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Abstract We consider a d-dimensional random field that solves a possibly non-
linear system of stochastic partial differential equations, such as stochastic heat
or wave equations. We present results, obtained in joint works with Davar Khosh-
nevisan and Eulalia Nualart, and with Marta Sanz-Solé, on upper and lower bounds
on the probabilities that the random field visits a deterministic subset of Rd , in
terms, respectively, of Hausdorff measure and Newtonian capacity of the subset.
These bounds determine the critical dimension above which points are polar, but
do not, in general, determine whether points are polar in the critical dimension. For
linear SPDEs, we discuss, based on joint work with Carl Mueller and Yimin Xiao,
how the issue of polarity of points can be resolved in the critical dimension.

2010 Mathematics Subject Classification: Primary: 60H15; secondary: 60J45, 60G15,
60H07, 60G60.

Key words: Hitting probabilities, systems of stochastics PDEs, Malliavin calculus,
stochastic heat equation, stochastic wave equation, spatially homogeneous Gaussian
noise, capacity, Hausdorff measure.

1 Introduction

A basic problem in probabilistic potential theory, according to [14, Chapter 10],
is the following. Let U = (U(x), x ∈ Rk) be an Rd-valued continuous stochastic
process defined on a probability space (Ω ,F ,P). Let I ⊂ Rk be a fixed compact
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set with positive Lebesgue measure. The range of U over I is the random compact
subset U(I) of Rd consisting of all points visited by U : for ω ∈ Ω ,

U(I)(ω) = {U(x)(ω), x ∈ I}.

Given a compact subset A ⊂Rd , is P{U(I)∩A 6= /0} positive? If the answer is “no,”
then we say that A is polar for U , otherwise, A is non-polar. If A = {z} consists of a
single point z ∈Rd , then {U(I)∩A 6= /0}= {∃x ∈ I : U(x) = z}, and we say that z is
polar for U if the singleton {z} is polar for U .

A related question concerns hitting probabilities. Namely, for a compact subset
A ⊂ Rd , what are bounds on

P{U(I)∩A 6= /0}?

In particular, one would like upper and lower bounds that are sufficient to determine
whether or not points are polar for U .

In the case where the d components of U are i.i.d., there is typically a critical
value Q(k) such that:

• if d > Q(k), then there is lots of room to move around in the value space and
points are polar;

• if 1 ≤ d < Q(k), then points are non-polar;
• at the critical value d = Q(k), either situation may occur and it is usually more

difficult to decide whether or not points are polar.

The oldest results in this direction concern standard Brownian motion and are
due to Paul Lévy [18] (see also [15, Theorem 2.2]), where it is shown that points
are polar for Brownian motion in all dimensions d ≥ 2 (and they are non-polar in
dimension d = 1). This kind of result was extended to classical Markov processes
(see [3, 13, 22]). Extensions to multiparameter processes came later and a discussion
of these extensions can be found in [14].

In this paper, we shall mainly discuss results on hitting probabilities for systems
of stochastic partial differential equations (SPDEs), though we shall begin with the
results on Gaussian random fields that motivated this study and that also serve as
benchmarks for research on non-Gaussian random fields and solutions of nonlinear
systems of SPDEs.

2 Benchmark results for Gaussian random fields

In view of the many special properties of Gaussian random fields, it is natural to
begin the study of hitting probabilities with such random fields. We start with a very
particular random field, namely the Brownian sheet. Indeed, the results obtained by
Khoshnevisan and Shi [16] were the starting point for much of the later research on
this topic.
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2.1 First example: the Brownian sheet

Let (W (x), x ∈ Rk
+) denote an k-parameter Rd-valued Brownian sheet, that is, a

centered continuous Gaussian random field

W (x) = (W1(x), . . . ,Wd(x))

with covariance

E[Wi(x)Wj(y)] = δi, j

k

∏
ℓ=1

min(xℓ,yℓ), i, j ∈ {1, . . . ,d},

where x = (x1, . . . ,xk) and y = (y1, . . . ,yk), and δi, j = 1 if i = j and δi, j = 0 other-
wise. It is clear that the Brownian sheet is a multi-parameter extension of standard
Brownian motion, which corresponds to the case k = 1.

In order to state the first theorem, we introduce some notation concerning po-
tential theory. For all Borel sets F ⊂ Rd , let P(F) denote the set of all probability
measures with compact support in F . For all α ∈ R and µ ∈ P(Rk), we let Iα(µ)
denote the α-dimensional energy of µ , that is,

Iα(µ) :=
∫∫

Kα(‖x− y‖)µ(dx)µ(dy),

where, for r > 0,

Kα(r) :=





r−α if α > 0,
max(log(1/r),1) if α = 0,
1 if α < 0.

