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Abstract
We consider sample path properties of the solution to the stochastic heat equation,
in R

d or bounded domains of Rd , driven by a Lévy space–time white noise. When
viewed as a stochastic process in time with values in an infinite-dimensional space, the
solution is shown to have a càdlàg modification in fractional Sobolev spaces of index
less than − d

2 . Concerning the partial regularity of the solution in time or space when
the other variable is fixed, we determine critical values for the Blumenthal–Getoor
index of the Lévy noise such that noises with a smaller index entail continuous sample
paths, while Lévy noises with a larger index entail sample paths that are unbounded
on any non-empty open subset. Our results apply to additive as well as multiplicative
Lévy noises, and to light- as well as heavy-tailed jumps.

Keywords Stochastic PDEs · Càdlàg modification · Lévy noise · Sample path
properties · Stable noise

Mathematics Subject Classification 60H15 · 60G17 · 60G51 · 60G52

1 Introduction

Let T > 0 and consider, on a stochastic basis (�,F , (Ft )t∈[0,T ],P) satisfying the
usual conditions, the stochastic heat equation driven by a Lévy space–time white
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noise on [0, T ] × D with Dirichlet boundary conditions:

⎧
⎨

⎩

∂u
∂t (t, x) = �u(t, x) + σ(u(t, x))L̇(t, x), (t, x) ∈ (0, T ) × D,

u(t, x) = 0, for all (t, x) ∈ [0, T ] × ∂ D,

u(0, x) = u0(x), for all x ∈ D,

(1.1)

where D is the whole space Rd or a bounded domain in Rd , σ : R → R is a Lipschitz
function, u0 : D̄ → R is a bounded continuous initial condition vanishing on ∂ D, and
L̇ is a Lévy space–time white noise. If D = R

d , the boundary conditions on u and u0
are considered void.

A predictable random field u = (u(t, x) : (t, x) ∈ [0, T ] × D) is called a mild
solution to (1.1) if for all (t, x) ∈ [0, T ] × D,

u(t, x) = V (t, x) +
∫ t

0

∫

D
G D(t − s; x, y)σ (u(s, y)) L(ds, dy) (1.2)

almost surely, where

V (t, x) =
∫

D
G D(t; x, y)u0(y) dy, (t, x) ∈ [0, T ] × D, (1.3)

is the solution to the homogeneous version of (1.1).
In (1.2) and (1.3), G D denotes the Green’s function of the heat operator on D,

which for D = R
d equals the Gaussian density

g(t, x) = (4π t)−
d
2 e− |x |2

4t 1t�0 (1.4)

(when t = 0, we interpret g(0, x) as the Dirac delta function δ0(x)), while on a
bounded domain D with smooth boundary it has the spectral representation

G D(t; x, y) =
∑

j�1

� j (x)� j (y)e−λ j t1t�0, for all x, y ∈ D, (1.5)

where (λ j ) j�1 are the eigenvalues of −� with vanishing Dirichlet boundary con-
ditions, and (� j ) j�1 are the corresponding eigenfunctions forming a complete
orthonormal basis of L2(D).

In the special case where L̇ is a Gaussian noise, the existence, uniqueness and
regularity of solutions to Eq. (1.1) have been extensively studied in the literature, see
e.g. [3,10,23,39] for the case of space–time white noise, [15,36,37] for noises that
are white in time but colored in space, and [22] for noises that may exhibit temporal
covariances as well. In all cases, the mild solution to (1.2) is jointly locally Hölder
continuous in space and time, with exponents that depend on the covariance structure
of the noise.
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By contrast, suppose that L̇ is a Lévy space–time white noise without Gaussian
part, that is,

L(dt, dx) = b dt dx +
∫

|z|�1
z J̃ (dt, dx, dz) +

∫

|z|>1
z J (dt, dx, dz)

=: L B(dt, dx) + L M (dt, dx) + L P (dt, dx),

(1.6)

where b ∈ R, J is an (Ft )t∈[0,T ]-Poisson random measure on [0, T ] × D × R with
intensity dt dx ν(dz), and J̃ is the compensated version of J . Here ν is a Lévy measure,
that is, ν({0}) = 0 and

∫

R

(
z2 ∧ 1

)
ν(dz) < +∞, and we assume that ν is not

identically zero. The existence and uniqueness of solutions for equations like (1.1)
with Lévy noise have been investigated in [1,2,11,12,31,35].

Already in the linear case with σ(x) ≡ 1, due to the singularity of the Green’s
kernel on the diagonal x = y near t = 0, each jump of the noise creates a Dirac mass
for the solution. Even worse, if ν(R) = ∞, these space–time jump points form a dense
subset of [0, T ] × D. Hence one cannot expect the solution to have any continuity
properties jointly in space and time.

In this article, we thus take two different viewpoints and consider

1. The path properties of t �→ u(t, ·) as a process with values in an infinite-
dimensional space;

2. The path properties of the partial maps t �→ u(t, x) for fixed x ∈ D, and of
x �→ u(t, x) for fixed t ∈ [0, T ].
For each t � 0, u(t, ·) may take values in L p(D) for some p > 0 almost surely,

but since each atom of the Lévy noise introduces a Dirac delta into the solution, the
process t �→ u(t, ·) cannot have a càdlàg version in such a space (see also [7] or [31,
Proposition 9.25]). Instead, one should consider spaces of distributions containing
delta functions, such as negative fractional Sobolev spaces Hr (D) for r < − d

2 (see
Sects. 2.1.1, 2.2.2 and 2.3.1). If σ = 1 and the noise has a finite second moment,
the existence of a càdlàg modification in such spaces follows from a result of [24]
on maximal inequalities for stochastic convolutions in an infinite-dimensional setting,
see also [31, Chapter 9.4.2]. This type of result has also been obtained in the case of
additive (possibly colored) Lévy noise in [8,9,32]. To our best knowledge, the question
of existence of càdlàg versions in the case of multiplicative noise has only been studied
in [21]. For the relation of the results of this paper to our results, see Remark 2.16.

In Sect. 2 of this paper, we substantially generalize the aforementioned results in
the case of a Lévy space–time white noise (1.6): Without any further assumptions
than those required for the existence of solutions, we prove in Theorems 2.5, 2.15
and 2.19, for both a bounded domain D and the case D = R

d , that t �→ u(t, ·)
has a càdlàg modification in Hr (D) and Hr ,loc(R

d), respectively, for any r < − d
2 .

To this end, we start our analysis by considering the stochastic heat equation on the
interval D = [0, π ] in Sect. 2.1. Treating this basic case first has the advantage that
we can directly proceed to the main steps of the proof while avoiding the technical
difficulties of the general case. Next, in Sect. 2.2, we demonstrate how the proof for
D = [0, π ] can be directly extended to the case D = R

d , provided σ is bounded
and ν has finite second moments. But in order to cover the general case of Lipschitz
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continuous σ and heavy-tailed noises, we need to use stopping time techniques from
[12] to deal with the (infinitely many) large jumps of the noise, as well as results from
the integration theory for general randommeasures (see the Appendix) to compensate
the absence of finite second moments for d � 2, due to the singularity of the heat
kernel and the small jumps of the noise. Finally, the proof for D = [0, π ] does not
extend to bounded domains inRd with d � 2 because the eigenfunctions are typically
no longer uniformly bounded. Instead, the proof we give in Sect. 2.3 makes use of the
fact that in the interior of D, the Green’s function G D can be decomposed into the
Gaussian density g (where we can use the results of Sect. 2.2) and a smooth function.
With the methods reviewed in the Appendix, we also obtain sufficient control at the
boundary of D.

Regarding the partial regularity of t �→ u(t, x) and x �→ u(t, x), [35, Section 2]
obtained the following result on D = R

d : If the Lévy measure ν of L satisfies∫

R
|z|p ν(dz) < +∞ for some p < 2

d , then for fixed t , the process x �→ u(t, x)

has a continuous modification. Similarly, if
∫

R
|z|p ν(dz) < +∞ for some p < 1,

then there exists a continuousmodification of t �→ u(t, x) for every fixed x . Extending
the results of [35], our Theorems 3.1 and 3.5, which also apply to bounded domains,
show that it suffices to check whether

∫

[−1,1] |z|p ν(dz) < +∞ is finite, which would

include, for example, α-stable noises with α < 2
d (for spatial regularity) and α < 1

(for temporal regularity). Furthermore, these conditions are essentially sharp as we
show in Theorems 3.3 and 3.7: If σ ≡ 1, and if ν has the same behavior near the
origin as the Lévy measure of an α-stable noise, then for 2

d � α < 1 + 2
d (resp.

1 � α < 1 + 2
d ), the paths of x �→ u(t, x) (resp. t �→ u(t, x)) are unbounded on

any non-empty open subset of D (resp. [0, T ]). Let us remark that the last conclu-
sion was observed in [29] for an α-stable noise � and the (non-Lipschitz) function

σ(x) = x
1
α with α ∈ (1, 1 + 2

d ) via a connection between the resulting equation and
stable super-Brownian motion (note that our α is 1 + β in this reference).

In what follows, the letterC , occasionally with subscripts indicating the parameters
that it depends on, denotes a strictly positive finite number whose value may change
from line to line.

2 Regularity of the solution in fractional Sobolev spaces

2.1 The stochastic heat equation on an interval

For the interval D = [0, π ], the Green’s function G = G D has the explicit represen-
tation

G(t; x, y) := G D(t; x, y) = 2

π

∑

k�1

sin(kx) sin(ky)e−k2t1t�0. (2.1)

The existence and uniqueness of mild solutions to (1.1) in this case basically follow
from [11].
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Proposition 2.1 Let σ : R → R be a Lipschitz function, u0 : [0, π ] → R be contin-
uous with u0(0) = u0(π) = 0, and L be a pure jump Lévy white noise as in (1.6).
Furthermore, define

τN = inf
{
t ∈ [0, T ] : J

([0, t] × [0, π ] × [−N , N ]c) �= 0
}
, N ∈ N, (2.2)

with the convention inf ∅ = +∞. Then (τN )N�1 is an increasing sequence of stopping
times such that τN > 0 and τN = +∞ for large values of N . In addition, up to
modifications, (1.1) has a mild solution u satisfying

sup
(t,x)∈[0,T ]×[0,π ]

E
[|u(t, x)|p1t�τN

]
< +∞, (2.3)

for any 0 < p < 3 and N ∈ N. Furthermore, up to modifications, this solution is
unique among all predictable random fields that satisfy (2.3).

Proof Since [0, π ] is a bounded interval, almost surely, there is only a finite number
of jumps larger than N in [0, T ] × [0, π ]. This immediately implies the statements
about (τN )N�1. Next, by [3, (B.5)], we know that G(t; x, y) � Cg(t, x − y) for any
(t, x, y) ∈ [0, T ]×[0, π ]2, with g as in (1.4). Consequently, (1) to (4) of Assumption
B of [11] are satisfied, and we can apply [11, Theorem 3.5] to obtain the existence of a
unique mild solution to (1.1) satisfying (2.3) for all p ∈ (0, 2]. In order to extend this
to all p ∈ (2, 3), we notice that the only step in the proof of [11, Theorem 3.5] that uses
p � 2 is the moment estimate (6.9) given in [11, Lemma 6.1(2)] with respect to the
martingale part L M . We now elaborate how this estimate can be extended to exponents
2 < p < 3. For predictable processes φ1 and φ2, we can use [28, Theorem 1] to get
the upper bound

E

[∣
∣
∣
∣

∫ t

0

∫ π

0

∫

|z|�N
G(t − s; x, y) (σ (φ1(s, y)) − σ(φ2(s, y))) J̃ (ds, dy, dz)

∣
∣
∣
∣

p]

� CE

[(∫ t

0

∫ π

0

∫

|z|�N
|G(t − s; x, y)|2|φ1(s, y) − φ2(s, y)|2|z|2 ds dy ν(dz)

) p
2
]

+ CE

[∫ t

0

∫ π

0

∫

|z|�N
|G(t − s; x, y)|p|φ1(s, y) − φ2(s, y)|p|z|p ds dy ν(dz)

]

. (2.4)

Using Hölder’s inequality with respect to the measure |G(t − s; x, y)|2 ds dy, the first
term is further bounded by

CN

(∫ t

0

∫ π

0
|G(t − s; x, y)|2 ds dy

) p
2 −1

×
∫ t

0

∫ π

0
|G(t − s; x, y)|2 E[|φ1(s, y) − φ2(s, y)|p] ds dy
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Since G(t; x, y) � Cg(t, x − y) for any (t, x, y) ∈ [0, T ] × [0, π ]2, and
∫ T
0

∫

R
g2(t, x) dt dx < +∞, we obtain the following estimate from (2.4) and the

simple inequality |x |2 � |x | + |x |p for all p � 2:

E

[∣
∣
∣
∣

∫ t

0

∫ π

0

∫

|z|�N
G(t − s; x, y) (σ (φ1(s, y)) − σ(φ2(s, y))) J̃ (ds, dy, dz)

∣
∣
∣
∣

p]

� CN

∫ t

0

∫ π

0
(|G(t − s; x, y)| + |G(t − s; x, y)|p)E[|φ1(s, y) − φ2(s, y)|p] ds dy.

Since
∫ T
0 g p(t, x) dt dx < +∞ for p < 3 (see e.g. [11, (3.20)]), this is exactly the

extension of [11, Lemma 6.1(2)] needed to complete the proof of [11, Theorem 3.5].

�

2.1.1 The fractional Sobolev spaces Hr([0,�])

For any function f ∈ L2([0, π ]), we can define its Fourier sine coefficients

an( f ) =
√

2

π

∫ π

0
f (x) sin(nx) dx, n ∈ N. (2.5)

Then, by Parseval’s identity, ‖ f ‖2
L2([0,π ]) = ∑

n�1 an( f )2. For any r � 0, we define

Hr ([0, π ]) :=
⎧
⎨

⎩
f ∈ L2([0, π ]) : ‖ f ‖2Hr

:=
∑

n�1

(
1 + n2

)r
an( f )2 < +∞

⎫
⎬

⎭
.

This is a Hilbert space for the inner product 〈 f , h〉Hr
:= ∑

n�1

(
1 + n2

)r
an( f )an(h).

For r > 0, we define H−r ([0, π ]) as the dual space of Hr ([0, π ]), that is, the space of
continuous linear functionals on Hr ([0, π ]). Then H−r ([0, π ]) is isomorphic to the
space of sequences b = (bn)n�1 such that

‖b‖2H−r
:=
∑

n�1

(
1 + n2

)−r
b2n < +∞ .

More precisely, for r > 0 and f̃ ∈ H−r ([0, π ]), the coefficients bn are given by

bn = f̃
(√ 2

π
sin(n·)). Then, ‖ f̃ ‖H−r = ‖b‖H−r and the duality between H−r ([0, π ])

and Hr ([0, π ]) is given by

〈b, h〉 =
∑

n�1

bnan(h) � ‖b‖H−r ‖h‖Hr .
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For example, it is easy to check that δx ∈ Hr ([0, π ]) for any x ∈ (0, π) and r < − 1
2 .

