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Let X = (Xt)t≥0 be a stable Lévy process of index α ∈ (1,2) with
no negative jumps and let St = sup0≤s≤t Xs denote its running supre-
mum for t > 0. We show that the density function ft of St can be
characterized as the unique solution to a weakly singular Volterra
integral equation of the first kind or, equivalently, as the unique solu-
tion to a first-order Riemann–Liouville fractional differential equation
satisfying a boundary condition at zero. This yields an explicit series
representation for ft. Recalling the familiar relation between St and
the first entry time τx of X into [x,∞), this further translates into
an explicit series representation for the density function of τx.

1. Introduction. In our study [3] of optimal prediction for a stable Lévy
process X = (Xt)t≥0, we encountered the question of computing the distri-
bution function of St = sup0≤s≤tXs for t > 0. In the existing literature, such
expressions seem to be available only when X has no positive jumps and the
purpose of the present paper is to seek similar expressions when X has no
negative jumps. We note that the latter problem dates back to [5], page 282.
Our main result (Theorem 1) characterizes the density function f of S1

as the unique solution to a weakly singular Volterra integral equation of the
first kind or, equivalently, as the unique solution to a first order Riemann–
Liouville fractional differential equation satisfying a boundary condition at
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zero. This characterization yields an explicit series representation for f
(which, in the case of a Brownian motion, coincides with the well-known
expression arising from the reflection principle).
Using the scaling property of X , the result extends to St for t 6= 1. Re-

calling the familiar relation between St and the first entry time τx of X
into [x,∞), this further translates into an explicit series representation for
the density function of τx for x > 0. Moreover, using the Laplace inversion
formula, we derive an integral representation for f (Corollary 2). Finally,
we note (Corollary 3) that the proof yields exact constants in the known
asymptotic expressions for f at zero and infinity. The knowledge of these
constants plays a key role in our treatment of the optimal prediction problem
[3].

2. The result and proof. 1. Let X = (Xt)t≥0 be a stable Lévy process of
index α ∈ (1,2) whose characteristic function is given by

EeiλXt = exp

(
t

∫ ∞

0
(eiλx − 1− iλx) dx

Γ(−α)x1+α

)
= et(−iλ)α

(2.1)

for λ ∈R and t≥ 0. It follows that the Laplace transform of X is given by

Ee−λXt = etλ
α

(2.2)

for λ≥ 0 and t≥ 0 (the left-hand side being +∞ for λ < 0). From (2.1) and
(2.2), we see that the characteristic exponent of X equals Ψ(λ) = (−iλ)α, the
Laplace exponent of X equals ψ(λ) = λα for λ≥ 0 and ϕ(p) := ψ−1(p) = p1/α

for p≥ 0.
2. The following properties of X are readily deduced from (2.1) and (2.2)

using standard means (see, e.g., [4] and [13]): the law of (Xct)t≥0 is the same
as the law of (c1/αXt)t≥0 for each c > 0 given and fixed (scaling property); X
is a martingale with EXt = 0 for all t≥ 0; X jumps upward (only) and creeps
downward [in the sense that P(Xρx = x) = 1 for x < 0, where ρx = inf{t≥
0 :Xt < x} is the first entry time of X into (−∞, x)]; X has sample paths
of unbounded variation; X oscillates from −∞ to +∞ (in the sense that
lim inft→∞Xt =−∞ and limsupt→∞Xt =+∞, both a.s.); the starting point
0 of X is regular [for both (−∞,0) and (0,+∞)]. Note that the constant
c= 1/Γ(−α) in the Lévy measure ν(dx) = (c/x1+α)dx of X is chosen/fixed
for convenience so that X converges in law to

√
2B as α ↑ 2, where B is a

standard Brownian motion, and all the facts below can be extended to the
general constant c > 0 depending on α if needed (see Remark 2 below).
3. Let St = sup0≤s≤tXs denote the running supremum of X for t≥ 0 and

let τx = inf{t≥ 0 :Xt ≥ x} be the first entry time of X into [x,∞) for x > 0.
Since Xs ≥ Xs− for all s ∈ [0, t] and X is right-continuous, one sees that
P(St ≥ x) = P(τx ≤ t), so the law of St follows from the law of τx (and vice
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versa). If X is a Lévy process with no positive jumps, then it is known that
the two measures

tP(τx ∈ dt)dx= xP(Xt ∈ dx)dt(2.3)

