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Abstract: We study space-time regularity of the solution of the nonlinear stochas-
tic heat equation in one spatial dimension driven by space-time white noise, with
a rough initial condition. This initial condition is a locally finite measure µ with,
possibly, exponentially growing tails. We show how this regularity depends, in a
neighborhood of t = 0, on the regularity of the initial condition. On compact sets in
which t > 0, the classical Hölder-continuity exponents 1

4− in time and 1
2− in space

remain valid. However, on compact sets that include t = 0, the Hölder continuity of
the solution is

(
α
2 ∧

1
4
)
− in time and

(
α ∧ 1

2
)
− in space, provided µ is absolutely

continuous with an α-Hölder continuous density.
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Hölder continuity, moments of increments.

1 Introduction
Over the last few years, there has been considerable interest in the stochastic heat equation
with non-smooth initial data:

(
∂
∂t
− ν

2
∂2

∂x2

)
u(t, x) = ρ(u(t, x)) Ẇ (t, x), x ∈ R, t ∈ R∗+,

u(0, ·) = µ(·) .
(1.1)
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In this equation, Ẇ is a space-time white noise, ρ : R → R is a globally Lipschitz function
and R∗+ = ]0,∞[ . The initial data µ is a signed Borel measure, which we assume belongs to
the set

MH(R) :=
{

signed Borel measures µ, s.t.
∫
R
e−ax

2|µ|(dx) < +∞, for all a > 0
}
.

In this definition, |µ| := µ+ + µ−, where µ = µ+ − µ− and µ± are the two non-negative
Borel measures with disjoint support that provide the Jordan decomposition of µ. The set
MH(R) can be equivalently characterized by the condition that

(|µ| ∗Gν(t, ·)) (x) =
∫
R
Gν(t, x− y)|µ|(dy) < +∞ , for all t > 0 and x ∈ R, (1.2)

where ∗ denotes the convolution in the space variable and Gν(t, x) is the one-dimensional
heat kernel function

Gν(t, x) := 1√
2πνt

exp
{
− x2

2νt

}
, (t, x) ∈ R∗+ × R . (1.3)

Therefore, MH(R) is precisely the set of initial conditions for which the homogeneous heat
equation has a solution for all time.

The use of non-smooth initial data is initially motivated by the parabolic Anderson model
(in which ρ(u) = u) with initial condition given by the Dirac delta function µ = δ0 (see [2],
and more recently, [13, 7, 6]). These papers are mainly concerned with the study of the
intermittency property, which is a property that concerns the behavior of moments of the
solution u(t, x). Some very precise moment estimates have also been recently obtained by
the authors in [5].

In this paper, we are interested in space-time regularity of the sample paths (t, x) 7→
u(t, x), and, in particular, in how this regularity depends, in a neighborhood of {0} ×R, on
the regularity of the initial condition µ.

Given a subset D ⊆ R+ × R and positive constants β1, β2, denote by Cβ1,β2(D) the set
of functions v : R+ × R→ R with the following property: for each compact subset D̃ ⊂ D,
there is a finite constant c such that for all (t, x) and (s, y) in D̃,

|v(t, x)− v(s, y)| ≤ c
(
|t− s|β1 + |x− y|β2

)
.

Let
Cβ1−,β2−(D) := ∩α1∈ ]0,β1[ ∩α2∈ ]0,β2[ Cα1,α2(D) .

When the measure µ has a bounded density f with respect to Lebesgue measure, then the
initial condition is written u(0, x) = f(x), for all x ∈ R. When f is bounded, then the Hölder
continuity of u was already studied in [28, Corollary 3.4, p.318]. In [2], it is stated, for the
parabolic Anderson model, that if the initial data satisfies

sup
t∈[0,T ]

sup
x∈R

√
t (µ ∗Gν(t, ◦)) (x) <∞, for all T > 0,
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then u ∈ C 1
4−,

1
2−

(R∗+ × R), a.s. In [21, 26], this result is extended to the case where the
initial data is a continuous function with tails that grow at most exponentially at ±∞.
Hölder continuity properties for more general parabolic problems, but mainly on bounded
domains rather than R, and with function-valued initial conditions, have aso been obtained
using maximal inequalities and stochastic convolutions: see [3, 20, 25].