Indeed, δx (sin(n·)) = sin(nx), and for any r < − 1
2 ,

‖δx‖2Hr
= 2

π

∑

n�1

(
1 + n2

)r
sin2(nx) � 2

π

∑

n�1

(
1 + n2

)r
< +∞ .

2.1.2 Existence of a càdlàg solution in Hr([0,�])with r < − 1
2

In order to motivate why we consider fractional Sobolev spaces Hr ([0, π ]) with r <

− 1
2 , we start with a special case. Suppose that b = 0 and that ν is a symmetric measure

with ν(R) < +∞. Then we can rewrite L = ∑NT
i=1 Ziδ(Ti ,Xi ), where (Ti , Xi , Zi ) are

the atoms of the Poisson random measure J , and

u(t, x) =
NT∑

i=1

G(t − Ti ; x, Xi )σ (u(Ti , Xi ))Zi .

In this case, it suffices to check whether for fixed i � 1, t �→ G(t − Ti ; ·, Xi ) is
càdlàg in Hr ([0, π ]). Using the series representation (2.1), we immediately see that
the function x �→ G(t − Ti ; x, Xi ) belongs to Hr ([0, π ]) if and only if

∑

k�1

(1 + k2)r sin(k Xi )
2e−2k2(t−Ti )1t�Ti < +∞.

This is the case for any r ∈ R if t �= Ti . However, for t ↓ Ti , we have to restrict to r <

− 1
2 . Indeed, for the càdlàg property, the only point where a problemmight appear is at

t = Ti . At this point, the existence of a left limit is obvious since G(t − Ti ; ·, Xi ) = 0
for any t < Ti . For right-continuity, we use the fact that (1− e−k2h)2 � k2εhε for any
0 < ε < − 1

2 − r , so

‖G(h; ·, Xi ) − G(0; ·, Xi )‖2Hr
= 2

π

∑

k�1

(1 + k2)r sin(k Xi )
2
(
1 − e−k2h

)2

� 2

π

∑

k�1

(1 + k2)r k2εhε � Chε → 0 as h → 0.

Therefore, t �→ u(t, ·) is càdlàg in Hr ([0, π ]). For the general case, we first treat the
drift term.

Lemma 2.2 Assume that u is the unique solution to (1.1) as in Proposition 2.1. Then,

F(t, x) = V (t, x) +
∫ t

0

∫ π

0
G(t − s; x, y)σ (u(s, y)) ds dy

is jointly continuous in (t, x) ∈ [0, T ] × [0, π ]. In particular, for every r � 0, the
process t �→ F(t, ·) is continuous in Hr ([0, π ]).
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Proof The continuity of V is standard, and with (2.1), the integral term in F equals

2

π

∑

k�1

sin(kx)

∫ t

0

∫ π

0
e−k2(t−s) sin(ky)σ (u(s, y)) ds dy.

Each term in this series is jointly continuous in (t, x). Hence, it suffices to show the
uniform convergence of the series. Using Hölder’s inequality and the fact that u has
uniformly bounded moments of any order p < 3, we obtain this from

E

⎡

⎣
∑

k�1

sup
(t,x)∈[0,T ]×[0,π ]

∣
∣
∣
∣sin(kx)

∫ t

0

∫ π

0
e−k2(t−s) sin(ky)σ (u(s, y)) ds dy

∣
∣
∣
∣

⎤

⎦

� C
∑

k�1

E

⎡

⎣ sup
(t,x)∈[0,T ]×[0,π ]

(∫ t

0
e− 5

3 k2(t−s) ds

) 3
5
(∫ t

0

∫ π

0
|σ(u(s, y))| 52 ds dy

) 2
5

⎤

⎦

� C
∑

k�1

(∫ T

0
e− 5

3 k2s ds

) 3
5
(∫ T

0

∫ π

0
E[|σ(u(s, y))| 52 ] ds dy

) 2
5

� C
∑

k�1

k− 6
5 < +∞.

Then, to prove the continuity of t �→ F(t, ·) in Hr ([0, π ]), it suffices to show the
continuity in L2([0, π ]) because L2([0, π ]) ↪→ Hr ([0, π ]) (that is, L2([0, π ]) is
continuously embedded in Hr ([0, π ])). The continuity in L2([0, π ]) in turn follows
from the fact that F is uniformly continuous on the compact domain [0, T ] × [0, π ].


�
Proposition 2.3 Let L be a pure jump Lévy white noise, and let σ be a bounded and
Lipschitz function. Let u be the mild solution to the stochastic heat equation (1.1).
Then, for any r < − 1

2 , the stochastic process (u(t, ·))t∈[0,T ] has a càdlàg version in
Hr ([0, π ]).
Proof For N ∈ N, consider the truncated noise

L N (dt, dx) = bN dt dx +
∫

|z|�N
z J̃ (dt, dx, dz),

bN = b −
∫

1<|z|�N
z ν(dz), (2.6)

as well as the mild solution uN to (1.1) driven by L N , that is,

uN (t, x) = V (t, x) +
∫ t

0

∫ π

0
G(t − s; x, y)σ (uN (s, y)) L N (ds, dy) (2.7)

for (t, x) ∈ [0, T ] × [0, π ]. Then, by definition, we have L N = L and therefore also
u = uN on the event {T � τN }, where τN was defined in (2.2). Since almost surely,
τN = +∞ for sufficiently large N , we have stationary convergence of the processes
uN in (2.7) to u (that is, almost surely, for large enough N , uN (t, x) = u(t, x) for
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all (t, x) ∈ [0, T ] × [0, π ]). As we are interested in sample path properties of the
mild solution to (1.1), and these properties are identical to those of uN for sufficiently
large N , it is enough to consider uN instead of u in the following. The value of the
parameter N has no importance in our study, so we take N = 1 for simplicity and
drop the dependency in N . Therefore, it suffices to consider the solution to the integral
equation

u(t, x) = V (t, x) + b
∫ t

0

∫ π

0
G(t − s; x, y)σ (u(s, y)) ds dy

+
∫ t

0

∫ π

0
G(t − s; x, y)σ (u(s, y)) L M (ds, dy), (2.8)

in other words, to assume that all jumps of L are bounded by 1. Furthermore, by
Lemma 2.2, it only remains to consider the process

uM (t, x) =
∫ t

0

∫ π

0
G(t − s; x, y)σ (u(s, y)) L M (ds, dy). (2.9)

For this purpose, we need to calculate the Fourier sine coefficients defined in (2.5).
To lighten the notations, in what follows, we will denote these coefficients by ak(t).
Then, by definition, for every k � 1,

ak(t) =
√

2

π

∫ π

0

(∫ t

0

∫ π

0

∫

|z|�1
sin(kx)G(t − s; x, y)σ (u(s, y))z J̃ (ds, dy, dz)

)

dx .

We want to exchange the stochastic integral and the Lebesgue integral, and because
all involved terms are square-integrable, Theorem A.3 with p = 2 allows us to do so.
Therefore,

ak(t) =
∫ t

0

∫ π

0

∫

|z|�1

√
2

π

(∫ π

0
sin(kx)G(t − s; x, y) dx

)

σ(u(s, y))z J̃ (ds, dy, dz)

=
√

2

π
e−k2t

∫ t

0

∫ π

0
σ(u(s, y)) sin(ky)ek2s L M (ds, dy).

(2.10)

We gather some moment estimates for the family of integrals

I b
a (k) :=

∫ b

a

∫ π

0
sin(ky)ek2sσ(u(s, y)) L M (ds, dy), (2.11)

where 0 � a < b � T . Since σ is bounded, we can estimate the second and fourth
moments of I b

a (k) using [28, Theorem 1]:

E

[
I b
a (k)2

]
� C

∫ b

a

∫ π

0
sin2(ky)e2k2s

E

[
|σ(u(s, y))|2

]
ds dy

� C
∫ b

a
e2k2s ds = C

e2k2b − e2k2a

2k2
,
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E

[
I b
a (k)4

]
� C

(

E

[(∫ b

a

∫ π

0
sin2(ky)e2k2s |σ(u(s, y))|2 ds dy

)2]

+
∫ b

a

∫ π

0
sin4(ky)e4k2s

E

[
|σ(u(s, y))|4

]
ds dy

)

� C

(
(e2k2b − e2k2a)2

4k4
+ e4k2b − e4k2a

4k2

)

, (2.12)

where C also depends on
∫

|z|�1 z2 ν(dz) and
∫

|z|�1 z4 ν(dz), both of which are finite.
Also, for 0 � a < b � c < d � T , still assuming that σ is bounded,

E

[(
I b
a (k)I d

c ( j)
)2
]

= E

[(∫ d

c

∫ π

0
I b
a (k) sin( j y)e j2sσ(u(s, y)) L M (ds, dy)

)2]

� C
∫ d

c

∫ π

0
E

[
I b
a (k)2σ(u(s, y))2

]
sin2( j y)e2 j2s ds dy

� C

(∫ b

a
e2k2s ds

)(∫ d

c
e2 j2s ds

)

= C
e2k2b − e2k2a

2k2
e2 j2d − e2 j2c

2 j2
, (2.13)

wherewe used the fact that I b
a (k) isFc-measurable, and (2.12) in the second inequality.

We will use [18, Chapter III, Sect. 4, Theorem 1] to show the existence of a càdlàg
version of t �→ uM (t, ·). By [18, Chapter III, Sect. 2, Theorem 1], u has a separable
version, which is, because of [11, Theorem 4.7] and [3, Lemma B.1], continuous in
L2(�), and therefore t �→ uM (t, ·) is continuous in L2(�) as a process with values
in L2([0, π ]) (and thus in Hr ([0, π ]) since r < − 1

2 ). Then it suffices to show that for
any t ∈ [0, T ], u(t, ·) ∈ Hr ([0, π ]), and that for some δ > 0,

E

[∥
∥
∥uM (t + h, ·) − uM (t, ·)

∥
∥
∥
2

Hr

∥
∥
∥uM (t − h, ·) − uM (t, ·)

∥
∥
∥
2

Hr

]

� Ch1+δ

for any h ∈ (0, 1). By (2.12), we have E
[
a2

k (t)
]

� CT , so for r < − 1
2 , we have

∑

k�1

(1 + k2)r a2
k (t) < +∞

almost surely, and u(t, ·) ∈ Hr ([0, π ]) is proved. Next,

‖uM (t ± h, ·) − uM (t, ·)‖2Hr
=
∑

k�1

(1 + k2)r (ak(t ± h) − ak(t))
2 ,
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so using (2.10),

ak(t + h) − ak(t) = −
√

2

π
e−k2t

[(
1 − e−k2h

)
I t
0(k) − e−k2h I t+h

t (k)
]
,

a j (t − h) − a j (t) = −
√

2

π
e− j2(t−h)

[(
e− j2h − 1

)
I t−h
0 ( j) + e− j2h I t

t−h( j)
]
.

Therefore, using the classical inequality (a + b)2 � 2(a2 + b2),

∥
∥
∥uM (t + h, ·) − uM (t, ·)

∥
∥
∥
2

Hr

∥
∥
∥uM (t − h, ·) − uM (t, ·)

∥
∥
∥
2

Hr

� 4

π2

∑

k, j�1

(1 + k2)r (1 + j2)r (|A1( j, k)| + |A2( j, k)| + |A3( j, k)| + |A4( j, k)|)2

� C
∑

k, j�1

(1 + k2)r (1 + j2)r
(

A1( j, k)2 + A2( j, k)2 + A3( j, k)2 + A4( j, k)2
)

,

(2.14)

for some constant C , where

A1( j, k) := e−k2t e− j2(t−h)
(
1 − e−k2h

) (
e− j2h − 1

)
I t
0(k)I t−h

0 ( j),

A2( j, k) := e−k2t e− j2(t−h)
(
1 − e−k2h

)
e− j2h I t

0(k)I t
t−h( j),

A3( j, k) := e−k2t e− j2(t−h)e−k2h
(

e− j2h − 1
)

I t+h
t (k)I t−h

0 ( j),

A4( j, k) := e−k2t e− j2(t−h)e−k2he− j2h I t+h
t (k)I t

t−h( j).

We treat each of the four terms separately.
A1( j, k) :

E

[
A1( j, k)2

]
= e−2k2t e−2 j2(t−h)

(
1 − e−k2h

)2 (
e− j2h − 1

)2
E

[(
I t
0(k)I t−h

0 ( j)
)2
]

� Ce−2k2t e−2 j2(t−h)
(
1 − e−k2h

)2 (
e− j2h − 1

)2

×E

[(
I t−h
0 (k)I t−h

0 ( j)
)2 +

(
I t
t−h(k)I t−h

0 ( j)
)2
]

=: Ã1( j, k) + Ã2( j, k).

By (2.13), we can write

E

[(
I t
t−h(k)I t−h

0 ( j)
)2
]

� C
e2 j2(t−h) − 1

2 j2
e2k2t − e2k2(t−h)

2k2

� Ce2 j2(t−h) 1 − e−2 j2(t−h)

2 j2
e2k2t 1 − e−2k2h

2k2
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� C
e2k2t e2 j2(t−h)

2 j2
h,

where we used 1− e−2k2h � 2k2h and 1− e−2 j2(t−h) � 1 in the last inequality. Since
(1 − e−k2h)2 � 1 and (1 − e− j2h)2 � j2h, we deduce that

Ã2( j, k) � Ch2. (2.15)

Also, by the Cauchy–Schwarz inequality,

E

[
(I t−h

0 (k)I t−h
0 ( j))2

]
� E

[
I t−h
0 (k)4

] 1
2
E

[
I t−h
0 ( j)4

] 1
2
. (2.16)

By (2.12) and subadditivity of the square root,

E

[
I t−h
0 (k)4

] 1
2 � C

(
e2k2(t−h) − 1

2k2
+
(

e4k2(t−h) − 1

4k2

) 1
2
)

� Ce2k2t
(

e−2k2h − e−2k2t

2k2
+
(

e−4k2h − e−4k2t

4k2

) 1
2
)

� Ce2k2t
(

1

2k2
+ 1

2k

)

. (2.17)

Let 0 < δ < 3
2 , to be chosen later. Then, multiplying each term by (1 − e−k2h)2 and

using (1 − e−k2h)2 � k2h for the first term, and (1 − e−k2h)2 = (1 − e−k2h)
1
2+δ

(1 − e−k2h)
3
2−δ � k1+2δh

1
2+δ for the second term of the sum, we get

(
1 − e−k2h

)2
E

[
I t−h
0 (k)4

] 1
2 � Ce2k2t

(
h + k2δh

1
2+δ
)

. (2.18)

A similar calculation yields

(
1 − e− j2h

)2
E

[
I t−h
0 ( j)4

] 1
2 � Ce2 j2(t−h)

(
h + j2δh

1
2+δ
)

. (2.19)

Then, we combine (2.16), (2.18) and (2.19) to obtain

Ã1( j, k) � C
(

h2 + j2δk2δh1+2δ
)

. (2.20)

Therefore, (2.15) and (2.20) give

E

[
A1( j, k)2

]
� C

(
h2 + j2δk2δh1+2δ

)
.
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A2( j, k) : We treat this term in a similar way to A1( j, k):

E

[
A2( j, k)2

]
= e−2k2t e−2 j2(t−h)

(
1 − e−k2h

)2
e−2 j2h

E

[(
I t
0(k)I t

t−h( j)
)2
]

� Ce−2k2t e−2 j2(t−h)
(
1 − e−k2h

)2
e−2 j2h

×E

[(
I t−h
0 (k)I t

t−h( j)
)2 + (

I t
t−h(k)I t

t−h( j)
)2
]

=: B1( j, k) + B2( j, k).

