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Abstract: We study the nonlinear stochastic heat equation in the spatial domain
R, driven by space-time white noise. A central special case is the parabolic Anderson
model. The initial condition is taken to be a measure on R, such as the Dirac delta
function, but this measure may also have non-compact support and even be non-
tempered (for instance with exponentially growing tails). Existence and uniqueness
of a random field solution is proved without appealing to Gronwall’s lemma, by
keeping tight control over moments in the Picard iteration scheme. Upper bounds
on all p-th moments (p = 2) are obtained as well as a lower bound on second
moments. These bounds become equalities for the parabolic Anderson model when
p = 2. We determine the growth indices introduced by Conus and Khoshnevisan
[10].
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1 Introduction

The stochastic heat equation

(1.1)

where W is space-time white noise, p(u) is globally Lipschitz, p is the initial data, and
R* = 10, 0], has been intensively studied during the last three decades by many authors:
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See [2, 3, 4, 5, 8, 9, 10, 17, 20] for the intermittency problem, [15, 16] for probabilistic
potential theory, [31, 32] for regularity of the solution, and [26, 27, 29, 33] for several other
properties. The important special case p(u) = Au is called the parabolic Anderson model [5].
Our work focuses on (1.1) with general deterministic initial data p, and we study how the
initial data affects the moments and asymptotic properties of the solution.

For the existence of random field solutions (see Definition 2.1 below) to (1.1), the case
where the initial data p is a bounded and measurable function is covered by the classical
theory of Walsh [35]. Initial data that is more irregular than this also appears the literature.
For instance, when p is a positive Borel measure on R such that

sup sup V't (p = Gy(t,0)) (z) < oo, forall T >0, (1.2)
te[0,7] zeR

where = denotes convolution in the spatial variable and

1 z? .
Gy,(t,x) = mexp{—ﬁ}, (t,z) e R xR, (1.3)

Bertini and Cancrini [3] gave an ad-hoc definition of solution for the parabolic Anderson
model via a smoothing of the space-time white noise and a Feynman-Kac type formula.
Their analysis depended heavily on properties of the local times of Brownian bridges. Re-
cently, Conus and Khoshnevisan [9] have constructed a weak solution defined through certain
norms on random fields. In particular, their solution is defined for almost all (¢,z), but not
at specific (t,x). Their initial data has to verify certain technical conditions, which are
satisfied by the Dirac delta function in some of their cases. More recently, Conus, Joseph,
Khoshnevisan and Shiu [8] also studied random field solutions. In particular, they require
the initial data to be a finite measure of compact support.

After the basic questions of existence, the asymptotic properties of the solution are of
particular interest, in part because the solution exhibits intermittency properties. More
precisely, define the upper and lower Lyapunov exponents as follows:

log E [|u(t, )P loo E [lu(t. )P
my(x) :=limsup o8 E [Jult, )l m,,(z) := lim inf og E [Jut, z)] ]

Y
t—+00 t t—>+0 t

(1.4)

When the initial data is constant, these two exponents do not depend on x. In this case,
following Bertini and Cancrini [3], we say that the solution is intermittent if m,, := m,, = m,
for all n € N and the following strict inequalities are satisfied:

mo mpy
<< — < 1.5
m 2 n ( )

Carmona and Molchanov gave the following definition [5, Definition I11.1.1, on p. 55].

Definition 1.1. Let p be the smallest integer for which m, > 0. If p < o0, then we say
that the solution wu(t, z) exhibits (asymptotic) intermittency of order p, and if p = 2, then it
exhibits full intermittency.



Carmona and Molchanov [5] showed that full intermittency implies the intermittency
defined by (1.5) (see [5, II1.1.2; on p. 55]). This mathematical definition of intermittency
is related to the property that the solutions are close to zero in vast regions of space-time
but develop high peaks on some small “islands”. For the parabolic Anderson model, this
property has been well studied: see [5, 11] for a discrete formulation and [3, 20, 17] for the
continuous formulation. Further general discussion of the intermittency property can be
found in [36].

When the initial data are not homogeneous, in particular, when they have certain ex-
ponential decrease at infinity, Conus and Khoshnevisan [10] defined the following lower and
upper exponential growth indices:

1
A(p) :=sup {a > 0 : limsup— sup logE (Ju(t, z)|?) > O} : (1.6)
t—o0 lz|=at
5 : : 1
A(p) :=inf {04 > 0 : limsup— sup logE (Ju(t, z)P) < O} . (1.7)
t—o0 |z|=at

These quantities are of interest because they give information about the possible locations
of high peaks, and how they propagate away from the origin. Indeed, if A(p) = A(p) =: A(p),
then there will be high peaks at time ¢ inside [—A(p)t, A(p)t], but no peaks outside of this
interval. Conus and Khoshnevisan [10] proved in particular that if the initial data u is
a non-negative, lower semicontinuous function with compact support of positive Lebesgue
measure, then for the Anderson model,
2 2
@< <]

Z < 1.8
o (1.8)
In this paper, we improve the existence result by working under a much weaker condition

on the initial data, namely, p can be any signed Borel measure over R such that
J e~ |p|(dz) < +o0, foralla>0, (1.9)
R

where, from the Jordan decomposition, p = pu — p— where pu4 are two non-negative Borel
measures with disjoint support and |u| := p4 +u—. Note that the condition (1.9) is equivalent
to

(|| = Gu(t,")) () < 400, forallt> 0 and z € R,

which means that under condition (1.9), the solution to the homogeneous heat equation with
initial data p is well-defined for all time.

On the one hand, the condition (1.9) allows for measure-valued initial data, such as the
Dirac delta function, and Proposition 2.11 below shows that initial data cannot be extended
beyond measures to other Schwartz distributions, even with compact support. On the other
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hand, the condition (1.9) permits certain exponential growth at infinity. For instance, if
p(dr) = f(x)dx, then f(z) = exp(alz|P), a > 0, p € ]0,2[ (i.e., exponential growth at
+o0), will satisfy this condition. Note that the case where the initial data is a continuous
function with linear exponential growth (i.e., p = 1) has been considered by many authors:
see [27, 29, 33] and the references therein.

Next, we obtain estimates for the moments E(|u(t, x)|P) with both ¢ and z fixed for all
even integers p = 2 (see Theorem 2.4). In particular, for the parabolic Anderson model,
we give an explicit formula for the second moment of the solution. When the initial data
is either Lebesgue measure or the Dirac delta function, we give explicit formulas for the
two-point correlation functions (see (2.27) and (2.30) below), which can be compared to the
integral form given by Bertini and Cancrini [3, Corollaries 2.4 and 2.5] (see also Remark 2.6
below).

Recently, Borodin and Corwin [4] also obtained the moment formulas for the parabolic
Anderson model in the case where the initial data is the Dirac delta function. When p = 2,
we obtain the same explicit formula. For p > 2, their p-th moments are represented by
multiple contour integrals. Our methods are very different from theirs: They approximate
the continuous system by a discrete one. Our formulas allow more general initial data than
the Dirac delta function, and are useful for establishing other properties, concerning for
instance growth indices and sample path regularity.

Our proof of existence is based on the standard Picard iteration scheme. The main
difference from the conventional situation is that instead of applying Gronwall’s lemma to
bound the second moment from above, we keep tight control over the sequence of second
moments in the Picard iteration scheme. In the case of the parabolic Anderson model, this
directly gives an explicit formula, and for more general functions p it gives good bounds. Note
that series representations of the moments are obtained in [18], yielding a Feynman-Kac-type
formula.

Concerning growth indices, we improve (1.8) by giving upper bounds on A(p) for general
functions p, and, in the parabolic Anderson model, by showing that A(2) = A(2) = A?/2 when
@ is a non-negative measure with compact support (see Theorem 2.12), and we extend this
result to a more general class of measure-valued initial data (not necessarily with compact
support). This is possible mainly thanks to our explicit formula for the second moment.
Our result implies in particular that with regard to the propagation of high peaks, an initial
condition with tails that decrease at a sufficiently high exponential rate (as least as fast as
e Pl7l with B = A?/(2v)) produces the same behavior as a compactly supported one.

This paper is organized as follows: All the main results of this paper are stated in Section
2. In particular, in Section 2.1, we define the notion of random field solution of (1.1), and
then show, assuming existence of the solution, that one obtains readily formulas for the
second moments in the case of the Anderson model. Then we state and prove our theorem
on existence, uniqueness and moment estimates, discuss various particular initial conditions,
including Lebesgue measure and the Dirac delta function, and we show that existence is not
possible if the initial condition is rougher than a measure. In Section 2.2, we state the results
about the exponential growth indices. Proofs of the results in Sections 2.1 and 2.2 are given
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in Sections 3 and 4, respectively. Finally, in Section 5, we gather various calculations that
are used throughout the paper.

2 Main Results

Let M (R) be the set of locally finite (signed) Borel measures over R. Let My (R) be the set
of signed Borel measures over R satisfying (1.9). Denote the solution to the homogeneous
equation

(2.1)

2.1 Existence, Uniqueness and Moments

Let W = {Wi(A), Ae B,(R),t > 0} be a space-time white noise defined on a complete
probability space (2, F, P), where B, (R) is the collection of Borel measurable sets with
finite Lebesgue measure. Let

Fi=0(Ws(A),0<s<t, Ae B, (R)) v N, t=0,

be the natural filtration of W augmented by the o-field N generated by all P-null sets in F.
In the following, we fix the filtered probability space {2, F, {F;, t = 0}, P}. We use [|-||, to

denote the LP(§2)-norm (p > 1). With this setup, W becomes a worthy martingale measure
in the sense of Walsh [35], and SS[O gxr X (s,y)W(ds,dy) is well-defined in this reference for

a suitable class of random fields {X (s,y), (s,y) € R, x R}.
We can formally rewrite the spde (1.1) in the integral form:

u(t,z) = Jo(t,z) + I(t, x), (2.2)
where
I(t,z) = ﬂ Gy (t — 5,7 — ) p (u(5,9)) W (ds, dy) |
[0,6] xR

We use the convention that G, (¢,-) = 0 if t < 0. Hence, [0,¢] x R in the stochastic integral
above can be replaced by R, x R. In the following, we will use * to denote the simultaneous
convolution in both space and time variables,

Definition 2.1. A process u = (u(t,z), (t,z) € R% x R) is called a random field solution to
(2.2) if



(1) u is adapted, i.e., for all (¢,z) e R* x R, u(t,z) is Fi-measurable;
(2) wu is jointly measurable with respect to B (Rj‘r X R) X F;

(3) (G2« ||p(u)|\§) (t,x) < 400 for all (t,z) € RY x R, and the function (t,z) — I(t,x)
mapping R* x R into L*(Q) is continuous;

(4) wu satisfies (2.2) a.s., for all (¢,2) e RY x R.

Notice that the random field is only defined for ¢ > 0, which is natural since at time
t = 0, the solution is defined to be a measure.