Sanz-Solé and Sarrà [24] considered the stochastic heat equation over Rd with spatially
homogeneous colored noise which is white in time. Assuming that the spectral measure µ̃ of
the noise satisfies ∫

Rd

µ̃(dξ)
(1 + |ξ|2)η < +∞, for some η ∈ ]0, 1[, (1.4)

they proved that if the initial data is a bounded ρ-Hölder continuous function for some
ρ ∈ ]0, 1[, then

u ∈ C 1
2 (ρ∧(1−η))−,ρ∧(1−η)− (R+ × R) , a.s. ,

where a ∧ b := min(a, b). For the case of space-time white noise on R+ × R, the spectral
measure µ̃ is Lebesgue measure and hence the exponent η in (1.4) (with d = 1) can take the
value 1

2 − ε for any ε > 0. Their result ([23, Theorem 4.3]) implies that

u ∈ C( 1
4∧

ρ
2)−,( 1

2∧ρ)− (R+ × R) , a.s.

More recently, in the paper [6, Lemma 9.3], assuming that the initial condition µ is a
finite measure, Conus et al obtain tight upper bounds on moments of u and bounds on
moments of spatial increments of u at fixed positive times: in particular, they show that u
is Hölder continuous in x with exponent 1

2 − ε.
Finally, in the papers [11, 12], Dalang, Khoshnevisan and Nualart considered a system of

stochastic heat equations with vanishing initial conditions driven by space-time white noise,
and proved that u ∈ C 1

4−,
1
2−

(R+ × R).
The purpose of this paper is to extend the above results to the case where µ ∈ MH(R).

In particular, we show that u ∈ C 1
4−,

1
2−

(
R∗+ × R

)
. Indeed, it is necessary to exclude the line

{0} × R unless the initial data µ has a density f that is sufficiently smooth (see part (2) of
Theorem 3.1). Indeed, in this case, the regularity of u in the neighborhood of t = 0 can be
no better than the regularity of f .

Recall that the rigorous interpretation of (1.1), used in [5], is the following integral
equation:

u(t, x) = J0(t, x) + I(t, x),

I(t, x) =
∫∫

[0,t]×R
Gν (t− s, x− y) ρ (u (s, y))W (ds, dy) , (1.5)

where J0(t, x) := (µ ∗Gν(t, ·)) (x), and the stochastic integral is interpreted in the sense of
Walsh [28]. The regularity of (t, x) 7→ J0(t, x) is classical (see Lemma 2.3), so the main effort
is to understand the Hölder-regularity of (t, x) 7→ I(t, x) at t = 0. This is a delicate issue.
In Theorem 3.1 and Proposition 4.3, we give sufficient conditions for sample path Hölder
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continuity of this function at t = 0 . However, we have not resolved this question for all
initial conditions µ. We do, however, show that for certain absolutely continuous µ with a
locally unbounded density f , the function t 7→ u(t, x) from [0, 1] into Lp(Ω,F , P ), can have
an optimal Hölder exponent that is arbitrarily close to 0 (see Proposition 3.5).

The difficulties for proving the Hölder continuity of u lie in part in the fact that for initial
data satisfying (1.2), E [|u(t, x)|p] need not be bounded over x ∈ R, and mainly in the fact
that the initial data is irregular. Indeed, standard techniques, which isolate the effects of
initial data by using the Lp(Ω)-boundedness of the solution, fail in our case (see Remark 3.2).
Instead, the initial data play an active role in our proof. We also note that Fourier transform
techniques are not directly applicable here because µ need not be a tempered measure.

Finally, it is natural to ask in what sense the measure µ is indeed the initial condition
for the stochastic heat equation? We show in Proposition 3.4 that u(t, ·) converges weakly
(in the sense of distribution theory) to µ as t ↓ 0, so that µ is the initial condition of (1.1)
in the classical sense used for deterministic p.d.e.’s [14, Chapter 7, Section 1].

The paper is structured as follows. In Section 2, we recall the results of [5] that we
need here. Our main results are stated in Section 3. The proofs are presented in Section 4.
Finally, some technical lemmas are listed in the appendix.

