ1 and ρ2 such that D(ρ1) ⊆ Θ−Θ ⊆ D(ρ2), whence it follows that∫
D(ρ1) Γσ(t ; z) dt ≤

∫
Θ−Θ Γσ(t ; z) dt ≤

∫
D(ρ2) Γσ(t ; z) dt.

Now we proceed with a series of “conditional energy estimates” for “con-
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tinuous additive functionals” of the sheet. First is a lower bound.

Lemma 3.8. Choose and fix π ⊆ {1 , . . . , N}, η > 0, s ∈ (0 ,∞)N , and
a nonrandom upright box Θ :=

∏N
j=1[aj , bj ] in (0 ,∞)N such that s �π t

and η ≤ |s − t|∞ ≤ η−1 for every t ∈ Θ. Then there exists a constant
c > 1—depending only on d, N , η, minj aj, and maxj bj—such that for all
Fπ(s)-measurable random probability density functions f on Rd,

Eπs

(∫
Θ
f(B(u)) du

)
≥ c−1e−c‖B(s)‖2 ·

∫
Rd

f(z) e−c‖z‖
2

dz, (3.24)

almost surely [P].

Proof. Thanks to Lemma 3.1, we can write

Eπs

(∫
Θ
f(B(u)) du

)
= Eπs

(∫
Θ
f (Bs(u) + δs(u)B(s)) du

)
=
∫

Θ
du

∫
Rd

dz f(z)gu(z − δs(u)B(s)),
(3.25)

where gu denotes the probability density function of Bs(u).
According to Lemma 3.1, the coordinatewise variance ofBs(u) is bounded

above and below by constant multiples of ‖u − s‖. As a result, gu(z −
δs(u)B(s)) is bounded below by an absolute constant multiplied by

1
‖u− s‖d/2

exp
(
−const

‖z − δs(u)B(s)‖2

‖u− s‖

)
≥ ηd/2 exp

(
−const · ‖z − δs(u)B(s)‖2

η

)
.

(3.26)

Thus, the inequality

‖z − δs(u)B(s)‖2 ≤ 2‖z‖2 + 2‖B(s)‖2, (3.27)

valid because 0 ≤ δs(u) ≤ 1, proves that

gu(z − δs(u)B(s)) ≥ c1 exp
(
−c2

{
‖z‖2 + ‖B(s)‖2

})
, (3.28)
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where c1 and c2 are positive and finite constants that depend only on π, d,
N , M , η, and maxj bj . Let c1(π) and c2(π) denote the same constants, but
written as such to exhibit their dependence on the partial order π. Apply
the preceding for all partial orders π, and let c1 and c2 denote respectively
the minimum and maximum of c1(π) and c2(π) as π ranges over the various
subsets of {1 , . . . , N}. In this way, the preceding display holds without any
dependencies on the partial order π. It is now clear that (3.24) follows from
(3.25) and (3.28).

Next we present a delicate joint-density estimate for the pinned sheets.
This estimate will be used subsequently to describe a conditional second-
moment bound that complements the conditional first-moment bound of
Lemma 3.8.

Lemma 3.9. Choose and fix an upright box Θ :=
∏N
j=1[aj , bj ] in (0 ,∞)N ,

a partial order π ⊆ {1 , . . . , N}, and s ∈ RN
+ and η > 0 such that:

(i) s ≺π t for all t ∈ Θ; and

(ii) η ≤ |s− t|∞ ≤ η−1 for all t ∈ Θ.

Then there exists a finite constant c > 1—depending only on d, N , η,
minj aj, and maxj bj—such that for all x, y ∈ Rd and u,v ∈ Θ,

ps;u,v(x , y) ≤ cΓc(u− v ;x− y), (3.29)

where ps;u,v(x , y) denotes the probability density function of (Bs(u) , Bs(v)).

Proof. The proof is carried out in three steps. We are only going to consider
the case where u 6= u fπ v 6= v; indeed, the other cases are simpler and are
left to the reader.

Step 1. First consider the case that π = {1 , . . . , N}. In this particular
case, we respectively write “≺,” “�,” and “f” in place of “≺π,” “�π,” and
“fπ.”
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Note that r ≺ p if and only if ri ≤ pi for all i = 1, . . . , N . Furthermore,

Bs(r) = B(r)−B(s) for all r ∈ Θ. (3.30)

Because the joint probability-density function of (Bs(u) , Bs(v)) is un-
altered if we modify the Brownian sheet, we choose to work with a par-
ticularly useful construction of the Brownian sheet. Namely, let W denote
d-dimensional white noise on RN

+ , and consider the Brownian sheet

B(t) := W([0 , t]), where [0 , t] :=
N∏
j=1

[0 , tj ]. (3.31)

This construction might not yield a continuous random function B, but that
is not germane to the discussion.

For the construction cited here,

Bs(r) = W ([0 , r] \ [0 , s]) for all r ∈ Θ. (3.32)

For all bounded C∞ functions φ : (Rd)2 → R+ and u,v ∈ Θ,

E [φ (Bs(u) , Bs(v))] =
∫∫∫

φ(x+ y , x+ z)gufv(x)F (y)G(z) dx dy dz,

(3.33)
where gufv denotes the probability density function ofBs(ufv) = W([0 ,uf

v]\ [0 , s]) as before, F the probability density function of W([0 ,u]\ [0 ,uf

v]), and G the probability density function of W([0 ,v]\[0 ,ufv]). The inte-
grals are each taken over Rd. The N -dimensional volume of [0 ,ufv]\ [0 , s]
is at least η(minj aj)N−1. Therefore, gufv is bounded above by a constant
c3 that depends only on d, N , η, and minj aj . And hence,

E [φ (Bs(u) , Bs(v))] ≤ c3

∫∫∫
φ(x+ y , x+ z)F (y)G(z) dx dy dz

= c3

∫∫
φ(x , y) (F ∗G)(y − x) dx dy.