(1)

For all α ∈R and Borel sets F ⊂Rk, Capα(F) denotes the α-dimensional Bessel-
Riesz capacity of F , that is,

Capα(F) :=
[

inf
µ∈P(F)

Iα(µ)
]−1

,

where, by definition, 1/∞ := 0.
Finally, for M > 0, we let B(0,M) denote the open ball in Rd of radius M centered

at the origin.

Theorem 1. [16] Fix M > 0. Let I be a box, that is, I = [a1,b1]×·· ·× [ak,bk], where
0 < aℓ < bℓ < ∞, ℓ = 1, . . . ,k. There exists 0 < C < ∞ (C depends only on M, k, d,
minℓ=1,...,k aℓ, maxℓ=1,...,k bℓ) such that for all compact sets A ⊂ B(0,M) (⊂ Rd),

1
C

Capd−2k(A)≤ P{W (I)∩A 6= /0} ≤C Capd−2k(A). (2)
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The statement and proof of this theorem can be found in [16, Theorem 1.1]. No-
tice that the constraint A ⊂ B(0,M) is needed for the lower bound. Indeed, imagine
translating the set A off to infinity. Then the probability that the random field W hits
A would become less and less likely, simply because W has continuous sample paths
and the parameter set I is compact.

Example 1. What does Theorem 1 tell us about polarity of points? In the case where
A = {z}, it is not difficult to check that

Capd−2k({z}) =
{

1 if d < 2k,
0 if d ≥ 2k.

Therefore, the upper bound in (2) tells us that points are polar for W in all dimen-
sions d ≥ 2k, and the lower bound in (2) tells us that points are non-polar for W in
dimensions 1 ≤ d < 2k. In particular, d = 2k is the critical dimension and points are
polar in this critical dimension.

The result of Theorem 1 is essentially the optimal result to aim for. Indeed, the
upper and lower bounds in (2) are identical up to a constant. As we will see, bounds
as good as (2) are not available for wider classes of Gaussian random fields.

2.2 Anisotropic Gaussian random fields

We consider here a wider class of Gaussian random fields, studied in particular
in [2, 27]. These random fields will typically have different behaviors in different
directions, hence the name “anisotropic.”

Let (V (x), x ∈ Rk) be a centered continuous Gaussian random field with values
in Rd . We write V (x) = (V1(x), . . . ,Vd(x)) and we assume that the components Vi =
(Vi(x), x ∈ Rk) are i.i.d. real-valued random fields. The canonical metric associated
with these random fields is

∆(x,y) = ‖V1(x)−V1(y)‖L2 .

Let I be a box as in Theorem 1. Assume the following condition:
(C) There exists 0 < c < ∞ and H1, . . . ,Hk ∈ ]0,1[ such that for all x ∈ I,

c−1 ≤ ∆(0,x)≤ c,

x 7→ ∆(0,x) is differentiable on I, and for all x,y ∈ I,

c−1
k

∑
j=1

|x j − y j|H j ≤ ∆(x,y)≤ c
k

∑
j=1

|x j − y j|H j .

Given α ≥ 0, recall that the α-dimensional Hausdorff measure of F is defined by
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Hα(F) = lim
ε→0+

inf

{
∞

∑
i=1

(2ri)
α : F ⊆

∞⋃

i=1

B(xi ,ri), sup
i≥1

ri ≤ ε

}
,

where B(x ,r) denotes the open (Euclidean) ball of radius r > 0 centered at x ∈ Rd .
When α < 0, we define Hα(F) to be infinite.

Theorem 2. [2] Fix M > 0. Set Q = ∑k
j=1

1
H j
. Then there is 0 <C < ∞ such that for

every compact set A ⊂ B(0,M) (⊂ Rd),

C−1 Capd−Q(A)≤ P{V (I)∩A 6= /0} ≤CHd−Q(A). (3)

Compared to Theorem 1, Theorem 2 applies to a wide class of Gaussian random
fields, but there is a major difference: Hausdorff measure appears on the right-hand
side of (3), instead of capacity, as in (2). To see why this is significant, we again
consider the issue of polarity of points.

Example 2. Suppose that A = {z}. Then

Capd−Q({z}) =





1 if d < Q,
0 if d = Q,
0 if d > Q,

Hd−Q({z}) =





∞ if d < Q,
1 if d = Q,
0 if d > Q.

In particular, points are polar for V when d > Q, and are non-polar when q < Q.
Therefore, if Q is an integer, then d = Q is the critical dimension for hitting points.
However, if d = Q, then the statement of Theorem 2 reduces essentially to 0 ≤
P{∃x ∈ I : V (x) = z} ≤ 1, which is not particularly informative, and the issue of
polarity of points in this critical dimension is not answered by Theorem 2.