2 Some preliminaries
Let W = {Wt(A), A ∈ Bf (R) , t ≥ 0} be a space-time white noise defined on a complete
probability space (Ω,F , P ), where Bf (R) is the collection of Borel sets with finite Lebesgue
measure. Let

F0
t = σ (Ws(A), 0 ≤ s ≤ t, A ∈ Bf (R)) ∨N , t ≥ 0,

be the natural filtration of W augmented by the σ-field N generated by all P -null sets
in F . For t ≥ 0, define Ft := F0

t+ = ∧s>tF0
s . In the following, we fix the filtered

probability space {Ω,F , {Ft, t ≥ 0}, P}. We use ||·||p to denote the Lp(Ω)-norm (p ≥ 1).
With this setup, W becomes a worthy martingale measure in the sense of Walsh [28], and∫∫

[0,t]×RX(s, y)W (ds, dy) is well-defined in this reference for a suitable class of random fields
{X(s, y), (s, y) ∈ R+ × R}.

In this paper, we use ? to denote the simultaneous convolution in both space and time
variables.

Definition 2.1. A process u =
(
u(t, x), (t, x) ∈ R∗+ × R

)
is called a random field solution

to (1.5) if the following four conditions are satisfied:

(1) u is adapted, i.e., for all (t, x) ∈ R∗+ × R, u(t, x) is Ft-measurable;

(2) u is jointly measurable with respect to B(R∗+ × R)×F ;

(3)
(
G2
ν ? ||ρ(u)||22

)
(t, x) < +∞ for all (t, x) ∈ R∗+ × R, and the function (t, x) 7→ I(t, x)

mapping R∗+ × R into L2(Ω) is continuous;
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(4) u satisfies (1.5) a.s., for all (t, x) ∈ R∗+ × R.

Assume that ρ : R 7→ R is globally Lipschitz continuous with Lipschitz constant Lipρ > 0.
We consider the following growth conditions on ρ: for some constants Lρ > 0 and ς ≥ 0,

|ρ(x)|2 ≤ L2
ρ

(
ς2 +x2

)
, for all x ∈ R . (2.1)

Note that Lρ ≤
√

2 Lipρ, and the inequality may be strict. Of particular importance is the
linear case (the parabolic Anderson model): ρ(u) = λu with λ 6= 0, which is a special case of
the following quasi-linear growth condition: for some constant ς ≥ 0,

|ρ(x)|2 = λ2
(
ς2 +x2

)
, for all x ∈ R . (2.2)

Define the kernel functions:

K(t, x) = K(t, x; ν, λ) := G ν
2
(t, x)

 λ2
√

4πνt
+ λ4

2ν e
λ4t
4ν Φ

λ2

√
t

2ν

 , (2.3)

H(t) = H(t; ν, λ) := (1 ?K) (t, x) = 2eλ
4 t
4ν Φ

λ2

√
t

2ν

− 1, (2.4)

where Φ(x) =
∫ x
−∞(2π)−1/2e−y

2/2dy, and the formula on the right-hand side is explained in
[5, (2.18)]. Some functions related to Φ(x) are the error functions erf(x) = 2√

π

∫ x
0 e
−y2dy and

erfc(x) = 1− erf(x). Clearly, Φ(x) =
(
1 + erf(x/

√
2)
)
/2.

Let zp be the universal constant in the Burkholder-Davis-Gundy inequality (see [8, The-
orem 1.4], in particular, z2 = 1) which satisfies zp ≤ 2√p for all p ≥ 2. Let ap,ς be the
constant defined by

ap,ς :=


2(p−1)/p if ς 6= 0, p > 2,√

2 if ς = 0, p > 2,
1 if p = 2.

Notice that ap,ς ∈ [1, 2]. Denote K(t, x) := K(t, x; ν,Lρ), K̂p(t, x) = K(t, x; ν, ap,ςzp Lρ) and
H(t) := H(t; ν,Lρ), Ĥp(t) = H(t; ν, ap,ςzp Lρ).

The following theorem is mostly taken from [5, Theorem 2.4], except that (2.7) comes
from [5, Corollary 2.8].