(3.34)

But F ∗ G is the probability density function of W([0 ,u]4[0 ,v]), and the
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N -dimensional volume of [0 ,u]4[0 ,v] is at least

(
min

1≤j≤N
aj

)N−1 N∑
k=1

|uk − vk| ≥
1

N1/2

(
min

1≤j≤N
aj

)N−1

‖u− v‖. (3.35)

In addition, one can derive an upper bound—using only constants that de-
pend on minj aj , maxj bj and N—similarly. Therefore, there exists a finite
constant c > 1—depending only on d, N , η, and minj aj—such that the
following occurs pointwise:

(F ∗G)(y − x) ≤ cΓc(u− v ; y − x). (3.36)

This proves the lemma in the case where π = {1 , . . . , N}.

Step 2. The argument of Step 1 yields in fact a slightly stronger result,
which we state next as the following [slightly] Enhanced Version: Choose
and fix two positive constants ν1 < ν2. Under the conditions of Step 1, there
exists a constant ρ—depending only on d, N , η, minj aj, maxj bj, ν1, and
ν2, such that for all u,v ∈ Θ and all α, β ∈ [ν1 , ν2], the joint probabil-
ity density function of (αBs(u) , βBs(v))—at (x , y)—is bounded above by
ρΓρ(u− v ;x− y).

The proof of the enhanced version is the same as the case we expanded
on above (ν1 = ν2 = 1). However, a few modifications need to be made:
φ(x + y , x + z) is replaced by φ(αx + y , βx + z); F is replaced by the
probability density function of αW([0 ,u] \ [0 ,u f v]); G by the probability
density function of βW([0 ,v] \ [0 ,ufv]); and F ∗G is now the probability
density function of a centered Gaussian vector with i.i.d. coordinates, the
variance of each of which is at least(

min
1≤j≤N

aj

)N−1

α2
N∑
k=1

(uk − vk)+ +
(

min
1≤j≤N

aj

)N−1

β2
N∑
k=1

(uk − vk)−

≥ (α ∧ β)2

(
min

1≤j≤N
aj

)N−1 N∑
k=1

|uk − vk|. (3.37)
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The remainder of the proof goes through without incurring major changes.

Step 3. If π = ∅, then the lemma follows from Step 1 and symmetry.
Therefore, it remains to consider the case where π and {1 , . . . , N} \ π are
both nonvoid. We follow Khoshnevisan and Xiao [17, proof of Proposition
3.1] and define a map I : (0 ,∞)N → (0 ,∞)N with coordinate functions
I1, . . . , IN as follows: For all k = 1, . . . , N ,

Ik(t) :=

tk if k ∈ π,

1/tk if k 6∈ π.
(3.38)

Consider any two points u,v ∈ Θ. We may note that:

(i) I(Θ) is an upright box that contains I(u) and I(v);

(ii) I(s) ≺ I(t) for all t ∈ Θ [nota bene: the partial order!]; and

(iii) |I(s) − I(t)|∞ is bounded below by a positive constant η′, uniformly
for all t ∈ Θ. Moreover, η′ depends only on N , η, minj aj , and maxj bj .

Define

W (t) :=

∏
j 6∈π

tj

 ·B(I(t)) for all t ∈ (0 ,∞)N . (3.39)

Then, according to Khoshnevisan and Xiao (loco citato), W is a Brownian
sheet. Thus, we have also the corresponding pinned sheet

Ws(t) = W (t)− δs(t)W (s) for all t ∈ (0 ,∞)N . (3.40)

It is the case that

Ws(t) =

∏
j 6∈π

tj

 · [B(I(t))−B(I(s))] for all t ∈ (0 ,∞)N . (3.41)

The derivation of this identity requires only a little algebra, which we skip.
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Thus, property (ii) above implies the following remarkable identity:

Ws(t) =

∏
j 6∈π

tj

 ·BI(s)(I(t)) for all t ∈ Θ. (3.42)

As a result of items (i)–(iii), and thanks to Step 1, the joint probability
density function—at (x , y)—of the random vector (BI(s)(I(u)) , BI(s)(I(v)))
is bounded above by c4Γc4(I(u) − I(v) ;x − y), where c4 depends only
on d, N , η, minj aj , and maxj bj . Elementary considerations show that
‖I(u)−I(v)‖ is bounded above and below by constant multiples of ‖u−v‖,
where the constants have the same parameter dependencies as c4. These
discussions together imply that the joint probability density function—at
(x , y)—of the random vector (BI(s)(I(u)) , BI(s)(I(v))) is bounded above
by c5Γc5(u − v ;x − y), where c5 has the same parameter dependencies as
c4. Set α =

∏
j 6∈π uj and β :=

∏
j 6∈π vj , and note that α and β are bounded

above and below by constants that depend only on minj aj and maxj bj .
Also note that

(αBI(s)(I(u)) , βBI(s)(I(v))) = (Ws(u) ,Ws(v)), (3.43)

for all u,v ∈ Θ. Thus, in accord with Step 2, the joint probability den-
sity function—at (x , y)—of (Ws(u) ,Ws(v)) is bounded above by c6Γc6(u−
v ;x − y), where c6 has the same parameter dependencies as c4. Because
Ws has the same finite-dimensional distributions as Bs, this proves the
lemma.