According to property (3) in this definition, proving the existence of a random field
solution requires some estimates on its moments. On the other hand, if we assume existence,
then one can readily obtain moment formulas or bounds. Indeed, consider for example, the
parabolic Anderson model, and set

f(t, ) = E(u(t, z)%).
For (t,z) e R* x R and n € N, we define

2

Varuvt

Lo(t,x) = Lo (t,z;v,X) = NG (t,x) = Gy (t,x),

2.3
L.(t,x) =L, (t,x;0,N) = (Lo*---*Ly) (t,x), forn>1. (2:3)
—_——
n + 1 times of Lo
Then by (2.2) and Itd’s isometry, f(¢,x) satisfies the integral equation
flt,z) = J3(t,z) + (f x Lo) (¢, z). (2.4)

Apply this relation recursively:

f(tax> = Jg(tvx> + ([Jg + (f *£0>] *'CO) (t,IL’)
= J5(t,x) + (J§ * Lo) (t,x) + (f * L) (¢, 2)

n—1

= Jo(tx)+ > (T3 * Li) (tx) + (f * L) (t, ).

1=0

It follows from (2.7) below and Definition 2.1(3) that (f » £,,) (¢, z) converges to 0 as n — o0,
and the sum converges to (J3 » K) (¢, ), where

K(t,x) = K(t,z;v,\) = iﬁi(t, TV, ). (2.5)

=0



Thus
E (u(t,2)®) = J§(t,z) + (J§ » K) (¢, z). (2.6)
A central observation is that /C(¢,z) can be computed explicitly, as we now show. Let
r 2 2 * 2
O(x) = J (2m)"V2e v 2dy,  erf(z) = —J e ¥dy, erfe(z)=1-—erf(x).
—00 \/E 0

Clearly,
®(z) = % (1 + erf(x/ﬁ)) . erf(z) = 20(v22) — 1, erfe(z) = 2 (1 — (W2 )) .

Let I'(-) be Euler’s Gamma function [28].

Proposition 2.2. Let b = \//z\;_%‘ For alln e N and (t,z) e RY x R, let L,(t,x) and K(t,z)

be defined in (2.3) and (2.5) respectively. Then

L.t 7) = G, @% 7 = Lot 2)Ba(t), (2.7)

2

K(t,z) = Gx(t,x) (\/iﬂﬁ + ;\_1/ 5D ()\2\/;>> : (2.8)

(K % Lo) (t,7) = K(t,2) — Lolt,z) (2.9)

Furthermore,

and 3, (Bn(t))l/m < +00, for all m € N*,

Proof. Since I'(1/2) = /7 (see [28, 5.4.6, p.137]), the equation (2.7) clearly holds for n = 0.
Suppose by induction that it is true for n. Using the semigroup property of the heat kernel,

Lo1(t,x) = (L, * Lo) (t,z) = G%(t, x)bw f 371/2(’5 _ s)%ds.

r(5t) Jo
Therefore, (2.7) is obtained by using the Beta integral (see [28, (5.12.1), p. 142])
! n-1 I(1/2)T (24
J sTV2(t — )5 ds = "2 W )n+2 2 ), for t > 0. (2.10)
0 (=)
Because . T
5 1.271,71 5 1.2 n—1
e erf(r) = —, and " = —
47 (e 21



(see [28, 7.6.2, on p.162] for the first equality), we see that for x > 0,

n—1

= 1 T
= (1 + erf(z =g — :_\/Eerr;)F("T“)'

2

Move the term —1/(y/mx) to the left-hand side, choose # = v/7b?t, and then multiply by
Th*G, 2 (t, ) on both sides. Hence, from (2.7), we see that

G

[SIN

(t, ) {\% + 21b? ™D (\/m)] — G (t,x) i 5 = i Lo(t) = K(t,2),

which proves (2.8).
Formula (2.9) is a direct consequence of (2.5). Finally, fix m € N*. Apply the ratio test:

<;B(t<1)>>/_7m - (vaio)” (rr(%)m <)t (2) =0 mamn an)

where we have used [28, 5.11.12, p.141] for the ratio of the two Gamma functions. Therefore,
- (Bn(t))l/m < +00. This completes the proof. ]

n=0

Remark 2.3 (Moment formula via the Fourier and Laplace transforms). If we assume the
existence of a random field solution, then under additional assumptions, one can also obtain
the moment formula by using Fourier and Laplace transforms. In particular, consider the
case where p(u) = Au. Then f(t,z) = E[u(t, )?] satisfies equation (2.4). Assume that the
double transform — the Fourier transform in z and Laplace transform in ¢ — of J2(¢, )
exists. Note that this assumption is rather strong: If the initial data has exponential growth,
for example, p(dz) = e#?ldz with 8 > 0, then Jy(¢,z) has two exponentially growing tails
(see (4.5)), and hence the Fourier transform of JZ(¢,x) in x does not exist in the sense of
tempered distributions. Apply the Fourier transform in x and then the Laplace transform
in ¢ on both sides of (2.4):

LF[f](2,€) = LF[J5] (2,6) + NLF [GT] (2, )LF [f](2,€) -
Solving for LF[f](z,&), we see that

NLF[G] (26
1— XLF[G2] (2,€)

Ff1(z,8) = LF[J5] (2,€) + LF[J2] (z,9).

Apply the Fourier and Laplace transforms to G2(t, x) as follows (see [19, p.135]):

exp (—vt[¢]*/4)
4rvt

. and LF[G?](z,¢) = ! R[z] > 0.

Vavz + €22

FGt )] () =



Now apply the inverse Laplace transform (see [19, (4) on p. 233]) to see that

-1 NLF[GY] (=€) _ p-1 \?
£ [1 — NLF[G?] (z,f)] - £ [«/4yz + [€)2v? — )\2] 0

B vt|€[? A2 A At \/T
—eXp(— 4 )(\/m%—gexp(z)@()\? 5))

Finally, take the inverse Fourier transform of the above quantity to obtain K(t, z) as in (2.8),
together with (2.6).

Assume that p : R — R is globally Lipschitz continuous with Lipschitz constant Lip, > 0.
We need some growth conditions on p: Assume that for some constants L, > 0 and ¢ > 0,

lp(x)]? < L2 (¢ +a?), forall z e R. (2.12)

Note that L, < \/QLipp, and the inequality may be strict. In order to bound the second
moment from below, we will sometimes assume that for some constants [, > 0 and ¢ > 0,

Ip(2)]? = li (¢*+27), forall e R. (2.13)

We shall give special attention to the linear case (the parabolic Anderson model): p(u) = Au
with A # 0, which is a special case of the following quasi-linear growth condition: for some
constant ¢ = 0,

p(z)]> = N (¢* +2?) forallzeR. (2.14)
Recall the formula for (¢, ) in (2.8). We will use the following conventions:

Kt,z):=K(tz;v,)\), Ktz :=K(tz;vL,), (2.15)
Kt ,z):=K(t,z; vl,), Iep(t,x) =K (t,z; v,a,z 2, L,), for all p > 2, ‘

where the constant a,: (< 2) is defined by

2=N/P f T £ 0, p> 2,
apz = /2 if =0, p>2, (2.16)
1 if p=2,

and z, is the universal constant in the Burkholder-Davis-Gundy inequality (see [10, Theorem
1.4]; in particular, z3 = 1), and so

Zp < 24/p, forallp=>2. (2.17)



Note that l%p(t, x) implicitly depends on < through a, ¢, which will be clear from the context.
If p = 2, then K,(¢,2) = K(t,z). For t > 0, define

A t
Ht;v,\) = (1% K) (t,2) = 205 ® (AZ 5) —1 (2.18)
(see Lemma 5.1 for the second equality). In particular, by (2.8) we can write,
A2 A1
; =Gy . 2.1
Kt ) = Gyt) (s 4 () 1)) 219

We also apply the conventions of (2.15) to the kernel functions £, (¢, z; v, \) and H(t;v, \).

Let - and o denote time and space dummy variables, respectively. For 7 >t > 0 and
x,y € R, define

Z(t,z, 7, y; v, 6, A) Jdrfdz Jo(r,2) + (J3(,0) * K(- 050, X)) (1, 2) + ¢ H(r; v, A) ]
G,(t —r,x—2)G, (T —r,y—2)

A2 ¢? [z — y [z =y
" v ]x—y](@( V(t—l-T))_(D( V(T—t)))

FXNE[t+7)G, t+T e —y) — (T —t)G, (T —t,x—y)].  (2.20)

When 7 =t in this formula, we set ®(|z — y|/0) = 1.

Theorem 2.4 (Existence, uniqueness and moments). Suppose that the function p is Lipschitz
continuous and satisfies (2.12), and p € Mg(R). Then the stochastic integral equation (2.2)
has a random field solution uw = {u(t, z), (t,z) € RY x R}. Moreover:

(1) u is unique (in the sense of versions).

(2) (t,z) — u(t,z) is LP(QQ)-continuous for all integers p = 2.

(3) For all even integers p = 2, all T >t >0 and x,y € R,

o, | Sta) + (G K) (t,2) +PH(), ifp=2,
||u(t, 2)|] <{2J§(t,m)+<2J§*IC>( @R, 2 (2.21)
and
E [u(t,z)u (T,y)] < Jo(t,z)Jo (1,y) + Z(t,z, 7, y;v.S, L,) . (2.22)
(4) If p satisfies (2.13), then for all T >t >0 and x,y € R,
[u(t, 2)[[5 = J5(t,2) + (J§ * K) (¢, 2) + ¢* H(2), (2.23)
and
E[u(t,z)u(r,y)] = Jo(t,z)Jo (1,y) + L(t,z, 7, y; 0,5, 1,) . (2.24)
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(5) In particular, if |p(u)|* = N (¢? +u?), then for allT >t >0 and x,y € R,
ut 2)ll; = TGt 2) + (J§ * K) (8,) +6* H(2), (225)

and
E [u(t,x)u (1,y)] = Jo(t,z)Jo (T,y) + Z(t,x, T, y;v,5, \) . (2.26)

This theorem will be proved in Section 3.3. We note that it is not clear if (2.21) holds
when p > 2 is a real number but not an even integer. However, if k € {2,3,---} and
2(k — 1) < p < 2k, then Hu(t,:c)Hf) < |Ju(t, z)|[5, and (2.21) applies to |[u(t, z)||3,-

Corollary 2.5 (Constant initial data). Suppose that |p(u)]? = N\?(¢? +u?) and u is Lebesque
measure. Then for allT >t >0 and z,y € R,

Bluttou(r] = 7
1+(1+¢?) lexp (Xlt - 225‘:5 - y|> erfe (%) — erfe (%)] . (2.27)

where t = (t + 7)/2, and

E[|u(t,z)]’] =1+ (1 + ) H(¢) . (2.28)

Proof. In this case, Jy(t,z) = 1. Formula (2.28) follows from (2.25) and (2.18). By (2.26)
and using Lemma 5.9 to account for the last two terms in (2.20), we see that

E[u(t,x)u(r,y)] =1+ )\QJOthJRdZ [§2 +1+(1+ §2)’H(7”)] G,(t—r,x—2)G, (T —r,y—2)

t

=1+>\2(1+§2)J

0

(H(r) +1) Gy ( —rx— y) dr,

and this last integral is evaluated by Lemma 5.6. [

Remark 2.6. If p(u) = u (i.e., A = 1 and ¢ = 0), then (2.28) recovers, in the case n = 2, the
moment formulas of Bertini and Cancrini [3, Theorem 2.6]. As for the two-point correlation
function, [3, Corollary 2.4] states the integral formula

t

E [u(t, z)u (t,y)] = dsuexp{—(x_y)2+t_s}®< t_5>. (2.29)

0 71'1/33 4us 4y

By Lemma 5.7 below, the integral is equal to

t—2[z—y|

e 4 erfe ((4Vt)_1/2(|x - y| - t)) )

so their result differs from ours. The difference is a term

1 — erfc ((41/t)_1/2|x —y|) = erf ((4Vt)_1/2]x —yl),
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which vanishes when x = y. However, for x # y, this is not the case. For instance, as ¢ tends
to zero, the correlation function should have a limit equal to one, while (2.29) has limit zero.
The argument in [3] should be modified as follows (we use the notation in their paper): (4.6)
on p.1398 should be

Eo! [exp (i’iéﬁ?)] — Lt P (ds)E] lexp (Li‘ﬁ;f)ﬂ + P(T; > t).

