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Abstract

This paper presents several recent results concerning level sets, bubbles and
excursions of a Brownian sheet, along with the main methods of proof and
directions of current research.

1 Introduction

This paper discusses several recent developments in the study of level sets, bubbles
and excursions of the Brownian sheet. It intends to provide a review of much of the
existing body of literature on this topic and to present some new results on level sets
and excursions, along with key techniques in their proofs and some open problems.

The Brownian sheet is a real-valued, centered and continuous Gaussian process
(W (t), t ∈ RI 2

+) indexed by the positive quadrant in the plane, with covariance given
by

E(W (s1, s2)W (t1, t2)) = (s1 ∧ t1)(s2 ∧ t2). (1)

It is one of the natural extensions of Brownian motion to higher-dimensional time.
No single multiparameter Gaussian process can play as central a role as standard
Brownian motion plays in the theory of one-parameter processes. Indeed, one could
consider the solutions to the heat equation driven by white noise, to the wave equa-
tion driven by white noise (essentially, the Brownian sheet [30]), and to an elliptic
equation driven by white noise (such as the Whittle sheet [23]), to all be basic random
fields of equal importance, and each with very different properties. There are also
other important Gaussian random fields, such as Lévy’s Brownian motion [14, 22, 26].
However, the Brownian sheet is probably the random field that arises in the widest
number of contexts and has been the most studied.

Study of the Brownian sheet began with work of Kitagawa [17], Chentsov [4] and
Yeh [28]. Important results on sample path properties were then obtained by Orey
and Pruitt [21], Czörgö and Révèsz [5], Pyke [24] and Walsh [29], among many others.
Motivation for the work reported here comes from results on level sets by Adler [1]
and Kendall [16], followed by more recent work of Dalang and Walsh [11, 12].

2 Basic properties of the Brownian sheet

One immediately observes from Eq. (1) that the Brownian sheet vanishes on the
coordinate axes, and that for fixed s2 (resp. fixed s1), the map s1 7→ W (s1, s2)
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(resp. s2 7→ W (s1, s2) is a Brownian motion with speed s2 (resp. s1). Many other
Gaussian processes are also embedded in the Brownian sheet. For instance, u 7→
W (u, 1 − u) is a Brownian bridge, while u 7→ W (u, 1/u) is an Ornstein-Uhlenbeck
process (see [30]).

The fact that W (s1, 0) = W (0, s2) = 0 is akin to an initial condition, and it is
a common misunderstanding to assume that properties of the Brownian sheet are
induced by this initial condition. In fact, the Brownian sheet can be equivalently
defined as the solution of the stochastic hyperbolic partial differential equation

∂2

∂s1∂s2
W (s1, s2) = η̇(s1, s2),

where η̇ denotes two-parameter white noise, with the initial conditions W (s1, 0) =
W (0, s2) = 0, for all s1 ≥ 0 and s2 ≥ 0. Most properties of the Brownian sheet
that relate to horizontal and vertical lines, including the surprising “propagation
of singularities” phenomenon discovered by Walsh in [29], are not induced by the
coordinate axes but by the fact that the characteristic directions of the hyperbolic
operator ∂2/(∂s1∂s2) are the horizontal and vertical directions.

Let ≤ be the (partial) order on RI 2 defined by

s = (s1, s2) ≤ t = (t1, t2) ⇐⇒ s1 ≤ t1 and s2 ≤ t2.

Viewed along any monotone increasing curve (in this partial order), the Brownian
sheet is a Brownian motion (after a deterministic time-change). Clearly, if one thinks
of the Brownian sheet as a random function of two real variables, then the surface
that it defines is extremely irregular and its restriction to any monotone curve looks
like a sample path of ordinary Brownian motion.

3 Problems that lead to the Brownian sheet

The study of the Brownian sheet can be motivated by the many contexts in which it
arises. We mention two of them. The first is a problem in bivariate statistics that
makes use of the Brownian sheet.