Lemma 3.10. Let Θ, s, π, and η be as in Lemma 3.9. Then there exists
a constant c > 1—depending only on d, N , η, minj aj, and maxj bj—such
that for all Fπ(s)-measurable random probability density functions f ,

Eπs

(∣∣∣∣∫
Θ
f(B(u)) du

∣∣∣∣2
)
≤ c ec‖B(s)‖2 · Id−2N (f) a.s. [P]. (3.44)
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Proof. Throughout this proof, we define

F := Eπs

(∣∣∣∣∫
Θ
f(B(u)) du

∣∣∣∣2
)
. (3.45)

A few lines of computation show that with probability one,

F =
∫

Θ
dv

∫
Θ

du

∫
Rd

dx
∫
Rd

dy

f(x+ δs(u)B(s)) f(y + δs(v)B(s)) ps;u,v(x , y),
(3.46)

where ps;u,v(x , y) denotes the probability density function of (Bs(u) , Bs(v))
at (x , y) ∈ (Rd)2. According to Lemma 3.9, we can find a finite constant
c7 > 1 such that for all (x , y) ∈ (Rd)2 and u,v ∈ Θ,

ps;u,v(x , y) ≤ c7 Γc7(u− v ;x− y), (3.47)

where Γc is the Gaussian density function defined by (3.21). Moreover, c7

depends only on d, M , N , η, minj aj , and maxj bj . We change variables to
deduce that almost surely,

F ≤ c7

∫
Θ

dv

∫
Θ

du

∫
Rd

dx
∫
Rd

dy f(x) f(y) Γc7 (u− v ;x− y −Q) ,

(3.48)
where

Q := B(s){δs(u)− δs(v)}. (3.49)

Because ‖z‖2 ≤ 2‖Q‖2 + 2‖z −Q‖2,

Γc7(t ; z −Q) ≤ 1
(2πc2

7)d/2‖t‖d/2
exp

(
− ‖z‖

2

c7‖t‖
+
‖Q‖2

c7‖t‖

)
. (3.50)

According to Lemma 3.2, there exists a constant c8—with the same param-
eter dependencies as c7—such that

‖Q‖2 ≤ c8‖u− v‖2 · ‖B(s)‖2

≤ c8 max
1≤j≤N

bj‖u− v‖ · ‖B(s)||2,
(3.51)
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uniformly for all u,v ∈ Θ. Therefore, we may apply the preceding display
with t := u− v and z := x− y to find that

Γc7(u−v ;x−y−Q) ≤ 2d exp
(

‖B(s)‖2

c7c8 max1≤j≤N bj

)
·Γc9(u−v ;x−y). (3.52)

Again, c9 is a positive and finite constant that has the same parameter de-
pendencies as c7 and c8. Consequently, the following holds with probability
one:

exp
(
− ‖B(s)‖2

c7c8 max1≤j≤N bj

)
· F

≤ 2dc7

∫
Θ

dv

∫
Θ

du

∫
Rd

dx
∫
Rd

dy f(x) f(y) Γc9 (u− v ;x− y)

= 2dc7meas(Θ)
∫
Rd

dx
∫
Rd

dy f(x) f(y) g(x− y), (3.53)

where g(z) :=
∫

Θ−Θ Γc9(u ; z) du. Thanks to Lemma 3.7,

g(z) ≤ c10κd−2N (z) (3.54)

for all z ∈ Rd, where c10 is a finite constant > 1 that depends only on d, N ,
M , η, minj aj , and maxj bj . The lemma follows.

Next we introduce a generalization of Proposition 3.7 of Khoshnevisan
and Shi [15].

Lemma 3.11. Choose and fix an upright box Θ :=
∏N
j=1[aj , bj ] in (0 ,∞)N

and real numbers η > 0 and M > 0. Then there exists a constant c11 > 0—
depending only on d, N , η, M , minj aj, and maxj bj—such that for all
π ⊆ {1 , . . . , N}, all s ∈ Θ whose distance to the boundary of Θ is at least
η, and every Fπ(s)-measurable random probability density function f whose
support is contained in [−M,M ]N ,

Eπs

(∫
Θ
f(B(u)) du

)
≥ c11 1{‖B(s)‖≤M}

∫
Rd

κd−2N (z)f(z +B(s)) dz ,
(3.55)
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almost surely [P].

Even though both Lemmas 3.8 and 3.11 are concerned with lower bounds
for Eπs

(∫
Θ f(B(u)) du

)
, there is a fundamental difference between the two

lemmas: In Lemma 3.8, s is at least a fixed distance η away from Θ, whereas
Lemma 3.11 considers the case where s belongs to Θ.

Proof. Throughout, we choose and fix an s ∈ Θ and a π as per the statement
of the lemma.

Consider Υ := {u ∈ Θ : u �π s}, which is easily seen to be an upright
box. Since Υ ⊆ Θ, it follows that P-almost surely,

Eπs

(∫
Θ
f(B(u)) du

)
≥ Eπs

(∫
Υ
f(B(u)) du

)
= Eπs

(∫
Υ
f (Bs(u) + δs(u)B(s)) du

)
=
∫

Υ
du

∫
Rd

dz f(z)gu (z − δs(u)B(s)) ,

(3.56)

where gu denotes the probability density function of Bs(u), as before. We
temporarily use the abbreviated notion δ := δs(u) and y := B(s). Thanks
to Lemma 3.1, for all z ∈ Rd,

gu(z − δy) ≥ c12

‖u− s‖d/2
exp

(
− ‖z − δy‖

2

c12‖u− s‖

)
, (3.57)

where c12 ∈ (0 , 1) depends only on N , minj aj , and maxj bj . But

‖z − δy‖2 ≤ 2‖z − y‖2 + 2‖y‖2(1− δ)2, (3.58)

and
0 ≤ 1− δ = δs(s)− δs(u) ≤ const · ‖u− s‖, (3.59)

for a constant that has the same parameter dependencies as c12. Con-
sequently, there exists c13 ∈ (0 , 1)—depending only on N , minj aj , and
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maxj bj—such that

gu(z − δy) ≥ c13 e−‖B(s)‖2/c13 · Γc13(u− s ; z − y). (3.60)

Recall that δ = δs(u) and y := B(s); it follows from this discussion that
P-almost surely,

Eπs

(∫
Θ
f(B(u)) du

)
(3.61)

≥ c14e−‖B(s)‖2/c14
∫
Rd

dz f(z +B(s))
(∫

Υ−s
Γc14(u ; z) du

)
.