The extra term P(T; > t) is equal to

Tl exp <—§—2> ds = erf <ﬁ> = erf (M)
N 2ms3 2s V2t N A

With this term, (2.27) is recovered.

Example 2.7 (Higher moments for constant initial data). Suppose that p(dz) = dz. Then
Jo(t,z) = 1. By (2.21),

at_ztp It
Eflu(t,z)P] <207 "+ 2771 (2 + ?2)p/2 exp (p’g%# :
v
Using (2.17) and (2.16), replace z, by 2,/p, and a, by 2. Thus m,(z) = m, < 2° p* L} /v.
If ¢ = 0, we can replace a,z by V2 instead of 2, which gives a slightly better bound:
m, < 2%p° Lﬁ /v. In particular, for the parabolic Anderson model p(u) = Au, we obtain

m, < 2°p3\*/v, which is consistent with Bertini and Cancrini’s formula: m, = i‘Tip(pQ - 1)

(see [3, (2.40)]).

Corollary 2.8 (Dirac delta initial data). Suppose that |p(u)|?> = N*(s* +u?) and p is the
Dirac delta measure with a unit mass at zero. Then for allt > 0 and x,y € R,

E [u(t, z)u (t,y)] = G,(t,2)G,, (t,y) — ¢* erfc (|z\;£|)

A2 T+y 5 ANt — 202z — g |z —y| — N\t
+ (EG; (t, 5 ) +< > exp( o )erfc (2—\/ﬁ> , (2.30)

E [Ju(t, )] = %K(t,x) LU (2.31)

and

This corollary is proved in Section 3.4.

Remark 2.9. If p(u) = u (i.e.;, A = 1 and ¢ = 0), then (2.31) coincides with the result by
Bertini and Cancrini [3, (2.27)] (see also [4, 2]): E[|u(t, z)|*] = K (t,z). As for the two-point
correlation function, Bertini and Cancrini gave the following integral (see [3, Corollary 2.5]):
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1 2+ (1t eyl 1
t ty)l = T ot d
E[u(t, z)u(t,y)] o eXp{ ot } L At \/83(1 = s)

xexp{—(x;jm;s} <1+ Mexp{%lgs}é( t(12;8))>. (2.32)

This integral can be evaluated explicitly (see Lemma 5.8 below) and coincides with (2.30)
for¢=0and \ = 1.

Example 2.10 (Higher moments for delta initial data). Suppose that p = §y and < = 0.
Let p = 2 be an even integer. Clearly, Jy(t,z) = G,(t,z). Then by (2.21) and (2.9),

p/2

~

E[|u(t, z)[P] < 2P *GE(t,z) + 2(p—2)/2 LP2,7? IC,(t, x)

It follows from (2.8) and (2.17) that for all z € R, m,(x) < Lﬁ zy p/(2v) < 2°p? Li /v. Note
that this upper bound is identical to the case of the constant initial data (Example 2.7).
Concerning the exponential growth indices, we see from (2.8) that

1 2 IA p 24
lim = sup logE[Ju(t, )] < — 2L 4 2. P%

for all a = 0.
t—+0o0 t |:c\>ozt 2V 2]/ ’

¥ I . 12
ﬁence, Ap) < 2 Li. Similarly, A(2) = li/Q after using (2.23). Therefore, ¥ < A(p) <
Ap) < zz Li for all even integers p > 2. The same bounds are obtained for more general
initial data in Theorem 2.12.

The following proposition shows that initial data cannot be extended beyond measures.

Proposition 2.11. Suppose that j1 = (56 (the derivative of the Dirac delta measure at zero).
Let p(u) = Au (A #0). Then (2.2) does not have a random field solution.

The proof of this proposition is given in Section 3.4.

2.2 Exponential Growth Indices
For 8 = 0, define

ME(R) := {,L e M (R) : fReﬁlﬂw(dx) < m}.
Let M (R) denote the set of non-negative Borel measures over R,
MG, (R) = ML (R) A M, (R) and My, (R) = My (R) n M, (R).
Recall the definitions of A(p) and A(p) in (1.6) and (1.7).

13



Theorem 2.12. (1) Suppose that |p(u)|* = 1 (¢* +u?) andp = 2. If¢ = 0, then A(p) = 1 /2
for all pe My, (R) with u # 0; if s # 0, then A(p) = \(p) = +0, for all ue My, (R).
(2) If |p(u)|* < L2 (% +u?) with S = 0 (which implies ¢ = ¢ = 0) and p € ME (R) for some
B >0, then for all even integers p = 2,

Xp) < {ﬂ_ “hE i 0<o<rin,
2, Ly, if B)Vlzf)[/%.
In addition, \ ;
X(z)s{?u”i_p’ Fo<B<a
s L2, if B=32.
(3) Suppose that |p(u)|? = A2 (¢* +u?), A #0. Ifc =0 and B > 22, then A(2) = X\(2) = \2/2

for all pe ./\/lg7+ (R) with pu # 0; if s # 0, then A(p) = A(p) = +0 for all pe My, (R) and
p=2.

This theorem generalizes the results in [10] in several regards: (i) more general initial
data are allowed; (ii) both non trivial upper bounds and lower bounds are given (compare
with [10, Theorem 1.1]) for the Laplace operator case; (iii) for the parabolic Anderson model,
the exact transition is proved (see Theorem 1.3 and the first open problem in [10]) for n = 2
and the Laplace operator case; (iv) our discussions above cover the case where p(0) # 0.
The lower bounds are proved in Section 4.1, the upper bounds in Section 4.2.

Example 2.13 (Delta initial data). Suppose that ¢ = ¢ = 0. Clearly, J, € Mé+ (R) for
2

all # > 0. Hence, the above theorem implies that for all even integers k > 2, %ﬁ < Ak) <
A(k) < 2¢ L2, which recovers the bounds in Example 2.10.

Proposition 2.14. Consider the parabolic Anderson model p(u) = Au, A\ # 0, with the
initial data p(dz) = e~ Pleldx (B >0). Then

_ %4‘8)\641/ if O<ﬁ<%,

A(2) = A2) =1 > . 32
This proposition shows that for all 5 € 10, +00], the exact phase transition occurs, and
hence our upper bounds for A(2) in Theorem 2.12 are sharp. See Section 4.3 for the proof.

(2.33)

3 Proof of Existence, Uniqueness and Moment Esti-
mates

3.1 Some Criteria for Predictable Random Fields

A random field {Z(t,z)} is called elementary if we can write Z(t,x) = Y 1j,4)(t)14(x), where
0 <a<bd Ac Risan interval, and Y is an F,—measurable random variable. A simple

14



process is a finite sum of elementary random fields. The set of simple processes generates
the predictable o-field on R, x R x 2, denoted by P. For p > 2 and X € L* (R, x R, L*(Q)),

set

X, = f 1X (5, )| dsdy < +o0 (3.1)

]R* xR

When p = 2, we write ||X]|,, instead of || X]|,,,. In [35], {{ XdW is defined for predictable
X such that || X||,, < +o0. However, the condition of predictability is not always so easy to
check, and as in the case of ordinary Brownian motion [7, Chapter 3], it is convenient to be
able to integrate elements X that are merely jointly measurable and adapted. For this, let
P, denote the closure in L? (R, x R, LP(Q)) of simple processes. Clearly, P, 2 P, = P, for
2 < p < ¢ < +o0, and according to It6’s isometry, {{ XdW is well-defined for all elements of
P>. The next proposition gives easily verifiable conditions for checking that X € Ps.

Proposition 3.1. Suppose that for some t > 0 and p € [2,+0[ , a random field X =
{X (5,v), (s,y) € ]0,t[{xR} has the following properties:

(i) X is adapted, i.e., for all (s,y) € 10,t[xR, X (s,y) is Fs—measurable;
(i) X is jointly measurable with respect to B(]0,t[ xR) x F;
)

(iii) ||X (o)1 < 4.

t[() ‘ ‘M,p
Then X (-,0) Ljo4(-) belongs to P,.
Proof. Step 1. We first prove this proposition with (ii) replaced by

(ii") For all (s,y) € ]0,¢[xR, [|X(s,y)||, < +o0 and the function (s,y) — X (s,y) from
10, ¢[ xR into LP(2) is continuous.

Fix € > 0 with € < ¢/3. Since || X(-,0
enough so that

t[<')HM,p < +0, choose a = a(e) > max(t, 2/t) large

JJ || X (s,y)Hi Loy(s)dsdy < e.
([1/at—1/a]x[—a,a])®
Due to the LP(Q2)-continuity hypothe51s in (ii"), we can choose n € N large enough so that

for all (s1,41), (S2,92) € [e,t — €] x [—a, a],
t—2/a

€
max {|s1 — sa|, [y1 — y2|} < = X (s1,0) = X(s2,80)l], < -

Choose m € N large enough so that a/m < (t—2/a)/n. Set t; = 1= Q/G) +% with j € {0,...,n}
and z; = ¢ —a with i € {0,...,2m}. Then define

nm t .T = Z Z t]axz t tj+1](t)1]zi7xi+1](x) :

15



Since X is adapted, X(t;,z;) is J;-measurable, and so X, is predictable, and clearly,
Xo.m € Pp. Since X, ,(t, x) vanishes outside of the rectangle [1/a,t—1/a] x [—a, a], we have

2 2
X101 = X%y, = ﬂ 1X (5, 9)]12 Lposg(s)dsdy
([1/a,t—1/a] x[—a,a])®
n—12m—1 41 [Tt ,
22 f f X (t5,2:) = X (s,9)]], dsdy
j=0 =0
— 2m I ptjv1 pzigr
}: ‘[ J‘ ——dsdy
j=0 1=
52a t 2¢t
=c + ¢ e+ — <e+ 2
a

Therefore, X (-,0)1j04((:) € P, S Po.

Step 2. Now we prove this proposition under (ii), assuming that X is bounded. Take a
Y € CF(R?), non-negative, such that supp (¢) < ]0,¢[x] — 1,1[ and {§. ¥ (s,y) dsdy = 1.
Let oy, (s,y) := n2(ns,ny) for each n € N*_ and X, (s,y) := (n * X) (s,y) for all (s,y) €
10, ¢[xR. Note that when we do the convolution in time, X (s,y) is understood to be zero
for s ¢ 10, ¢[.