Theorem 2.2 (Existence, uniqueness and moments). Suppose that the function ρ is Lipschitz
continuous and satisfies (2.1), and µ ∈ MH(R). Then the stochastic integral equation (1.5)
has a random field solution u = {u(t, x), (t, x) ∈ R∗+ × R}. Moreover:
(1) u is unique (in the sense of versions).

5



(2) (t, x) 7→ u(t, x) is Lp(Ω)-continuous for all integers p ≥ 2.
(3) For all even integers p ≥ 2, all t > 0 and x, y ∈ R,

||u(t, x)||2p ≤

J
2
0 (t, x) +

(
J2

0 ?K
)

(t, x) + ς2H(t), if p = 2,
2J2

0 (t, x) +
(
2J2

0 ? K̂p
)

(t, x) + ς2 Ĥp(t), if p > 2.
(2.5)

(4) In particular, if |ρ(u)|2 = λ2 (ς2 +u2), then for all t > 0 and x, y ∈ R,

||u(t, x)||22 = J2
0 (t, x) +

(
J2

0 ?K
)

(t, x) + ς2 H(t). (2.6)

Moreover, if µ = δ0 (the Dirac delta function), then

||u(t, x)||22 = 1
λ2K(t, x) + ς2H(t). (2.7)

The next lemma is classical. A proof can be found in [5, Lemma 3.8].
Lemma 2.3. The function (t, x) 7→ J0(t, x) = (µ ∗Gν(t, ·)) (x) with µ ∈ MH(R) is smooth
for t > 0: J0(t, x) ∈ C∞

(
R∗+ × R

)
. If, in addition, µ(dx) = f(x)dx where f is continuous,

then J0 is continuous up to t = 0: J0 ∈ C∞
(
R∗+ × R

)
∩ C (R+ × R), and if f is α-Hölder

continuous, then J0 ∈ C∞
(
R∗+ × R

)
∩ Cα/2,α (R+ × R).

For p ≥ 2 and X ∈ L2 (R+ × R, Lp(Ω)), set

||X||2M,p :=
∫∫

R∗+×R
||X (s, y)||2p dsdy < +∞ .

When p = 2, we write ||X||M instead of ||X||M,2. In [28],
∫∫
XdW is defined for predictable

X such that ||X||M < +∞. Let Pp denote the closure in L2 (R+ × R, Lp(Ω)) of simple
processes. Clearly, P2 ⊇ Pp ⊇ Pq for 2 ≤ p ≤ q < +∞, and according to Itô’s isometry,∫∫
XdW is well-defined for all elements of P2. The next lemma, taken from [5, Lemma 3.3],

gives easily verifiable conditions for checking that X ∈ P2. In the following, we will use ·
and ◦ to denote the time and space dummy variables respectively.
Lemma 2.4. Let G(s, y) be a deterministic measurable function from R∗+ × R to R and let
Z =

(
Z (s, y) , (s, y) ∈ R∗+ × R

)
be a process with the following properties:

(1) Z is adapted and jointly measurable with respect to B(R2)×F ;

(2) E
[∫∫

[0,t]×R G2 (t− s, x− y)Z2 (s, y) dsdy
]
<∞, for all (t, x) ∈ R+ × R.

Then for each (t, x) ∈ R+ × R, the random field (s, y) ∈ ]0, t[ ×R 7→ G (t− s, x− y)Z (s, y)
belongs to P2 and so the stochastic convolution

(G ? ZẆ )(t, x) :=
∫∫

[0,t]×R
G (t− s, x− y)Z (s, y)W (ds, dy)

is a well-defined Walsh integral and the random field G ? ZẆ is adapted. Moreover, for all
even integers p ≥ 2 and (t, x) ∈ R+ × R,∣∣∣∣∣∣(G ? ZẆ )(t, x)