Because the distance between s and the boundary of Θ is at least η, the
upright box Υ− s contains [0 , η]N . Therefore, by symmetry,

Eπs

(∫
Θ
f(B(u)) du

)
≥ c13

2N
e−‖B(s)‖2/c13

∫
Rd

dz f(z +B(s))

(∫
[−η,η]N

Γc13(u ; z) du

)
,

(3.62)

almost surely [P]. Since the support of f is contained in [−M,M ]N , Lemma
3.7 finishes the proof.

4 Proof of Theorem 2.4

We begin by making two simplifications:

• First, let us note that the upright box Θ is closed, and hence there
exists η ∈ (0, 1) such that η ≤ |s− t|∞ ≤ η−1 for all t ∈ Θ. This η is
held fixed throughout the proof.

• Thanks to the capacitability theorem of Choquet, we may consider
only Fπ(s)-measurable compact random sets A ⊂ [−M ,M ]d. Without
loss of generality, we may—and will—assume that M > 1 is fixed
hereforth.
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For every nonrandom ε ∈ (0 , 1), we letAε denote the closed ε-enlargement
of A. Let f denote a random Fπ(s)-measurable density function that is sup-
ported on Aε. Because we assumed that M is greater than one and ε is at
most one, ‖z‖2 ≤ const ·M2 for all z ∈ Aε and ε ∈ (0, 1). Therefore, Lemma
3.8 implies that P-almost surely,

Eπs

(∫
Θ
f(B(u)) du

)
≥ c−1e−c ‖B(s)‖2−cM2

≥ c−1
14 e−c14‖B(s)‖2 .

(4.1)

On the other hand, Lemma 3.10 assures us that

Eπs

(∣∣∣∣∫
Θ
f(B(u)) du

∣∣∣∣2
)
≤ c15 ec15‖B(s)‖2 · Id−2N (f) a.s. [P]. (4.2)

We combine the preceding displays together with the Paley–Zygmund in-
equality and deduce that P-almost surely,

Pπs {B(u) ∈ Aε for some u ∈ Θ} ≥ Pπs

{∫
Θ
f(B(u)) du > 0

}
≥ e−c16‖B(s)‖2

c16Id−2N (f)
.

(4.3)

Let Pac(Aε/2) denote the collection of all absolutely continuous proba-
bility density functions that are supported on Aε/2. It is the case that[

inf
f∈Pac(Aε/2)

Id−2N (f)
]−1

� Capd−2N (Aε/2), (4.4)

where the implied constants depend only on d, N , and M [12, Exercise
4.1.4, p. 423]. According to Lemma 2.5, there exists an Fπ(s)-measurable
µε ∈ P(Aε/2) such that

Capd−2N (Aε/2) � [Id−2N (µε)]
−1 , (4.5)
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where the implied constants depend only on d, N , and M . Let φε denote
a smooth probability density function with support in B(0 , ε/2) = {0}ε/2.
Then, f = fε := φε ∗ µε is in Pac(Aε) and is Fπ(s)-measurable. We can
apply (4.3) with this f , in order to obtain the following: P-almost surely,

Pπs {B(u) ∈ Aε for some u ∈ Θ} ≥ e−c16‖B(s)‖2

c16Id−2N (φε ∗ µε)
. (4.6)

But Id−2N (φε ∗ µε) ≤ CId−2N (µε) for a finite nonrandom constant C that
depends only on d, N , and sup{|z| : z ∈ A}; see Theorems B.1 and B.2 of
[5]. Therefore, we can deduce from (4.5) that

Pπs {B(u) ∈ Aε for some u ∈ Θ} ≥ c17 e−c17‖B(s)‖2 Capd−2N (Aε/2). (4.7)

The resulting inequality holds almost surely, simultaneously for all rational
ε ∈ (0 , 1). Therefore, we can let ε converge downward to zero, and appeal
to Choquet’s capacitability theorem to deduce that P-almost surely,

Pπs {B(u) ∈ A for some u ∈ Θ} ≥ c18 e−c17‖B(s)‖2 · Capd−2N (A). (4.8)

[Choquet’s theorem tells us that the preceding capacities are outer regular,
therefore as Aε converges downward to A, so do their respective capacities
converge downward to the capacity of A.] Consequently,

Pπs {B(u) ∈ A for some u ∈ Θ}D Capd−2N (A). (4.9)

We complete the theorem by deriving the converse direction; that is,

Pπs {B(u) ∈ A for some u ∈ Θ}E Capd−2N (A). (4.10)

Equation (4.10) holds vacuously unless there is a positive probability that
the following happens:

Pπs {B(u) ∈ A for some u ∈ Θ} > 0. (4.11)
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Therefore, we may assume that (4.11) holds with positive probability with-
out incurring any further loss in generality.

Define

T1 := inf {u1 ≥ 0 : B(u) ∈ A for some u = (u1 , . . . , uN ) ∈ Θ} , (4.12)

where inf ∅ := ∞. Evidently T1 is a random variable with values in π1Θ ∪
{∞}, where πl denotes the projection map which takes v ∈ RN to vl. Having
constructed T1, . . . , Tj for j ∈ {1 , . . . , N − 1}, with values respectively in
π1Θ ∪ {∞}, . . . , πjΘ ∪ {∞}, we define Tj+1 to be +∞ almost surely on
∪jl=1{Tl =∞}, and

Tj+1 := inf
{
uj+1 ≥ 0 : B(T1 , . . . , Tj , uj+1 , . . . , uN ) ∈ A for some uT ∈ Θ

}
,

almost surely on ∩jl=1{Tl <∞}, where in the preceding display

uT := (T1 , . . . , Tj , uj+1 , . . . , uN ) . (4.13)

In this way, we obtain a random variable T , with values in Θ ∪ {∞}N ,
defined as

T := (T1 , . . . , TN ) . (4.14)

Because (4.11) holds with positive probability, it follows that

Pπs {T ∈ Θ} � Pπs {B(u) ∈ A for some u ∈ Θ} . (4.15)