In the same way as for the term Ã2( j, k), we get

B1( j, k) � Ch2. (2.21)

We use the Cauchy–Schwarz inequality to deal with the term B2( j, k):

B2( j, k) � Ce−2k2t e−2 j2(t−h)
(
1 − e−k2h

)2
e−2 j2h

E

[
I t
t−h(k)4

] 1
2
E

[
I t
t−h( j)4

] 1
2
.

As in (2.17), we get

E

[
I t
t−h( j)4

] 1
2 � Ce2 j2t

(
1 − e−2 j2h

2 j2
+
(
1 − e−4 j2h

4 j2

) 1
2
)

� Ce2 j2t
(

h + √
h
)

,

and similarly E
[
I t
t−h(k)4

] 1
2 � Ce2k2t

(
h + √

h
)
. Also, for 0 < δ < 1, since (1 −

e−k2h)2 � k2δhδ ,

B2( j, k) � Ck2δhδ
(

h + √
h
)2

� Ck2δh1+δ. (2.22)

By (2.21) and (2.22),

E

[
A2( j, k)2

]
� Ck2δh1+δ.

A3( j, k) : By (2.13),

E
[
A3( j, k)2

] = e−2k2t e−2 j2(t−h)e−2k2h
(

e− j2h − 1
)2

E

[(
I t+h
t (k)I t−h

0 ( j)
)2
]

� Ce−2k2t e−2 j2(t−h)e−2k2h
(

e− j2h − 1
)2 e2 j2(t−h) − 1

2 j2
e2k2(t+h) − e2k2t

2k2

� C
(

e− j2h − 1
)2 1 − e−2 j2(t−h)

2 j2
1 − e−2k2h

2k2
� C

(
e− j2h − 1

)2

2 j2
1 − e−2k2h

2k2
.
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Then, since (1 − e− j2h)2 � j2h and 1 − e−2k2h � 2k2h, we get

E

[
A3( j, k)2

]
� Ch2.

A4( j, k) : Again, by (2.13),

E

[
A4( j, k)2

]
= e−2k2t e−2 j2(t−h)e−2k2he−2 j2h

E

[(
I t+h
t (k)I t

t−h( j)
)2
]

� Ce−2k2t e−2 j2(t−h)e−2k2he−2 j2h e2 j2t − e2 j2(t−h)

2 j2
e2k2(t+h) − e2k2t

2k2

� C
1 − e−2 j2h

2 j2
1 − e−2k2h

2k2
.

Therefore, as for the previous term we get

E

[
A4( j, k)2

]
� Ch2.

Then, for every r < − 1
2 , we can pick 0 < δ < 1 such that r + δ < − 1

2 . Then,

E

[
‖uM (t + h, ·) − uM (t, ·)‖2Hr

‖uM (t − h, ·) − uM (t, ·)‖2Hr

]
� Ch1+δ,

so we deduce that (uM (t, ·))t�0 has a càdlàg version in Hr ([0, π ]) for any r < − 1
2 . 
�

Remark 2.4 The result of Proposition 2.3 is in fact valid for any predictable random
field u whose Fourier sine coeficients can be written in the form

ak(u(t, ·)) = Ce−k2t
∫ t

0

∫ π

0
sin(ky)ek2s Z(s, y) L(ds, dy),

where Z is another predictable and bounded random field.

For unbounded σ , we deduce the result from Proposition 2.3 via an approximation
argument.

Theorem 2.5 Let u be the mild solution to the stochastic heat equation (1.1) con-
structed in Proposition 2.1. Then, for any r < − 1

2 , the process (u(t, ·))t∈[0,T ] has a
càdlàg version in Hr ([0, π ]).
Remark 2.6 The constraint r < − 1

2 in Theorem 2.5 is optimal. This follows from the
discussion at the beginning of Sect. 2.1.2 and the fact that the Dirac delta distribution
δa , a ∈ (0, π), does not belong to Hs([0, π ]) for any s � − 1

2 .
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Proof of Theorem 2.5 By the argument given at the beginning of the proof of Propo-
sition 2.3 and by Lemma 2.2, we only need to consider uM as defined in (2.9). Let
σn(u) = σ(u)1|u|�n . We define

uM
n (t, x) =

∫ t

0

∫ π

0
G(t − s; x, y)σn(u(s, y)) L M (ds, dy).

As in (2.10), the Fourier sine coefficients of t �→ uM (t, ·) − uM
n (t, ·) are given by

ak,n(t) =
√

2

π

∫ t

0

∫ π

0
sin(ky)e−k2(t−s)(σ (u(s, y)) − σn(u(s, y))) L M (ds, dy).

Therefore, for any t ∈ [0, T ],

‖uM (t, ·) − uM
n (t, ·)‖2Hr

=
∑

k�1

(1 + k2)r a2
k,n(t). (2.23)

Then, using e−k2(t−s) = 1−∫ t
s k2e−k2(t−r) dr and TheoremA.3 and (A.3) with p = 2,

we can rewrite

ak,n(t) =
√

2

π

(∫ t

0

∫ π

0
sin(ky)σ(n)(s, y) L M (ds, dy)

−
∫ t

0

∫ π

0
sin(ky)

(∫ t

s
k2e−k2(t−r) dr

)

σ(n)(s, y) L M (ds, dy)

)

=
√

2

π

(∫ t

0

∫ π

0
sin(ky)σ(n)(s, y) L M (ds, dy)

−
∫ t

0
k2e−k2(t−r)

(∫ r

0

∫ π

0
sin(ky)σ(n)(s, y) L M (ds, dy)

)

dr

)

,

where σ(n)(s, y) := σ(u(s, y)) − σn(u(s, y)). Therefore,

∣
∣ak,n(t)

∣
∣ � C sup

r∈[0,t]

∣
∣
∣
∣

∫ r

0

∫ π

0
sin(ky)σ(n)(s, y) L M (ds, dy)

∣
∣
∣
∣

(

1 +
∫ t

0
k2e−k2(t−r) dr

)

� C sup
r∈[0,t]

∣
∣
∣
∣

∫ r

0

∫ π

0
sin(ky)σ(n)(s, y) L M (ds, dy)

∣
∣
∣
∣ , (2.24)

where C does not depend on k. So by Doob’s inequality, we deduce that

E

[

sup
t∈[0,T ]

a2
k,n(t)

]

� C
∫ T

0

∫ π

0
sin2(ky)E

[
σ 2

(n)(s, y)
]
ds dy. (2.25)
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By (2.3), (2.23) and (2.25), it follows from dominated convergence that for any r <

− 1
2 ,

E

[

sup
t∈[0,T ]

‖u(t, ·) − un(t, ·)‖2Hr

]

� C
∑

k�1

(1 + k2)r
∫ T

0

∫ π

0
sin2(ky)E

[
σ 2

(n)(s, y)
]
ds dy → 0

as n → +∞. Therefore, supt∈[0,T ] ‖u(t, ·)−un(t, ·)‖Hr → 0 in L2(�) as n → +∞,
and there is a subsequence (nk)k�0 such that supt∈[0,T ] ‖u(t, ·) − unk (t, ·)‖Hr → 0
almost surely as k → +∞. This means that unk (t, ·) converges to u(t, ·) in Hr ([0, π ])
uniformly in time for any r < − 1

2 . Since σnk is bounded, t �→ unk (t, ·) has a càdlàg
version in Hr ([0, π ]) by Proposition 2.3 and Remark 2.4. Therefore, t �→ u(t, ·) has
a càdlàg version in Hr ([0, π ]) for any r < − 1

2 . 
�

2.2 The stochastic heat equation onRd

In [12], the first author proved the existence of a solution to the stochastic heat equation
on R

d under assumptions on the driving noise that are general enough to include the
case of α-stable noises. More specifically, suppose that D = R

d in (1.1) and that the
following hypotheses hold:

(H) There exists 0 < p < 1 + 2
d and p

1+
(
1+ 2

d −p
) < q � p such that

∫

|z|�1
|z|p ν(dz) +

∫

|z|>1
|z|q ν(dz) < +∞.

If p < 1, we assume that b0 := b − ∫

|z|�1 z ν(dz) = 0.

In contrast to the situation on a bounded domain, we can no longer use the stopping
times τN in (2.2) (with [0, π ] replaced by R

d ) to localize Eq. (1.1). Indeed, since Rd

is unbounded, the dt dx ν(dz)-measure of [0, T ] × R
d × [−N , N ]c will in general

be infinite for any N ∈ N. In particular, on any time interval [0, ε] where ε > 0, we
already have infinitely many jumps of arbitrarily large size, which implies that τN = 0
almost surely for all N ∈ N.

Therefore, instead of using the stopping times (2.2), the idea is to use truncation
levels that increase with the distance to the origin. More precisely, let h : Rd → R be
the function h(x) = 1 + |x |η, for some η to be chosen later, and define for N ∈ N,

τN = inf {t ∈ [0, T ] : J ([0, t] × {(x, z) : |z| > Nh(x)}) > 0} . (2.26)

For every N � 1, we can now introduce a truncation of L by
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L N (dt, dx) = b dt dx +
∫

|z|�1
z J̃ (dt, dx, dz)

+
∫

1<|z|<Nh(x)

z J (dt, dx, dz) (2.27)

(do not confuse this with L N defined in (2.6), which was for the case of the interval
[0, π ]), which in turn gives rise to the equation

uN (t, x) = V (t, x) +
∫ t

0

∫

Rd
g(t − s, x − y)σ (uN (s, y)) L N (ds, dy). (2.28)

Proposition 2.7 Let σ be Lipschitz continuous, u0 be bounded and continuous, and L
be a Lévy white noise as in (1.6) satisfying (H) for some p, q > 0. Then, if we choose
d
q < η <

2−d(p−1)
p−q , we have τN > 0 for every N � 1 and almost surely, τN = +∞

for large N (recall the convention inf ∅ = +∞). Moreover, for any N � 1, there
exists a solution uN to (2.28) such that for some constant CN < +∞, we have

sup
(t,x)∈[0,T ]×[−R,R]d

E
[|uN (t, x)|p] � E 2−d(p−1)

2(p∨1) , 1
p∨1

(
CN R

η(p−q)
p∨1

)
< +∞ (2.29)

for all R > 1, where Eα,β(z) = ∑
k�0

zk

�(αk+β)
for α, β > 0 and z ∈ R are the

Mittag–Leffler functions.
Furthermore, we have uN (t, x) = uN+1(t, x) on {t � τN }, and the random field u

defined by u(t, x) = uN (t, x) on {t � τn}, is a mild solution to (1.1) on D = R
d .

Proof The result is a direct application of [12, Theorem 3.1] except for the moment
property (2.29). The finiteness of the left-hand side is included in the cited theorem
for p < 1 + 2

d . In the case d = 1 and 2 < p < 3, the only thing we need is an
extension of [12, Lemma 3.3(2)], which can be obtained by combining the arguments
given in the proof of [12, Lemma 3.3(2)] and the proof of Proposition 2.1. Indeed, for
predictable φ1 and φ2, proceeding as in the proof of [12, Lemma 3.3] but using the
moment inequalities of [28, Theorem 1], we see that

E

[∣
∣
∣
∣

∫ t

0

∫

R

g(t − s, x − y) (σ (φ1(s, y)) − σ(φ2(s, y))) L N (ds, dy)

∣
∣
∣
∣

p]

� C
∫ t

0

∫

R

(g(t − s, x − y) + g p(t − s, x − y))E[|φ1(s, y) − φ2(s, y)|p]h(y)p−qds dy.

In order to obtain the bound involving the Mittag–Leffler functions, observe from
the calculations between the last display on page 2272 and Eq. (3.13) of [12] that for
every fixed N � 1, there exists CN < +∞ such that

sup
(t,x)∈[0,T ]×[−R,R]d

E[|uN (t, x)|p]
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�
∑

n�1

Cn
N

⎛

⎝

(
Rnη(p−q) + �

(
1+nη(p−q)

2

))
�
(
1 − d

2 (p − 1)
)n

�
(
1 + (1 − d

2 (p − 1))n
)

⎞

⎠

1
p∨1

�
∑

n�1

Cn
N

⎛

⎝
�
(
1+nη(p−q)

2

)

�
(
1 + (1 − d

2 (p − 1))n
)

⎞

⎠

1
p∨1

+
∑

n�1

Cn
N

(
Rnη(p−q)

�
(
1 + (1 − d

2 (p − 1))n
)

) 1
p∨1

.

The first series converges for our choice of η. Furthermore, for all a > 0, we have by

Stirling’s formula that �(1 + ax)
1

p∨1 � C�( 1+ax
p∨1 ) when x > 1. Hence,

sup
(t,x)∈[0,T ]×[−R,R]d

E[|uN (t, x)|p] � CN +
∑

n�1

(
CN R

η(p−q)
p∨1

)n

�
(

1
p∨1 + (2−d(p−1))n

2(p∨1)
)

� E 2−d(p−1)
2(p∨1) , 1

p∨1

(
CN R

η(p−q)
p∨1

)
,

which is (2.29). 
�

2.2.1 Stationarity of the solution

The proof of Proposition 2.7 heavily relies on the stopping times τN introduced in
(2.26). These are “centered” around the origin in the sense that large jumps are per-
mitted if they occur far enough from x = 0. As a consequence, even if the initial
condition is constant, it does not follow a priori from Proposition 2.7 that the solution
u to (1.1) is stationary in space. On the other hand, of course, choosing to center τN

around the origin is completely arbitrary. So in this section, we show that the solution
constructed in Proposition 2.7 remains the same if we take other spatial reference
points for τN , from which the stationarity of the solution in space will follow.

To this end, let d
q < η <

2−d(p−1)
p−q and define the family of stopping times τ a

N by

τ a
N := inf {t∈[0, T ] : J ([0, t] × {(x, z) : |z|>Nh(x − a)}) >0} , N ∈ N, a ∈ R

d .