We shall first prove that )?n(, 0)1jo4(-) € P, for all n € N* and

Xn(+,0) Loy

2<HX@ONNMW2<+w. (3.2)

The inequality (3.2) is true since, by Holder’s inequality,

HX( o) 1j0,4(-) M2 Jf dsdyj E (X*(u,2)) ¥n(s — u,y — z)dudz,

[0,t]xR

which is less than || X (, o>1]0¢[(')”f\42 and is finite by Property (iii).

The condition that supp (¢) < R% x R, together with the joint measurability of X,
ensures that X’n is still adapted. The sample path continuity of )?n in both the space and
time variables implies L?(f2)-continuity, thanks to the boundedness of X. Hence, we can
apply Step 1 to conclude that X, (-, 0)Ljou(+) € Po, for all n e N*.

Property (iii) implies that there is ' < Q such that P(£) = 1 and for all w € ¢,
X (-, 0,w) € L*(]0,t[xR). Now fix w € €. Then

lim H)N(n(, o,w) — X (-, O,w)‘

n—-+0o0

~0
L2(]0,¢[xR) ’

and

o)

LA0AxR) < |[X (0wl 2o xw)
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(see, e.g., [1, Theorem 2.29 (c)]). Thus, by Lebesgue’s dominated convergence theorem,
which applies by (iii),

n—0o0

~ 2
lim HXn o) — X(-, —0.
— l () (0) LQ(]O,t[xR)]

We conclude that X (-,0)1j04(-) € Pa.
Step 3. Now we consider a general X satisfying (i), (ii) and (iii). For M > 0, denote

X(87 y7w)1]0,t[(5) if |X<57 Y, w)| < Mv

0 otherwise.

XM (s,y, w)ljo(s) = {

Since each X™(-,0)1j94((+) is bounded, satisfies (i), (ii) and (iii), and XM (-,0)1)4(-) —
X (5 0)lo(-) in |||y, as M — +oo (by Lebesgue’s dominated convergence theorem), we
conclude from Step 2 that X (-, 0)L04(-) € Po. O

Remark 3.2. The step 1 in the proof of Proposition 3.1 is an extension (but specialized
to space-time white noise) of Dalang and Frangos’s result in [14, Proposition 2], since the
second moment of X can explode at s =0 or s = t.

3.2 [P-bounds on Stochastic Convolutions

We will need an extension of [10, Lemma 2.4] to allow all adapted, jointly measurable and
integrable random fields (see also [20, Lemma 3.4]).

Lemma 3.3. Let G(s,y) be a deterministic measurable function from R* x R to R and let
Z = (Z (s,9), (s,y) € R% x R) be a process with the following properties:

(1) Z is adapted and jointly measurable with respect to B(R% x R) x F;
(2) E [SS[O,t]xR G2t —s,x—y) Z%(s,y) dsdy] < o, for all (t,r) e Ry x R.

Then for each (t,z) € Ry x R, the random field (s,y) €]0,t[xR — G (t —s,x —y) Z (s,y)

belongs to Py and so the stochastic convolution

(g+27) ¢ f G(t—s,2—y) Z (s,y) W (ds,dy) (3.3)

[0,6] xR

15 a well-defined Walsh integral and the random field G x ZW s adapted. Moreover, for all
even integers p = 2 and (t,z) € Ry x R,

H(g * ZW) (t,x)HZ <26t — 2 —0)Z(-0)[3, -
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We note that [10] assumes that Z is predictable. However, using Proposition 3.1, the
proof of this lemma is the same as that of [10].

Proposition 3.4. Suppose that for some even integer p € [2,+w[ , a random field Y =
(Y(t, z), (t,z) e RY x ]R) has the following three properties:

(i) Y is adapted;
(i1) Y is jointly measurable with respect to B (]R"jr X R) x F;
(iii) for all (t,z) e R% xR, ||G,(t — -,z —o)Y(., O)H?W,p < +00.
Then for all (t,x) e R* xR, Gy(t — -, —o)Y(-,0) € Py and the random field

H sz y)Y (s,y) W(ds, dy)

10,t[xR

has the property that if Y has locally bounded p-th moments, that is, for K < R% xR compact,

sup [|Y(¢,2)|[, < +o0, (3.4)
(t,x)eK

which is the case if Y is LP()-continuous, then w is LP(S2)-continuous on R* x R.
Before proving this proposition, we need the following proposition.

Proposition 3.5. There are three universal constants C; = 1, Cy = \2f , and Cy = f?

such that for all s,t with 0 < s <t and v € R,
2 _ O
J drf dz [G roe—z)—G,(t—ry—2z)| <7|x—y| : (3.5)

L dr JR Adz[G,(t =12 —2) = Gy (s — 1z — 2)]° < %\/t -5, (3.6)

f drfRdz [G,(t —r x—2)] < 3—3;\/@ (3.7)
C

(!x—y! . \/|t—s|>
1 y NG )

ff (G,(t—r,x—2)—G,(s—ry— z))2 drdz < 2

R+ xR
where we use the convention that G,(t,-) =0 ift <0

Remark 3.6. Similar estimates can be found in e.g., [33, Lemma 6.2] and [23, Theorem
6.7]. The above is a slight improvement because all three constants are best possible. Since
the values of these constants are not essential here, we refer to [6, Proposition 2.3.9] for the
proof. Note that C; = 1 was not obtained in this reference, but with a slight change in the
last lines of the proof of [6, Proposition 2.3.9(i)], the value C; = 1 can be obtained, and this
is optimal.
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Proof of Proposition 5.4. Fix (t,z) € RY x R. Clearly, X = (X(s,y), (s,y) € ]0,¢[ xR) with
X (s,y) = Y (s,y) G, (t — s,x — y) satisfies all conditions of Proposition 3.1. This implies
that for all (t,z) e R* xR, Y(-,0)G,(t —-,z —o0) € Po. Hence w(t, z) is a well-defined Walsh
integral and the resultlng random field is adapted to the filtration {F;, s = 0}.

Now we shall prove the LP(Q)-continuity. Fix (¢,z) € RY x R. Let B,, and a denote
respectively the set and the constant defined in Proposition 5.3. We assume that (t',2') €
B, ;. Denote

v it <t ) . if ¢ <t
(t*,z*)z{( ) i and (t,i:)z{( ) i

(t,x) ift' >t t',2) ift' >t

Set K, = [1/a,t + 1] x [~a,a]. Let A, = supy er, ||Y (s, y)H which is finite by (3.4). By
Lemma 3.3, we have

lw(t,z) —w (¥, 2)[];
. i , p/2
<ol ( f j 1Y (5, 9)I[2 (Gt — 5,2 —y) = Gu(t' — 5,2" —y)) dsdy)

i p/2
vl ( | [ soipe:-si-v) dsdy)
ty JR

< 27N (L (8,02 )) 4 227 (L (8,02

We first consider L;. Write Ly = Ly (t,t',x,2") + L1o (¢, ', z,2'), where

Luttins) = [ VIR (Gt sz =)= G (¢~ s~ ) dsdy,
([0,t | xR\ Ko

Lis (6.t 2, 2) U Y (5, 9|2 (Go (t = 5,2 —y) — Gy (£ — 5,2 — y)) dsdy.
([0,t ] xR)nKq

By Proposition 5.3,

sup (G (t—s,x—y)— G (t' —s,2' — ) <AG2(t+1—s,2 —y), (3.8)
(t/,I’)EBt’I

for all s € [0,¢'] and |y| = a. Moreover,
([0,t% ] xR\ K4
Therefore, Lebesgue’s dominated convergence theorem implies that

lim Ly, (¢t z,2") = 0.
' ,x")—(t,x)
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By Proposition 3.5, for some constant C' > 0 depending only on v,

Lyo(t, 'z, 2") JJ L(t—s,2—y)—G,{t' —s,2' —y)) dsdy

([0,t5] xR) Ko
< AC (yx /- m) .

Therefore, imy o) L1 (¢, 2,2") = 0.
Now let us consider Ly. Decompose Lo into Loy (¢, ¢, z,2") + Las (t, ¢/, x,2"), where

Lo (4., 2,2) = H Y (5, )2 Gy (i — 5.2 — ) dsdy,
t*t XR \Ka
L2,2 (t7t/7$7 xl) = Ji[ HY(S7Z/)|’12D GV (E_ S, T — y)2 dey

([t+£1xR) K

The proof that limy zn—(e) Lo (8¢, 2,2") = 0 is the same as for Ly, except that (3.8)
must be replaced by

sup G (t—s,2—y) <Git+1—s2—y).
(t/,x/)EBt,z

The proof for Ly, is similar to Ly 2: by Proposition 3.5,

Lo (t,t' 2z, 2") stf(ﬁ (t—s,2—y)dy < ACV|t —t| — 0,

as (t',2') — (t,x). Therefore, limg z1)_(t2) Lo (t', ¢, 2z, 2") = 0, which completes the proof. [

We will need deterministic integral inequalities for the moments of the solution to (2.2).
Define b, = 1 if p = 2 and b, = 2 if p > 2. Recall the formula £, defined in (2.3) and define
the associated functions £, and L, using the convention (2.15).

Lemma 3.7. Suppose that f(t,z) is a deterministic function and p salisfies the growth
condition (2.12). If the random fields w and v satisfy, for allt > 0 and x € R,

wltia) = f(ta)+ [| Gt =50 =)ol (5.0 W(ds,dy)

[0,t] xR

where we assume that G,(t — -,z — o)p(v(+,0)) € Py, then for all even integers p = 2,
: 2
|(Goxp@W) (10)|| < 2 11Gult =2 = 0hplel, o),
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< i <<?2+ HUH?)) *ZOJ,) (t, ).

ot )|} < by £2(8,2) + (@ +1PIE) * Lo, (2 2)

and, assuming (2.13),

o)} > f2( ) + (2 +117) * £, ) (1), (3.9

Proof. For p = 2, by the Ito isometry, (2.12), and the fact that asz = 1 and 2z, = 1,

In particular,

(e, )3 < 12t 2) + (2 + Ilel) * Zoz) (1,2),

and (3.9) is obtained similarly. Now we consider the case p > 2. Clearly,

2

lw(t, )2 < 21f(t2)2 +2||(Gy * p(0)W) (1,2)

p

By Lemma 3.3, we have that

H(G « plv) V) (t,x)HZ < 2|Glt — -,z — )p(v(-, )|y,

If < =0, then ||p(v (s, y))H L2 l|v (s, y)H Otherwise, by (2.12) and subadditivity of the
function x — |z|??,

oo (s, ) < 122072 (2 + o (5,9)][2)
Combining these two cases proves that
2 |Gt =,z = 0)p(v(-,0)) I3y,
<z ia [[ @e-sa—n) (@+lGlR) sy

[0,¢]xR
- ([?2 + ||v(, o)||§] * EO,p) (t,x),

-2

because a; , = by, and a? - = — 2% 1 = 220-D/P for ¢ £ 0 and p > 2. O

2
DS

3.3 Proof of Theorem 2.4

We begin by stating two lemmas.
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Lemma 3.8. The solution (t,x) — Jo(t,z) to the homogeneous equation (2.1) with pu €
My(R) is smooth: Jo € C* (R% x R). If, in addition, p(dz) = f(z)dz, where f is con-
tinuous, then Jy € C* (Ri X R) n C(Ry xR), and if f is a-Hélder continuous, then
Joe C” (RE xR) N Cupa (Ry x R).