If (4.11) holds for some realization ω ∈ Ω, then we define, for all Borel sets
G ⊆ Rd,

ρ(G)(ω) := Pπs (B(T ) ∈ G |T ∈ Θ) (ω). (4.16)

Otherwise, we choose and fix some point a ∈ A and define ρ(G)(ω) := δa(G).
It follows that ρ is a random Fπ(s)-measurable probability measure on A.
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Let φ1 ∈ C∞(Rd) be a probability density function such that φ1(x) = 0
if ‖x‖ > 1. We define an approximation to the identity {φε}ε>0 by setting

φε(x) :=
1
εd
φ1

(x
ε

)
for all x ∈ Rd and ε > 0. (4.17)

We plan to apply Lemma 3.11 with f := ρ ∗ ψε, where ψε(x) := φε/2 ∗
φε/2(x). Furthermore, we can choose a good modification of the conditional
expectation in that lemma to deduce that the null set off which the assertion
fails can be chosen independently of s; see Lemma 3.5.

Note that the support of ρ∗ψε is contained in Aε. It follows from Lemma
3.11 that P-almost surely,

sup
t∈Θ

Eπt

(∫
Θη

(ρ ∗ ψε)(B(u)) du

)
≥ c11 1{T∈Θ}

∫
Rd

κd−2N (z)(ρ ∗ ψε)(z +B(T )) dz.
(4.18)

The constant c11 is furnished by Lemma 3.11. Moreover, Θη denotes the
closed η-enlargement of Θ. We square both sides and take Eπs -expectations.
Because s ≺π t for all t ∈ Θ, Lemma 3.6 tells us that the Eπs -expectation of
the square of the left-hand side of (4.18) is at most

4N sup
t∈Θ

Eπs

(∣∣∣∣Eπt [∫
Θη

(ρ ∗ ψε)(B(u)) du

]∣∣∣∣2
)
. (4.19)

By the conditional Jensen’s inequality, |EπtZ|2 ≤ Eπt (Z2) [a.s.] for all square-
integrable random variables Z. Moreover, s ≺π t implies that EπsEπt = Eπs ;
this follows from the tower property of conditional expectations. Conse-
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quently,

Eπs

(∣∣∣∣sup
t∈Θ

Eπt

(∫
Θη

(ρ ∗ ψε)(B(u)) du

)∣∣∣∣2
)

≤ 4NEπs

(∣∣∣∣∫
Θη

(ρ ∗ ψε)(B(u)) du

∣∣∣∣2
)

≤ cec‖B(s)‖2 · Id−2N (ρ ∗ ψε), (4.20)

where the last inequality follows from Lemma 3.10. This and (4.18) together
imply that with probability one [P],

cec‖B(s)‖2 · Id−2N (ρ ∗ ψε)

≥ Eπs

([∫
Rd

κd−2N (z)(ρ ∗ ψε)(z +B(T )) dz · 1{T∈Θ}

]2
)

= Eπs

([∫
Rd

κd−2N (z)(ρ ∗ ψε)(z +B(T )) dz
]2
∣∣∣∣∣T ∈ Θ

)
× Pπs{T ∈ Θ}. (4.21)

We apply the Cauchy–Schwarz inequality and the definition of ρ—in this
order—to deduce from the preceding that

cec‖B(s)‖2 · Id−2N (ρ ∗ ψε)

≥
[
Eπs

(∫
Rd

κd−2N (z) (ρ ∗ ψε)(z +B(T )) dz
∣∣∣∣T ∈ Θ

)]2

× Pπs{T ∈ Θ}

=
[∫

A
ρ(dx)

∫
Rd

dz κd−2N (z) (ρ ∗ ψε)(z + x)
]2

× Pπs{T ∈ Θ}. (4.22)

The term in square brackets is equal to
∫

(κd−2N ∗ ρ ∗ ψε) dρ. Since ψε =
φε/2 ∗ φε/2, that same term in square brackets is equal to Id−2N (ρ ∗ φε/2).
Thus, the following holds P-almost surely:

cec‖B(s)‖2 · Id−2N (ρ ∗ φε/2 ∗ φε/2) ≥
[
Id−2N (ρ ∗ φε/2)

]2 ×Pπs{T ∈ Θ}. (4.23)
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In order to finish the proof we now consider separately the three cases
where d < 2N , d > 2N , and d = 2N . If d < 2N , then (4.10) holds because
the right-hand side is 1.

If d > 2N , then Theorem B.1 of Dalang et al [5] tells us that

Id−2N (ρ ∗ φε/2 ∗ φε/2) ≤ Id−2N (ρ ∗ φε/2). (4.24)

Since κd−2N is lower semicontinuous, Fatou’s lemma shows that

lim inf
ε↓0

Id−2N (ρ ∗ φε/2) ≥ Id−2N (ρ). (4.25)

Therefore, (4.23) implies that:

(i) Id−2N (ρ) <∞ [thanks also to (4.11)]; and

(ii) Pπs{T ∈ Θ} ≤ c exp(c‖B(s)‖2)/Id−2N (ρ) almost surely.

This proves that P-almost surely,

Pπs{T ∈ Θ} ≤ cec‖B(s)‖2

Id−2N (ρ)

≤ cec‖B(s)‖2 · Capd−2N (A).

(4.26)

Consequently, (4.15) implies the theorem in the case that d > 2N .
The final case that d = 2N is handled similarly, but this time we use

Theorem B.2 of Dalang et al [5] in place of their Theorem B.1.

5 Proofs of Theorem 1.1 and its corollaries

We start with the following result which deals with intersections of the im-
ages of the Brownian sheet of disjoint boxes that satisfy certain configuration
conditions.

Theorem 5.1. Let Θ1, . . . ,Θk in (0 ,∞)N be disjoint, closed and nonran-
dom upright boxes that satisfy the following properties:
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(1) for all j = 1, . . . , k−1 there exists π(j) ⊆ {1 , . . . , N} such that u ≺π(j)

v for all u ∈ ∪jl=1Θl and v ∈ Θj+1; and

(2) there exists a nonrandom η > 0 such that |r − q|∞ ≥ η for all r ∈ Θi

and q ∈ Θj, where 1 ≤ i 6= j ≤ k.