2.3 Funaki’s random string

There is one further important result on Gaussian random fields, which brings us
closer to SPDEs. This concerns the solution to a system of stochastic heat equations
driven by space-time white noise, also known as Funaki’s random string.

Let (u(t,x), (t,x) ∈ R+×R) be an Rd-valued random field such that

∂
∂ t

u(t,x) =
∂ 2

∂x2 u(t,x)+Ẇ (t,x), x ∈ R, t > 0, (4)

where u(0, ·) : R→ Rd is a given deterministic and smooth function, and Ẇ (t,x) is
an Rd-valued space-time white noise (that is, each of the d components of Ẇ is a
real-valued space-time white noise, and these components are independent random
fields).

SPDERF2016, 012, v5 (final): ’Hitting probabilities for systems of stochastic PDEs: an . . . 5



6 Robert C. Dalang

Theorem 3. [19] The critical dimension for hitting points is d = 6 and points are
polar in this dimension.

The proof of Mueller and Tribe [19] uses a rather clever extension of the argu-
ment used by Paul Lévy for Brownian motion. Namely, since the solution of (4) is
not stationary in time, they reduce the problem to the study of polarity of points for
a “stationary pinned string,”, which solves the stochastic heat equation with a ran-
dom initial condition and has stationary spatial increments, then they use a scaling
property and a time reversal argument, as was used by Paul Lévy. We note that [19]
also treats the issue of double points for the solution of (4).

The method of Mueller and Tribe is quite specific to the stochastic heat equa-
tion. For instance, it does not apply to the stochastic wave equation, nor even to
the stochastic heat equation with deterministic non-constant coefficients: if (t,x) 7→
σ(t,x) is a smooth but non-constant function, then the method of [19] does not apply
to the solution (u(t,x)) of the SPDE.

∂
∂ t

u(t,x) =
∂ 2

∂x2 u(t,x)+σ(t,x)Ẇ (t,x), x ∈ R, t > 0.

3 Hitting probabilities for non-Gaussian random fields

The results presented in the previous section, concerning Gaussian random fields,
tell us what inequalities it is reasonable to aim for in the case of non-Gaussian
random fields. We now present the results that have been obtained in this direction.

3.1 Systems of nonlinear wave equations in spatial dimension 1

In the paper [11], E. Nualart and the author considered the reduced stochastic wave
equation in two parameters, which is obtained from the classical stochastic wave
equation in one spatial dimension by a rotation of coordinates. We state however
their results here for the classical stochastic wave equation.

Let u = (u(t,x), (t,x) ∈ R+×R) be an Rd-valued random field such that

∂ 2

∂ t2 u(t,x) =
∂ 2

∂x2 u(t,x)+σ(u(t,x))Ẇ (t,x), x ∈ R, t > 0, (5)

where u(0, ·) and ∂
∂ t u(0, ·) are given smooth functions from R into Rd , Ẇ (t,x) is

an Rd-valued space-time white noise, and v 7→ σ(v) is a matrix-valued function
σ(v) = (σi, j(v), i, j = 1, . . . ,d), where each v 7→ σi, j(v) infinitely differentiable with
bounded partial derivatives. Assume also that σ is strongly elliptic, that is, there is
ρ > 0 such that for all v ∈ Rd and z ∈ Rd with ‖z‖= 1,
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‖σ(v)z‖2 =
d

∑
i=1

(
d

∑
j=1

σi, j(v)z j

)2

≥ ρ2.

The next theorem was obtained in [11, Theorem 5.1] for the reduced stochastic
wave equation. In the case where the SPDE (5) also contains a nonlinear drift term,
a slightly weaker result in given in [11, Corollary 5.3].

Theorem 4. Let u be the solution of (5). Let I = [t0, t1]× [x0,x1] be a rectangle,
where 0 < t0 < t1 and x0 < x1 and let M > 0. Under the assumptions just stated,
there exists a finite positive constant C such that, for all compacts sets A ⊂ B(0,M)
(⊂ Rd),

1
C

Capd−4(A)≤ P{u(I)∩A 6= /0} ≤C Capd−4(A).

It follows from this theorem (and the properties of capacity mentioned in Exam-
ple 1) that d = 4 is the critical dimension for hitting points and points are polar in
this critical dimension.

The proof of Theorem 4 uses Malliavin calculus, and, for the upper bound,
Cairoli’s maximal inequality for multiparameter martingales (see [14, Chapter 7]).
This last property, which was already used by Khoshnevisan and Shi [16] for Theo-
rem 1, will not be available for the other SPDEs that we will consider in this paper.