∣∣∣∣∣∣2
p
≤ z2

p ||G(t− ·, x− ◦)Z(·, ◦)||2M,p .
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3 Main results
If the initial data is of the form µ(dx) = f(x)dx, where f is a bounded function, then it is
well-known (see [28]) that the solution u is bounded in Lp(Ω) for all p ≥ 2. In addition, by
the moment formula (2.5),

sup
(t,x)∈[0,T ]×R

||u(t, x)||2p ≤ 2 C2 +
(
2 C2 + ς2

)
Ĥp (T ) < +∞, for all T > 0, (3.1)

where C = supx∈R |f(x)| = sup(t,x)∈R+×R J0(t, x). From this bound, one can easily derive
that that u ∈ C1/4−,1/2−

(
R∗+ × R

)
, a.s.: see Remark 4.6 below. We will extend this classical

result to the case where µ can be unbounded either locally, such as µ = δ0, or at ±∞, such
as µ(dx) = e|x|

adx, a ∈ ]1, 2[ , or both. However, for irregular initial conditions, Hölder
continuity of u will be obtained only on R∗+×R, and this continuity extends to R+×R when
the initial condition is continuous.

We need a set of initial data defined as follows:

M∗
H(R) :=

{
µ(dx) = f(x)dx, s.t. ∃a ∈ ]1, 2[ , sup

x∈R
|f(x)|e−|x|a < +∞

}
.

Clearly,M∗
H(R) ⊂MH(R), andM∗

H(R) includes all absolutely continuous measures whose
density functions are bounded by functions of the type c1e

c2|x|a with c1, c2 > 0 and a ∈ ]1, 2[
(see Lemma 5.1).

Theorem 3.1. Suppose that ρ is Lipschitz continuous. Then the solution u(t, x) = J0(t, x)+
I(t, x) to (1.5) has the following sample path regularity:

(1) If µ ∈MH(R), then I ∈ C 1
4−,

1
2−

(
R∗+ × R

)
a.s. Therefore,

u = J0 + I ∈ C 1
4−,

1
2−

(
R∗+ × R

)
, a.s.

(2) If µ ∈ M∗
H(R), then I ∈ C 1

4−,
1
2−

(R+ × R), a.s. If, in addition, µ(dx) = f(x)dx, where
f is a continuous function, then

u ∈ C (R+ × R) ∩ C 1
4−,

1
2−

(
R∗+ × R

)
, a.s.

If µ ∈ M∗
H(R) and, in addition, µ(dx) = f(x)dx, where f is an α-Hölder continuous

function, then

u ∈ C(α2 ∧ 1
4)−,(α∧ 1

2)− (R+ × R) ∩ C 1
4−,

1
2−

(
R∗+ × R

)
, a.s.

This theorem will be proved in Section 4.2.
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Remark 3.2. The standard approach (e.g., that is used in [10, p.54 –55], [24], [26] and [28])
for proving Hölder continuity cannot be used to establish the above theorem. For instance,
consider the case where ρ(u) = u and µ = δ0. The classical argument, as presented in [26,
p.432] (see also the proof of Proposition 1.5 in [1] and the proof of Corollary 3.4 in [28]),
uses Burkholder’s inequality for p > 1 and Hölder’s inequality with q = p/(p− 1) to obtain

||I(t, x)− I(t′, x′)||2p2p ≤Cp,T
(∫ t∨t′

0

∫
R

dsdy (Gν(t− s, x− y)−G(t′ − s, x′ − y′))2
)p/q

×
∫ t∨t′

0

∫
R

dsdy (Gν(t− s, x− y)−G(t′ − s, x′ − y′))2 (1 + ||u(s, y)||2p2p

)
.

However, by Hölder’s inequality, (2.7) and (2.3),

||u(s, y)||22p ≥ ||u(s, y)||22 ≥ Gν/2(s, y) 1√
4πνs

.

Therefore, ||u(s, y)||2p2p ≥ CGν/(2p)(s, y)s1/2−p. The second term in the above bound is not
ds–integrable in a neighborhood of {0}×R unless p < 3/2. Therefore, this classical argument
does not apply in the presence of an irregular initial condition such as δ0.

Example 3.3 (Dirac delta initial data). Suppose ρ(u) = λu with λ 6= 0. If µ = δ0, then
neither x 7→ J0(0, x) nor x 7→ limt→0+ ||I(t, x)||2 is a continuous function. Indeed, this is
clear for J0(0, x) = δ0(x). For limt→0+ ||I(t, x)||2, by (2.7),

||I(t, x)||22 = ||u(t, x)||22 − J
2
0 (t, x) = λ2

2ν e
λ4t
4ν Φ

λ2

√
t

2ν

Gν/2(t, x) .