Consider a sequence (Xn) of independent and identically disributed random vari-
ables that are uniformly distributed on the unit square [0, 1]2. Let Fn(t1, t2) denote
the number of integers i ∈ {1, . . . , n} such that Xi ∈ [0, t1] × [0, t2]. One can show
(cf. [2]) that

Fn(t1, t2)− nt1t2√
n

⇒ W̃ (t1, t2),

where W̃ (t1, t2) = W (t1, t2) − t1t2W (1, 1). The process (W̃ (t), t ∈ [0, 1]2) is termed
the pinned Brownian sheet and is analogous to the one-parameter Brownian bridge.
Its properties are clearly very closely related to those of the Brownian sheet. If
one wants to statistically test whether or not the random variables Xn are indeed
uniformly distributed, then one needs information about the pinned Brownian sheet.
In order to build confidence intervals and to compute p-values, knowledge about the
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distribution of the maximum of the Brownian sheet is needed. However, even though
there are many asymptotic formulas for tails of this distribution [3, 27], there is no
known exact formula for this distribution, which may explain why questions regarding
distributional properties of the Brownian sheet are generally very difficult to answer.

The Brownian sheet also arises in other areas of stochastic analysis. For instance,
in the study of Wiener space and Malliavin calculus, the Brownian sheet provides
a representation of the Ornstein-Uhlenbeck process on Wiener space. This process,
sometimes called the Malliavin process on Wiener space, is the C(RI +, RI )-valued
solution (Xt, t ≥ 0) of the infinite-dimensional stochastic differential equation

dXt(·) = −Xt(·) dt+ dW (t, ·).

The distribution of this process is stationary in time, and for a fixed time t, the law
of Xt is that of a standard Brownian motion. It turns out that the Brownian sheet
provides a very simple representation of this process ([18, 15]):

Xt(s) = e−t W (s, e2t), s ≥ 0, −∞ ≤ t ≤ +∞.

This representation has proven very effective in the study of the Malliavin process
(see for instance [19]).

4 Level sets, bubbles and excursions

For x ∈ RI , the non-negative quadrant can be decomposed into three subsets as
follows:

L(x) = {s ∈ RI 2
+ : W (s) = x},

L+(x) = {s ∈ RI 2
+ : W (s) > x},

L−(x) = {s ∈ RI 2
+ : W (s) < x}.

Because sample paths of the Brownian sheet are continuous, the first subset is closed,
while the second and third are open sets: each of these is a countable union of
components, that is, of connected open subsets. In addition, the level set L(x) is the
common boundary of these two sets.

The first set of questions of interest here concerns the Hausdorff dimension of the
level set and related sets. Other questions include topological properties of the level
set (cf. [16], [5]). For instance, Kendall [16] proved that almost all points t ∈ L(x) are
points at which the level set is totally disconnected, that is, the connected component
of L(x) that contains t consists of the single point t. The “almost all” is with respect
to local time measure on L(x). On the other hand, the level set L(x) separates the two
open subsets L+(x) and L−(x). As such, a deterministic result from planar topology
(see [16]) implies that this set cannot be totally disconnected, so it must contain non-
trivial connected subsets. However, there is currently no information on the nature
of such subsets (e.g. their Hausdorff dimension, where they occur, what such subsets
might look like, etc), though it is known that they cannot consist of Jordan arcs that
are differentiable even at a single point [6].
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Another set of questions of interest here concerns geometric properties of the
decomposition

RI 2
+ = L−(x) ∪ L(x) ∪ L+(x).

Indeed, one would like to understand the nature of the contact between L−(x) and
L+(x), and the nature of L(x) in the neighborhood of boundary points of components
of L−(x). Several results in this direction are described in the papers of Dalang and
Walsh [11, 12].

Much recent progress in understanding the nature of the contact between L−(x)
and L+(x) comes from the study of points of increase. This will be described in
Section 6 below.