3.2 Other non-linear systems of SPDEs

In this subsection, we consider a wide class of systems of SPDEs, that includes in
particular systems of heat and wave equations.

Let L be a partial differential operator. For instance,

L =
∂
∂ t

−∆ or L =
∂ 2

∂ t2 −∆

in the case of the heat (respectively wave) operator, where ∆ is the Laplacian in the
spatial variables,

Let u = (u(t,x), (t,x) ∈ R+×Rk), where

u(t,x) = (u1(t,x), . . . ,ud(t,x)) ∈ Rd

is the solution of




Lu1(t,x) = b1(u(t,x))+∑d
j=1 σ1, j(u(t,x))Ẇj(t,x),

...
Lud(t,x) = bd(u(t,x))+∑d

j=1 σd, j(u(t,x))Ẇj(t,x),

(6)

where t ∈ ]0,T ], x ∈ Rk, with suitable initial conditions. The functions bi : Rd → R
and σi, j : Rd → R, i, j = 1, . . . ,d, are assumed to be C∞-functions with bounded
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derivatives of all positive orders. The matrix σ = (σi, j) is assumed to be strongly
elliptic.

The choice of initial conditions should ensure that the system (6) is well-posed.
For instance, in the case of the heat operator, the initial value u(0, ·) is given, whereas
for the wave operator, the initial velocity ∂

∂ t u(0, ·) should also be given.
The noise process Ẇ (t,x) = (Ẇ1(t,x), . . . ,Ẇd(t,x)) is assumed to be Gaussian,

white in time, and possibly correlated in space. We will only consider the spatially
homogeneous case, with a spatial correlation given by a Riesz kernel. More pre-
cisely, we fix k ≥ 1 and suppose β ∈ ]0,k∧ 2[ or k = 1 = β . We suppose that the
covariance of the noise is

E(Ẇℓ(t,x)Ẇj(s,y)) = δ (t − s)‖x− y‖−β δℓ, j, (7)

unless k = 1 = β , in which Ẇ is an Rd-valued space-time white noise.
For many choices of the operator L, the system (6) has a unique solution, and

the optimal Hölder exponents for the solution can be determined. Often, the Hölder
regularity is different in the time variable and in the spatial variable (or could even
be different in each of the spatial variables). We assume here that we have, for all
p ≥ 2, the bounds

c(p)∆(t,x;s,y)≤ ‖u(t,x)−u(s,y)‖Lp ≤C(p)∆(t,x;s,y), (8)

where
∆(t,x;s,y) = |t − s|H1 +‖x− y‖H2 (9)

and H1,H2 ∈ ]0,1]. Define

Q =
1

H1
+

k
H2

. (10)

The type of result that has been obtained in many cases, which we will summarize
in Section 3.5, takes the following form.

Typical result 5 Fix η > 0 and M > 0. Let I = [t0, t1], with 0 < t0 < t1, and let J be
a box in Rk. Then there are positive constants cη and Cη such that, for all compact
sets A ⊂ B(0,M) (⊂ Rd),

cη Capd−Q+η(A)≤ P{u(I × J)∩A 6= /0} ≤CηHd−Q−η(A). (11)

The bounds in (11) are similar to those in Theorem 2, with Hausdorff measure
on the right-hand side. They are slightly less good, since there is an additional term
+η (resp. −η) in the dimension of the capacity (resp. the Hausdorff measure).

The inequalities in (11) imply that the critical dimension for hitting points is
d = Q, with Q defined in (10) (assuming that Q is an integer). However, in the
critical dimension d = Q, the issue of polarity of points is not answered.

The bounds in (11) and the methods used to obtain these bounds also lead to
information about the Hausdorff dimensions of level sets of u and of the range of u,
as well as to bounds on the probability that a level set of u meets a given subset of

8 SPDERF2016, 012, v5 (final): ’Hitting probabilities for systems of stochastic PDEs: an . . .
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R+×Rk: see for instance [6, Theorems 2.4 and 3.2] as well as [7, Corollary 1.5 and
Theorem 1.6].

In the next two sections, we explain the main methods that have been developed
to prove this kind of result. Then we will indicate specific PDE operators L for which
this program has been carried out.

3.3 Proving the upper bound

Beginning with [6, Theorem 3.3], various sufficient conditions for obtaining the
upper bound in (11) have been identified (see also [8, Section 2.3]). These apply in
principle to any continuous random field u = {u(t,x), (t,x) ∈ R+×Rk}.