Proof. The property Jo € C* (R% x R) is a slight extension of standard results (see [22,
(1.14) on p. 210]). For more details, we refer the interested reader to [6, Section 2.6]. We
only show here that Jy € Cq20 (Ry x R) if p(dz) = f(z)dx and f is a-Holder continuous.
Fix (t,z) and (#,2') € Ry x R with ¢ > ¢. By changing variables appropriately, we see that

Jo(t,x) — Jo(t',2") = J Gy(1,2) (f (x — \/EZ) —f (:c — \/?Z)) dz
R
By the Holder continuity of f, for some constants C' and C’,

| Jo(t, z) — Jo(t, )| < )z|%dz < O |t — ¢

Spatial increments are treated similarly. ]

If the initial data is such that JZ (¢, z) is a constant v?, e.g., u(dx) = vdz, then (JZ « K) (t,z) =
(V2 x K) (t,z) = v*H(t). Clearly,

t 1
25 L) (t,x) = Wfd Jd Gr (s,y) = V2N | — . 3.10
(U * 0) ( CL’) v 0 S\/M R Yy 3 (S y) v T ( )

For general JZ(t,z), we have the following.

Lemma 3.9. Fiz u € Mg(R). Suppose K(t,x) = G,p(t,x)h(t) for some non-negative
function h(t). Then for all (t,z) € R} x R,

(Jg* K) (t,x) < 2v/t |Jg5(2t

(3.11)

where Ji(t,x) = (Gu(t,-) = |u|) (). In particular, for all (t,z) € RY x R,

(J2 %K) (t, A2/t /v | JE (2t x) (1 + 2exp (ﬁ)) <+, (3.12)

4v
(JO * Lo) (t, ) < NA/mt/v |J5(2t, @ )? < +o0. (3.13)

Proof. Assume that y > 0. Write JZ (s,y) as a double integral:

(e )t = [ s [ ay [[Guton = 20600000 - 2
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x Gy (t —s,x —y)h(t — s) p(dz1)p(dz) . (3.14)

Then apply Lemma 5.4 to G, (s,y —21)G, (s, y — 22) and integrate over y using the semigroup
property of the heat kernel and setting z = (z; + 29)/2:

(J§ * K) (t,z) = L ds Jf Gay (5,220 — 21)Gy (t, 2 — 2) h(t — 5) p(dz)p(dz). (3.15)

Applying Lemma 5.5 and then integrating over z; and z proves (3.11). For a signed measure
w, simply replace p by |u|. The inequality (3.13) is proved by choosing h(t) = \?(4mut) =12,

A%
Finally, (3.12) follows from (3.11) by taking h(t) = \/41? + —e o and then using the change
of variable s = u?/a to see that

t _a(t—s)

6\[ ds = \/7/a e®erf (\/ﬂ) < A/m/a e, a > 0. (3.16)

This completes the proof. O

0

Comparing the proofs of (3.12) and (3.13), we can see that (JZ « K) (t,z) < oo if and
only if (JO * Lo) (t,z) < oo: the main issue is the integrability around ¢ = 0 caused by the
factor = t in L.

Proof of Theorem 2.J. Fix an even integer p > 2.

Step 1. Define uy(t,x) = Jo(t, ). By Lemma 3.8, ug(¢, ) is a well-defined and continuous
function over (t,z) € R% x R. We shall now apply Proposition 3.4 with Y = p(ug). We check
the three properties that it requires. Properties (i) and (ii) are trivially satisfied since Y is
deterministic and continuous over R* x R. Property (iii) is also true since, by Lemma 3.7,

by 2 llp (o () Gu(t 0 = )3, < ([ + 3]+ £op) (), (317)

which is finite by (3.10) and Lemma 3.9. Hence, the following Walsh integral is well defined
and is an adapted random field

JJ (uo (s,y)) Gy (t — s,z —y) W (ds,dy) .
[0,¢] xR

The continuity of the deterministic function (s,y) — p(uo (s
boundedness (in the sense of (3.4)). So (¢,z) — I1(t,x) is LP(
Proposition 3.4.

Define uy(t,2) = Jo(t,x) + Li(t,x). Since Jo(t,x) is continuous on R* x R, wuy(t,x) is
LP(Q)-continuous on R¥ x R. Now we estimate its moments. By It6’s isometry,

111(t, )11 = 1lp (ol 0)) Gu(t — -, & = )34
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which equals ([¢? +JZ]| * Lo) (, z) for the quasi-linear case (2.14), and is bounded from above
(see (3.17) with by22 = 1) and below (if p additionally satisfies (2.13)), in which case

([§2+J2] * Lo) (t.x) < || i (t, 2) |3 < ([S2+JZ] * Lo) (t,2) -

Since Jy(t, x) is deterministic and since E[I,(¢,z)] = 0, ||ui(t,z)|[5 = J2(t, x) + || (¢, z)|]5,
and by Lemma 3.7,

st 2)| 2 < byt @) + (62 +8) * Loy) (1,)
< b J3(t,x) + ((62 +b, J3) * l%,,) (t, ),
since b, > 1 and Eop < l%p by (2.5).

In summary, u; is a well-defined random field that satisfies (with & = 1) the four prop-
erties (1)—(4) described just below in Step 2.

Step 2. Assume by induction that for all £ < n and (¢,z) € R} x R, the Walsh integral
Rite) = [[ plus () Gt = 5.0 ) W s, dy)
[0,t]xR
is well defined such that
(1) ug := Jy + I is adapted to the filtration {F;}i~o.
(2) the function (¢,z) — ux(t,z) from R* x R into LP(2) is continuous.

(3) E[ui(t, )] = J2(t,x) + S0 ([¢2 +J2] * L;) (t,z) for the quasi-linear case and it is
bounded from above and below (if p satisfies (2.13)) by

J§(t,x)+z ([s>+J3] * £,) (t,z) < E[ui(t,z)] < Jg(t,x)JrZ ([2+J2] * i) (t, ).

() [fuet, )2 < by R (1) + (640, ) # Ky) (1),

We are now going to define u,.1(¢t,z). We shall apply Proposition 3.4 again, with
Y(s,y) = p(u,(s,y)), by verifying the three properties that it requires. Properties (i)
and (ii) are clearly satisfied by the induction assumptions (1) and (2). By Lemma 3.7 and
the induction assumptions, we establish Property (iii):

by 22116 () Gt =2 = 93, < (32 + a2 = o) (8, 2)
< ([ 400 T3 + (240, )+ Ky | % £0y) (1,2)
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_ ([32 +by, J2] * /’ép) (t, ), (3.18)

by (2.9), and this is finite by Lemma 3.9.
Hence, for all (¢,z) e RY x R, p(uy(-,0)) Gy(t — -, — o) € P, and the Walsh integral

I (t, o) Jf (un (5,9)) Gy (t — s,z —y) W (ds, dy)

[0,t] xR

is a well-defined and adapted random field. By assumption (2), (s,y) — p(u, (s,y)) is LP(§2)-
continuous, so Proposition 3.4 implies that (¢,z) — I,41(t,z) is also LP(€)—continuous.
Define

/U/n+1(t7 I) = J0<t, l’) + In+1(t, .T)

Now we estimate the moments of u,1(¢,z). By Lemma 3.7 and (3.18),

s (1)} < by T () 4+ (5240, JE) + Ky ) ().
As for the second moment, by Lemma 3.7,

To(t,2) + ([ + llually] * Lo) (t,0) < Elug (8, 2)] < J3 (8, 2) + ([ + [ual[5] * Lo) (1, 2).

Substituting the bounds from induction assumption (3) gives

Jtw) + 3 ([ + )« £) (t.2) < Bl (0)] < (o) + 3 ([ + )« T) (4.2),

i=0
In the quasi-linear case, the inequalities become the equality

n

E[u?,,(t,z)] = J2(t, ) Z 242 L) (t, ).

Therefore, the four properties (1) — (4) also hold for k =n + 1.

Step 3.  We claim that for all (¢,x) € R% x R, the sequence {u,(t,x)}, .y is a Cauchy
sequence in LP(2), and we will use u(t,x) to denote its limit. To prove this claim, define
Fo(t,x) = ||ups1(t, z) — un(t,a:)Hf). For n > 1, by Lemma 3.3 and the Lipschitz continuity
of p,

F.(t,x) < (Fn,l * E{J}p) (t,x), with Evo,p(t, x) := Lo (t, x;v, 2, max (Lip,, apz L,)).

By analogy with the convention (2.15), the functions Evmp(t, z) and K(t,z) are defined by

the same parameters as ZOJ,(t,LU). For the case n = 0, we need to use the linear growth
condition (2.12) instead: By Lemma 3.7,

Fo(t,z) < <[§ +J0]*£0p> (t,2) < ([< +J0]*£0p) (t, 2).
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Then apply the above relation recursively:
F(t,z) < (Fn,l x Zo,p) (ta) < < ([52 +J2] * En,p) (t,2) < ([52 + 2]+ Zo,p) (t,2) Ba(t),

by (2.7). Now by Proposition 2.2, for all (¢,z) € R} x R fixed and all m € N*,

i Fi(t, )™ < \([:2 +J2] * Zo,p) (t,x)‘l/mi 1Bi(6)[Y™ < +oo,
i=0 1=0

which proves that {u,(t,)}.en is a Cauchy sequence in LP(2) by taking m = 2.

The moments estimates (2.21), (2.23) and (2.25) can be obtained simply by letting n —
+00 in the conclusions (3) and (4) of the previous Step and using (2.5) and (2.18). Now let
us prove the LP(Q)-continuity. For all a > 0, set K, := [1/a,a] x [—a,a]. Since B,(t) is
nondecreasing, the above LP({2) limit is uniform over K, because

0 ‘l/m

o0
sup |Fy(t, z)|M™ < (Z |Bi(a)\1/m> ( sup ‘([62 +J5] *Evo,p> (t,x)
i=0

i=0 (t,Z‘)GKa t,:E)EKa

By (3.10), (3.13) and the continuity of (¢,z) — Ji(2t,x) over R% x R (see Lemma 3.8), we
see that the r.h.s. is finite. Hence Y. sup(; ,er, [Fi(t, z)|"™ < +o0, which implies that the
function (t,z) — wu(t,z) from R¥ x R into LP(2) is continuous over K, since each u, (¢, ) is
so. As a can be arbitrarily large, we have then proved the L?(Q2)-continuity of (¢, z) — u(t, z)
over RY x R.