Then for any Borel set A ⊆ Rd,

P


k⋂
j=1

B(Θj) ∩A 6= ∅

 > 0 ⇔ P


k⋂
j=1

Wj(Θj) ∩A 6= ∅

 > 0, (5.1)

where W1, . . . ,Wk are k independent N -parameter Brownian sheets in Rd

(which are unrelated to B).

Proof. Under the assumptions (1) and (2), we can choose and fix nonran-
dom time points s1, . . . , sk−1 ∈ (0 ,∞)N such that for all l = 1, . . . , k − 1:

(3) sl ≺π(l) v for all v ∈ Θl+1; and

(4) sl �π(l) u for all u ∈ ∪lj=1Θj .

Because the elements of Θk dominate those of Θ1, . . . ,Θk−1 in partial order
π(k − 1), Theorem 2.4 can be applied [under Pπ(k−1)

sk−1 ] to show that for all
nonrandom Borel sets A ⊂ Rd,

P {[B]k ∩A 6= ∅} > 0 ⇔ E
[
Capd−2N ([B]k−1 ∩A)

]
> 0, (5.2)

where

[B]k :=
k⋂
j=1

B(Θj). (5.3)

The main result of Khoshnevisan and Shi [15] is that Capd−2N (E) > 0 is
necessary and sufficient for P{Wk(Θk) ∩ E 6= ∅} to be [strictly] positive,
where Wk is a Brownian sheet that is independent of B. We apply this with
E := [B]k−1 ∩A to deduce that

P {[B]k ∩A 6= ∅} > 0 ⇔ P {[B]k−1 ∩Wk(Θk) ∩A 6= ∅} > 0. (5.4)
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Because Wk is independent of B, and thanks to (3) and (4) above, we may
apply Theorem 2.4 inductively to deduce that

P {[B]k ∩A 6= ∅} > 0 ⇔ P


k⋂
j=1

Wj(Θj) ∩A 6= ∅

 > 0, (5.5)

where W1, . . . ,Wk are i.i.d. Brownian sheets. This proves Theorem 5.1.

Note that conditions (1) and (2) in Theorem 5.1 are satisfied for k = 2
for two arbitrary upright boxes Θ1 and Θ2 that have disjoint projections on
each coordinate hyperplane si = 0, i = 1, . . . , N . Hence we are ready to
derive Theorem 1.1.

Proof of Theorem 1.1. Observe that there exist distinct points s and t ∈
(0 ,∞)N with B(s) = B(t) ∈ A, and such that si 6= ti, for all i = 1, . . . , N ,
if and only if we can find disjoint closed upright boxes Θ1 and Θ2, with
vertices with rational coordinates, such that [B]2 ∩ A 6= ∅. Moreover, we
may require Θ1 and Θ2 to be such that the assumptions (1) and (2) of
Theorem 5.1 are satisfied. Since the family of pairs of such closed upright
boxes Θ1 and Θ2 is countable, it follows that (5.1) implies Theorem 1.1.

In order to apply Theorem 1.1 to study the nonexistence of double points
of the Brownian sheet, we first provide some preliminary results on the
following subset of M2:

M
(1)
2 :=

{
x ∈ Rd

∣∣∣∣∣ B(s1) = B(s2) = x for distinct s1, s2 ∈ (0 ,∞)N

with at least one common coordinate

}
.

Note that M (1)
2 cannot be studied by using Theorem 1.1. The next

lemma will help us to show that M (1)
2 has negligible effect on the properties

of M2.

Lemma 5.2. The random set M (1)
2 has the following properties:

(i) dimH M
(1)
2 ≤ 4N − 2 − d a.s., and “ dimH M

(1)
2 < 0” means “M (1)

2 =
∅.”

34



(ii) For every nonrandom Borel set A ⊆ Rd,

P
{
M

(1)
2 ∩A 6= ∅

}
≤ const · H2d−2(2N−1)(A), (5.6)

where Hβ denotes the β-dimensional Hausdorff measure.

Proof. Part (i) follows from (ii) and a standard covering argument; see for
example [1, 5, 29]. We omit the details and only give the following rough
outline. We only consider the case where s1, s2 ∈ (0 ,∞)N are distinct, but
have the same first coordinates. This causes little loss of generality.

For a point in a fixed unit cube of RN , say [1, 2]N , there are 22n possible
first coordinates of the form 1 + i2−2n, i = 0, . . . , 22n − 1.

For any given such first coordinate, there are (22n)N−1 points in [1, 2]N

with all other coordinates of the same form as the first coordinate. In
another unit cube, such as [1, 2] × [3, 4]N−1, there are also (22n)N−1 points
with a given first coordinate and all other coordinates of the form 1 + i2−2n,
i = 0, . . . , 22n − 1.

We cover the set M (1)
2 ∩ [0, 1]d by small boxes with sides of length n2−n.

If we cover [0, 1]d by a grid of small boxes with sides of length n2−n, the
probability that any small box C in [0, 1]d is needed to help coverM (1)

2 ∩[0, 1]d

because of the behavior of B near (u1, u2) and (u1, v2) is approximately

P{B(u1, u2) ∈ C, ‖B(u1, u2)−B(u1, v2)‖ ≤ n2−n} ' (n2−n)2d, (5.7)

where (u1, u2) ∈ [1, 2]N and (u1, v2) ∈ [1, 2]× [3, 4]N−1. Therefore, for γ > 0,

E
(∑

(n2−n)γ
)
' 2nd(n2−n)γP{a given small box is in the covering},

(5.8)
where the sum on the left-hand side is over all small boxes in a covering of
M

(1)
2 ∩ [0, 1]d. The probability on the right-hand side is approximately

#{points (u1, u2) and (v1, v2) to be considered} (n2−n)2d

= 22n
(

(22n)(N−1)
)2

(n2−n)2d.
(5.9)
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It follows that the left-hand side of (5.8) is approximately equal to

nγ+2d(2−n)γ−4N+2+d. (5.10)

This converges to 0 if γ > 4N − 2− d, and this explains statement (i).
In order to prove (ii), we start with a hitting probability estimate for M2.