Finally, just as there has been for several years a very good understanding of
excursions of ordinary Brownian motion, one would like to understand the behavior
of excursions of the Brownian sheet, where an excursion is defined as follows. First,
we term a Brownian bubble a single connected component of L±(x). An excursion of
the Brownian sheet is then the restriction of the Brownian sheet to any fixed bubble
(for instance, the bubble that contains the point t = (1, 1)). The excursion is positive
(resp. negative) if the restriction of the Brownian sheet to this bubble is positive
(resp. negative). We shall describe below a surprising recent result concerning the
lack of independence between different excursions of the Brownian sheet.

5 Hausdorff dimensions

The main result on the Hausdorff dimension of level sets of the Brownian sheet is the
following theorem, due to R. Adler [1].

Theorem 1 Almost surely, for all x ∈ RI , the Hausdorff dimension of L(x) is 3
2 .

In fact, Adler’s result was proved for the d-parameter Brownian sheet, in which
case 3

2 = 2− 1
2 should be replaced by d− 1

2 . Adler’s result implies that L(x) is a very
complicated closed set. A picture of this closed set, obtained by simulation, can be
found in [11].

A much more recent result, due to T. Mountford [20], establishes the following
surprising property.

Theorem 2 Almost surely, the Hausdorff dimension of the boundary of any fixed
bubble is in the interval [1.25, 1.5[.

Notice that the interval [1.25, 1.5[ is open on the right: the Hausdorff dimension of
any fixed bubble is strictly less than 1

2 , which means that “most of L(x) is in between
the boundaries of individual bubbles.”

The following remains an open problem.

Problem 1. Do the boundaries of all bubbles have the same Hausdorff dimension?
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Recent work of the authors and D. Khoshnevisan motivates the following conjec-
ture: the answer to the question in Problem 1 is yes, and the Hausdorff dimension of
all bubbles should be

3
2
− 1

4

(
5−

√
13 + 4

√
5
)
.

6 Points of increase

A point of increase of a Brownian motion (B(u), u ≥ 0) is a (possibly random) time
u > 0 such that for some ε > 0,

B(u− h) < B(u) < B(u+ h), for 0 < h < ε.

Dvoretsky, Erdös and Kakutani [13] have established the following celebrated result.

Theorem 3 Almost surely, Brownian motion has no point of increase.

For the Brownian sheet, the question of existence of a point of increase can become
either of the following : (a) do there exist bubbles of opposite signs that share a
boundary point? or (b) Do there exist curves, or even monotone curves, along which
the Brownian sheet has a point of increase? Formally, does there exist a (possibly
random) function γ : [0, 1]→ ]0,∞[, r ∈ ]0, 1[ and ε > 0 such that for 0 < h < ε,

W (γ(r − h)) < W (γ(r)) < W (γ(r + h))? (2)

If so, we say that W has a point of increase (at the random level W (γ(r))). If in fact,
given x ∈ RI , there exists a (possibly random) function γ : [0, 1] → ]0,∞[ and h > 0
such that for 0 < h < ε,

W (γ(r − h)) < x < W (γ(r + h)), (3)

then we say that W has a point of increase at the fixed level x. Question (a) was
answered affirmatively in [20], but since a boundary point of an open set in the plane
may not be the endpoint of a curve that is otherwise contained in the open set,
answering question (b) gives more information about the contact between bubbles.

Theorem 3, together with the basic properties mentioned in Section 2, show that
the Brownian sheet cannot have a point of increase on any given deterministic mono-
tone curve γ, as it behaves like a Brownian motion along such a curve. Therefore,
any curve γ with property (2) or (3) must in fact be random.

The following result is due to Dalang and Mountford [7].

Theorem 4 For all x ∈ RI , with positive probability, there exists a monotone curve
contained in the square [1, 2]2 along which the Brownian sheet has a point of increase
at level x.

The conclusion can be made valid with probability one if the point of increase is
allowed to occur anywhere in the positive quadrant.
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The result of Theorem 4 implies that a bubble in L−(x) can share a common
boundary point with a bubble of L+(x). On the other hand, there is no control over
the regularity of the curve γ in (3).