Theorem 6. Let D ⊂ Rd . In addition to knowing the Hölder exponents H1 and H2
that appear in the upper bound in (8), assume that for any x ∈ Rk, u(t,x) has a
probability density function pt,x, and

sup
z∈D

sup
(t,x)∈I×J

pt,x(z)≤C < ∞. (12)

Then for any η > 0, for every Borel set A ⊂ D,

P{u(I)∩A 6= /0} ≤CHd−Q−η(A). (13)

We note that the conclusion (13) only uses the upper bound in (8) (the lower
bound is not needed). In the case of a Gaussian random field, condition (12) is usu-
ally easy to verify. In the non-Gaussian case, the existence of a probability density
function and the uniform bound in (12) can often be obtained by using Malliavin
calculus.

3.4 Proving the lower bound

Sufficient conditions for obtaining the lower bound in (11) have also been iden-
tified in [6]. These conditions were later weakened in [12, Remark 3.9]. Let u =
{u(t,x), (t,x) ∈ R+×Rk} be an Rd-valued continuous process.

Theorem 7. Let ∆(s,y; t,x) be defined as in (9). Assume that:
(a) for all (t,x) ∈ I × J, the probability density function of u(t,x) exists, is con-

tinuous and strictly positive;
(b) for any (t,x) 6= (s,y) in I × J, the (two-point) probability density function

ps,y;t,x of (u(s,y),u(t,x)) exists, and there are c > 0, γ ≥ 1
H1

+ k
H2

and p > d(γ −
1

H1
− k

H2
) such that for all z1,z2 ∈ [−N,N]d ,

SPDERF2016, 012, v5 (final): ’Hitting probabilities for systems of stochastic PDEs: an . . . 9
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ps,y;t,x(z1,z2)≤ c[∆(s,y; t,x)]−γ
[
(∆(s,y; t,x))2

‖z1 − z2‖2 ∧1
]p/2d

. (14)

Then
P{u(I × J)∩A 6= /0} ≥ c Capγ−Q(A),

where Q = 1
H1

+ k
H2

.

Usually, the best possible choice of γ is γ = d. Both properties (a) and (b) can be
obtained by using Malliavin calculus. For instance, an early result on the positivity
of densities was obtained by Kohatsu-Higa [17] (see also [20]). The upper bound in
(b) is often difficult to obtain. In some cases [7], a stronger upper bound has been
obtained.

Since Theorem 7 is not stated as such anywhere in the literature, we shall sketch
its proof here. The main technical ingredient is the following anisotropic extension
of [12, Theorem 3.8] (see also [12, Remark 3.9]). Recall the definition of the func-
tion Kα(r) in (1).

Lemma 8 Suppose that condition (b) of Theorem 7 holds. For any I, K compact
subsets of [0,T ] and Rk, respectively, both with diameter ≤ 1, there exists a constant
C =C(H1,H2,γ,d,k,N) such that, for every z1,z2 ∈ Rd with 0 ≤ ‖z1 − z2‖ ≤ N,

I :=
∫

I×K
dtdx

∫

I×K
dsdy ps,y;t,x(z1,z2)≤C Kγ− 1

H1
− k

H2
(‖z1 − z2‖).

Proof. Define η = ‖z1 − z2‖, and suppose that ρ0 > 0 is such that I×K ⊂ {(s,y) ∈
R+×Rk : |s|H1 +‖y‖H2 ≤ ρ0}. Clearly, I = I1 +I2, where

I1 =
∫

I×K
dtdx

∫

I×K
dsdy1{∆(s,y;t,x)≤ ρ0η

N } ps,y;t,x(z1,z2),

I2 =
∫

I×K
dtdx

∫

I×K
dsdy1{∆(s,y;t,x)> ρ0η

N } ps,y;t,x(z1,z2).

We bound each term separately. Observe that by (14) and since p > 0,

I1 ≤ c
∫

I×K
dtdx

∫

I×K
dsdy1{∆(s,y;t,x)≤ ρ0η

N } [∆(s,y; t,x)]−γ
[
(∆(s,y; t,x))2

‖z1 − z2‖2

]p/2d

= c
∫

I×K
dtdx

∫

I×K
dsdy1{∆(s,y;t,x)≤ ρ0η

N } [∆(s,y; t,x)]−γ+ p
d η− p

d

≤ c̃η− p
d

∫ ρ
H−1

1
0

0
dr
∫ ρ

H−1
2

0

0
duuk−1 1{rH1+uH2≤ ρ0η

N } (r
H1 +uH2)−γ+ p

d .

Use the change of variables w = uH2/H1 to see that

I1 ≤ c̃′ η− p
d

∫ ρ
H−1

1
0

0
dr
∫ ρ

H−1
1

0

0
dww

H1
H2

−1 w(k−1)H1
H2 1{rH1+wH1≤ ρη

N } (r
H1 +wH1)−γ+ p

d .
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Pass to polar coordinates in the variables (r,w) to see that

I1 ≤ c̃′′ η− p
d

∫ 2( ρη
N )

H−1
1

0
dρ ρ ρk H1

H2
−1 ρ−γH1+

pH1
d .