In particular, τ 0N is the same as τN defined in (2.26). Since the intensity measure of J
is invariant under translation in the space variable, τ a

N has the same law as τN , and the
conclusions of Proposition 2.7 are valid for τ a

N . In particular, for any N � 1, almost
surely τ a

N > 0, and τ a
N = +∞ for large N . Furthermore, by definition, on the event{

t � τ a
N

}
, L(dt, dx) = La

N (dt, dx), where

La
N (dt, dx) := b dt dx +

∫

|z|�1
z J̃ (dt, dx, dz) +

∫

1<|z|�Nh(x−a)

z J (dt, dx, dz).
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Proposition 2.8 Let σ : R → R be Lipschitz continuous, u0 be bounded and con-
tinuous, and L be a Lévy white noise as in (1.6) fulfilling the assumption (H) with
p, q > 0. Then for any N ∈ N and a ∈ R

d , there exists a mild solution ua
N to (1.1)

with noise La
N instead of L such that (2.29) also holds for ua

N .
Moreover, for a, b ∈ R

d , N ∈ N and (t, x) ∈ [0, T ] × R
d , we have

ua
N (t, x)1t�τa

N ∧τ b
N

= ub
N (t, x)1t�τa

N ∧τ b
N

a.s. (2.30)

Proof The first part is proved in the same way as Proposition 2.7. For (2.30), we
observe that La

N = Lb
N on {t < τ a

N ∧ τ b
N }. Then we use the construction of the

solutions ua
N and ub

N via a Picard iteration scheme as in the proof of [12, Theorem 3.1]
and show that at each step of the scheme,

ua,n
N (t, x)1t�τa

N ∧τ b
N

= ub,n
N (t, x)1t�τa

N ∧τ b
N

a.s. (2.31)

For n = 0, we clearly have ua,0
N (t, x) = ub,0

N (t, x) = u0(x). Now if (2.31) holds for
some n � 0, then

ua,n+1
N (t, x)1t�τa

N ∧τ b
N

= 1t�τa
N ∧τ b

N

∫ t

0

∫

Rd
g(t − s, x − y)σ

(
ua,n

N (s, y)
)

La
N (ds, dy)

= 1t�τa
N ∧τ b

N

∫ t

0

∫

Rd
g(t − s, x − y)σ

(
ub,n

N (s, y)
)
1s�τa

N ∧τ b
N

La
N (ds, dy)

= 1t�τa
N ∧τ b

N

∫ t

0

∫

Rd
g(t − s, x − y)σ

(
ub,n

N (s, y)
)
1s�τa

N ∧τ b
N

Lb
N (ds, dy)

= 1t�τa
N ∧τ b

N

∫ t

0

∫

Rd
g(t − s, x − y)σ

(
ub,n

N (s, y)
)

Lb
N (ds, dy)

= ub,n+1
N (t, x)1t�τa

N ∧τ b
N
.

Since ua,n
N (t, x) → ua

N (t, x) and ub,n
N (t, x) → ub

N (t, x) as n → +∞ in L p(�), we
deduce (2.30). 
�

In [15, Definition 5.1], the second author introduced the property (S) for a stochastic
process and a martingale measure, which is a sort of stationarity property in the space
variable. In our case, the noise is not necessarily a martingale measure, but we can use
a similar definition:

Definition 2.9 We say the family of random fields ua
N has property (S) if the law of

the process

((
ua

N (t, a + x), (t, x) ∈ [0, T ] × R
d
)

;
(

La
N ([0, t] × (a + B)) , (t, B) ∈ [0, T ] × Bb(R

d )
))

,

does not depend on a.

Lemma 2.10 If u0(x) ≡ u0 is constant, then the family (ua
N : a ∈ R

d) has property
(S).
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Proof Similarly to the proof of Proposition 2.8, it is enough to show property (S) for
the Picard iterates ua,n

N for each n � 0. For n = 0, we obviously have ua,0
N (t, x +

a) = u0 = u0,0
N (t, x). So property (S) for ua,n

N follows from the fact that the law
of
(
La

N ([0, t] × (a + B)) , (t, B) ∈ [0, T ] × Bb(R
d)
)
does not depend on a. Next,

assume that ua,n
N has the property (S). Since

ua,n+1
N (t, x) = u0 +

∫ t

0

∫

Rd
g(t − s, x − y)σ

(
ua,n

N (s, y)
)

La
N (ds, dy),

we can use the same argument as in [15, Lemma 18], since the proof only relies on
the fact that L has a law that is invariant under translation in the space variable. 
�
Theorem 2.11 If u0(x) ≡ u0 is constant, for any a ∈ R, the random field (u(t, a +
x) : (t, x) ∈ [0, T ] × R

d) has the same law as the random field (u(t, x) : (t, x) ∈
[0, T ] × R

d).

Proof By (2.30), ua
N (t, a + x)1t�τa

N ∧τ 0N
= u0

N (t, a + x)1t�τa
N ∧τ 0N

almost surely.

Taking the stationary limit as N → +∞, we get that ua(t, a + x) = u0(t, a + x)

almost surely for any (t, x) ∈ [0, T ] × R
d . Also, by the property (S) of the family

of random fields (ua
N : a ∈ R

d) (see Lemma 2.10), the random field (ua
N (t, a +

x) : (t, x) ∈ [0, T ] × R
d) has the same law as the random field (u0

N (t, x) : (t, x) ∈
[0, T ] ×R

d). Again, taking the stationary limit as N → +∞, we get that the random
field (ua(t, a + x) : (t, x) ∈ [0, T ] × R

d) has the same law as the random field
(u0(t, x) : (t, x) ∈ [0, T ] × R

d). Therefore, the random field (u0(t, a + x) : (t, x) ∈
[0, T ] ×R

d) has the same law as the random field (u0(t, x) : (t, x) ∈ [0, T ] ×R
d). 
�

2.2.2 Existence of a càdlàg solution in Hr,loc(Rd)with r < − d
2

In the following, we want to establish a regularity result for the paths of the mild
solution to (1.1) in the case D = R

d , analogous to Theorem 2.5 which concerns
D = [0, π ]. Since D = R

d is unbounded, and the solution may not decay in space
(see Theorem 2.11), we consider the mild solution u : t �→ u(t, ·) as a distribution-
valued process in a local fractional Sobolev space, and prove that it has a càdlàg version
in this space.

Recall to this end the Schwartz space S(Rd) of smooth functions ϕ : Rd → R such
that supx∈Rd

∣
∣xαϕ(β)(x)

∣
∣ < +∞ for any multi-indices α, β ∈ N

d , equipped with the
topology induced by the semi-norms

∑
|α|,|β|�p supx∈Rd

∣
∣xαϕ(β)(x)

∣
∣ for p ∈ N. Here,

ϕ(β)(x) = ∂
β1
x1 . . . ∂

βd
xd ϕ(x) if β = (β1, . . . , βd). Its topological dual is called the space

of tempered distributions and is denoted by S ′(Rd). The classical Fourier transform
F(ϕ)(ξ) := ∫

Rd e−iξ ·xϕ(x) dx with ξ ∈ R
d and ϕ ∈ S(Rd) can be extended by

duality to f ∈ S ′(Rd):

〈F( f ), ϕ〉 := 〈 f ,F(ϕ)〉 , ϕ ∈ S(Rd).
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Definition 2.12 The (local) fractional Sobolev space of order r ∈ R is defined by

Hr (R
d) :=

{

f ∈ S ′(Rd) : ξ �→
(
1 + |ξ |2

) r
2 F( f )(ξ) ∈ L2(Rd)

}

(

Hr ,loc(R
d) :=

{
f ∈ S ′(Rd) :

(
∀θ ∈ C∞

c (Rd) : θ f ∈ Hr (R
d)
)} )

.

The topology on Hr (R
d) is induced by the norm

‖ f ‖Hr (Rd ) :=
∥
∥
∥(1 + | · |2) r

2F( f )(·)
∥
∥
∥

L2(Rd )
,

and we have fn → f in Hr ,loc(R
d) if θ fn → θ f in Hr (R

d) as n → +∞ for any
θ ∈ C∞

c (Rd).

We now proceed to studying the regularity of u : t �→ u(t, ·) in Hr ,loc(R
d). As in

the case of a bounded interval in dimension one, the drift part is easy to handle.

Lemma 2.13 Let Z be a bounded measurable random field and

F(t, x) :=
∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y) ds dy.

Then the process t �→ F(t, ·) is continuous in Hr ,loc(R
d) for any r � 0.

Proof Since g ∈ L1([0, T ]×R
d) and Z is bounded, it follows from [6, Corollary 3.9.6]

that the sample paths of F are jointly continuous in (t, x) almost surely. Therefore,
t �→ F(t, ·) is continuous in H0,loc(R

d) = L2
loc(R

d), hence also in Hr ,loc(R
d) for

any r � 0. 
�
Next, we consider the situation where σ is a bounded function. Already in this

restricted case, the unboundedness of space and the possibility of having infinitely
many large jumps require a more careful analysis of the different parts of the solution.

Proposition 2.14 Let σ be a bounded and Lipschitz function, and u be the mild solution
to the stochastic heat equation (1.1) constructed in Proposition 2.7 under hypothesis
(H). Then, for any r < − d

2 , the stochastic process (u(t, ·))t∈[0,T ] has a càdlàg version
in Hr ,loc(R

d).

Proof Since the mild solution uN to the truncated equation (2.28) agrees with the mild
solution u to the stochastic heat equation (1.1) on {t � τN } (see the last statement of
Proposition 2.7), the sample path properties of u and uN are the same, and we can
restrict to the study of the regularity of the sample paths of uN . Furthermore, there is
no loss of generality if we take N = 1. Therefore, we suppose that

u(t, x) = V (t, x) +
∫ t

0

∫

Rd
g(t − s, x − y)σ (u(s, y)) L1(ds, dy),
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where L1 is the truncated noise from (2.27) with N = 1. We use the decomposition

u(t, x) = V (t, x) + u1,1(t, x) + u1,2(t, x) + u2,1(t, x) + u2,2(t, x)

+u3(t, x), (2.32)

where for A > 0 and Z(s, y) := σ(u(s, y)),

u1,1(t, x) :=
∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y)1y∈[−2A,2A]d L M (ds, dy),

u1,2(t, x) :=
∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y)1y /∈[−2A,2A]d L M (ds, dy),

u2,1(t, x) :=
∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y)1y∈[−2A,2A]d L P

1 (ds, dy),

u2,2(t, x) :=
∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y)1y /∈[−2A,2A]d L P

1 (ds, dy),

u3(t, x) := b
∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y) ds dy,

where L M is defined in (1.6), and L P
1 is the noise obtained by applying the truncation

(2.27) with N = 1 to L P from (1.6). It is clear that V is jointly continuous in (t, x),
and the same holds for u3 as pointed out in the proof of Lemma 2.13. Furthermore,
on [0, T ] × [−2A, 2A]d , the noise L P

1 consists of only finitely many jumps. So upon
a change of the drift b and increasing the truncation level for L M from 1 to the largest
size of these jumps (which clearly does not affect the arguments below), we may
assume that u2,1 = 0. The remaining terms are now treated separately.
u1,1(t, x) : By definition of the Fourier transform, we have for ϕ ∈ S(Rd),

〈
F
(

u1,1(t, ·)
)

, ϕ
〉

=
〈
u1,1(t, ·),F (ϕ)

〉
=
∫

Rd
u1,1(t, x)F(ϕ)(x) dx

=
∫

Rd

(∫ t

0

∫

Rd
g(t − s, x − y)Z(s, y)1y∈[−2A,2A]d L M (ds, dy)

)

×F(ϕ)(x) dx .

Permuting the stochastic integral and theLebesgue integral (because
∫

|z|�1 |z|p ν(dz) <

+∞, g ∈ L p([0, T ]×R
d) and Z is bounded, this is possible by TheoremA.3 together

with the estimate (A.3)) yields

〈
F(u1,1(t, ·)), ϕ

〉
=
∫ t

0

∫

[−2A,2A]d

(∫

Rd
F(ϕ)(x)g(t − s, x − y) dx

)

×Z(s, y)L M (ds, dy)

=
∫ t

0

∫

[−2A,2A]d

(∫

Rd
e−iξ ·y−(t−s)|ξ |2ϕ(ξ) dξ

)

×Z(s, y)L M (ds, dy)
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=
∫

Rd

(∫ t

0

∫

[−2A,2A]d
e−iξ ·y−(t−s)|ξ |2 Z(s, y) L M (ds, dy

)

×ϕ(ξ) dξ, (2.33)

which implies that F(u1,1(t, ·))(ξ) is given by

aξ (t) := e−|ξ |2t
∫ t

0

∫

Rd
e−iξ ·yes|ξ |2 Z(s, y)1y∈[−2A,2A]d L M (ds, dy). (2.34)

Thus,

∥
∥
∥u1,1(t ± h, ·) − u1,1(t, ·)

∥
∥
∥
2

Hr (Rd )
=
∫

Rd
(1 + |ξ |2)r

∣
∣aξ (t ± h) − aξ (t)

∣
∣2 dξ.

Since the function t �→ e−|ξ |2t is continuous, and the stochastic integral in aξ (t) exists
in L2(�), t �→ aξ (t) is continuous in L2(�). Furthermore,

E

[∣
∣aξ (t)

∣
∣2
]

� C
1 − e−2|ξ |2t

2|ξ |2 � C,

for some constant C that does not depend on ξ , so by the dominated convergence
theorem (which applies since r < − d

2 ),

E

[∥
∥
∥u1,1(t + h, ·) − u1,1(t, ·)

∥
∥
∥
2

Hr (Rd )

]

→ 0, as h → 0,

and the process t �→ u1,1(t, ·) is continuous in L2(�) as a process with values in
Hr (R

d).
In order to apply [18, Chapter III, Sect. 4, Theorem 1] to deduce the existence of a

càdlàg modification of t �→ u1,1(t, ·) in Hr (R
d) for any r < − d

2 , it remains to prove

E

[
‖u1,1(t + h, ·) − u1,1(t, ·)‖2Hr (Rd )

‖u1,1(t − h, ·) − u1,1(t, ·)‖2Hr (Rd )

]
� Ch1+δ

for some δ > 0. Upon defining, similar to (2.11),

I b
a (ξ) :=

∫ b

a

∫

Rd

∫

R

e−iξ ·yes|ξ |2 Z(s, y)z1|z|�11y∈[−2A,2A]d J̃ (ds, dy, dz)

for 0 � a < b � T and ξ ∈ R
d , the proof is identical to that of Proposition 2.3 for

the equation on a bounded interval if we make the following replacements:

[0, π ] ←→ [−2A, 2A]d , k ←→ ξ, sin(ky) ←→ e−iξ ·y .
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u1,2(t, x) : If f : Rd → R is a smooth function, then for a, b ∈ R
d with ai � bi for

all 1 � i � d,

f (b) = f (a) +
d∑

i=1

∑

1�k1<···<ki �d

∫ bk1

ak1

drk1 · · ·
∫ bki

aki

drki ∂xk1 ...xki
f (ck(a, r)),

(2.35)

where for k = (k1, . . . , ki ) with k1 < · · · < ki , we define (ck(a, r)) j := ai1 j /∈k +
r j1 j∈k for 1 � j � d. This formula is easily proved by induction on the dimension.
Since the heat kernel g(t − s, x − y) is smooth on y /∈ [−2A, 2A]d for x ∈ [−A, A]d ,
(2.35) with a = (s,−A, . . . ,−A) and b = (t, x) gives

g(t − s, x − y) =
d+1∑

i=1

∑

1�k1<···<ki �d+1

∫ bk1

ak1

drk1

· · ·
∫ bki

aki

drki ∂xk1 ...xki
g(ck(a, r) − (s, y))

=
d∑

i=1

∑

1�k1<···<ki �d

∫ t

s
du
∫ xk1

−A
drk1

· · ·
∫ xki

−A
drki ∂xk1 ...xki

∂t g(u − s, ck(−A, r) − y),

where A := (A, . . . , A). Another application of Theorem A.3 and (A.3) shows that
u1,2(t, x) equals

d∑

i=1

∑

1�k1<···<ki �d

∫ t

0
du
∫ xk1

−A
drk1 · · ·

∫ xki

−A
drki

(∫ u

0

∫

Rd
∂xk1

. . . ∂xki
∂t g (u − s, ck(−A, r) − y) Z(s, y)1y /∈[−2A,2A]d L M (ds, dy)

)

.