The proof of Theorem 4 in [7] is quite demanding. On the other hand, it is natural
to ask, as did John B. Walsh, whether or not the conclusion of Theorem 4 might not
be true for any continuous function of two variables. It turns out that this is not the
case, as shown in the following result of Dalang and Mountford [8].

Theorem 5 Let A be the subset of C(RI 2
+, RI ) that consists of functions f with the

property that there exists a monotone curve along which f has a point of increase.
Then A has first Baire category.

Of course, the set C(RI 2
+, RI ) is not of first Baire category, by the Baire Category

Theorem, so this result implies that sample paths of the Brownian sheet are contained
in a topologically small subset of C(RI 2

+, RI ). In this regard, the behavior of the
Brownian sheet differs from that of standard Brownian motion, whose sample paths
are outside the (topologically small) set of functions which admit a point of increase.

In view of Theorem 5, it is natural to ask whether points of increase might exist
along some particular type of curve, say even along horizontal lines. The following is
currently an open problem.

Problem 2. Given x ∈ RI , do there exist horizontal lines along which the Brownian
sheet has a point of increase at level x? More precisely, given x ∈ RI , is there a point
(T1, T2) ∈ ]0,∞[2 and ε > 0 such that

W ((T1 − h) ∨ 0, T2) < x < W (T1 + h, T2), for 0 < h < ε?

We note that if such horizontal lines do exist, then they must be random, because
as mentioned in Section 2, the Brownian sheet behaves like a Brownian motion along
any deterministic horizontal line, and hence does not have any point of increase.

While Problem 2 remains open, Dalang and Mountford [9] have established the
following result.

Theorem 6 With positive probability, there are horizontal lines along which the Brow-
nian sheet has a point of increase at random levels, that is, there exist random points
(T1, T2) ∈ [1, 2]2 such that

W (T1 − h, T2) < W (T1, T2) < W (T1 + h, T2), for 0 < h <
1
2
.

Again, the conclusion can be made valid with probability one if the point (T1, T2)
is not constrained to belong to [1, 2]2, but is allowed to be anywhere in RI 2

+.
Theorem 6 has the following implication with regard to properties of the Ornstein-

Uhlenbeck process on Wiener space.
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Corollary 7 The Ornstein-Uhlenbeck process on Wiener space hits with probability
one the set of paths in C(RI +, RI ) that have points of increase.

Since Theorem 6 is a statement concerning points of increase at random levels, it
says nothing about the level set L(x) at a fixed level x. One would like to modify the
statement in some way so as to obtain a related result valid at fixed levels.

In order to do this, it is useful to understand how results such as those in The-
orems 4, 6 or even 2 are proved. They all make effective use of the following local
decomposition of the Brownian sheet, which was already used in [16] and [11, 12]. For
fixed t = (t1, t2) ∈ [1, 2]2, one can write

W (t1 + u1, t2 + u2) = W (t1, t2) +X1(u1) +X2(u2) + ηt1,t2(u1, u2). (4)

The processes X1 and X2 are defined for u1 and u2 both positive and negative, and are
independent. The specific distribution depends on whether ui is positive or negative:
(X1(u1), u1 ≥ 0) is a Brownian motion (with speed u2), while (X1(−u1), 0 ≤ u1 ≤ t1)
is a Brownian bridge with value 0 at times 0 and t1, and similar statements hold for
X2. However, locally near 0, X1 behaves like a Brownian motion, whether u1 runs
forwards or backwards from 0. In addition, the last term ηt1,t2(u1, u2) is small relative
to X1 and X2: it is of order

√
u1u2, while Xi(ui) is of order

√
ui, for small u1 and

u2. This means that the behavior of the Brownian sheet W in the neighborhood of a
point t is essentially the same as that of additive Brownian motion X defined by

X(u1, u2) = X1(u1) +X2(u2), u1 ∈ RI , u2 ∈ RI ,

where X1 and X2 are independent, and are Brownian motions for both positive and
negative time.