Since k H1
H2

−γH1+
pH1

d >−1 because p> d(γ− 1
H1

− k
H2
) by hypothesis, the integral

is finite and we obtain

I1 ≤ ĉ′′ η− p
d η

k
H2

−γ+ p
d +

1
H1 = ĉ′′η−(γ− 1

H1
− k

H2
)
. (15)

Now observe that by (14) and since p > 0,

I2 ≤ c
∫

I×K
dtdx

∫

I×K
dsdy1{∆(s,y;t,x)> ρ0η

N } [∆(s,y; t,x)]−γ

≤ c̃
∫ ρ

H−1
1

0

0
dr
∫ ρ

H−1
2

0

0
du1{rH1+uH2>

ρ0η
N } uk−1(rH1 +uH2)−γ

≤ c̃(I2,1 +I2,2 +I2,3),

where

I2,1 =
∫ (

ρ0η
2N )

H−1
2

0
du
∫ ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dr uk−1(rH1 +uH2)−γ ,

I2,2 =
∫ ρ

H−1
2

0

(
ρ0η
2N )

H−1
2

du
∫ (

ρ0η
2N )

H−1
1

0
dr uk−1(rH1 +uH2)−γ ,

I2,3 =
∫ ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dr
∫ ρ

H−1
2

0

(
ρ0η
2N )

H−1
2

duuk−1(rH1 +uH2)−γ .

Clearly, since γ > H−1
1 ,

I2,1 ≤ c
∫ (

ρ0η
2N )

H−1
2

0
duuk−1

∫ ρ
H−1

1
0

(
ρ0η
2N )

H−1
1

dr r−γH1 ≤ c′ ηkH−1
2 η−γ+H−1

1

= c′ η−(γ− 1
H1

− k
H2

)
. (16)

Similarly, since γ > kH−1
2 ,

I2,2 ≤ c
∫ (

ρ0η
2N )

H−1
1

0
dr
∫ ρ

H−1
2

0

(
ρ0η
2N )

H−1
2

duuk−1−γH2 ≤ c′ηH−1
1 ηkH−1

2 −γ

≤ c′η−(γ− 1
H1

− k
H2

)
. (17)

Finally,
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I2,3 ≤ c
∫ ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dr
∫ ρ

H−1
2

0

(
ρ0η
2N )

H−1
2

du
uk−1

rγH1 +uγH2
.

Use the change of variables w = uH2/H1 to see that

I2,3 ≤ c̃
∫ ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dr
∫ ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dw
w

H1
H2

−1 w(k−1)H1
H2

rγH1 +wγH1
.

We bound the integrand above by cwk H1
H2

−1
(r+w)−γH1 , then pass to polar coordi-

nates in the variables (r,w) to see that

I2,3 ≤ c′
∫ 2ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dρ ρ ρk H1
H2

−1 ρ−γH1 . (18)

If γ > 1
H1

+ k
H2

, then we replace 2ρH−1
1 by +∞ in the upper bound, to get

I2,3 ≤ c̃′ η−(γ− 1
H1

− k
H2

)
. (19)

Putting together (15)–(17) and (19) proves the lemma when γ > 1
H1

+ k
H2

.
If γ = 1

H1
+ k

H2
, then from (18),

I2,3 ≤ c
∫ 2ρ

H−1
1

0

(
ρ0η
2N )

H−1
1

dρ ρ−1 = c
[

log(2ρH−1
1

0 )+H−1
1 log

(
2N

ρ0 η

)]
, (20)

and this is bounded above by cK0(η). Putting together (15)–(17) and (20) proves
the lemma when γ = 1

H1
+ k

H2
. �

With Lemma 8, the proof of Theorem 7 follows as in [12, Section 3.2].

3.5 Results for systems of non-linear equations

We now list the specific operators for which the methods outlined in Section 3.2–3.4
have been completely carried out.

Heat equation, k = 1, space-time white noise [7]. In this case,

Lui(t,x) =
∂ui

∂ t
(t,x)− ∂ 2ui

∂x2 (t,x)

and Ẇj(t,x) is space-time white noise. For any fixed η > 0, the bound (14) has been
proved with γ = d +η . It is well-known that H1 = 1

4 , H2 = 1
2 , so the bounds on
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hitting probabilites are

cη Capd+η−6(A)≤ P{u(I × J)∩A 6= /0} ≤Cη Hd−η−6(A)

(see [7, Theorem 1.2]). These bounds are consistent with the result of Theorem 3.