Therefore, limt→0+ ||I(t, x)||22 equals 0 if x 6= 0, and +∞ if x = 0. (We note that I(0, x) ≡ 0
by definition.)

Example 3.3 suggests that ||I(t, x)||22 tends to λ2

4ν δ0(x) as t→ 0+ in the weak sense, i.e.,

lim
t→0+

〈
||I(t, ·)||22 , φ(·)

〉
= λ2

4ν φ(0), for all φ ∈ C∞c (R),

where C∞c (R) denotes smooth functions with compact support. Furthermore, the follow-
ing proposition shows that the random field solution of (1.5) satisfies the initial condition
u(0, ◦) = µ in a weak sense.

Proposition 3.4. For all φ ∈ C∞c (R) and µ ∈MH(R),

lim
t→0+

∫
R

dx u(t, x)φ(x) =
∫
R
µ(dx) φ(x) in L2(Ω).
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The proof of this proposition is presented in Section 4.5. In the next proposition, rather
than considering sample path continuity, we shows that the map t 7→ I(t, x), from [0, 1]
into Lp(Ω,F , P ), may be quite far from 1

4–Hölder continuous at the origin, and in fact, the
Hölder-exponent may be arbitrarily near 0.

Proposition 3.5. Suppose ρ(u) = λu with λ 6= 0 and µ(dx) = |x|−a dx with 0 < a ≤ 1, so
that J0(0, x) = |x|−a is not locally bounded. Fix p ≥ 2. Then:

(1) If a < 1/2, then for all x ∈ R, limt→0+ ||I(t, x)||p ≡ 0.
(2) There is c > 0 such that for all t > 0, ||I(t, 0)||p ≥ c t

1−2a
4 .

In particular, when 1
2 < a < 1, limt→0+ ||I(t, 0)||p = +∞, and when 0 < a < 1

2 , t 7→ I(t, 0)
from R+ to Lp(Ω) cannot be smoother than 1−2a

4 –Hölder continuous (in this case 1−2a
4 ∈

]0, 1/4[ ).

Proof. (1) By the moment bounds formulas (2.5) and (2.6), it suffices to consider second
moment and show that limt→0+ ||I(t, x)||2 ≡ 0. For some constant Ca > 0, the Fourier
transform of µ is Ca|x|−1+a (see [27, Lemma 2 (a), p. 117]), which is non-negative. Hence
Bochner’s theorem (see, e.g., [15, Theorem 1, p.152]) implies that µ, and therefore x 7→
J0(t, x), is non-negative definite. Such functions achieves their maximum at the origin (see,
e.g., [15, Theorem 1, p. 152]), and so

0 < J0(t, x) ≤ J0(t, 0) =
∫
R

dy 1
|y|a

Gν(t, y) = 2
∫ +∞

0
dy e

−y2/(2νt)

ya
√

2πνt
.

Then by a change of variable and using Euler’s integral (see [19, 5.2.1, p.136]),

J0(t, 0) = 2
∫ +∞

0
du e−u

(2νtu)a/2
√

2πνt

√
2νt

2
√
u

=
Γ
(

1−a
2

)
√
π(2νt)a/2 , (3.2)

where Γ(x) is Euler’s Gamma function [19]. By (2.6) and the above bound,

||I(t, x)||22 =
(
J2

0 ?K
)

(t, x) ≤
∫ t

0
ds

 λ2√
4πν(t− s)

+ λ4

2ν e
λ4(t−s)

4ν

 C

sa
.