coincide on the Borel σ-algebra of R+×R+ (see, e.g., [4], page 190, or [7] and
the references therein). This implies that the law of Xt yields the law of τx. It
follows, in particular, that the known series representations for the density
function of Xt (see, e.g., [17], pages 87–89) lead to series representations
for the density function of St. If X has no negative jumps, however, then
the identity (2.3) breaks down and no series representation for the density
function of St seems to be available in the literature. We mention, however,
that there is a literature on the distribution of Sσ when σ is an independent
and exponentially distributed random variable, the process X has arbitrary
negative jumps, and its positive jumps form a compound Poisson process
with the jump-size distribution of the so-called “phase type” (see, e.g., [14]
and [2]).

4. Our main result can be stated as follows. Note that St
law
= t1/αS1 by

the scaling property of X so that there is no restriction in assuming that
t= 1 in the sequel. Recall, also, that D

α−1 denotes the Riemann–Liouville
fractional derivative of order α− 1 given by

D
α−1f(x) =

1

Γ(2−α)
d

dx

∫ x

0

f(y)

(x− y)α−1
dy(2.4)

for x > 0 and any (admissible) function f :R+ → R (for more details, see,
e.g., [16], pages 449–452, and [15], Chapter 2).

Theorem 1. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈ (1,2)
satisfying (2.1) and (2.2), and let S1 = sup0≤t≤1Xt denote its supremum
over the time interval [0,1]. Then the density function f of S1 can be char-
acterized as the unique solution to the weakly singular Volterra integral equa-
tion of the first kind

∫ x

0

(
y+

α

Γ(2−α)
1

(x− y)α−1

)
f(y)dy =

α

Γ(1/α)
(2.5)

or, equivalently, as the unique solution to the fractional differential equation

xf(x) + αD
α−1f(x) = 0(2.6)

satisfying the boundary condition

lim
x↓0

x2−αf(x) =
1

Γ(α− 1)Γ(1/α)
,(2.7)
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where D
α−1 denotes the Riemann–Liouville fractional derivative given by

(2.4) above. This yields the series representation

f(x) =
∞∑

n=1

1

Γ(αn− 1)Γ(−n+ 1+ 1/α)
xαn−2(2.8)

for x > 0.

Proof. To connect the present result with the existing theory, we will
begin by recalling a number of known facts about Lévy processes with no
positive jumps (for further details, see, e.g., [4], Chapter VII, and [13], Chap-
ter 8).

Let X̃ = (X̃t)t≥0 be a Lévy process with no positive jumps starting at

zero, let Ψ̃ denote its characteristic exponent, let ψ̃ denote the Laplace
exponent of −X̃ and let ϕ̃ := ψ̃(−1) denote the (right) inverse of ψ̃. Thus,

the characteristic function of X̃ is given by

EeiλX̃t = etΨ̃(λ)(2.9)

for λ ∈R and the Laplace transform of −X̃ is given by

EeλX̃t = etψ̃(λ)(2.10)

for λ≥ 0 and t≥ 0. Let

S̃t = sup
0≤s≤t

X̃s and Ĩt = inf
0≤s≤t

X̃s(2.11)

for t≥ 0 and set

τ̃x = inf{t≥ 0 : X̃t > x}(2.12)

for x≥ 0, on assuming that the infimum is finite a.s.

From the fact that (eϕ̃(p)X̃t−pt)t≥0 is a martingale (and that X̃ creeps
upward), one finds, using the optional sampling theorem, that the Laplace
transform of τ̃x equals

Ee−pτ̃x = e−xϕ̃(p)(2.13)

for p≥ 0 and x≥ 0. Moreover, if σp is an exponentially distributed random
variable with parameter p > 0, meaning that P(σp ∈ dt) = pe−pt dt for t > 0,

which, moreover, is independent of X̃ , then (2.13) implies that

P(S̃σp > x) = P(τ̃x ≤ σp) = Ee−pτ̃x = e−xϕ̃(p)(2.14)

for p > 0 and x≥ 0. This shows that S̃σp is exponentially distributed with
parameter ϕ̃(p). Hence, one finds that

EeλS̃σp =
ϕ̃(p)

ϕ̃(p)− λ(2.15)
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for p > 0 and λ ∈C with ℜ(λ)< ϕ̃(p).
Invoking the Wiener–Hopf factorization (see, e.g., [4], page 165, or [13],

Theorem 6.16)

EeiλX̃σp = EeiλS̃σp EeiλĨσp =
p

p− Ψ̃(λ)
,(2.16)

it follows, using (2.15), that

EeλĨσp =
p(ϕ̃(p)− λ)

ϕ̃(p)(p− ψ̃(λ))
(2.17)

for λ≥ 0 and p > 0, on recalling that Ψ̃(−iλ) = ψ̃(λ) for λ ≥ 0. The iden-
tity (2.17) is well known (see, e.g., [4], page 192, or [13], page 213).