Heat equation, k ≥ 1, spatially homogeneous noise [8]. In this case,

Lui(t,x) =
∂ui

∂ t
(t,x)−∆ui(t,x)

and Ẇ (t,x) is spatially homogeneous noise with covariance given in (7).
It is shown in [23, Theorem 2.1] that for any H1 <

2−β
4 and H2 <

2−β
2 , the upper

bound of (8) holds. For any η > 0, the inequality (14) has been obtained for γ =
d +η . Setting Q = 4+6k

2−β , the bounds on hitting probabilities are

cη Capd+η−Q(A)≤ P{u(I × J)∩A 6= /0} ≤Cη Hd−η−Q(A)

(see [8, Theorem 1.2]).

Wave equation, k ∈ {1,2,3}, spatially homogeneous noise [12]. In this case,

Lui(t,x) =
∂ 2ui

∂ t2 (t,x)−∆ui(t,x)

and Ẇj(t,x) is spatially homogeneous noise with covariance given in (7).
It is shown in [12, Proposition 2.2] that the upper bound of (8) holds with

H1 = H2 =
2−β

2
.

For any η > 0, the inequality (14) has been obtained for γ = d +η + 4d2

2−β (η > 0).
Defining Q as in (10), the bounds on hitting probabilities are

cη Cap
d+η−Q+ 4d2

2−β
(A)≤ P{u(I × J)∩A 6= /0} ≤Cη Hd−η−Q(A) (21)

(see [12, Theorems 2.1 and 4.3]). It is expected that the optimal value of γ should
be no more than γ = d +η , and this would considerably improve the lower bound
in (21).

4 Polarity of points in critical dimensions

As we have mentioned, the results in Sections 3.2–3.5 do not answer the question
of polarity of points in critical dimensions. Building on works of Talagrand [25, 26]
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for fractional Brownian motion, we have obtained results in this direction for a wide
class of Gaussian random fields.

Let v = (v(t,x), t ≥ 0, x ∈ Rk) be an Rd-valued Gaussian random field with
i.i.d. components. Fix I × J as in (11). Suppose that there are C > 0 and H1,H2 ∈
]0,1[ such that for all (t,x),(s,y) ∈ I × J,

‖v(t,x)− v(s,y)‖L2 ≤C ∆(t,x;s,y) := |t − s|H1 +‖x− y‖H2 . (22)

We consider the following assumption on v.

Assumption 9 There is a random field (V (A, t,x), A ∈ B(R+), t ≥ 0, x ∈ Rk) and
ε0 > 0 such that:

(a) for fixed (t,x) ∈ (I × J)(ε0) (this denotes an ε0-enlargement of I × J), A 7→
V (A, t,x) is an Rd-valued Gaussian white noise;

(b) when A∩B = /0, V (A, ·, ·) and V (B, ·, ·) are independent;
(c) there are constants c0 ∈ R+, a0 ∈ R and γ1 > 0, γ2 > 0 such that for all

a0 ≤ a ≤ b ≤+∞, (t,x), (s,y) ∈ (I × J)(ε0):

‖v(t,x)− v(s,y)− (V ([a,b[, t,x)−V ([a,b[,s,y))‖L2

≤ c
[
aγ1 |t − s|+aγ2 ‖x− y‖+b−1] (23)

and
‖V ([0,a0], t,x)−V ([0,a0],s,y)‖L2 ≤ c0(|t − s|+‖x− y‖). (24)

(d) There is a constant c̃ > 0 such that for all (t,x) ∈ (I×J)(ε0), and i = 1, . . . ,d,
we have ‖vi(t,x)‖L2 ≥ c̃;

(e) There is ρ > 0 with the following property. For (t,x)∈ I×J, there are (t ′,x′)∈
(I×J)(ε0), δ j ∈ ]α j,1], j = 1,2, and C > 0 such that for all i= 1, . . . ,d, (s,y),(s̄, ȳ)∈
(I × J)(ε0) with ∆(s,y; t,x)≤ 2ρ and ∆(s̄, ȳ; t,x)≤ 2ρ ,

∣∣E[(vi(s,y)− vi(s̄, ȳ))vi(t ′,x′)]
∣∣≤C(|s− s̄|δ1 +‖y− ȳ‖δ2).

Remark 1. (1) If there exist exponents γ j such that (23) holds, then it can be checked
that a possible choice for the Hölder exponents in (22) is that they satisfy

γ j =
1

H j
−1 (25)

(see [10, Proposition 2.2]).
(2) Condition (c) states that if |t − s| ∼ 2−n/H1 and ‖x−y‖ ∼ 2−n/H2 , then the in-

crement ‖v(t,x)−v(s,y)‖ is well-approximated by the increment ‖V ([2n,2n+1[, t,x)−
V ([2n,2n+1[,s,y)‖. If we are considering several increments over boxes of different
sizes, then this approximation is useful because V has lots of independence built
into it.