Let D := D1 ×D2 ×D3 denote a compact upright box in (0 ,∞)1+2(N−1),
where D2, D3 ⊂ (0 ,∞)N−1 are disjoint. By using the argument in the
proof of Proposition 2.1 in Xiao [28] we can show that simultaneously for
all (a1,a2,a3) ∈ D, r > 0 and x ∈ Rd,

P

{
∃ (t1 , t2 , t3) ∈ (a1 − r2, a1 + r2)× Ur(a2)× Ur(a3)

such that
∣∣B(t1, t2)− x

∣∣ ≤ r, ∣∣B(t1, t3)− x
∣∣ ≤ r

}
= O(r2d), (5.11)

as r ↓ 0, where Ur(a) := {t ∈ RN−1 : |t − a| ≤ r2}. The proof of (5.11)
is somewhat lengthy. Since it is more or less a standard proof, we omit
the details, and offer instead only the following rough outline: (a) For fixed
(t1 , t2 , t3) in (a1 − r2 , a2 + r2)× Ur(a2)× Ur(a3), we have P{|B(t1 , t2)| ≤
r} = O(rd) thanks to direct computation; (b) P{|B(t1 , t3)| ≤ r | |B(t1 , t2)|
≤ r} = O(rd) because B(t1 , t2) and B(t1 , t3) are “sufficiently independent”;
and (c) B in time-intervals of side length r2 is roughly “constant” to within
at most r units. Part (ii) follows from (5.11) and another covering argument
[1, 5].

We now show how Theorem 1.1 can be combined with the elegant the-
ory of Peres [22] and Lemma 5.2 to imply the corollaries mentioned in the
introduction.

Proof of Corollary 1.2. Theorem 1.1 of Khoshnevisan and Shi [15] asserts
that for each ν ∈ {1 , 2}, all nonrandom Borel sets A ⊂ Rd, contained in
a fixed compact subset of Rd, and all upright boxes Θ :=

∏N
j=1[aj , bj ] ⊂

(0 ,∞)N , there is a finite constant R ≥ 1 such that

R−1 Capd−2N (A) ≤ P {Wν(Θ) ∩A 6= ∅} ≤ RCapd−2N (A). (5.12)
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We first consider the case where d > 2N . Because W1 and W2 are
independent, Corollary 15.4 of Peres [22, p. 240] and (5.12) imply that for
all upright boxes Θ1,Θ2 ⊂ (0 ,∞)N

P {W1(Θ1) ∩W2(Θ2) ∩A 6= ∅} > 0 ⇐⇒ Cap2(d−2N)(A) > 0. (5.13)

Next, let us assume that Cap2(d−2N)(A) > 0. We choose arbitrary up-
right boxes Θ1 and Θ2 that have disjoint projections on each coordinate
hyperplane si = 0, i = 1, . . . , N . It follows that P{M2∩A 6= ∅} > 0, thanks
to (5.13) and Theorem 1.1.

In order to prove the converse, we assume that Cap2(d−2N)(A) = 0.
Then dimA ≤ 2(d − 2N) which implies H2d−2(2N−1)(A) = 0. It follows
from Lemma 5.2 that P{M (1)

2 ∩ A 6= ∅} = 0. On the other hand, (5.13)
and Theorem 1.1 imply that P{(M2 \M (1)

2 )∩A 6= ∅} = 0. This finishes the
proof when d > 2N .

In the case d = 2N , where (1.6) appears, we also use (5.12), Corollary
15.4 of Peres [22, p. 240] and Lemma 5.2.

Finally, if 2N > d, then B hits points by (5.12). This implies the last
conclusion in Corollary 1.2.

Proof of Corollary 1.3. We appeal to Corollary 1.2 with A := Rd, and use
(2.6) to deduce that P{M2 6= ∅} > 0 if and only if 2(d− 2N) < d. Next, we
derive the second assertion of the corollary [Fristedt’s conjecture].

Choose and fix some x ∈ Rd. Corollary 1.2 tells us that P{x ∈M2} > 0
if and only if Cap2(d−2N)({x}) > 0. Because the only probability measure on
{x} is the point mass, the latter positive-capacity condition is equivalent to
the condition that d < 2N . According to the Tonelli theorem, E(measM2) =∫
Rd P{x ∈ M2}dx, where “meas M2” denotes the d-dimensional Lebesgue

measure of M2. It follows readily from this discussion that

E(measM2) > 0 ⇔ d < 2N. (5.14)

If d ≥ 2N , then this proves that measM2 = 0 almost surely.
It only remains to show that if d < 2N , then measM2 > 0 almost surely.
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For any integer ` ≥ 0, define

M2,` :=
{
x ∈ Rd : B(s1) = B(s2) = x for distinct s1, s2 ∈

[
2`, 2`+1

]N}
.

Given a fixed point x ∈ Rd, the scaling properties of the Brownian sheet
imply that

P{x ∈M2,`} = P{2−`N/2x ∈M2,0}. (5.15)

By using Theorem 1.1 and (5.13), we see that

inf
x∈[−q,q]d

P{x ∈M2,0} > 0 for all q > 0. (5.16)

The scaling property (5.15) then implies that

γq := inf
`≥0

inf
x∈[−q,q]d

P{x ∈M2,`} > 0 for all q > 0. (5.17)

In particular,

P {x ∈M2,` for infinitely many ` ≥ 0} ≥ γq
> 0 for all x ∈ [−q , q]d.