(2.36)

We see from this expression that u1,2 is jointly continuous in (t, x). By the argument
at the end of the proof of Lemma 2.13, we deduce that t �→ u1,2(t, ·)1[−A,A]d is
continuous in Hr (R

d) for r � 0.
u2,2(t, x) : This process takes into account only the jumps that are far away from x ,
but that can be arbitrarily large. We can write u2,2 as a sum:

u2,2(t, x) =
∑

i�1

g(t − Ti , x − Xi )Z(Ti , Xi )Zi1Xi /∈[−2A,2A]d , 1<|Zi |<1+|Xi |η, Ti �t .

We first observe that each term of this sum is jointly continuous in (t, x) ∈ [0, T ] ×
[−A, A]d almost surely. We show that this sum converges uniformly in (t, x) ∈
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[0, T ]× [−A, A]d . Choose A large enough such that T < A2

2d . Because |x − Xi | > A,
Lemma 3.6 below shows that the maximum of the function t �→ g(t, x − Xi ) is
attained at t = T :

sup
t�T ,x∈[−A,A]d

g(t − Ti , x − Xi ) � sup
x∈[−A,A]d

CT − d
2 e− |x−Xi |2

4T � CT − d
2 e− |pA(Xi )−Xi |2

4T ,

where pA is the projection on the convex set [−A, A]d . Then, for β = 1 ∧ q,

E

[(∑

i�1

sup
t�T ,x∈[−A,A]d

∣
∣g(t − Ti , x − Xi )Z(Ti , Xi )Zi1Xi /∈[−2A,2A]d , 1<|Zi |<1+|Xi |η, Ti �t

∣
∣

)β]

� C

T
βd
2

E

[(∑

i�1

∣
∣
∣
∣e

− |pA (Xi )−Xi |2
4T Zi1Xi /∈[−2A,2A]d , 1<|Zi |, Ti �T

∣
∣
∣
∣

)β]

� C

T
βd
2

E

⎡

⎣
∑

i�1

∣
∣
∣
∣e

− |pA (Xi )−Xi |2
4T Zi1Xi /∈[−2A,2A]d , 1<|Zi |, Ti �T

∣
∣
∣
∣

β
⎤

⎦

� C
∫ T

0

∫

y /∈[−2A,2A]d

∫

|z|>1
|z|βe−β

|pA (y)−y|2
4T ds dy ν(dz) < +∞. (2.37)

Therefore, the sum defining u2,2 converges uniformly in (t, x) ∈ [0, T ] × [−A, A]d ,
and u2,2 is jointly continuous. Thus, t �→ u2,2(t, ·)1[−A,A]d is continuous in Hr (R

d)

for every r � 0.
Since A can be chosen arbitrarily large, the assertion of the proposition follows. 
�
In order to pass from bounded to unbounded nonlinearities σ , the basic strategy

remains the same as in the proof of Theorem 2.5. However, it was crucial in that proof
that the solution have a finite second moment. Unfortunately, in dimensions d � 2,
the mild solution u to (1.1) has no finite second moments as a result of the singularity
of g. And it is easy to convince oneself that taking powers p < 2 instead of 2 does
not combine well with the ‖ · ‖Hr (Rd )-norms. Instead, in the proof we propose below,
the idea is to consider an equivalent probability measureQ (which obviously does not
affect the path properties of u) under which the solution has a finite second moment.
Although L might not be a Lévy noise under Q anymore, it follows from the theory
of integration against random measures, which we briefly recall in the Appendix, that
there exists a particularly clever choice of Q such that we have sufficient control on
the second moments of both integrands and integrators under Q.

Theorem 2.15 If u is the mild solution to the stochastic heat equation (1.1) constructed
under the assumptions of Proposition 2.7, then, for any r < − d

2 , the stochastic process
(u(t, ·))t∈[0,T ] has a càdlàg version in Hr ,loc(R

d).

Proof We first consider the case p � 1 in assumption (H). As in Proposition 2.14, we
can suppose that u is the solution to (2.28) with N = 1, and use the decomposition
(2.32) with A > 0. The terms V and u2,1 can be dealt with as in Proposition 2.14. For
the remaining terms, we use different arguments.
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u1,1(t, x) : Let σn(u) = σ(u)1|u|�n and define u1,1
n as in (2.32) but with Z replaced

by σn(u). Then,

u1,1(t, x) − u1,1
n (t, x) =

∫ t

0

∫

y∈[−2A,2A]d
g(t − s, x − y)

× (σ (u(s, y)) − σn(u(s, y))) L M (ds, dy),

and

‖u1,1(t, ·) − u1,1
n (t, ·)‖2Hr (Rd )

=
∫

Rd
(1 + |ξ |2)r

∣
∣
∣F
(

u1,1(t, ·) − u1,1
n (t, ·)

)
(ξ)

∣
∣
∣
2
dξ.

(2.38)

Writing σ(n)(s, y) = σ(u(s, y)) − σn(u(s, y)), we obtain

F(u1,1(t, ·) − u1,1
n (t, ·))(ξ) =

∫ t

0

∫

[−2A,2A]d
e−iξ ·ye−(t−s)|ξ |2σ(n)(s, y) L M (ds, dy)

as in (2.34). With similar calculations as in (2.24), but using Theorem A.3 with 1 <

p < 1 + 2
d , one can show that

sup
t∈[0,T ]

∣
∣
∣F(u1,1(t, ·) − u1,1

n (t, ·))(ξ)

∣
∣
∣

� C sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

∫

[−2A,2A]d
e−iξ ·yσ(n)(s, y) L M (ds, dy)

∣
∣
∣
∣ ,

(2.39)

where C does not depend on ξ . With notation from the Appendix, the fact that σ(u) ∈
L1,p(L M ,P) implies that there exists a probability measure Q that is equivalent to P

such that the process σ(u) belongs to L1,2(L M ,Q), see Theorem A.4. Consequently,
using the notation in (A.1), we deduce from (2.38) that

EQ

[

sup
t∈[0,T ]

‖u1,1(t, ·) − u1,1n (t, ·)‖2Hr (Rd )

]

� C
∫

Rd
(1 + |ξ |2)r

EQ

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

∫

y∈[−2A,2A]d
e−iξ ·yσ(n)(s, y) L M (ds, dy)

∣
∣
∣
∣

2
]

dξ

� C
∫

Rd
(1 + |ξ |2)r ‖e−iξ ·(·)σ(n)‖2L M ,2,Q dξ � C‖σ(n)‖2L M ,2,Q

∫

Rd
(1 + |ξ |2)r dξ.

(2.40)

The last integral is finite because r < − d
2 . Moreover, σ(n)(ω, s, y) → 0, pointwise in

(ω, s, y), and is bounded by σ(u(ω, s, y)), which belongs to L1,2(L M ,Q) by assump-
tion. Hence, by Theorem A.1, the left-hand side of (2.40) converges to 0 as n → +∞.
As before, we may extract a subsequence that converges uniformly in [0, T ] almost
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surely with respect toQ, and hence P. We now deduce that t �→ u1,1(t, ·) has a càdlàg
modification because the processesu1,1

n have càdlàgmodifications byProposition 2.14.
u1,2(t, x) : The proof is identical to the corresponding part in Proposition 2.14, pro-
vided we can still apply Theorem A.3 in (2.36). In order to justify this, observe that

E

[∫ u

0

∫

Rd

∫

|z|�1
|∂xk1 ...xki

∂t g (u − s, ck(−A, r) − y) σ (u(s, y))z|p1y /∈[−2A,2A]d ds dy ν(dz)

]

� C
∫ u

0

∫

Rd
|∂xk1 ...xki

∂t g(u − s, ck(−A, r) − y)|p E 2−d(p−1)
2(p∨1) , 1

p∨1

(
C |y| η(p−q)

p∨1
)
1y /∈[−2A,2A]d ds dy

� C
∫ u

0

∫

Rd
|∂xk1 ...xki

∂t g(u − s, ck(−A, r) − y)|p exp
(

C |y| 2η(p−q)
2−d(p−1)

)
P(|y|)1y /∈[−2A,2A]d ds dy

by (2.29) and [19, Theorems 4.3 and 4.4] with some polynomial P . Next, for every
multi-index α ∈ N

1+d , it is easily verified by induction that ∂αg(t, x) takes the form

Q(t− 1
2 , x) exp(−|x |2

4t ) for some polynomial Q. So if l denotes the degree of Q, we
have for every t ∈ [0, T ] and |x |2 � 2lT ,

|∂αg(t, x)| � C(1 + t−
l
2 + |x |l)e− |x |2

4t � C(1 + T − l
2 + |x |l)e− |x |2

4T =: Q̃(x)e− |x |2
4T .

Hence, as |ck(−A, r) − y| � A for y /∈ [−2A, 2A]d , we obtain for sufficiently
large A that the expectation in the penultimate display is bounded by

C
∫

Rd
|Q̃(ck(−A, r) − y)|pe− p|ck(−A,r)−y|2

4T exp
(

C |y| 2η(p−q)
2−d(p−1)

)
P(|y|)1y /∈[−2A,2A]d dy

� C
∫

Rd
|Q̃(ck(−A, r) − y)|pe− p|ck(−A,r)−y|2

4T exp
(

C |y| 2η(p−q)
2−d(p−1)

)
P(|y|) dy

= C
∫

Rd
|Q̃(y)|pe− p|y|2

4T exp
(

C |ck(−A, r) − y| 2η(p−q)
2−d(p−1)

)
P(|ck(−A, r) − y|) dy.

Since |ck(−A, r)| �
√

d A, |x − y|b � 2b−1(|x |b +|y|b) for b � 1, and P(|x − y|) �
C(1 + |x |m + |y|m) where m is the degree of P , one can find another polynomial P̃
such that the last integral is further bounded by

C
∫

Rd
|Q̃(y)|pe− p|y|2

4T exp
(

C |y| 2η(p−q)
2−d(p−1)

)
P̃(y) dy,

which is independent of r , and finite because it is possible by assumption (H) to choose
η > d

q such that 2η(p−q)
2−d(p−1) < 2 is satisfied. Theorem A.3 is therefore applicable by

(A.3).
u2,2(t, x) : The argument remains the same as in Proposition 2.14, except that we have
to replace the final bound in (2.37) by

C
∫ T

0

∫

y /∈[−2A,2A]d

∫

|z|>1
|z|βe−β

|pA(y)−y|2
4T

(

E 2−d(p−1)
2(p∨1) , 1

p∨1

(
C |y|

η(p−q)
p∨1

)) β
p
ds dy ν(dz),
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which is finite by an argument similar to the one for u1,2.
u3(t, x) : Consider the decomposition u3(t, x) = u3,1(t, x) + u3,2(t, x) where

u3,1(t, x) = b
∫ t

0

∫

y∈[−2A,2A]d
g(t − s, x − y)σ (u(s, y)) ds dy,

u3,2(t, x) = b
∫ t

0

∫

y /∈[−2A,2A]d
g(t − s, x − y)σ (u(s, y)) ds dy. (2.41)

If u3,1
n is the process obtained from u3,1 by replacing σ(u(s, y)) by σn(u(s, y)), then,

as in (2.39),

sup
t∈[0,T ]

∣
∣
∣F(u3(t, ·) − u3n(t, ·))(ξ)

∣
∣
∣ � C sup

t∈[0,T ]

∣
∣
∣
∣

∫ t

0

∫

Rd
e−iξ ·yσ(n)(s, y)1y∈[−2A,2A]d ds dy

∣
∣
∣
∣

� C
∫ T

0

∫

Rd
|σ(n)(s, y)|1y∈[−2A,2A]d ds dy.

Consequently, we have

sup
t∈[0,T ]

‖u3,1(t, ·) − u3,1
n (t, ·)‖2Hr (Rd )

= sup
t∈[0,T ]

∫

Rd
(1 + |ξ |2)r

∣
∣F(u3,1(t, ·) − u3,1

n (t, ·))(ξ)
∣
∣2 dξ

� C
∫ T

0

∫

Rd
|σ(n)(s, y)|1y∈[−2A,2A]d ds dy

×
∫

Rd
(1 + |ξ |2)r dξ.

Recalling that u is the solution to (2.28) with N = 1, the expectation of the left-hand
side tends to 0 as n → +∞ by (2.29) and the dominated convergence theorem. Hence,
t �→ u3,1(t, ·) inherits the càdlàg sample paths of u3,1

n , see Lemma 2.13. Concerning
u3,2, the continuity of (t, x) �→ u3,2(t, x) on [0, T ] × [−A, A]d is shown in the same
way as for u1,2. Instead of the stochastic Fubini theorem, one can use the ordinary
Fubini theorem because

∫ t

0
du
∫ xk1

−A
drk1 · · ·

∫ xki

−A
drki

(∫ u

0

∫

Rd
|∂xk1 ...xki

∂t g (u − s, ck(−A, r) − y) σ (u(s, y))|1y /∈[−2A,2A]d ds dy

)

< +∞

almost surely. This is verified by showing that the expectation of the integral in brackets
is finite and uniformly bounded in u and rk1, . . . , rki . This concludes the proof for
p � 1.

For 0 < p < 1, we have to modify the proof in the following way. Because L has
drift b0 = 0 and summable jumps by the assumption

∫

|z|�1 |z|p ν(dz) < +∞, we can

write u in the same form as (2.32) with L M (dt, dx) replaced by
∫

|z|�1 z J (dt, dx, dz)
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and u3 = 0.An inspection of the proof above shows that the arguments for V , u2,1, u2,2

remain valid, and in principle also for u1,1 and u1,2 if changing the order of integration
in (2.33) and (2.36), respectively, is permitted. The justification is comparable to the
situation for p � 1; one only has to use (A.4) instead of (A.3):

∫ t

0

∫

Rd

∫

|z|�1

(∫

Rd
|F(ϕ)(x)|g(t − s, x − y) dx

)p

× E[σ(u(s, y))|p]|z|p1y∈[−2A,2A]d ds dy ν(dz)

� C
∫ T

0

∫

Rd

(∫

Rd
g(t − s, x − y) dx

)p

1y∈[−2A,2A]d ds dy

= CT (4A)d < +∞.