The integral converges if and only if a < 1. Finally, using the Beta integral (see [19, (5.12.1),
p.142]) ∫ t

0
ds sµ−1(t− s)ν−1 = tµ+ν−1 Γ(µ)Γ(ν)

Γ(µ+ ν) , for t > 0, µ > 0 and ν > 0, (3.3)

we see that ||I(t, x)||22 ≤ C1 t
1/2−a + C2 t

1−a, so limt→0+ ||I(t, x)||22 = 0 when a < 1/2.
(2) Now consider the function t 7→ I(t, 0) from R+ to Lp(Ω). Since (x− y)2 ≤ 2(x2 + y2),

as in (3.2), we see that

J0(t, x) =
∫
R

dy 1
|y|a

Gν (t, x− y) ≥ 1√
2

exp
(
−x

2

νt

) Γ
(

1−a
2

)
√
π

1
(νt)a/2 .
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Hence,
J2

0 (t, x) ≥ CGν/2

(
t

2 , x
)
t1/2−a.

Since K(t, x) ≥ Gν/2(t, x) λ2
√

4πνt by (2.3),

||I(t, x)||22 ≥
C ′ exp

(
−2x2

νt

)
t

∫ t

0
ds s1/2−a = C ′′ exp

(
−2x2

νt

)
t

1−2a
2 .

If x = 0, then for all integers p ≥ 2, since I(0, x) ≡ 0,

||I(t, 0)− I(0, 0)||2p ≥ ||I(t, 0)||22 ≥ C ′′ t
1−2a

2 .

When 0 < a < 1/2, the function t 7→ I(t, 0) from R+ to Lp(Ω) cannot be smoother than
η-Hölder continuous at t = 0 with η = 1−2a

4 ∈ ]0, 1/4[ .

4 Proofs of the main results
Establishing Hölder continuity relies on Kolmogorov’s continuity theorem. We present a
formulation of this result that is suitable for our purposes.

4.1 Kolmogorov’s continuity theorem
For x = (x1, . . . , xN) and y = (y1, . . . , yN), define

τα1,...,αN (x, y) :=
N∑
i=1
|xi − yi|αi , with α1, . . . , αN ∈ ]0, 1]. (4.1)

This defines a metric on RN that is not induced by a norm except when αi = 1 for i =
1, . . . , N . We refer the interested readers to [16, Theorem 4.3] or [22, Theorem 2.1, on p.
62] for the isotropic case (α1 = · · · = αN). For the anisotropic case (where the αi are not
identical), see [17, Theorem 1.4.1, p. 31] and [11, Corollary A.3, p. 34]. We state a version
(Proposition 4.2 below), which is a consequence of these references and is convenient for our
purposes.

Definition 4.1. (Hölder continuity) A function f : D 7→ R with D ⊆ RN is said to be locally
(and uniformly) Hölder continuous with indices (α1, . . . , αN) if for all compact sets K ⊆ D,
there exists a constant AK such that for all x, y ∈ K, |f(x)− f(y)| ≤ AK

∑N
i=1 |xi − yi|αi .

Proposition 4.2. Let {X(t, x) : (t, x) ∈ R+ × Rd} be a random field indexed by R+ × Rd.
Suppose that there exist d + 1 constants αi ∈ ]0, 1], i = 0, 1, . . . , d, and p >

∑d
i=0 α

−1
i such

that, for all n > 1, there is a constant Cp,n such that

||X(t, x)−X (s, y)||p ≤ Cp,nτα0,...,αd ((t, x), (s, y)) ,
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for all (t, x) and (s, y) in Kn := [1/n, n] × [−n, n]d, where the metric τα0,...,αd is defined in
(4.1) with N = d + 1. Then X has a modification which is locally Hölder continuous in
R∗+ × Rd with indices (βα0, . . . , βαd), for all β ∈ ]0, βp[, where βp = 1 − p−1∑d

i=0 α
−1
i . In

addition, for all 0 ≤ β < βp,

E


 sup

(t,x),(s,y)∈Kn
(t,x)6=(s,y)

|X(t, x)−X(s, y)|
[τα0,...,αd((t, x), (s, y))]β


p < +∞.

If the compact sets Kn can be taken to be [0, n]× [−n, n]d, then the same local Hölder conti-
nuity of X extends to R+ ×Rd and the moment bound on increments of X applies with this
new Kn.