Clearly, X has no negative jumps if and only if X̃ :=−X has no positive
jumps, so, by focusing on the left-hand side of (2.17), one finds

EeλĨσp = p

∫ ∞

0
E(eλĨt)e−pt dt= p

∫ ∞

0
E(e−λSt)e−pt dt

= p

∫ ∞

0

[
1− λ

∫ ∞

0
e−λxP(St >x)dx

]
e−pt dt(2.18)

= 1− pλ
∫ ∞

0
e−pt dt

∫ ∞

0
e−λxP(St >x)dx

for λ ≥ 0 and p > 0. Combining (2.17) and (2.18) and noticing/recalling

that ψ̃(λ) = ψ(λ) = λα and ϕ̃(p) = ϕ(p) = p1/α, one finds that the (joint)
time–space Laplace transform of (t, x) 7→ P(St > x) equals

∫ ∞

0
e−λx dx

∫ ∞

0
e−ptP(St > x)dt=

1

p− λα
(

1

p1/α
− λα−1

p

)
(2.19)

for λ > 0 and p > 0.
Note that this formula can also be obtained by taking the Laplace trans-

form with respect to the space variable x on both sides of the expression
∫ ∞

0
e−ptP(St >x)dt=

∫ ∞

0
e−ptP(τx ≤ t)dt=

1

p
Ee−pτx

(2.20)

=
∞∑

n=0

pn−1xαn

Γ(1 +αn)
−

∞∑

n=1

pn−1−1/αxαn−1

Γ(αn)
,

where the final identity follows from (8.6) in [13], page 214, combined with
(ii) and (iii) in [13], page 233. This remark is relevant since the customary
approach leading to the closed-form expression (2.20) via the so-called scale
function (cf. [13], pages 214–215) corresponds to Laplace inversion (at least
formally) with respect to the space parameter. The derivation given below
takes a different route by firstly performing Laplace inversion with respect
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to the time parameter and then dealing with the resulting expression using
techniques of linear integral equations (fractional calculus).
After these introductory remarks, we are now ready to move to the first

step of the proof, taking (2.19) as the initial point. Below, we will let L
−1
p

denote the inverse Laplace transform with respect to the time parameter
p and L

−1
λ denote the inverse Laplace transform with respect to the space

parameter λ.
1. Considering p > λα with λ > 0 fixed, by (3) in [9], page 238, we find

L
−1
p

[
1

(p− λα)p1/α

]
(t) =

1

Γ(1/α)

eλ
αt

λ
γ(1/α,λαt)(2.21)

for t≥ 0, where (a,x) 7→ γ(a,x) denotes the incomplete gamma function

γ(a,x) =

∫ x

0
ya−1e−y dy(2.22)

for a > 0 and x≥ 0. Likewise, by (5) in [9], page 229, we find

L
−1
p

[
λα−1

(p− λα)p

]
(t) =

1

λ
(eλ

αt − 1)(2.23)

for t≥ 0. Combining (2.21) and (2.23), we get

L
−1
p

[
1

p− λα
(

1

p1/α
− λα−1

p

)]
(t) =

1

λ
− eλ

αt

λ

Γ(1/α,λαt)

Γ(1/α)
(2.24)

for t≥ 0, where (a,x) 7→ Γ(a,x) denotes the incomplete gamma function

Γ(a,x) =

∫ ∞

x
ya−1e−y dy = Γ(a)− γ(a,x)(2.25)

for a > 0 and x ≥ 0. Since the right-hand side of (2.24) defines a bounded
function of t≥ 0 and the argument of L

−1
p on the left-hand side is a Laplace

transform defined for all p > 0 [recall (2.19) above], we see that the identity
(2.24) holds globally for t≥ 0 and λ > 0.
2. Note that

eλ
αt

λ

Γ(1/α,λαt)