�
Remark 2.16 The paper [21] studies the existence of càdlàg modifications in certain
Banach spaces of solutions to a class of stochastic PDEs driven by Poisson random
measures. Example 2.3 in [21] particularizes to the case of the stochastic heat equation
with a multiplicative Lévy space–time white noise. However, this example contains
an error since the measure ν in the first display on p. 1502 is not a Lévy measure (it is
infinite on sets of the form {|x | > δ} for all sufficiently small values of δ, contradicting
Remark 3.1 in [21]). After private communication with the author, it seems that this
example could be rewritten for the case of a bounded domain, but cannot be extended
to the case where D = R

d (because the stopping times in (2.2) with [0, π ] replaced by
R

d are 0 almost surely for all N ∈ N, cf. the discussion at the beginning of Sect. 2.2).

2.3 The stochastic heat equation on bounded domains

Let D be a C∞-regular domain of Rd , where d � 2, that is, we assume that D is
a bounded open set whose boundary ∂ D is a smooth (d − 1)-dimensional manifold,
and whose closure D̄ has the same boundary ∂ D̄ = ∂ D. For the stochastic heat
equation (1.1) on such a domain D, we assume:

(H′) There exists 0 < p < 1 + 2
d such that

∫

|z|�1 |z|p ν(dz) < +∞.

As in the case of an interval (Sect. 2.1), the stopping times

τN = inf
{
t ∈ [0, T ] : J

([0, t] × D × [−N , N ]c) �= 0
}

(2.42)

are almost surely strictly positive and equal to +∞ for large N .

Proposition 2.17 Let D be a C∞-regular domain, σ : R → R be a Lipschitz function
and let L be a pure jump Lévy white noise as in (1.6) such that (H′) is satisfied. Then
there exists a predictable mild solution u to (1.1) such that for all 0 < p < 1 + 2

d ,

sup
(t,x)∈[0,T ]×D

E
[|u(t, x)|p1t�τN

]
< +∞. (2.43)
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Furthermore, up to modifications, the solution is unique among all predictable random
fields that satisfy (2.43).

Proof By [16, Corollary 3.2.8], G D(t; x, y) � Ct− d
2 e− |x−y|2

6t , so [11, Theorem 3.5]
applies. 
�

As in the proof of Proposition 2.3, the stopping times τN allow us to ignore the big
jumps for the analysis of path properties of the solution. So we only need to consider

L N (dt, dx) = bN dt dx +
∫

|z|�N
z J̃ (dt, dx, dz), (2.44)

where bN := b − ∫

1<|z|�N z ν(dz), and the corresponding mild solutions to

uN (t, x) = V (t, x) +
∫ t

0

∫

D
G D(t − s; x, y)σ (uN (s, y)) L N (ds, dy). (2.45)

For simplicity, we take N = 1 in the following, so that our equation becomes

u(t, x) = V (t, x) + b
∫ t

0

∫

D
G D(t − s; x, y)σ (u(s, y)) ds dy

+
∫ t

0

∫

D
G D(t − s; x, y)σ (u(s, y))L M (ds, dy). (2.46)

2.3.1 The fractional Sobolev spaces Hr(D)

The operator −� on D with vanishing Dirichlet boundary conditions admits a
complete orthonormal system in L2(D) of smooth eigenfunctions (� j ) j�1, with
eigenvalues (λ j ) j�1. Then we have the following properties (see for example [39,
Chapter V, p. 343]):

∑

j�1

(1 + λ j )
r < +∞, for any r < −d

2
, (2.47)

∥
∥� j

∥
∥

L∞(D)
� C(1 + λ j )

α
2 , for any α >

d

2
. (2.48)

The Green’s function G D has the representation (1.5) and we have the decomposition

f (x) =
∑

j�1

a j ( f )� j (x), x ∈ D, (2.49)

for every f ∈ L2(D) where a j ( f ) = 〈
f ,� j

〉

L2(D)
. For r � 0, we now define

Hr (D) :=
{

f ∈ L2 (D) : ‖ f ‖2Hr
:=
∑

j�1

(
1 + λ j

)r
a j ( f )2 < +∞

}

,
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which becomes a Hilbert space with the inner product 〈 f , h〉Hr
:= ∑

j�1

(
1 + λ j

)r

a j ( f )a j (h). We denote by H−r (D) the topological dual space of Hr (D), which turns
out to be isomorphic to the space of sequences b = (bn)n�1 such that

‖b‖2H−r
:=
∑

j�1

(
1 + λ j

)−r
b2j < +∞.

In fact, with b j = f̃ (� j ) for f̃ ∈ H−r (D), we have ‖ f̃ ‖H−r = ‖b‖H−r and the
pairing between H−r (D) and Hr (D) is given by

〈b, h〉 =
∑

j�1

b j a j (h) � ‖b‖H−r ‖h‖Hr .

We need the following technical lemma, for which we could not find a reference in
the literature.

Lemma 2.18 For r � 0, the restriction of Hr (R
d) to D is continuously embedded in

Hr (D).

Proof For m ∈ N, let Hm(D) = {u : u(α) ∈ L2(D) for all |α| � m}, with an upper
index m, be the “usual” Sobolev spaces as in [27, p. 3]. For real r � 0, let m be the
smallest even integer with m � r . Following [27, Chapitre 1, (9.1)], we define, with
a superscript index,

Hr (D) :=
[

Hm(D), L2(D)
]

1− r
m

,

where the right-hand side is the notation of [27, Chapitre 1, Définition 2.1] for inter-
polation spaces.

Furthermore, define Hr
0 (D) for r � 0 as the closure in Hr (D) of the set of smooth

functions with compact support in D, see [27, Chapitre 1, (11.1)]. Similarly, as in [20,
Definition 8.1], let Hr

B(D) for r > 1
2 be the closed subspace of Hr (D) such that its

elements are equal to zero on ∂ D.
By the definition of interpolation spaces, there exists for each θ ∈ [0, 1] some

self-adjoint positive operator � in L2(D) with domain Hm
B (D) such that

[
Hm

B (D), L2(D)
]

θ
= dom

(
�1−θ

)
.

The notion of domain is as in [27, Chapitre 1, p. 12], and the power in this case is to be
understood as the spectral power of the operator�. By [27, Chapitre 1, Remarque 2.3],
dom(�1−θ ) coincides with dom(�̃1−θ ) for any other self-adjoint positive operator �̃

in L2(D) with domain Hm
B (D). In particular, we can choose �̃ = (−�)

m
2 , where

� is the Dirichlet Laplacian, and the power m
2 , an integer because m is even, is to

be understood as the composition of partial differential operators. Then, from [20,
Théorème 8.1], we deduce that

[
Hm

B (D), L2(D)
]

θ
= Hm(1−θ)

B (D),
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and with the choice θ = 1 − r
m further that

dom
(
�̃

r
m

)
= Hr

B(D). (2.50)

Let f ∈ L2(D) be as in (2.49). Then, see e.g. [30, (2.12)], we have that �̃
r
m f =

∑
j�1 μ

r
m
j a j ( f )� j , where μ j = λ

m
2
j is the j th eigenvalue of �̃. The previous sum

converges in L2(D) if and only if
∑

j�1 λr
j

∣
∣a j ( f )

∣
∣2 < +∞, so together with (2.50),

we obtain

Hr (D) = dom
(
�̃

r
m

)
= Hr

B(D).

Therefore, by [20, Théorème 8.1] and the discussion that follows, we have Hr (D) ↪→
Hr (D).

If r � 1
2 , we have by [30, (2.13)]

Hr (D) =
{

Hr (D) if r < 1
2 ,

H
1
2
00(D) if r = 1

2 ,

where H
1
2
00(D) is the Lions–Magenes space satisfying H

1
2
00(D) ↪→ H

1
2
0 (D) by [27,

Chapitre 1, Théorème 11.7]. In addition, for any r � 0, Hr
0 (D) ↪→ Hr (D) and thus

Hr (D) ↪→ Hr (D). Next, by [27, Chapitre 1, Théorèmes 9.1, 9.2 and (7.1)], there
exists a constant C such that any function u ∈ Hr (D) is the restriction of a function
ũ ∈ Hr (R

d) to D with ‖ũ‖Hr (Rd ) � C‖u‖Hr (D). Therefore, Hr (D) ↪→ Hr (D) ↪→
Hr (R

d)|D for any r � 0, and by duality, we have Hr (R
d)|D ↪→ Hr (D) ↪→ Hr (D)

for r � 0. 
�

2.3.2 Existence of a càdlàg solution in Hr(D)with r < − d
2

Theorem 2.19 The mild solution u to (1.1) constructed in Proposition 2.17 has a
càdlàg modification in Hr (D) for any r < − d

2 .

In contrast to the case D = [0, π ], the eigenfunctions of −� on a general domain D
inRd may not be uniformly bounded, see (2.48). Thus, the proof of Theorem 2.5 does
not extend to higher dimensions. Instead, we use [17, Theorem 1] to write

G D(t; x, y) = g(t, x − y) + H(t; x, y), (2.51)

where g is the heat kernel onRd and H is a function such that for any ε > 0, (t, x, y) �→
H(t; x, y) is smooth on [0, T ] × D × Bc

ε (∂ D), where Bε(∂ D) is the ε-neighborhood
of ∂ D. Away from the boundary ∂ D, g can be dealt with as in Theorem 2.15, and H
is smooth and therefore easily handled. In order to control the behavior close to the
boundary, the change of measure technique (see the Appendix and also the proof of
Theorem 2.15) is again fruitful.
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Proof of Theorem 2.19 We may assume that u satisfies (2.46). For ε > 0, split u(t, x)

into the sum of three terms:

u1
ε(t, x) :=

∫ t

0

∫

D
g(t − s, x − y)σ (u(s, y))1y∈Bc

ε (∂ D) L(ds, dy),

u2
ε(t, x) :=

∫ t

0

∫

D
H(t − s; x, y)σ (u(s, y))1y∈Bc

ε (∂ D) L(ds, dy),

u3
ε(t, x) :=

∫ t

0

∫

D
G D(t − s; x, y)σ (u(s, y))1y∈Bε(∂ D) L(ds, dy).

By (2.43), the same proof as in Theorem2.15 for u1,1 and u3 shows that t �→ u1
ε(t, ·)

has a càdlàg version in Hr ,loc(R
d) for r < − d

2 , where the spatial variable takes
values in the whole space R

d rather than just D. Thus, as a process with x ∈ D,
it has a càdlàg version in Hr (D) for r < − d

2 by Lemma 2.18. Regarding u2
ε , since

(t, x, y) �→ H(t; x, y) is smooth on [0, T ] × D × Bc
ε (∂ D), we can mimic the part of

the proof of Theorem 2.15 concerning u1,2 in order to get that (t, x) �→ u2
ε(t, x) is

jointly continuous, and in fact, uniformly continuous since D is bounded. In particular,
t �→ u2

ε(t, ·) is continuous in Hr (D) for any r � 0. For the last term u3
ε , we want to

show that it converges to 0 in Hr (D), uniformly in t ∈ [0, T ]. As a first step, we have
∥
∥
∥u3

ε(t, ·)
∥
∥
∥
2

Hr
=
∑

k�1

(1 + λk)
r (aε

k (t)
)2

,

where aε
k (t) := ∫

D �k(x)u3
ε(t, x) dx . As in (2.24) and (2.39), one can then show that

∣
∣aε

k (t)
∣
∣ � C sup

t∈[0,T ]

∣
∣
∣
∣

∫ t

0

∫

D
�k(y)σ (u(s, y))1y∈Bε(∂ D) L(ds, dy)

∣
∣
∣
∣ .

Next, let�(x) := (∑
k�1(1+λk)

r�2
k(x)

) 1
2 , which belongs to L2(D) by (2.47) since

‖�k‖L2(D) = 1 and r < − d
2 . Hence, assuming without loss of generality that p in

(H′) satisfies 1 � p < 1 + 2
d , we have by Lemma A.2:

‖�σ(u)‖L,p � ‖�σ(u)‖L B ,p + ‖�σ(u)‖L M ,p � |b|
∥
∥
∥
∥
∥

∫ T

0

∫

D
|�(x)σ (u(t, x))| dt dx

∥
∥
∥
∥
∥

L p

+ C

∥
∥
∥
∥
∥

(∫ T

0

∫

D

∫

|z|�1
|�(x)σ (u(t, x))z|2 J (dt, dx, dz)

) 1
2
∥
∥
∥
∥
∥

L p

�
∫ T

0

∫

D
�(x)‖σ(u(t, x))‖L p dt dx

+ C

(∫ T

0

∫

D
�p(x)E[|σ(u(t, x))|p] dt dx

) 1
p

� C(‖�‖L1(D) + ‖�‖L p(D)) < +∞.
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Thus, by Theorem A.4, there exists an equivalent probability measure Q such that

‖�σ(u)‖L,2,Q < +∞. (2.52)

Furthermore, the Doob–Meyer decomposition of L under Q is given by L = L B,Q +
L M,Q, where

L B,Q(dt, dx) = bQ(t, x) dt dx =
(

b +
∫

|z|�1
(Y (t, x, z) − 1) ν(dz)

)

dt dx,

L M,Q(dt, dx) =
∫

|z|�1
z J̃Q(dt, dx, dz),

J̃Q(dt, dx, dz) = J (dt, dx, dz) − Y (t, x, z) dt dx ν(dz)

with some predictable random function Y , see [13, Theorem 3.6]. By [4, Theo-
rem 4.14], we deduce that ‖�σ(u)‖L B,Q,2,Q < +∞ and ‖�σ(u)‖L M,Q,2,Q < +∞.
As a consequence,

EQ

[(∫ T

0

∫

D
�(x)|σ(u(t, x))bQ(t, x)| dt dx

)2]

< +∞ (2.53)

and

EQ

[∫ T

0

∫

D

∫

|z|�1
(�(x)σ (u(t, x))Y (t, x, z))2 dt dx ν(dz)

]

< +∞. (2.54)

We obtain

EQ

[∥
∥u3

ε(t, ·)
∥
∥2

Hr

]
=
∑

k�1

(1 + λk)
r
EQ[(aε

k (t))2] � C
∑

k�1

(1 + λk)
r ‖�kσ(u)1Bε(∂ D)‖2L,2,Q

� C
∑

k�1

(1 + λk)
r
(
‖�kσ(u)1Bε(∂ D)‖2L B,Q,2,Q + ‖�kσ(u)1Bε(∂ D)‖2L M,Q,2,Q

)
.