Theorems 4, 6 and 2 are all based on this local decomposition, and an accounting
of the error term η, which can be quite involved. But intuition and conjectures about
the properties of the Brownian sheet can be obtained from corresponding properties
of additive Brownian motion. Of course, this must be done with care: for instance,
while the conclusions of Theorems 2 and 4 are valid for additive Brownian motion,
with a similar (and in fact, simpler) proof, the conclusion of Theorem 6 does not hold
for additive Brownian motion, because for any T2, the path t1 7→ X(t1, T2) is that of
a Brownian motion with initial value X2(T2), and this cannot have a point of increase
by Theorem 3.

Substantial information about bubbles of additive Brownian motion was obtained
by Dalang and Walsh in [12]. By examining how bubbles of this process come into
contact with each other, one is led to the following definition: we term a broken line
with corner at (t1, t2) the union of two segments of the form {t1} × [t2, t2 + h] and
[t1, t1 + h]× {t2}. The following theorem is established in [9].

Theorem 8 With probability one, there exist broken lines along which the Brownian
sheet has a point of increase at fixed levels, that is, for all x ∈ RI and h > 0, there
exists (T1, T2) ∈ RI 2

+ such that

W (T1, T2 + u) < x < W (T1 + u, T2), for 0 < u < h. (5)
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In addition, it is shown in [9] that the set of all (T1, T2) with the property (5) has
Hausdorff dimension 1

2 . In particular, this set is uncountable and cannot consist only
of isolated points.

Proof of Theorem 8. We shall define below an event A(t, n), which describes the
fact that “W has an approximate point of increase of order n along a broken line with
corner at t.”

Let Xn be the number of points t with dyadic coordinates of order 2n contained
in [2, 3]2 for which A(t, n) occurs. We will use the estimates in (8) and (9) below to
check that there is ε > 0 such that for all large n,

E(Xn)2

E(X2
n)
≥ ε. (6)

It follows from this and the Cauchy-Schwartz inequality that

P{Xn > 0} ≥ E(Xn)2

E(X2
n)
≥ ε > 0,

and from Fatou’s lemma that

P

(
lim sup

n→∞
{Xn > 0}

)
≥ ε.

Therefore, with positive probability, there is a sequence (tn) of elements of [2, 3]2 such
that A(tn, n) occurs for all large n. In view of the definition of the event A(tn, n) given
below, the limit of a convergent subsequence of (tn) will have the property requested
in the conclusion of Theorem 8.

In order to complete the proof, it now suffices to define the event A(t, n) and to
establish the inequality (6). Set

A(t, n) = AU (t, n) ∩A0(t, n) ∩AR(t, n),

where

A0(t, n) = {|W (t)− x| ≤ 2−n},
AU (t, n) = {W (t1, t2 + v)−W (t1, t2) < −2−n, 2−2n ≤ v ≤ 1},
AR(t, n) = {W (t1 + u, t2)−W (t1, t2) > 2−n, 2−2n ≤ u ≤ 1}.

Then A0(t, n) describes the fact that W (t) is approximately equal to x, AU (t, n)
occurs if W stays below W (t) along a vertical segment with lower extremity at t, and
AR(t, n) occurs if W stays above W (t) along a horizontal segment with left extremity
at t. So A(t, n) does indeed occur if and only if W has an approximate point of
increase of order n along a broken line with corner at t.

From the definition of Xn,

E(Xn) =
∑

t

P (A(t, n)) and E(X2
n) =

∑
s

∑
t

P (A(s, n) ∩A(t, n)), (7)
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where each sum is over the 24n points in [2, 3]2 with coordinates that are dyadic of
order 2n. It is shown in [9] that there is c > 0 such that for all large n,

P (A(t, n)) ≥ c 2−3n, (8)

and there is a constant C <∞ such that for all large n,

P (A(s, n) ∩A(t, n)) ≤ C 2−3n 2−n√
|s1 − t1|

2−n√
|s2 − t2|

2−n√
|s1 − t1| ∨ |s2 − t2|

. (9)

From (7) and (9), one can deduce as in [9] that there are constants k > 0 and K <∞
such that

E(Xn) ≥ k 2−n and E(X2
n) ≤ K 22n.