Γ(1/α)
=

1

Γ(1/α)

eλ
αt

λ

∫ ∞

λαt
x−1+1/αe−x dx

(2.26)

=
α

Γ(1/α)

1

λ
etλ

α
∫ ∞

t1/αλ
e−z

α
dz

for λ > 0 and t ≥ 0, on substituting x = zα to obtain the second equality.
The final expression in (2.26) reveals a connection with the standard normal
distribution corresponding to α= 2. Indeed, by the scaling property, it is no
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restriction to assume that t= 1 so that the final expression in (2.26) with
α= 2 reads

2√
π

1

λ
eλ

2
∫ ∞

λ
e−z

2
dz =

eλ
2

λ
erfc(λ)(2.27)

for λ > 0. By (1) in [9], page 265, one knows that

L
−1
λ [eλ

2
erfc(λ)](x) =

1√
π
e−x

2/4(2.28)

and hence it follows that

L
−1
λ

[
eλ

2

λ
erfc(λ)

]
(x) =

1√
π

∫ x

0
e−y

2/4 dy(2.29)

for x≥ 0. The density function f of S1 obtained on the right-hand side of
(2.28) and the distribution function F of S1 given on the right-hand side
of (2.29) coincide with the expressions obtained from the reflection principle
M1 := max0≤t≤1Bt =

law |B1|, which yields S1 =
law
√
2M1 =

law
√
2|B1|=law

|B2|, where B = (Bt)t≥0 is a standard Brownian motion.
3. By the scaling property, it is no restriction to assume that t = 1 in

the sequel. Let F denote the distribution function of S1 and let f denote
the density function of S1. Note that the form of the Laplace transform on
the right-hand side of (2.24) being combined with (2.26) implies that the
density function exists (see the proof of Corollary 2 below for further detail).
Combining (2.19), (2.24) and (2.26), on using that L

−1
λ [ 1λL[f ](λ)](x) = F (x)

since F (x) =
∫ x
0 f(y)dy for x≥ 0, it follows that

f(x) =
α

Γ(1/α)
L
−1
λ

[
eλ

α
∫ ∞

λ
e−z

α
dz

]
(x)(2.30)

for x≥ 0.
To simplify the notation, consider the equation

g(x) = L
−1
λ [G(λ)](x)(2.31)

for x > 0, where we set

G(λ) = eλ
α

∫ ∞

λ
e−z

α
dz(2.32)

for λ > 0. From (2.32), we see that G′(λ) = αλα−1G(λ)− 1 so that

G′(λ)

λ
− α

λ2−α
G(λ) +

1

λ
= 0(2.33)

for λ > 0. Since L
−1
λ [G′(λ)](x) =−xg(x), it follows that L

−1
λ [G′(λ)/λ](x) =

−
∫ x
0 yg(y)dy for x > 0. Moreover, using (1) in [9], page 137, we see that

L
−1
λ [1/λ2−α](x) = 1/(Γ(2− α)xα−1) so that L

−1
λ [G(λ)/λ2−α](x) = (1/Γ(2−
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α))
∫ x
0 (g(y)/(x − y)α−1)dy for x > 0. Finally, we have L

−1
λ [1/λ](x) = 1 for

x > 0. Hence, taking L
−1
λ in (2.33), we find that

−
∫ x

0
yg(y)dy − α

Γ(2−α)

∫ x

0

g(y)

(x− y)α−1
dy +1= 0(2.34)

for x > 0. Noting that g(x) = (Γ(1/α)/α)f(x) for x > 0, we see that (2.34)
reads

∫ x

0
yf(y)dy+

α

Γ(2−α)

∫ x

0

f(y)

(x− y)α−1
dy =

α

Γ(1/α)
(2.35)

for x > 0 and this is exactly equation (2.5).
4. We will seek a solution to (2.35) of the form

f(x) =
∞∑

n=0

anx
βn+γ ,(2.36)

where β and γ are constants to be determined. First, note that

∫ x

0
yf(y)dy =

∞∑

n=0

an

∫ x

0
yβn+γ+1 dy =

∞∑

n=0

an
βn+ γ +2

xβn+γ+2(2.37)

for x > 0. Second, by (3.191) in [10], page 333, and (6.2.2) in [1], page 258,
we have

∫ x

0
yµ−1(x− y)ν−1 dy = xµ+ν−1B(µ, ν) = xµ+ν−1Γ(µ)Γ(ν)