The following inequality, which will be used in Step 4, is a direct consequence of the
upper bound (4) of Step 2 and (2.9):

([ # 1l ] = 2oy ) (1.2) < ([ 4, ] #K5) (1,0) (3.19)

Step 4 (Verifications). Now we shall verify that {u(t,z), (¢{,z) € R} x R} defined in
the previous step is indeed a solution to the stochastic integral equation (2.2) in the sense
of Definition 2.1. Clearly, u is adapted and jointly-measurable and hence it satisfies (1) and
(2) of Definition 2.1. The continuity of the function (¢, z) — u(t, z) from R* x R into L* (R)
proved in Step 3, Proposition 3.4 applied to Y = p(u,) and (3.19) imply (3) of Definition
2.1. So we only need to verify that u satisfies (4) of Definition 2.1, that is, u(t, z) satisfies
(2.2) a.s., for all (t,z) e RY x R.

We shall apply Proposition 3.4 with Y'(s,y) = p(u (s, y)) by verifying the three properties
that it requires. Properties (i) and (ii) are satisfied by (1) and (2) in the conclusion part of
Step 3. Property (iii) is also true since, by Lemma 3.7 and also (3.19),

by 22110 (u(,0)) Gult = -2 = )3y, < (@ 1ull2) * £o,) (1.2) < ([2+b, ] K ) (1)
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which is finite by Lemma 3.9. Hence,
p(u(-0) G, (t —x—o)eP,, forall (t,r)eR* xR,

and the following Walsh integral is well defined and is an adapted random field

H G, (t —s,7 —y) W(ds,dy) .

[0,t] xR

Furthermore, by the last part of Proposition 3.4, (t,x) — I(t,z) is LP(2)-continuous, since
by Conclusion (2) of Step 3, (¢,z) — u(t, x) is LP(€2)-continuous.
By Step 3,

un(t ) = Jolt,2) + ﬂe s — ) p (s (5,9)) W (ds, dy)

[0,t] xR

with wu,(t,z) converging to u(t,z) in LP(2). We only need to show that the r.h.s. converges
in LP(Q) to Jo(t, ) + I(t,z). In fact, by Lemma 3.3,

2

j f — ) [p (u(5.9)) — p (un (5,))] W (ds, dy)

[0,t] xR
p

<ztipt [[ G s =)l () — (sl sy,

[0,t]xR

Now apply Lebesgue’s dominated convergence theorem to conclude that the above integral
tends to zero as n — oo because (i) for all (s,y) € |0,¢] x R, ||u, (s,y) — u(s,y)||§ — 0 as
n — +oo; (ii) by Step 2,

lun(s, )12 < by T35, ) + ([52+by ] K ) (59,

and by Step 3, the same upper bound applies to ||u(s, y||122. Finally, by Lemma 3.9 and (2.9),
the above upper bound, multiplied by G%(t — s,z — y), is integrable over [0,¢] x R. This
finishes the proof of the existence part of Theorem 2.4 with the moment estimates.

Step 5 (Uniqueness). Let u and v be two solutions to (2.2) (in the sense of Definition 2.1)
with the same initial data, and denote w(t,z) := u(t,z) — v(t,x). The L?(Q)-continuity—
Property (3) of Definition 2.1-—guarantees that both (¢t,z) — u(t,x) and (t,z) — v(t, z)
are L?*(Q)-continuous since (t,x) — Jo(t,z) is continuous by Lemma 3.8. Then w(t,z) is
well-defined and the function (¢, z) — w(t, z) is L?(2)-continuous. Writing w(t, x) explicitly
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and then taking the second moment, by Ito’s isometry and the Lipschitz condition on p, we
have

Elw(t,z)?] < (E[w?®] » £§) (t,z), where L§(t,z) := Lo (¢, x;v,Lip,). (3.20)
Now we convolve both sides with respect to K*(¢, z) := K(t, z; v, Lip,) and use (2.9) to obtain
(E[w’] » K*)(t, 2) < (E[w?] « £+ K*)(t, 2) = (E[w’] » K*)(t, 2) — (E[w’] » L5)(t, ).

So (E[w?]* L&) (¢, ) = 0, which implies by (3.20) that E[w(¢,z)?] = 0 for all (¢,x) € R* xR.
Therefore, we conclude that for all (t,z) € R x R, u(t,z) = v(t, x) as.

Step 6 (Two-point Correlations). In this last step, we prove the properties (2.22),
(2.24) and (2.26) of the two-point correlation function. Let u(t,z) be the solution to (2.2).
Fix 7 > t € R and z,y € R. Consider the L*(Q)-martingale {U(s;t, ), s € [0,t]} defined
by

U(s;t,x) == Jo(t,x) + J: JR G,(t—r,x— z)p(u(r,2))W (dr,dz) .

Then U(t;t,x) = u(t,z) and E[U(s;t,x)] = Jo(t,z). Similarly, we define the martingale
{U(s;1,y), s € [0,7]}. The mutual variation process of these two martingales is, for all
s € [0,t],

U(5t,x),U(s57,y), = fo dTJRdZ PP (u(r,2) Gt —row = 2)G, (1 =1,y = 2).

Hence, by 1t6’s lemma, for every s € [0,t], E[U(s;t,z)U(s;T,y)] is equal to
Jo(t,x)Jo (1,y) + J drf dz E[p* (u(r,2))| G, (t —r,z — 2)G, (T — 1y — 2) .
0 R
Finally, we choose s =t and note that E [u(t, z)u(7,y)] = E [u(t,2)U(t; 7, y)] to get
E[u(t,x)u (1,y)] =Jo(t, z)Jo (T, y)
(3.21)
fdrfdsz u(r, )2 Gyt — 1z —2)G, (T =1,y — 2).

Then (2.22), (2.24) and (2.26) follow from Lemma 5.9. This completes the whole proof of
Theorem 2.4. [

3.4 Proofs of Corollary 2.8 and Proposition 2.11
Proof of Corollary 2.8. In this case, Jo(t,z) = G,(t,z) and N*J2(t,z) = Lo(t,x). So, by
(2.25) and (2.9),

E [Ju(t, z)]*] = pﬁo@ z) + ; (Lo * K) (t,2) + <> H(D),

28



yielding (2. 31) By (2.26) (see also the equivalent formula (3.21)), E[u(t,z)u(t,y)] =
Jo(t,z)Jo (t,y) + A\2I, where

I —J drf dz (§2+$IC(7‘, %) +§2'H(r)) Gt =z — )Gt — 1y — 2).

Use Lemma 5.4 to replace the last two factors by G, o(t — 1,z — (z + y)/2)Ga, (t — 1,z — ),
so that z appears in only one factor. Then use formula (2.19) and the semigroup property
of the heat kernel to see that

1 T+y T4y 1 A2
L () s ) (P20) = 6y (1,25) 2 |
2 (K(r,-) Gy(t—r ) 5 Gy 5 - + o (1+H(r))
Therefore,
¢ A2 T4y T4y 1
= | Go (t —r,z— 2+—Gz<t, ))’H +1 -I-Gz(t, > )d.
J() 2 ( T, y) (<§ 4y 2 2 ( (T) ) 3 9 W r
Then apply Lemmas 5.6 and 5.10 to evaluate the remaining integrals over dr. O]

Proof of Proposition 2.11. If pn = 6y, then Jy(t, z) = %Gl,(t,x) = —2G,(t,r). Suppose that
(2.2) has a random field solution w(t,z). Fix (t,x2) € R% x R. Hence, by (2.2) and Ito’s
isometry (see (2.4)), |[u(t,z)||5 = J3(t,z). Therefore,

(G2 * llp(wlly) () = A2 (G * [Julls) (t.2) = N (G} * Jg) (t, ).

Write out the space-time convolution and apply the formulas in Lemma 5.4 to see that it
equals

1 5 s(t — s) s
47”/3 J «/st—s deng( 13 7y_t$)
ZQ—Fﬂ ds
47TV3 f s%24/s t—s [ ’

where Z ~ N (0,vs(t — s)/(2t)) is a normal random variable. The expectation is equal to
- % + 2 t§ , and the last two terms yield a finite integral, but not the first term, so we

conclude that (G2 « |[p(u )HQ) (t,x) = +oo. This violates Property (3) of Definition 2.1. [

4 Upper and Lower Bounds on Exponential Growth
Indices

Because the quasi-linear case corresponds to the case where L, = [, = |A\| and < = ¢ = g,
part (3) of Theorem 2.12 is a direct consequence of parts (1) and (2). Hence, in the following,
we only need to prove parts (1) and (2). We first recall a lemma.

Lemma 4.1 ([10]). For 2 <a <b < +o0, AMa) < \(b) and A(a) < A(b).
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4.1 Proof of the Lower Bound

By the moment formula (2.23), we can bound the second moment of u(t,x) from below
provided we have a lower bound on Jy(¢,z). The next lemma gives such a bound.

Lemma 4.2. Assume that € My (R) and p # 0. For any € > 0 and £ € |0,v], there
exists a constant ace, > 0 such that

Jo(t, @) = aegplie 1oof(t) Ge(t,x), for allt > e and x € R.

Proof. 1t suffices to prove that

g(t,z) = CJ;Z((ZQ;)) = @LeXp (— Cnt') i x—2) p(dy)

2ut 2&t

is strictly bounded away from zero for t € [¢, 40 and = € R. Notice that for 0 < < v,

2
O et it ) N S

S 26t vt * 206 —v)t = 2u =6t

Thus for ¢ € [e, +o0],

glt,z) > @Le_“"yiw(dy) > @Le_wﬁfw(dy)
=/2m(v = §)§e/v (Gye(e, ) * 1) (0) =: e,

which proves the lemma. We remark that (G,_¢(e,-) * 1) (0) is strictly positive and finite
because p € My 4 (R), p# 0, and G,_¢(e,y) > 0 for all y € R. O

Proof of Theorem 2.12(1). Due to Lemma 4.1, we only need to estimate A(2). Assume first
that ¢ = 0. Fix € > 0. For £ € |0, v[, use Lemma 4.2 to choose a = a.¢, > 0 such that

Jo(t, @) = 1o (t, @) := a L yoof(t) Ge(t, x).
By (2.8) and since ®(0) = 1/2,

4
lpt

l4
K(t,z) = ﬁK(t,x), with K (t,x) := Gu(t,x) et .

Set f(t,z) = E (u(t,z)?). By (2.23) and the above two inequalities, f(¢,z) > % (13, * K) (t,z).
By Lemma 5.4,

o ! - 721/
(12, + K) (t,2) = — eliufG» (t_(” f)s’x)e -



Notice that for s € [e, ],

Gy (t _ @x) > G (t, ) ¢t

v vt — (v —E&)e’
and
% s
te_ZTd 1 t l%sd 4V l%e lgt
sz — | e wds=——=|e v —e W |.
£ Vs \/%Je zﬁﬁ( )
Since t > e,
2a2\/v &t < -9 )
BxK)(tr)> = Ge(t,x)y | ———— (e —1].
(o, + K) (t.2) /Tt g( ) vt — (v —§)e
Thus

1 1
limsup — sup log f(t,x) = lierinf — sup log f(t,x)

t—+00 |x|>at —t® |x|>at

1 1 (t—o) 14 2
> lim - sup log (e v Gs(t,.ﬁﬁ)) _ e Y
t—+0o0 |z|>at 2
The r.h.s. is positive for a < /&/v li /2. Since £ € ]0,v[ is arbitrary, we conclude that
AR2) =12 /2.
As for the case ¢ # 0, for all pe My, (R), f(t,z) = s> H(t) and hence

4

1 1 !
li?_l)glf - |S|L;I;t log f(t,x) > tlirg : log (¢ H(t)) = ﬁ >0, forall a>0.
Therefore, A\(2) = o0, which implies A\(2) = co. This proves part (1). O

4.2 Proof of the Upper Bound

We need two lemmas.