For the first term in the parenthesis, we use the Cauchy–Schwarz inequality to obtain

∑

k�1

(1 + λk)r ‖�kσ(u)1Bε(∂ D)‖2L B,Q,2,Q

=
∑

k�1

(1 + λk)r
EQ

⎡

⎣

(∫ T

0

∫

D
|�k(x)σ (u(t, x))1x∈Bε(∂ D)b

Q(t, x)| dt dx

)2
⎤

⎦

= EQ

[∑

k�1

(1 + λk)r
∫ T

0

∫

D

∫ T

0

∫

D
|�k(x)�k(y)σ (u(t, x))σ (u(s, y))1x,y∈Bε(∂ D)

× bQ(t, x)bQ(s, y)| dt dx ds dy

]

123



Stoch PDE: Anal Comp (2019) 7:123–168 157

� EQ

[∫ T

0

∫

D

∫ T

0

∫

D
|�(x)�(y)σ (u(t, x))σ (u(s, y))1x,y∈Bε(∂ D)

×bQ(t, x)bQ(s, y)|dt dx ds dy
]

= EQ

⎡

⎣

(∫ T

0

∫

D
|�(x)σ (u(t, x))1x∈Bε(∂ D)b

Q(t, x)| dt dx

)2
⎤

⎦ → 0

as ε → 0 by (2.53) and dominated convergence. Similarly, (2.54) implies that

∑

k�1

(1 + λk)
r ‖�kσ(u)1Bε(∂ D)‖2L M,Q,2,Q

� C
∑

k�1

(1 + λk)
r
EQ

[∫ T

0

∫

D

∫

|z|�1
(�k(x)σ (u(t, x))Y (t, x, z))21x∈Bε(∂ D) dt dx ν(dz)

]

= CEQ

[∫ T

0

∫

D

∫

|z|�1
(�(x)σ (u(t, x))Y (t, x, z))21x∈Bε(∂ D) dt dx ν(dz)

]

→ 0

as ε → 0. Altogether, there exists a subsequence of u3
ε(t, ·) that converges almost

surely to 0 in Hr (D) for r < − d
2 , uniformly in t ∈ [0, T ], which completes the proof.


�

3 Partial regularity of the solution

In Sect. 2, we have established the existence of a version such that t �→ u(t, ·) has
càdlàg paths in (local) fractional Sobolev spaces. The goal of the current section is
to investigate the partial regularity of the solution, that is, the behavior of the partial
functions t �→ u(t, x) for fixed x ∈ D and x �→ u(t, x) for fixed t ∈ [0, T ]. In the case
where the Lévy noise L has locally finite intensity (so L is a compound Poisson noise),
it is clear that almost surely, no jumpwill fall onto a fixed t- or x-section of the solution.
Because the Green’s function G D(t; x, y) is smooth outside {0} × {(x, x) : x ∈ D},
the partial functions are continuous, and even smooth, in this case. However, a general
Lévy noise can have infinitelymany jumps on any compact subset of [0, T ]×D, which
may even fail to be summable. Still they never lie on a fixed section, but may come
arbitrarily close to it, so its regularity is unclear a priori. As we shall show, the answer
critically depends on the Blumenthal–Getoor index of the noise (that is, the smallest
p for which

∫

[−1,1] |z|p ν(dz) is finite), and both continuous and locally unbounded
sample paths may arise.

Throughout this section, we consider the stochastic heat Eq. (1.1) on a bounded
C∞-regular domain or D = R

d , with some Lipschitz continuous σ : R → R and
some bounded continuous u0 : D̄ → R that is zero on ∂ D. Furthermore, let L be a
pure-jump Lévy white noise as in (1.6) and u be the mild solution constructed under
the hypotheses in Propositions 2.1, 2.7 or 2.17, respectively. In particular, if D = R

d ,
we are given p, q > 0 such that (H) is satisfied; and if D is a bounded domain, there
exists p > 0 such that (H′) holds.
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3.1 Regularity in space at a fixed time

Theorem 3.1 In the setting described above, assume that p < 2
d . Then, for any t ∈

[0, T ], the process x �→ u(t, x) has a continuous modification.

Proof The solution u is the stationary limit of the mild solution uN to the truncated
equation defined in (2.7), (2.28) or (2.45) with noise L N given in (2.6), (2.27) or
(2.44), respectively. Therefore, we can suppose that u = uN for some N � 1, and for
simplicity, we only consider N = 1. We prove the claim using different approaches
depending on the value of p.
1 < p < 2 :Notice that 1 < p < 2 can only occur in d = 1 because of the hypothesis

p < 2
d . However, we keep the exponent d since we will use similar ideas in the next

case. Let A > 0 be such that x ∈ (−A, A)d , and split u into seven parts according
to (2.32) and (2.41), with obvious changes when D is bounded. In this case, we
further assume that A > 0 is large enough such that D ⊂ (−A, A)d . Clearly, V is
jointly continuous, and as shown in the proof of Theorem 2.15, the same is true for
u1,21[−A,A]d , u2,21[−A,A]d and u3,2 in the case D = R

d , while they are zero if D
is bounded. Furthermore, almost surely, u2,1 consists of finitely many jumps, none
of which occur at time t , so x �→ u2,1(t, x) is smooth because the Green’s function
G D(t; x, y) is so for t > 0. It remains to consider u1,1 + u3,1, for which we apply the
Kolmogorov continuity criterion. We have

E

[∣
∣
∣

(
u1,1 + u3,1

)
(t, x) −

(
u1,1 + u3,1

)
(t, z)

∣
∣
∣

p]

= E

[∣
∣
∣
∣b
∫ t

0

∫

[−2A,2A]d
(G D(t − s; x, y) − G D(t − s; z, y)) σ (u(s, y)) ds dy

+
∫ t

0

∫

[−2A,2A]d
(G D(t − s; x, y) − G D(t − s; z, y)) σ (u(s, y)) L M (ds, dy)

∣
∣
∣
∣

p]

� C

(

E

[∣
∣
∣
∣b
∫ t

0

∫

[−2A,2A]d
(G D(t − s; x, y) − G D(t − s; z, y)) σ (u(s, y)) ds dy

∣
∣
∣
∣

p]

+ E

[∣
∣
∣
∣

∫ t

0

∫

[−2A,2A]d
(G D(t − s; x, y) − G D(t − s; z, y)) σ (u(s, y)) L M (ds, dy)

∣
∣
∣
∣

p])

for any x, z ∈ D. Then, using Hölder’s inequality and (2.3) or (2.29),

E

[∣
∣
∣
∣b
∫ t

0

∫

[−2A,2A]d
(G D(t − s; x, y) − G D(t − s; z, y)) σ (u(s, y)) ds dy

∣
∣
∣
∣

p]

�
(∫ t

0

∫

[−2A,2A]d
|G D(t − s; x, y) − G D(t − s; z, y)|E [|σ(u(s, y))|p] ds dy

)

×
(∫ t

0

∫

[−2A,2A]d
|G D(t − s; x, y) − G D(t − s; z, y)| ds dy

)p−1

� C

(∫ t

0

∫

D
|G D(t − s; x, y) − G D(t − s; z, y)| ds dy

)p

.

123



Stoch PDE: Anal Comp (2019) 7:123–168 159

For D = R, the last term is bounded byC |x−z|p, see [35, LemmeA2]; for D = [0, π ],
we can take the power p inside the integral by Hölder’s inequality, and further assume
that 3

2 < p < 2 (by (2.3) there is no harm in taking a larger value of p on bounded
domains). Then the upper bound becomes C |x − z|3−p by [3, Lemma B.1(a)]. For the
martingale part, we have by [28, Theorem 1] and (2.29),

E

[∣
∣
∣
∣

∫ t

0

∫

[−2A,2A]d
(G D(t − s; x, y) − G D(t − s; z, y)) σ (u(s, y))L M (ds, dy)

∣
∣
∣
∣

p]

� C
∫ t

0

∫

[−2A,2A]d

∫

|z|�1
|z|p |G D(t − s; x, y) − G D(t − s; z, y)|p

× E
[|σ(u(s, y))|p] ds dy ν(dz)

� C
∫ t

0

∫

D
|G D(t − s; x, y) − G D(t − s; z, y)|p ds dy.

If D = R
d , then according to [35, Lemme A2], this is bounded by

⎧
⎪⎨

⎪⎩

C |x − z|p, if p < 3
2 ,

C |x − z| 32 log (|x − z|) if p = 3
2 ,

C |x − z|3−p if p > 3
2 ;

and if D = [0, π ], and we take 3
2 < p < 2, then the upper bound we obtain is again

C |x − z|3−p by [3, Lemma B.1(a)]. Thus, the Kolmogorov continuity criterion (see
e.g. [39, Chapter 1, Corollary 1.2]) ensures the existence of a continuous modification
of u1,1 + u3,1 in the space variable x .
0 < p � 1 : We use the same decomposition of u as above, except that we replace b

by b0 and L M (dt, dx) by
∫

|z|�1 z J (dt, dx, dz). The proofs for V , u2,1 and u2,2 are not
affected by this change, and up to the modification indicated at the end of the proof of
Theorem 2.15, the proof for u1,2 is not affected, either. Since

∫

|z|�1 |z| ν(dz) < +∞,

the small jumps of L are summable and u1,1 is actually a sum of possibly infinitely
many terms, each of which is continuous in x because no jump occurs exactly at time
t . Furthermore, by [16, Corollary 3.2.8], we have for x0 ∈ D,

E

[(∫ t

0

∫

[−2A,2A]d

∫

|z|�1
sup

x :|x−x0|�1
G D(t − s; x, y) |zσ(u(s, y))| J (ds, dy, dz)

)p]

�
∫ t

0

∫

[−2A,2A]d

∫

|z|�1
|z|p sup

x :|x−x0|�1
G p

D(t − s; x, y)E
[|σ(u(s, y))|p] ds dy ν(dz)

� C
∫ t

0

∫

Rd
sup

x :|x−x0|�1
g p(t − s, x − y) ds dy

= C

(∫ t

0

∫

|y−x0|�1
g p(s, 0) ds dy +

∫ t

0

∫

|y−x0|>1
(4πs)−

pd
2 e− p(|y−x0 |−1)2

4s ds dy

)

,

(3.1)

123



160 Stoch PDE: Anal Comp (2019) 7:123–168

which is finite because p < 2
d . So the sum defining u1,1 converges locally uniformly

in x , which implies that x �→ u1,1(t, x) is continuous almost surely. Recalling that
b0 = 0 for p < 1 and D = R

d , u3,1 and u3,2 are non-zero in this case only if p = 1.
Then u3,2(t, x) is jointly continuous in (t, x), as shown in the proof of Theorem 2.15.
If D is bounded, u3,2 is zero. For u3,1 we use the approximation sequence u3,1

n defined
after (2.41). For each n, the process x �→ u3,1

n (t, x) is continuous because

∣
∣
∣u3,1

n (t, x) − u3,1
n (t, x ′)

∣
∣
∣

� C
∫ T

0

∫

D

∣
∣G D(t − s; x, y) − G D(t − s; x ′, y)

∣
∣ ds dy → 0

as x ′ → x , see [35, Lemme A2] for D = R
d and the proof of [37, Proposition 5]

for bounded D. Hence, it suffices to prove that for fixed t , u3,1
n (t, x) converges to

u3,1(t, x), locally uniformly in x . By dominated convergence, this can be reduced to
showing

∫ t

0

∫

[−2A,2A]d
sup

x :|x−x0|�1
G D(t − s; x, y)|σ(u(s, y))| ds dy < +∞ a.s.

But this follows from (3.1) together with (2.3), (2.29) and (2.43), respectively, by
taking expectation. 
�
Remark 3.2 In particular, any (tempered) α-stable noise with α ∈ (0, 2

d ) (and b0 = 0
if D = R

d and α < 1) satisfies the hypothesis of Proposition 3.1. The same holds for
(variance-)gamma noises for all d � 1, inverse Gaussian noises for d = 1, 2, 3 and
normal inverse Gaussian noises for d = 1 (cf. [14]).

The next theorem shows that the value 2
d in the previous theorem is essentially

optimal.

Theorem 3.3 Let σ = 1 and suppose there is δ > 0 such that the Lévy measure of L
satisfies

ν(dz) = f (z)

|z|α+1 dz (3.2)

for z ∈ [−δ, δ], where α ∈ [ 2d , (1+ 2
d )∧2) and f : [−δ, δ] → [0,+∞) is measurable

with f (0) �= 0 and

∫ δ

−δ

| f (z) − f (0)|
|z|α+1 |z|r dz < +∞ (3.3)

for some 0 < r < 2
d . Then for fixed t ∈ [0, T ], the path x �→ u(t, x) is unbounded on

any non-empty open subset of D with probability 1.
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Proof Fix t ∈ [0, T ]. Since V is continuous in (t, x), it suffices to show the unbound-
edness of

Y (x) =
∫ t

0

∫

D
G D(t − s; x, y) L(ds, dy), x ∈ D.

We start with the case where f is constant, that is, L is an α-stable noise. Then
(Y (x) : x ∈ D) is an α-stable process given in the form of [34, (10.1.1)] with E =
[0, T ] × D and control measure ds dy. We shall check that the necessary condition
[34, (10.2.14)] for sample path boundedness in [34, Theorem 10.2.3] is not satisfied,
in particular that for x0 ∈ D, and δ such that Bx0(δ) ⊂ D,

∫ t

0

∫

D

(

sup
x∈Bx0 (δ)

G D(t − s, x, y)

)α

ds dy = +∞. (3.4)

Indeed, by [38, Theorem 2 and Lemma 9], for any x, y ∈ Bx0(δ),

G D(t − s, x, y) � Cg(t − s, x − y), (3.5)

which implies that

∫ t

0

∫

D
sup

x∈Bx0 (δ)

Gα
D(t − s; x, y) ds dy � C

∫ t

0

∫

Bx0 (δ)

1

(4π(t − s))
αd
2

ds dy = +∞,

and (3.4) is proved. In the case of general f , we write

ν(dz) = ν1(dz) − ν2(dz) + ν3(dz) + ν4(dz)

=
(

( f (z) − f (0))+
|z|α+1 − ( f (z) − f (0))−

|z|α+1 + f (0)

|z|α+1

)

1z∈[−δ,δ] dz

+1z∈[−δ,δ]c ν(dz),

and decompose L accordingly into L1 − L2 + L3 + L4 such that for 1 � i � 4,
Li has Lévy measure νi and is independent of the other three parts. If ui solves the
additive heat equation with driving noise Li , then by (3.3) and Theorem 3.1, for any
fixed t ∈ [0, T ], x �→ u1(t, x), x �→ u2(t, x) and x �→ u4(t, x) each has a continuous
version. And since the first part of the proof shows that x �→ u3(t, x) is unbounded
on any open subset of D, the same property holds for x �→ u(t, x). 
�
Remark 3.4 Taking f ≡ 1, Theorem 3.3 shows that for the solution u to the heat
equation with an additive α-stable noise where 2

d � α < 1 + 2
d (since α < 2, this

can only occur for d � 2), for any t ∈ [0, T ], x �→ u(t, x) is unbounded on any
non-empty open subset of D. The same holds true if ν has the form (3.2) with α in the
same range and some f that is (α − 2

d + ε)-Hölder continuous at 0. For d � 2, this
includes tempered stable Lévy noise (with stability index in the indicated range) and
normal inverse Gaussian noises.
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3.2 Regularity in time at a fixed space point

Theorem 3.5 In the set-up described at the beginning of Sect. 3, assume that 0 < p <

1. Then for any x ∈ D, the process t �→ u(t, x) has a continuous modification.

We need the following elementary lemma.