Γ(µ+ ν)
(2.38)

for µ > 0, ν > 0 and x > 0. It follows that

α

Γ(2−α)

∫ x

0

f(y)

(x− y)α−1
dy =

α

Γ(2−α)
∞∑

n=0

an

∫ x

0

yβn+γ

(x− y)α−1
dy

(2.39)

=
∞∑

n=0

an
αΓ(βn+ γ +1)

Γ(βn+ γ − α+3)
xβn+γ−α+2

for x > 0. Combining (2.35), (2.37) and (2.39), we find that β = α and
γ = α− 2. Inserting (2.37) and (2.39) into (2.35) with these β and γ, we get

∞∑

n=0

(anAn + an+1Bn+1)x
α(n+1) + a0B0 =

α

Γ(1/α)
,(2.40)

where the constants An and Bn are defined by

An =
1

α(n+ 1)
and Bn = α

Γ(α(n+1)− 1)
Γ(αn+1)

(2.41)
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for n≥ 0. From (2.40) and (2.41), we find, by induction, that

an = (−1)nAn−1An−2 · · ·A1A0

BnBn−1 · · ·B2B1
a0(2.42)

for n≥ 1, where a0 = 1/(Γ(1/α)Γ(α − 1)). Inserting (2.42) into (2.36) with
β = α and γ = α− 2, and making use of (2.41), we obtain the series repre-
sentation

f(x) =
1

Γ(1/α)

×
∞∑

n=0

(−1)n
α2nn!

Γ(nα+1)Γ((n− 1)α+ 1) · · ·Γ(α+1)Γ(1)

Γ((n+1)α− 1)Γ(nα− 1) · · ·Γ(2α− 1)Γ(α− 1)(2.43)

× xα(n+1)−2

for x > 0. Using Stirling’s formula Γ(ax + b) ∼
√
2πe−ax(ax)ax+b−1/2 as

x→∞, where a > 0 and b ∈ R (cf. (6.1.39) in [1], page 257), it is readily
verified that |an+1/an|=O(n1−α) as n→∞, whence the ratio test implies
that the series in (2.43) converges absolutely for every x > 0 and that f
defined by (2.43) is a continuous function on (0,∞). Note, also, that only
the leading term (1/(Γ(α− 1)Γ(1/α))xα−2 of the series is singular at zero,
so we can integrate in (2.43) term by term over any finite interval in [0,∞).
Finally, by induction over n ≥ 0, using the fact that Γ(x+ 1) = xΓ(x) for
x ∈ R \ {0,−1,−2, . . .}, it is easily verified that the series representation
(2.43) can be simplified to the form given in (2.8) above.
5. We now show that f from (2.8) is a unique solution to the integral

equation (2.5). For this, let us first note that since f satisfies (2.43) and hence
solves (2.35), it follows that g = (Γ(1/α)/α)f solves (2.34). Assuming that g
has a Laplace transform and taking the Laplace transform L on both sides
of (2.34), we see that G= L[g] solves (2.33). The general solution to (2.33)
is given by G(λ) = ceλ

α
+ eλ

α ∫∞
λ e−z

α
dz for λ > 0, where c is a constant.

In order to compute the Laplace transform of f defined in (2.43), we could
attempt to interchange L and the sum and use the fact that L[xρ](λ) =
Γ(ρ + 1)/λρ+1 for ρ > −1 and λ > 0. Using the ratio test, however, it is
possible to verify that the resulting series diverges and therefore is not equal
to L[f ]. We note, however, that if we could show that

∫∞
0 e−λxf(x)dx→ 0

as λ→∞, then we would have c = 0 and (2.30) would imply that f from
(2.43) is indeed the density function of S1, as claimed.
Given this difficulty, we shall take a different tack and establish uniqueness

of the solution to (2.35) in the class of functions that are locally integrable
on [0,∞) and bounded on compact subsets of (0,∞) [these conditions are
natural requirements so that the left-hand side of (2.35) makes sense]. Mul-
tiplying both sides of (2.35) by (z − x)α−2 and integrating the resulting
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identity with respect to x from 0 to z, we can use Fubini’s theorem and
(2.38) to obtain

1

α− 1

∫ z

0
y(z − y)α−1f(y)dy+ αΓ(α− 1)

∫ z

0
f(y)dy

(2.44)