(3) Property (d) is a non-degeneracy assumption, while property (e) states that
covariances of vi are smoother than sample paths of v (since δ j > α j).
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Theorem 10. [10, Theorem 2.6] Under Assumption 9, if d = Q := 1
H1

+ k
H2

, then for
all z ∈ Rd ,

P{∃(t,x) ∈ R∗
+×Rk : v(t,x) = z}= 0,

that is, points are polar for v.

It turns out that Theorem 10 is widely applicable, since Assumption 9 is satisfied
by the solutions to many systems of linear SPDEs. In addition, in the case where
∆(t,x;s,y) not only satisfies the upper bound (22) but also the lower bound (8), we
know from Section 3.5 that Q defined in Theorem 10 is the critical dimension for
the SPDEs considered there. So the next proposition establishes polarity of points
in the critical dimension for several types of SPDEs.

Proposition 11 [10, Sections 7–9] Let v = (v(t,x)) be the solution of a system of
linear SPDEs. Assumption 9 is satisfied in the following cases:

(a) systems of linear heat equations in spatial dimension k = 1, driven by space-
time white noise, with possibly non-constant coefficients;

(b) systems of linear wave equations in spatial dimension k = 1, driven by space-
time white noise;

(c) systems of linear heat equations in spatial dimension k≥ 1, driven by spatially
homogeneous Gaussian noise with covariance given in (7);

(d) systems of linear wave equations in spatial dimension k ≥ 1, driven by spa-
tially homogeneous Gaussian noise with covariance given in (7).
In particular, in each of these four cases, points are polar for v in the critical di-
mension.

Via Case (a) of Proposition 11, one recovers the results of Theorem 3. As as
example of how one uses Theorem 10 to establish the claims of Proposition 11, we
consider the case of wave equations in spatial dimension 1 driven by space-time
white noise Ŵ . Let v = (v(t,x), t ∈ R+, x ∈ R) solve





∂ 2

∂ t2 v j(t,x) = ∂ 2

∂x2 v j(t,x)+ ˙̂Wj(t,x), j = 1, . . . ,d,

v(0,x) = 0, ∂
∂ t v(0,x) = 0, x ∈ R.

(26)

Corollary 12 [10, Theorem 9.1] Suppose d = 4 (critical dimension). Then points
are polar for v.

The main point, in order to apply Theorem 10, is to determine the random field
V of Assumption 9. Letting G(t,x) denote the fundamental solution of the wave
equation, it is well-known that the solution of (26) has the representation

v(t,x) =
∫ t

0

∫

R
G(t − s,x− y)Ŵ (ds,dy). (27)

Taking space-time Fourier transforms of G and Ŵ leads to the representation
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v(t,x) =
∫

R

∫

R

e−iξ ·x−iτt

2|ξ |

[
1− eit(τ+|ξ |)

τ + |ξ | − 1− eit(τ−|ξ |)

τ −|ξ |

]
W (dτ,dξ ), (28)

where W is another space-time white noise. Note that this representation already
appears in [1]. We call it a harmonizable representation of v.

With the representation (28), it is shown in [10, Lemmas 9.3 and 9.6] that As-
sumption 9 is satisfied by setting

V (A, t,x)

:=
∫ ∫

{max(|τ|
1
2 , |ξ |

1
2 )∈A}

e−iξ ·x−iτt

2|ξ |

[
1− eit(τ+|ξ |)

τ + |ξ | − 1− eit(τ−|ξ |)

τ −|ξ |

]
W (dτ,dξ ),

where W is again a space-time white noise.
For condition (c) of Assumption 9, the formula (25) applied to the Hölder expo-

nent 1
2 gives γ := ( 1

2 )
−1 −1 = 1, so it is necessary to check that

‖v(t,x)− v(s,y)− (V ([a,b[, t,x)−V ([a,b[,s,y))‖L2

≤ c0
[
a1|t − s|+a1|x− y|+b−1] .

Proving this inequality requires estimating some double integrals.

It turns out that for the other examples mentioned in Proposition 11, the same
Fourier transform method applied to the standard representation (27) applies, and
then the candidate process V is easily obtained as above from the harmonizable
representation of v.

In future work, we plan to extend the above results to the solution of systems of
nonlinear SPDEs, and to study the issue of existence/nonexistence of multiple point
in critical dimensions, extending the recent result of [9].

Finally, we also mention the papers [4, 5, 21, 24], which are also concerned with
hitting probabilities for SPDEs.
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