Lemma 3.6 If g is the heat kernel (1.4), then there exists C > 0 such that for every
T > 0,

sup
t∈[0,T ]

g(t, x) =
⎧
⎨

⎩

CT − d
2 e− |x |2

4T , if T <
|x |2
2d ,

C |x |−d , if T � |x |2
2d .

Proof of Theorem 3.5 Again, by a stopping time argument, it suffices to show the reg-
ularity of uN for any N � 1, as defined in (2.7), (2.28) or (2.45), respectively. We
only consider N = 1, and decompose u = V + u1,1 + u1,2 + u2,1 + u2,2 + u3

as in the part “0 < p � 1” of the proof of Theorem 3.1 (with A > 0 such that
x ∈ (−A, A)d and D ⊂ (−A, A)d if D is bounded). There we explained that V ,
u1,21[−A,A]d and u2,21[−A,A]d are jointly continuous. The term u2,1 is again a finite
sum of weighted heat kernels, so t �→ u(t, x) is smooth because none of the jumps
falls exactly on a given x ∈ D. Moreover, for u1,1, we can use [35, Théorème 2.2.2] in
the case D = R

d becauseE[|σ(u(t, x))|p] = E[|σ(u1(t, x))|p] is uniformly bounded
on [0, T ]× [−2A, 2A]d . The proof also applies to bounded D because the heat kernel
G D is majorized by a multiple of the heat kernel on R

d by [16, Corollary 3.2.8].
Finally, since p < 1 and b0 = 0 if D = R

d , u3 only needs to be considered for
bounded D. With 1 < r < 1+ 2

d and 0 � t ′ < t � T , we can use Hölder’s inequality,
the moment bound (2.3) or (2.43) and [37, Proposition 5] (and the proof therein) to
deduce for every γ ∈ (0, 1),

E[|u(t, x) − u(t ′, x)|r ] �
(∫ t

0

∫

D
|G D(t − s; x, y) − G D(t ′ − s; x, y)| ds dy

)r−1

×
∫ t

0

∫

D
|G D(t − s; x, y) − G D(t ′ − s; x, y)|

× E[|σ(u(s, y))|r ] ds dy

�
(∫ t

0

∫

D
|G D(t − s; x, y) − G D(t ′ − s; x, y)| ds dy

)r

� C |t − t ′|γ r

Thus, by choosing γ close to 1, the claim follows from Kolmogorov’s continuity
theorem. 
�
Theorem 3.7 If σ ≡ 1 and ν satisfies (3.2) for some α ∈ [1, 1+ 2

d ), δ > 0, and some
measurable f : [−δ, δ] → [0,+∞) with f (0) �= 0 and (3.3) for some 0 < r < 1,
then for any x ∈ D, the process t �→ u(t, x) is unbounded on any non-empty open
interval in [0, T ] with probability 1.
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Proof The proof is analogous to the proof of Theorem 3.3. It suffices to show that

∫ t2

t1

∫

D

(

sup
t∈[t1,t2]

G D(t − s; x, y)

)α

ds dy = +∞ (3.6)

for x ∈ D and 0 � t1 < t2 � T . By [38, Theorem 2 and Lemma 9], it suffices to
consider D = R

d . In this case, the integral above is bounded from below by

∫ t2

t1

∫

Rd
sup

t∈[t1,t2]
g(t − s, x − y)α ds dy �

∫ t2−t1

0

∫

Rd
sup

v∈[0,s]
g(v, x − y)α ds dy,

so (3.6) follows from Lemma 3.6:

∫ t2

t1

∫

Rd

(

sup
t∈[t1,t2]

g(t − s, x − y)

)α

ds dy

�
∫ t2−t1

0

∫

|x−y|�√
2ds

C

|x − y|dα
ds dy = +∞ .


�
Remark 3.8 In contrast to the results on regularity in space, the critical exponent p = 1
for temporal regularity does not depend on the dimension d. In particular, for all d � 1,
we obtain continuity of t �→ u(t, x), x fixed, for any (tempered) α-stable noise with
α ∈ (0, 1) (and b0 = 0 if D = R

d ), any (variance-)gamma noise and inverse Gaussian
noise. In the case of additive noise, t �→ u(t, x) is almost surely unbounded on any
non-empty open subinterval for (tempered) α-stable noises with α ∈ [1, 1 + 2

d ) and
normal inverse Gaussian noises.
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Appendix A: Integration with respect to randommeasures

Just as Lévy processes are special instances of semimartingales, a Lévy noise as in
(1.6) is a random measure as introduced in [4]. We give a short introduction into the
integration theory associated to it, hereby concentrating on the main ideas and results
that we need for our purposes. All details not mentioned or explained can be found in
[4,13,25,26]. Given a filtered probability space (�,F , (Ft )t∈[0,T ],P) satisfying the
usual conditions, consider a Polish space E (e.g., E = D, the spatial domain in (1.1)),
and denote by P the σ -field P0 ⊗ B(E), where P0 is the usual predictable σ -field.
With an abuse of terminology, P-measurable mappings from �̃ := � × [0, T ] × E
to R are again called predictable and their collection again denoted by P .

Given a sequence (�̃k)k�1 in P satisfying �̃k ↑ �̃, a mapping M : PM :=⋃
k�1 P|�̃k

→ L p where p ∈ [0,+∞) is called an L p-random measure if for
every sequence (Ai )i�1 of pairwise disjoint sets in PM with

⋃
i�1 Ai ∈ PM , we have
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M(
⋃

i�1 Ai ) = ∑
i�1 M(Ai ) in L p, and some additional “(Ft )t∈[0,T ]-adaptedness”

conditions are satisfied. In our example of a Lévy noise on [0, T ] × D, we can take
�̃k = D if D is bounded, and �̃k = [−k, k]d if D = R

d .
The stochastic integral of a simple integrand of the form S = ∑r

i=1 ai1Ai , where
r ∈ N, ai ∈ R and Ai ∈ PM , is defined in the canonical way by

∫ T

0

∫

E
S(t, x) M(dt, dx) :=

r∑

i=1

ai M(Ai ).

Denoting by SM the collection of such simple integrands, the extension of the integral
to a larger subset of P is carried out using the Daniell mean

‖H‖M,p := ‖H‖M,p,P := sup
S∈SM ,|S|�|H |

∥
∥
∥
∥

∫ T

0

∫

E
S(t, x) M(dt, dx)

∥
∥
∥
∥

L p
, H ∈ P.

(A.1)

A predictable process H is called p-integrable with respect to M if there exists a
sequence (Sn)n�1 of simple integrands with ‖H − Sn‖M,p → 0 as n → +∞. The
collection of p-integrable processes is denoted by L1,p(M) (or L1,p(M,P) if we want
to emphasize the probability measure). The stochastic integral of H with respect to
M is then defined as the L p-limit of

∫ T
0

∫

E Sn(t, x) M(dt, dx) (which exists and does
not depend on the choice of Sn). In all notions introduced, the prefix p is suppressed
if p = 0. The constructed integral obeys the dominated convergence theorem, see [4,
(2.6)].

Theorem A.1 If (Hn)n�1 are predictable and converge pointwise to H, and |Hn | � H0
for all n � 1 and some H0 ∈ L1,p(M), then Hn, H ∈ L1,p(M) and ‖H − Hn‖M,p →
0 as n → +∞.

In this paper, we are particularly interested in the case where M is a linear combi-
nation of random measures of one of the following forms:

(a) M is a predictable strict random measure, that is, almost every realization of
M is a measure on [0, T ] × E and t �→ ∫ T

0

∫

E 1A(s, y)1[0,t](s) M(ds, dy) is a
predictable process for all A ∈ PM .

(b) M(dt, dx) = ∫

z∈R W (t, x, z) J̃ (dt, dx, dz), where J is an (Ft )t∈[0,T ]-Poisson
random measure with intensity measure ν(dt, dx, dz), J̃ = J − ν, and W1�̃k

is

1-integrable with respect to J̃ (a random measure on E × R) in the sense above
for every k � 1.

(c) M is a strict randommeasure of the form M(dt, dx) = ∫

z∈R W (t, x, z) J (dt, dx,

dz) where W1�̃k
is integrable with respect to J for every k � 1.

In these cases, the Daniell mean can be computed (or estimated) explicitly.

Lemma A.2 Let ‖X‖L p = E[|X |p] for 0 < p < 1 and ‖X‖L p = (E[|X |p]) 1
p be the

usual L p-norm for p � 1.
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1. In the case (a) above, we have for every 0 < p < +∞ and H ∈ P ,

‖H‖M,p =
∥
∥
∥
∥

∫ T

0

∫

E
|H(t, x)| |M |(dt, dx)

∥
∥
∥
∥

L p
, (A.2)

where |M | is the total variation measure of M.
2. In the case (b) above, there exist for every p � 1 constants cp, C p > 0 such that

for all H ∈ P ,

cp

∥
∥
∥
∥
∥
∥

(∫ T

0

∫

E
H2(t, x) [M](dt, dx)

) 1
2

∥
∥
∥
∥
∥
∥

L p

� ‖H‖M,p � C p

∥
∥
∥
∥
∥
∥

(∫ T

0

∫

E
H2(t, x) [M](dt, dx)

) 1
2

∥
∥
∥
∥
∥
∥

L p

,

where [M](dt, dx) = ∫

z∈R W 2(t, x, z) J (dt, dx, dz) is the quadratic variation
measure of M. In particular,

‖H‖M,p � C p

(∫ T

0

∫

E

∫

R

‖H(t, x)W (t, x, z)‖p
L p ν(dt, dx, dz)

) 1
p

. (A.3)

3. In the case (c) above, we have for 0 < p � 1 and H ∈ P ,

‖H‖M,p �
∫ T

0

∫

E

∫

R

‖H(t, x)W (t, x, z)‖L p ν(dt, dx, dz).

Proof For the first statement, the “�”-part follows from

∣
∣
∣
∣

∫ T

0

∫

E
S(t, x) M(dt, dx)

∣
∣
∣
∣ �

∫ T

0

∫

E
|S(t, x)| |M |(dt, dx)

�
∫ T

0

∫

E
|H(t, x)| |M |(dt, dx)

for all S with |S| � |H |. For the “�”-part, observe that the right-hand side
of (A.2) equals ‖H‖|M|,p by dominated convergence. Next, consider the measure
μ(dω, dt, dx) = M(ω, dt, dx)P(dω) onP and let D(ω, t, x) be its Radon–Nikodym
derivative with respect to |μ|(dω, dt, dx). Then D is predictable, |D| ≡ 1 and
|M |(ω, dt, dx) = D(ω, t, x) M(ω, dt, dx). Hence,

sup
S∈SM ,|S|�|H |

∥
∥
∥
∥

∫ T

0

∫

E
S(t, x) |M |(dt, dx)

∥
∥
∥
∥

L p
= sup

S∈SM ,0�S�|H |

∥
∥
∥
∥

∫ T

0

∫

E
S(t, x) |M |(dt, dx)

∥
∥
∥
∥

L p

= sup
S∈SM ,0�S�|H |

∥
∥
∥
∥

∫ T

0

∫

E
S(t, x)D(t, x) M(dt, dx)

∥
∥
∥
∥

L p
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� sup
S∈SM ,0�S�|H |

∥
∥
∥
∥

∫ T

0

∫

E
S(t, x) M(dt, dx)

∥
∥
∥
∥

L p
� ‖H‖M,p,

and (A.2) is proved
For the second statement, we observe that t �→ ∫ T

0

∫

E S(s, y)1[0,t](s) M(ds, dy)

is a local martingale for all S ∈ SM , see [4, Proposition 4.9(b)]. So the statement for
S ∈ SM follows from the Burkholder–Davis–Gundy inequalities. The general case is
again a consequence of the dominated convergence theorem. Inequality (A.3) can be
proved along the lines of the third statement, which we now establish.

Let (Ti , Xi , Zi )i�1 be the points of J in [0, T ] × E × R. Then, using (x + y)p �
x p + y p for x, y > 0 and 0 < p � 1, we get

E

[∣
∣
∣
∣

∫ T

0

∫

E
S(t, x) M(dt, dx)

∣
∣
∣
∣

p
]

= E

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

i�1

S(Ti , Xi )W (Ti , Xi , Zi )

∣
∣
∣
∣
∣
∣

p⎤

⎦

� E

⎡

⎣
∑

i�1

|S(Ti , Xi )W (Ti , Xi , Zi )|p

⎤

⎦

� E

[∫ T

0

∫

E

∫

R

|H(t, x)W (t, x, z)|p J (dt, dx, dz)

]

= E

[∫ T

0

∫

E

∫

R

|H(t, x)W (t, x, z)|p ν(dt, dx, dz)

]

,

and the proof is complete. 
�
With the help of the Daniell mean, one can obtain the following stochastic Fubini

theorem.

Theorem A.3 Let (A,A, μ) be a σ -finite measure space, M be an L p-random measure
for some p > 0, and H be a P ⊗ A-measurable function.

1. If p � 1 and
∫

A ‖H(·, ·, a)‖M,p μ(da) < +∞, then

∫

A

(∫ T

0

∫

E
H(t, x, a) M(dt, dx)

)

μ(da)

and

∫ T

0

∫

E

(∫

A
H(t, x, a) μ(da)

)

M(dt, dx)

are equal almost surely, and all integrals involved are well defined.
2. If 0 < p � 1 and M is a random measure as in (c) above, the conclusion of the

first part continues to hold if

∫ T

0

∫

E

∫

R

∥
∥
∥
∥

∫

A
|H(t, x, a)| μ(da)|W (t, x, z)|

∥
∥
∥
∥

L p
ν(dt, dx, dz) < +∞. (A.4)
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The first part has been proved in [26, Theorem 2] for p = 1 (see also [5] for processes
indexed only by time), but is obviously also valid for p > 1 by themonotonicity of L p-
norms. In particular, Lemma A.2 can be used to verify the integrability assumption.
The second part follows from the ordinary Fubini theorem (M is a strict random
measure here) together with an argument as in the proof of third part of Lemma A.2.

A last result that we need relates to the possibility of recovering L2-integrability
from L p-integrability, 0 � p < 2, upon an equivalent change of probability measure.
For semimartingales, this result is well known, see [33, Chapter IV, Theorem 34], for
example. For random measures, it is proved in [25, Corollary of Theorem 2].

Theorem A.4 If M is an L p-random measure and H ∈ L1,p(M) for some 0 � p < 2,
then there exists a probability measure Q that is equivalent to P on F such that dQ

dP is

bounded, dP
dQ ∈ L

p
2−p (P), M is an L2-random measure underQ, and H ∈ L1,2(M,Q).
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