=
α

(α− 1)Γ(1/α)z
α−1

for z > 0. Note that the interchange of the order of integration above is
justified whenever f is locally integrable on [0,∞) and bounded on com-
pact subsets of (0,∞). Differentiating this identity with respect to z and
substituting x for z, we get

1

αΓ(α− 1)

∫ x

0

y

(x− y)2−α f(y)dy+ f(x) =
1

Γ(1/α)Γ(α− 1)
1

x2−α
(2.45)

for x > 0. This is a weakly singular Volterra integral equation of the second
kind. Previous considerations show that both the function from (2.43) and
the density function from (2.30) solve the equation (2.45). We note in passing
that when f is the density function, we see from (2.45) that f(x)≤ [1/(Γ(α−
1)Γ(1/α))](1/x2−α) for all x > 0 so that f is bounded on compact subsets
of (0,∞).
Denote by φ the difference between the two solutions to (2.45). Then

a

∫ x

0

y

(x− y)2−αφ(y)dy + φ(x) = 0(2.46)

for x > 0, where we set a = 1/(αΓ(α − 1)). It follows from [12], Theorem
7, page 35, that φ= 0 if φ is locally square-integrable, but since the latter
could not be the case (around zero), we give a direct proof of the former
fact. For this, fix x1 > 0 arbitrarily large and set ξ = |φ|. Letting

Tξ(x) =

∫ x

0

ξ(y)

(x− y)2−α dy,(2.47)

we find, by induction using (2.46), that

ξ(x)≤ bnTnξ(x)(2.48)

for x ∈ (0, x1] and n ≥ 1, where b= ax1. An iterative calculation using Fu-
bini’s theorem and (2.38) shows that

T
nξ(x)≤ cn

∫ x

0

ξ(y)

(x− y)1−n(α−1)
dy(2.49)

for x ∈ (0, x1] and n ≥ 1 with some constant cn > 0. Choosing n ≥ 1 large
enough so that 1−n(α− 1)< 0, combining (2.48) with (2.49) and applying
a simple iteration procedure to the resulting inequality, we find that

ξ(x)≤ cmxm−1

(m− 1)!

∫ x

0
ξ(y)dy(2.50)
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for x ∈ (0, x1] and m≥ 1 with some constant c > 0. Since the right-hand side
converges to zero as m→∞, it follows that ξ(x) = 0 for x ∈ (0, x1] and thus
φ(x) = 0 for all x > 0. This shows that the two solutions to (2.45) coincide
on (0,∞). Hence, we can conclude that f from (2.8) is a unique solution
to (2.5) in the class of functions which are locally integrable on [0,∞) and
bounded on compact subsets of (0,∞).
6. Note that the fractional differential equation (2.6) follows from (2.5)

by differentiation so that (2.8) defines its solution satisfying the boundary
condition (2.7). Now, suppose that f solves (2.6) and satisfies (2.7). Then
(2.5) follows from (2.6) by integration [on using (2.38) with µ= α− 1], so f
solves (2.35). Then proceeding as above, we find that f must be equal to the
density function, as long as f is locally integrable on [0,∞) and bounded
on compact subsets of (0,∞). This establishes the existence and uniqueness
claim about (2.6) and (2.7) in the latter class of functions. The proof of the
theorem is complete. �

Remark 1. The integral equation (2.5) is closely related to the (gener-
alized) Abel equation of the first kind

∫ x

0

(
a+

1

(x− y)β
)
f(y)dy =R(x) (0< β < 1),(2.51)

which admits a closed-form solution expressed in terms of the Riemann–
Liouville fractional derivative of R (of order 1 − β). For more details, see
[16] and the references therein. Note that the integral equation (2.5) is of
the form

∫ x

0

(
ay+

1

(x− y)β
)
f(y)dy =R(x) (0< β < 1),(2.52)

which may be viewed as being of the first order if the Abel equation (2.51)
is viewed as being of the zeroth order. Note also that the equation (2.45) is
the “second kind” analog of the equation (2.5).