Lemma 4.3. For allt >0, s >0, >0 and x € R, denote

21+ 29

H(x;B,t,5) := sup Gay(s,22 —21)Gx (t,x —

(21,22)eR2

) exp (= Blar] = Beal)

Then

1'2 .
s o0 (1) i lel <vBt,
27r1/1\/7§exp (=28 x| +vB%t) if|z] =vpt.
In particular, for allz e R, >0,t >0 and s > 0,

exp (—28|z| + v B°t) . (4.1)

H(m;ﬁ,t,s)é{

1
H(z;B,t,s) <
(z; 8 ) 2nvA/ts
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Proof. We only need to maximize over (z1,29) € R? the exponent

Z1TRZ2 2
O S Gl ) MPTIRRP N

4us vt

By the change of variables u = %522 w = %32 we have that

LT st fu—wl) > E 98] = f(w).
vs vt vt

Hence, we only need to minimize f(w) for w € R. Hence,

_ i if |z| < vt
min f(w) = 4 2
weR 20|z| —vt e if x| = v Bt
This also implies (4.1) since i—i > 23|z — vt 5° for all z € R. O

Lemma 4.4. Suppose ju € M%, (R) with § > 0. Set C' = Sp e’ ®|pl(dz). Let K(t,z) =
Gy 2(t, x)h(t) for some non-negative function h(t). Then

2 c? —28 x|+ B2t
’]0 (t, x) < %6 , (42)
2 t h t _
(Jo* K) (t,x) < ZC—e—w'v’E'*”ﬁ%J ht=5) 4, (4.3)
TvA/T 0 \/g

Proof. Clearly,
[ o(t, z)| < (squy (t.x —y) e’“') Leﬁ'”'\u\(dy)-

yeR

The supremum is determined by minimizing (x;l/ ?2 + B ly| over y € R, which has been done

in the proof of Lemma 4.3, and (4.2) follows. The proof of (4.3) is similar to Lemma 3.9.
By (3.15) and Lemma 4.3,

(J§* K) (t,z) < L H(z; B,t,s)h(t — s)ds ”eﬁ'“*5'22'\u\(d21)\u\(dzz)

— (J}R eﬂ|¢||u|(dx))2LtH(x;ﬁ,t,s)h(t — s)ds.

Then apply (4.1). O

_ Note that one can apply the bound in (3.12) to (2.21) and then Lemma 4.4 to get
A(2) < L2 /+/2. But we need a better estimate with v/2 replaced by 2. This gap is due to
the factor 2 in J§(2t, x) of (3.12), coming from Lemma 5.5, which is not optimal.
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Proof of Theorem 2.12(2). Assume that ¢ = 0. We first consider X\(2). Set f(t,z) =
E(u(t,z)?). Fix § > 0. Without loss of generality, assume that u € MZ(R) is non-negative;
otherwise, simply replace all p below by |u|. By (2.8),

- . L L Lyt
K(t,r) < h(t)Gy(t,z), with h(t) = it + o exp |

so (2.21) implies that
f(t,2) < Jg(t ) + (J5(,0) * Gy (- 0)h()) (t, ).

By Lemma 4.4, (2.10) and (3.16),

2 2 72 4
f(t,x) <0_6—25|w|+vﬁ2t + L 1 + e% o 2Blal+v it
’ 2t 2m1/213/2,/t \ 2

Therefore, for a > 0,

C? B2 uvt—2B at
sup f(t,z) <——e +

C* L 1 e
|z|>at 2mvt 277-1/27/3/2\/%

_+€4U) e~ 2Bat+v 2t
5 .

Now, the exponential growth rate comes from the second term, and

Lt gv L
—L— 2Bat+vft<0 = a>-—+ 1.
4v Pat+vp “ 2 8v
Therefore,
- , _ 1 Bv L,
A2) <inf{a>0: limsup— sup log f(t,z) <0, < — + .
t—o U jz>at 2 8v
Noti hat the f . Bv L . d o f < L2 d; o f S L2
otice that the function 8 +— 5~ + &5 18 decreasing for B < 52 and increasing for 8 > 32,

with minimum value Lf, /v, and MZ, (R) < Mé‘% /e (R) for g = % This yields the desired
upper bound.

Now fix an even integer p > 2. Because the definition of A(p) differs from that of A(2)
by the use of ||u(2§,9(:)||1277 we only need to make the following changes in the above proof:
(1) Replace f(t,z) by Hu(t,a:)Hi (2) As in (2.21), replace JZ(t,z) by 2J2(t,z). (3) Replace
K(t,z) by Izp(t, ), which is equivalent to replacing L, everywhere by v/2z, L,. This proves
(2). O
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4.3 Proof of Proposition 2.14
For a > 0 and 8 € R, define

B, 5(z) i= e #7® (%) + PP (af/gx> , (4.4)

which is a smooth version of the continuous function e??! (see Figure 1). Equivalently, by
Proposition 5.11(ii),

Eup(z) = e P92 (P14 G, (1,0) (z) . (4.5)

Note that the function (e« G,(t,-)) (z) is the solution to the homogeneous heat equation
(2.1) with initial condition p(dz) = e?l#ldx. See Proposition 5.11 below for its properties.

Eq,—0.5(2)
0.6/ 1\
x - B X
-8 0 8
(a) The case 8 >0 (5 =0.1). (b) The case <0 (8 = —0.8)

Figure 1: The dashed lines in both figures denote the graph of e?1*l. The solid lines from top
to bottom are E, s(x) with the parameter a ranging from 1 to 6 for Figure la and from 6 to
1 for Figure 1b . The parameter S controls the asymptotic behavior near infinity while both

a and  determine how the function e?!*! is smoothed at zero. The larger a is, the closer
Ea”g(()) is to 1.

Recall (]28, 7.12.1]) that

—x2/2

—x2/2
1—®(z) ~ Jore asx — 400 and D(x) ~ \jﬂ ™ as r — —o0. (4.6)

Proof of Proposition 2.14. The fact that A(2) is bounded above by the expression in (2.33)
follows from Theorem 2.12 since u € ./\/lg L(R), for any ' < . We now establish the
corresponding lower bound on A(2). Set f(t,z) = E(u(t,z)?). If u(dr) = e #lldz with
B> 0, then by (4.5), Jo(t,z) = e *//2E,, _ 5(z) and by Proposition 5.11 (iv),

J2(t,z) = ¥ e (— 3 \/E) By _a5(2). (4.7)
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By (4.5) and the lower bound in (4.7),
F(tw) = e 202 (= pyut) (7211 Gu(t, ) (2).

Thus by (2.25) and the fact that K(t,2) = G, s(t, z) exp (A t),

f(t,z) = Lte v(t=s) p? ( Bm) —eﬁf (6_25 G, (t — g, )) (x)ds.

Noticing that by Proposition 5.11 (ii) and (vi),

— . S 2 2” -
<€ 28 | . G,/ <t_ 57)) (I’) 2/32 v(t— )Ey(t,,) Qﬁ(l') > 626 (t /2)E%t772ﬁ(1'),

we have that
CZERIE
Choose an arbitrary constant ¢ € [0, 1[. The integral above is bounded by
Jy 309 (- p =) ¥as z 02 (< piti=an) [ freas
- (— /T ar) (3 - ).

2, [T A
f(t,z) = E%ty,w(a:)eﬁ ”tJ o P2

0

Hence,

f(t,) = Eu _y5(x) eﬁz’jt(lf)z( BW) (e4v —e 421) :

By Proposition 5.11 (v), for o > 0,
sup Ew y3(x) = Ev _y5(at).

|z|>at

Notice that

Eu _,5(at) = 7' (- [25\/g + a\/g] ﬂ) +e 2Pt ([a\g — 25\@] ﬂ) .

If a\/g — 25\/? > 0, i.e.,, @« = B, then by (4.6), the second term dominates and so for
large t,

By _,4(at) = e 2Pt

|

Otherwise, if @ < Sv, then by (4.6), for large t,

s [+ e {-(Fr+ )1}
et28 ®<+[fi25r] > 2ﬁ\0ziﬁl/\\/¥ )
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So E,t/a—25(at) has a lower bound with the exponent —2 S at if a > Bv, and —(8°v+a?/v)t
if @ < Bv. For large t, by (4.6), the function ¢ — ®2 (*6«/V(1 — c)t) contributes to an
exponent 3% v(c — 1)t. Therefore,

1
lim — sup log f(t,x) >

=0 T |p|>at

2

cﬁ21/+§—25a ifa>pv,
(c-1)Bv+2 -2 ifa<fu.

We now consider two cases. First, suppose that § < #22? This inequality is equivalent

to#+%>ﬁu,amd

A A
052V+E—26a>0©a<025+w.

Therefore, A\(2) = cgﬁ + % in this first case. Second, suppose that § > #;Tc This

inequality is equivalent to \/ ’\f +(c—1)3v2 < B, and

M2 M
(c—l)ﬁ21/+E—a—>0<:>a<\/Z—I-(c—l)ﬂQy?.

v

Therefore, A\(2) > \/’\T4 + (¢ —1) B2 in this second case.

Finally, since the constant ¢ can be arbitrarily close to 1, this completes the proof. [

5 Appendix

e7rb2t Vo
Lemma 5.1. Tgé e ud (\/27rb2u> du = M S N )

, , m?ug(v/axt2a) |
Proof. By integration by parts, the L.h.s. equals e(b—zwu) — b% éﬁds. O]
0

Lemma 5.2. For 0 < a < b, we have that

log(b/a) _ 1
ﬁ = 5 (51)

The function f(s) = (a—s)(b—s)log 2= is nonincreasing over s € [0, a[ with infepoqf f(5) =

a—s

limg ., f(s) = (b —a)log(b — a) and sup . f(s) = f(0) = ablog(b/a).

Proof. Note that (5.1) is equivalent to the following statements:

1
10gs>1, s€]0,1] — s—logs=1, sel01[.
— S
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Let g(s) = s — log s with s € ]0,1[. Then g¢(s) is nonincreasing since ¢'(s) = (s — 1)/s < 0
for s € ]0,1[ . So g(s) = lim,_,; g(s) = 1. This proves (5.1). As for the function f(s), we
only need to show that

h—
Fi(s)=(b—a)— (a+b—2s)log—> <0, forallsel0,af.
a—s
Let g(s) = - fb__‘IZS —log Z:‘; . Then the above statement is equivalent to the inequality g(s) < 0

for all s € [0,a]. By (5.1), we know that

b—a b 1 1
- —log- < (b— )<
90) =5y o <0 —a) <a+b b) 0

So it suffices to show that

2(b—a) N 11
(a+b—2s)2 b—s a—s

g'(s) =

<0, forallsel0,aqaf.