(5.18)

By the zero-one law of Orey and Pruitt [21, pp. 140–141], the left-hand side
of (5.18) is identically equal to one. But that left-hand side is at most P{x ∈
M2}. Because q is arbitrary, this proves that P{x ∈M2} = 1 for all x ∈ Rd

when d < 2N . By Tonelli’s theorem, P{x ∈M2 for almost all x ∈ Rd} = 1,
whence measM2 =∞ almost surely, and in particular measM2 > 0 almost
surely.

Proof of Proposition 1.4. According to (5.12) and Corollary 15.4 of Peres
[22, p. 240], the following is valid for all k upright boxes Θ1, . . . ,Θk ⊂
(0 ,∞)N with vertices with rational coordinates:

P

(
k⋂
ν=1

Wν(Θν) ∩A 6= ∅

)
> 0 ⇐⇒ Capk(d−2N)(A) > 0. (5.19)
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Observe that P{M̃k ∩ A 6= ∅} > 0 if and only if there exists a partial
order π ⊆ {1 , . . . , N} together with k disjoint upright boxes Θ1, . . . ,Θk in
(0 ,∞)N , with vertices with rational coordinates, such that for 1 ≤ i < j ≤ k,
s ∈ Θi and t ∈ Θj implies s�π t, and

P

(
k⋂
ν=1

B(Θν) ∩A 6= ∅

)
> 0. (5.20)

In addition, Θ1, . . . ,Θk can be chosen so as to satisfy (1) and (2) of Theorem
5.1 (with π(j) = π, j = 1, . . . , k − 1). It follows from Theorem 5.1 that

P
{
M̃k ∩A 6= ∅

}
> 0 ⇐⇒ P

(
k⋂
ν=1

Wν(Θν) ∩A 6= ∅

)
> 0. (5.21)

Owing to (5.19), the right-hand side is equivalent to the [strict] positivity of
Capk(d−2N)(A); this proves the first statement in Proposition 1.4. And the
second statement follows by taking (2.6) into account.

Remark 5.3. The following is a consequence of Proposition 1.4: Fix an
integer k > 2, and suppose that with positive probability there exist dis-
tinct u1, . . . ,uk ∈ (0 ,∞)N such that W1(u1) = · · · = Wk(uk) ∈ A. Then
with positive probability there exist distinct u1, . . . ,uk ∈ (0 ,∞)N such that
B(u1) = · · · = B(uk) ∈ A. We believe the converse is true. But Proposition
1.4, and even (5.5), implies the converse only for special configurations of
u1, . . . ,uk. In particular, the question of the existence of k-multiple points
in critical dimensions (k > 2 for which k(d− 2N) = d) remains open.

Proof of Corollary 1.5. We can combine (5.1) and (5.13) with Corollary 1.2
and deduce that whenever Θ1 and Θ2 are the upright boxes of the proof of
Theorem 1.1,

P {B(Θ1) ∩B(Θ2) ∩A 6= ∅} > 0 ⇔ Cap2(d−2N)(A) > 0. (5.22)

This is valid for all nonrandom Borel sets A ⊆ Rd.
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By Frostman’s theorem, if dimH A < 2(d−2N), then Cap2(d−2N)(A) = 0;
see (2.5). Consequently, Corollary 1.2 implies that M2∩A = ∅ almost surely.

Next, consider the case where dimH A ≥ 2(d− 2N) > 0. Choose and fix
some constant ρ ∈ (0 , d). According to Theorem 15.2 and Corollary 15.3 of
Peres [22, pp. 239–240], we can find a random set Xρ, independent of the
Brownian sheet B, that has the following properties:

- For all nonrandom Borel sets A ⊆ Rd,

P{Xρ ∩A 6= ∅} > 0 ⇔ Capρ(A) > 0; and (5.23)

- for all nonrandom Borel sets A ⊆ Rd and all β > 0,

P
{

Capβ(Xρ ∩A) > 0
}
> 0 ⇔ Capρ+β(A) > 0. (5.24)

[Indeed, Xρ is the fractal-percolation set Qd(κρ) of Peres (loc. cit.).]
Equation (5.22) implies that

P { [B]2 ∩Xρ ∩A 6= ∅ | Xρ} > 0 ⇔ Cap2(d−2N)(Xρ ∩A) > 0, (5.25)

where we recall that [B]2 := B(Θ1) ∩B(Θ2). Thanks to (5.24),

P { [B]2 ∩Xρ ∩A 6= ∅ | Xρ} � Cap2(d−2N)+ρ(A). (5.26)

holds almost surely. At the same time, (5.23) implies that

P { [B]2 ∩Xρ ∩A 6= ∅ | B} � Capρ ([B]2 ∩A) , (5.27)

Therefore, we compare the last two displays to deduce that

P
{

Capρ ([B]2 ∩A) > 0
}
> 0 ⇔ Cap2(d−2N)+ρ(A) > 0. (5.28)

Frostman’s theorem [12, p. 521] then implies the following:

‖dimH ([B]2 ∩A)‖L∞(P) = dimH A− 2(d− 2N). (5.29)
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This and (1.11) together imply readily the announced formula for the P-
essential supremum of dimH(M2 ∩A).

The remaining case is when d = 2N . In that case, we define for all
measurable functions κ : R+ → R+ ∪ {∞},

Capκ(A) := [inf Iκ(µ)]−1 , (5.30)

where the infimum is taken over all compactly supported probability mea-
sures µ on A, and

Iκ(µ) :=
∫∫

κ(‖x− y‖)µ(dx)µ(dy). (5.31)

Then the preceding argument goes through, except we replace:

- Cap2(d−2N)(Xρ∩A) by Capf (Xρ∩A) in (5.25), where f(u) := | log+(1/u)|2;

- Cap2(d−2N)+ρ(A) by Capg(A) in (5.26) and (5.28), where g(u) :=
|u|ρf(u);

- 2(d− 2N) by zero on the right-hand side of (5.29).

The justification for these replacements is the same as for their analogous
assertions in the case d > 2N . This completes our proof.
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