Remark 2. The results of Theorem 1 extend to the case when the Lévy
measure equals

ν(dx) =
c

x1+α
dx,(2.53)

where c > 0 is a general constant. This can be derived using the scaling
property of X . Letting, in this case, ft denote the density function of St =
sup0≤s≤tXs, we note for future reference that (2.8) extends as follows:

ft(x) =
∞∑

n=1

1

(cΓ(−α)t)n−1/αΓ(αn− 1)Γ(−n+1+ 1/α)
xαn−2(2.54)
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for x > 0 and t > 0. Similarly, from (2.30), it is readily verified that

Ee−λSt =

∫ ∞

0
e−λxft(x)dx=

α

Γ(1/α)
eκtλ

α
∫ ∞

(κt)1/αλ
e−z

α
dz(2.55)

for λ > 0 and t > 0, where we set κ= cΓ(−α). Note, in particular, that (2.55)
yields ESt = (α/Γ(1/α))(κt)1/α for t > 0.

7. Further to the series representation given in (2.8) above, the next corol-
lary presents an integral representation for the density function f of S1. Since
this representation extends to t 6= 1 and c 6= 1/Γ(−α) by the scaling property
of X , we will only focus on the case when t= 1 and c= 1/Γ(−α) in (2.53).
We refer to [11], Theorem 1, page 422, and [6], Theorem 3, page 74, for more
general integral representations in this context (with no obvious connection
to the one given below).

Corollary 2. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈
(1,2) satisfying (2.1) and (2.2), and let S1 = sup0≤t≤1Xt denote its supre-
mum over the time interval [0,1]. Then the density function f of S1 is given
by

f(x) =
1

π

∫ ∞

0

[
et

α cos(απ/2) cos(tα sin(απ/2) + tx)

+
1

Γ(1/α)

∫ tα

0

ey cos(απ/2)

(tα − y)1−1/α
(2.56)

× sin(y sin(απ/2) + tx)dy
]
dt

for x > 0.

Proof. Setting in the first equality and noting in the second equality
that

H(λ) =

∫ ∞

λ
e−y

α
dy =

Γ(1/α)

α
−

∫ λ

0
e−y

α
dy(2.57)

for λ > 0, it follows from (2.30) that

f(x) =
α

Γ(1/α)
L
−1
λ [eλ

α
H(λ)](x)(2.58)

for x > 0. From the second equality in (2.57), one sees that H can be ana-
lytically continued to the entire complex plane. The same fact is therefore
true for λ 7→ eλ

α
H(λ) so that the Laplace inversion formula is applicable in
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(2.58) yielding

f(x) =
α

Γ(1/α)

1

2πi

∫ +i∞

−i∞
ez

α
(
Γ(1/α)

α
−

∫ z

0
e−y

α
dy

)
exz dz

(2.59)

=
α

Γ(1/α)

1

2π

∫ +∞

−∞

e(it)
α
(
Γ(1/α)

α
− it

∫ 1

0
e−(ity)α

dy

)
eitx dt

for x > 0. In the case t > 0, we have exp((it)α) = exp(tα(cos(απ/2) +
i sin(απ/2))) and exp(−(ity)α) = exp(−(ty)α(cos(απ/2) + i sin(απ/2))). In
the case t < 0, we have exp((it)α) = exp((−t)α(cos(απ/2) − i sin(απ/2)))
and exp(−(ity)α) = exp(−(−ty)α(cos(απ/2)− i sin(απ/2))). Inserting these
expressions into (2.59), one can verify that the integral from −∞ to +∞
equals twice the integral from 0 to +∞, which, in turn, can be reduced to
the form given in (2.56) above. As this verification is somewhat lengthy,
but still straightforward, further details will be omitted. This completes the
proof. �

8. The next corollary describes asymptotic behavior of the law of S1 at
zero and infinity. Recall that f(x) ∼ g(x) as x → x0 means that
limx→x0 f(x)/g(x) = 1 for x0 ∈ [−∞,+∞].

Corollary 3. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈
(1,2) whose characteristic function is given by

EeiλXt = exp

(
t

∫ ∞

0
(eiλx − 1− iλx) cdx

x1+α

)
(2.60)

for λ ∈ R and t ≥ 0, where c > 0 is a given and fixed constant. Let S1 =
sup0≤t≤1Xt and let f denote the density function of S1. Then

f(x)∼ 1

(cΓ(−α))1−1/αΓ(α− 1)Γ(1/α)x
α−2 as x ↓ 0,(2.61)

f(x)∼ cx−α−1 as x ↑∞.(2.62)

Proof. The relation (2.61) follows directly from the explicit series rep-
resentation (2.54). The relation (2.62) can be derived from the integral rep-
resentation (2.56), as shown in [8]. �
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