After simplifications, this statement is equivalent to

a’® + b?

2*
s*—(a+b)s+ 5

>0 forall sel0,af,

which is clearly true since the discriminant is —(a + b)* < 0. This completes the proof. [J

Proposition 5.3. Fiz (t,z) € R% x R. Set
!/ / £ / 1 /
B, =3t 2)eRE xR:0<t <t~|—§, and |x' — x| <1p.

Then there ezists a = az, > 0 such that for all (t',2") € By, s € [0,'] and |y| = a,
G,(t'—s,2" —y) <G,(t+1—s,2—y).

Proof. Since t + 1 — s is strictly larger than ¢’ — s, the function y — G,(t +1 — s,z — y)
has heavier tails than y — G,(t' — s,2" — y). Solve the inequality G,(t + 1 — s,z —y) =
G,(t' — s,2’ —y) with ¢, ¢, z, 2" and s fixed, which is a quadratic inequality for y:

Bl ) et ) P (t;)

t'—s t+1—s

Let y+(t,x,t', 2, s) be the two solutions of the corresponding quadratic equation, which are

(t+1—s)'—a{t' —s) £ [(t+1=5)(t' —s){(x—2')>+ (t+1—t)rlog (tffl_?)}]l/Q
t+1—t '
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Then a sufficient condition for the above inequality is |y| = |y;| v |y_|. So we only need to
show that
sup  sup |y (t,z,t' 2", s)| v |y_(¢, z,t' 2, s)| < +oo.
(t',2")eBg, s€[0,t']

By Lemma 5.2, the supremum over s € [0, '] of the quantity under the square root is

+1

]’

t
ft+1)|(z—2) +(t+1—-t)rlog

so, using the fact that |2’ — x| < 1, we see that

(t+ 1) (|2 + 1) + |2t/ + [t + D) {1+ (t+ 1 —)wlog (51) 1]

t+1-—-t
Finally, because t' € [0, + 1/2], this r.h.s. is bounded above by

’y+’ Vv |y,| <

1/2
2t + 1) (|2 + 1)+ (26 + 1) + 2 [(t +1) ((t +1/2) + £(t + 1)vlog (tj—l)ﬂ
<(4t+3)(Jx| + 1) + 2(t + 1)\/1 + v/e =: a,

since sup,.slogt = slogt ’S:t/e = L for all ¢ > 0. This completes the proof. O
Lemma 5.4. For allt, s > (1 and x, y € R, we have that G%(t,z) = \/;WG%(L:L’) and
Gu<t7x)GV (Sa y) =G, (ti_ss, %) G, (t +5,%— y)

The proof of this lemma is straightforward and is left to the reader.

Lemma 5.5. For all x, z1 29 € R and t,s > 0, denote z = %, Az = 21 — 2.
Then Gy (t,x — 2) G1 (s,Az) < %Gl((élt) v s,x —21)Gi((4t) v s,z — z9), where a v b :=

max(a, b).

Proof. Since (20 — 1) + [(x — 21) + (. — )] = (z — 21)® + (z — 2)?,

Cr (b — 2) Gy (s, A2) < —_e = Gty =
’x — 2 S’ z) < e 2((4t)vs
! ! 2m\/ts
[
4, 0x2|p
Lemma 5.6. SB(H(T) + 1) Goy(t —, x)d7“=%<eA o erfe (%) — erfc <2‘jl|7t)>, t>=0.

Proof. Let u = %. By [19, (27) on p. 146] and [19, (5) on p. 176], the Laplace transform of
the convolution equals

ST ey G S W] A
£l 116 - e ¥ (T i) - o

Then apply the inverse Laplace transform (see [19, (14) on p. 246]). O
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z2 t—r
Lemma 5.7. Sé dr%@ < t;—;) = exp (%J“) erfc ('ﬁ;i), for allt =0 and x # 0.

j

Proof. Suppose that « # 0. Denote the integral by I(t). Let

f(t) = ﬂe_%ft, and g(t) = ew® («/(21/)—1t> :
Clearly, I(t) is the convolution of f and g. By [19, (28) on p. 146],

LIf1(=) = 2exp (—laly/2/v)

Notice g(t) = (H(t) + 1)/2 with H(t) = H(t;v,1). By the calculations in Lemma 5.6,

1 1
ol = s =@y T e - )y
Hence,
olely/z/v
LI1)(=) = £I()Ll9)(=) - -
vz (Ve - 7m)
Then apply the inverse Laplace transform (see [19, (16) on p. 247]). O

Lemma 5.8. (2.32) equals G,(t,x)G, (t,y) + G (t, 5*) exp (%) erfc (%)

Proof. After some simplifications, the integral in (2.32) is equal to the following integral:
1 z+yy (v~ (z —y)
o (1 220) [ .
Adrvt 2 2 Jo 5 £/ g3 eXP 4uts

1 t(1—s) t(1—s)
x<m+ 7rt/uexp< o )@( T))

Denote this integral by I;(1) + I5(1). Suppose that = # y and let

7o) = 1 M e (—(‘754;&)2) 9(6) = 2 ) = %exp (i—) 2 ( ;_) |

Then by [19, (28) on p. 146] and [19, p.135],

exp (—'m?/‘%\/z)
L[N](2) = L[f1(2)L[g](2) = 2nv/vt 7 :
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Apply the inverse Laplace transform (see [19, (6) on p. 246]),

2/t (z —y)?
exp | —
NG 4vst
As for I1(s), by the calculation in Lemma 5.7,
Vrt L Vi
2v \z—t/(4v)  2\/vz(z—t/(4v)) )"

Li(s) =

), for s > 0.

L[n](z) =

Hence,
le—y|\/Z 1

LIL(z) = LIFI)LA) (=) = mte™ Vo .
Vz (V2= Vi)

Then apply the inverse Laplace transform (see [19, (16) on p. 247]). Finally, let s = 1 and
use Lemma 5.4. ]

Lemma 5.9. Forv>0,7 >

t>
f Gy (r,x)dr = f' <<I>( 2 ) (\%)) + 271G, (1, 2) — 26, (¢, z),

t
f drf dzG,(t —r,x — 2)G, (T — 1,y — 2)
R

=yl (CD (@) o (Q))
v v(T+1) v(T — 1)

+(t+t)G, (t+t,x—y) —(T—1t) G, (T—t,z —y).

0 and x,y € R,

and

Proof. Consider the first integral. The case where x = 0 is straightforward, so we assume
that = # 0. This r.h.s. is obtained by a change variable and integration by parts:

T 2|ZL'| |CE|/\/E 1 , 2|:L‘| 67u2/2 || //vT |:E|/\/E 671"2/2
f G,(r,z)dr = — o2y = Y _f du
¢ v Jyyer V2mu? v 2mu e el V2T
For the second integral, use the semigroup property to integrate over z, and then apply the
first integral. a

Lemma 5.10. Fort >0 and z, y € R, we have that

fot G, (r,z)Gy(t —r,y)dr = #ﬁerﬂj (\/Lﬂ <\’% i %)) ’

where v and o are strictly positive. In particular, by letting x = 0, we have that

tGo(t_Tvy)dr 1 erfe ( |y| ) < \/H
0 A 2mvr 2\/vo V2 S Vv

Go (t,y)-
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Proof. By [19, (27) on p. 146], the Laplace transform of the integrand is
exp (—\/2,2 (% + %))
2Vroz? 7

and the conclusion follows by applying the inverse Laplace transform (see [19, (3) on p.
245]). As for the special case z = 0, use formula [28, (7.7.1, p.162)] to write

2 © g—a’r? 2 |
erfe(z) = e f ¢ dr < e f dr = e,
T o 1+72 T o 1+72

L [Gu<'a {L‘)] (Z) L [GU<'a y)] (Z) =

Proposition 5.11 (Properties of E, g(x), defined in (4.5)). Fora >0 and § € R,

(i) Eqo(z) =1;

[32 vt

(ii) forv >0, (e’ G,(t,") () =2 E,p(z);
(111) First and second derivatives:

a2 82 402

2
Blo(e) = By — e "5 + 5 Fup(o);

(iv) for B > 0, ?17l < B, 5(x) < e’* + e B for B < 0, ®(y/apB) Ei/gzﬁ(x) < E.p(x) <
—|B=.
€ )

(v) for B >0, x— E,3(z) is strictly conver and inf,eg E, 5(z) = E,5(0) = 20(8+/a) > 1,

2a
with Ej 5(0) = ﬁq/%e’% +28°®(B+/a) > 0; for B < 0, the function E,s(r) is
decreasing for x = 0 and increasing for x < 0, and it therefore achieves its global mazi-
82a

mum, at zero: sup,cp o g(x) = E,5(0) = 20(8y/a) < 1, with E) 5(0) = B4/ Ze” = +
232 ®(8/a) <0;

(vi) Concerning a — E, 3(x),

0Eap(z) B oxp (*M)
2a '

oa V2ra

Hence, for all x € R, then the function a — E,z(x) is nondecreasing for f > 0 and
nonincreasing for [ < 0.
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Proof. (i) is trivial. (ii) follows from a direct calculation. (iii) is routine. We now prove (iv).
Suppose that § < 0. We first prove the upper bound. Since z — E, s(z) is an even function,
we shall only consider z > 0. We need to show that for z > 0

e Prd (CLBT;JE) + 7P <af/—ak$) < P

. - aB+x ) __ —af—x
or equivalently from the fact that 1 — & <—ﬁ ) = <—ﬁ ),

F(z):= €’ (%) —e P (“5;”) >0.

F'(z) = BeP*® <%) +Be o (aﬂ\/gx) <0

and lim,_, 1, F'(z) = 0 by applying I'Hopital’s rule. Note that F'(0) = ®(—+/a f)—P(y/af) >
0 since 8 < 0.
As for the lower bound, when § < 0, we have that

Eg () = { P (%) + 5 <af/;”>]2

> ctlgr (2 5 et (yag).

Ja

This is true since

Then the lower bound follows from the fact that e=27¢l > E,,5(x). As for the first part of
(iv) where 8 > 0, the upper bound holds since ®(-) < 1. The lower bound is a consequence
of the upper bound with 8 < 0 and the equality E,s(z) = ¢°® + e7#* — E, _4(z), which
follows from (4.4). Now consider (v). We first consider the case 8 > 0. By (iii), £ 5(z) > 0
for all z € R, hence x — E, g(x) is strictly convex. By (4.5),

2 a0
i ( ) Be_agf eﬂy(Ga(Lx_y)_Ga(17x+y))dy'
dx 0

Clearly, if * > ()0, then G,(l,z —y) — Guo(1l,z + y) = ()0 for all y > 0. Hence,
dE.s() = (< )0 if x = (<£)0 and the global minimum is achieved at = 0. Similarly, for
5 < 0, we have L E, 5(z) < (=)0 if z > (<)0 and the global maximum is taken at z = 0,
which then implies that E} 5(0) < 0 (note that by (iii), £} 5(z) exists). As for (vi),

ie?ﬂxcp afFx  aftax o _a262+x2
oa Va ) 2a32\2rn P 2a ‘

Adding these two terms proves the formula for aE“a’—g(“T). The rest is clear. O
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