This proves (6) and completes the proof of Theorem 8. ♦

7 Dependence between excursions

One of the features of excursions of standard Brownian motion away from a fixed
level is that these excursions are independent of each other, and there is a beautiful
point process description of excursions [25, Chapter VIII]. Can one develop such a
theory for the Brownian sheet? It turns out that it will not be possible to describe
excursions of the Brownian sheet independently of each other.

Indeed, one feature which makes possible the independence of excursions of Brown-
ian motion is the fact that distinct excursion intervals never have a common endpoint,
but are separated by infinitely many other excursions. If a positive excursion interval
could share an endpoint with a negative excursion interval, then knowing that one of
the excursions is positive would indicate that the other is negative (given that a.s., 0
is not a local minimum or maximum of Brownian motion.

Theorems 4 and 8 above show that distinct bubbles of the Brownian sheet can
share boundary points, and given this, it is natural to suspect that excursions of the
Brownian sheet in distinct bubbles are not independent. This intuition is formalized
in the following theorem of Dalang and Mountford [10].

Theorem 9 Given the level set L(0) and the sign of all but finitely many excursions
of the Brownian sheet away from 0, the sign of the remaining excursions is fully
determined.

Proof. The complete proof of this theorem is highly technical and will be given in
[10]. However, the main ideas are as follows. Suppose that we are given L(0), and
the sign of all excursions of W except the one that contains (1, 1): call this excursion
C(1, 1). We are going to show how to determine the sign of C(1, 1).

Suppose for a minute that W (1, 1) > 0. Define

τ = inf{s1 > 1 : W (s1, 1) = 0},
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and set B(v) = W (τ, 1 + v/τ). Then B = (B(v), v ≥ 0) is a standard Brownian
motion.

We now focus on excursions of B near v = 0. On average, B “has as many” positive
excursions as negative excursions near 0. Each negative excursion of B corresponds
to a negative bubble of W , which is certainly distinct from C(1, 1) since we have
assumed that W > 0 on C(1, 1).

On the other hand, a positive excursion of B corresponds to a positive bubble of
W , and this positive bubble may or may not coincide with C(1, 1). In fact, think
of a positive excursion of B near v = 0 that is comparatively long and goes up to a
relatively high level, and reaches its maximum at v = ε, say. It is quite likely that the
point (τ, 1 + ε/τ) will be part of C(1, 1), since there is a good chance that W will be
positive along some path that connects the segment [1, τ [×{1} to the point (τ, 1 + ε).

Therefore, positive excursions of B that correspond to bubbles of W distinct from
C(1, 1) are fewer than negative excursions of B that correspond to such distinct
bubbles.

The key observation is now that the occurence of such excursions is determined
by the level set L(0) and the sign of all excursions except that of C(1, 1). Formally,
let F+

n (resp. F−n ) be the event “there is a positive (resp. negative) excursion of B
originating in [2−(n+1), 2−n] of length 2−n that corresponds to an excursion of W
distinct from C(1, 1).”

One can show that if W (1, 1) > 0, then

P

(
lim sup

n→∞
F+

n

)
= 0 and P

(
lim sup

n→∞
F−n

)
= 1,

while if W (1, 1) < 0, then

P

(
lim sup

n→∞
F+

n

)
= 1 and P

(
lim sup

n→∞
F−n

)
= 0.

Clearly, the events lim supn→∞ F+
n and lim supn→∞ F−n are determined by L(0) and

the sign of all but finitely many excursions of W .
The main technical difficulty is to quantify the likelihood that a positive excursion

of W corresponds to an excursion of W distinct from C(1, 1). Details of this can be
found in [10]. ♦
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In: Séminaire de Probabilités XXVII (eds. J. Azéma, P.A. Meyer and M. Yor).
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