4.2 Moment estimates
The main moment estimate that is needed for this proof is the following.

Proposition 4.3. Fix ς ∈ R and µ ∈MH(R).
(1) For all p ≥ 2 and n > 1, there is a constant Cn,p such that for all t, t′ ∈ [1/n, n] and

x, x′ ∈ [−n, n],
‖I(t, x)− I(t′, x′)‖p ≤ Cn,p

(
|t− t′|

1
4 + |x− x′| 12

)
. (4.2)

(2) If, in addition, µ ∈M∗
H(R), then there exists a constant C∗n,p such that for all (t, x),

(t′, x′) ∈ [0, n]× [−n, n], (4.2) holds with Cn,p replaced by C∗n,p.

The proof of this proposition will be given at the end of this section. We note that by
Proposition 3.5, the conclusion in part (2) above is not valid for all µ ∈MH(R).

Assuming Proposition 4.3, we now prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 2.3, we only need to establish the Hölder-continuity state-
ments for I instead of u. Part (1) (respectively (2)) follows from Proposition 4.3(1) (respec-
tively Proposition 4.3(2)) and Proposition 4.2. This proves Theorem 3.1.

The next two propositions are needed to establish Proposition 4.3.

Proposition 4.4. Given ς ∈ R and µ ∈ MH(R), let J∗0 (t, x) = (|µ| ∗Gν(t, ·)) (x) and
h(t, x) = ς2 +2 [J∗0 (t, x)]2. Then we have:
(1) For all n > 1, there exist constants Cn,i, i = 1, 3, 5, such that for all t, t′ ∈ [1/n, n], with
t < t′, and x, x′ ∈ [−n, n],∫∫

[0,t]×R
dsdy h(s, y) (Gν (t− s, x− y)−Gν(t′ − s, x− y))2 ≤ Cn,1

√
t′ − t, (4.3)∫∫

[0,t]×R
dsdy h(s, y) (Gν (t− s, x− y)−Gν(t− s, x′ − y))2 ≤ Cn,3 |x− x′| , (4.4)
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∫∫
[t,t′]×R

dsdy h(s, y)G2
ν(t′ − s, x′ − y) ≤ Cn,5

√
t′ − t . (4.5)

(2) If, in addition, µ ∈ M∗
H(R), then there exist constants C∗n,i, i = 1, 3, 5, such that for all

(t, x), (t′, x′) ∈ [0, n]× [−n, n], (4.3)–(4.5) hold with Cn,i replaced by C∗n,i, i = 1, 3, 5.

Proposition 4.5. Given ς ∈ R and µ ∈MH(R), let J∗0 (t, x) = (|µ| ∗Gν(t, ·)) (x). Then:
(1) For all n > 1, there exist three constants

Cn,2 =
√
πn√
4ν
Cn,1, Cn,4 =

√
πn√
4ν
Cn,3, and Cn,6 =

√
πn√
4ν
Cn,5, (4.6)

such that for all t, t′ ∈ [1/n, n] with t < t′ and x, x′ ∈ [−n, n],∣∣∣((ς2 +2 |J∗0 |
2
)
? G2

ν ? (Gν(·, ◦)−Gν(·+ t′ − t, ◦))2) (t, x)
∣∣∣ ≤ Cn,2

√
t′ − t, (4.7)∣∣∣((ς2 +2 |J∗0 |

2
)
? G2

ν ? (Gν(·, ◦)−Gν(·, ◦+ x′ − x))2) (t, x)
∣∣∣ ≤ Cn,4|x′ − x|, (4.8)∫∫

[t,t′]×R
dsdy

((
ς2 +2 |J∗0 |

2
)
? G2

ν

)
(s, y)G2

ν(t′ − s, x′ − y) ≤ Cn,6
√
t′ − t. (4.9)

(2) If, in addition, µ ∈M∗
H(R), then there exist constants

C∗n,2 =
√
n√
πν
C∗n,1, C∗n,4 =

√
n√
πν
C∗n,3, and C∗n,6 =

√
n√
πν
C∗n,5,

such that for all (t, x), (t′, x′) ∈ [0, n] × [−n, n], (4.7)–(4.9) hold with Cn,i replaced by C∗n,i,
i = 2, 4, 6.

The proofs of these two propositions are given in the Sections 4.3 and 4.4. Assuming
Propositions 4.4 and 4.5, we now prove Proposition 4.3.

Proof of Proposition 4.3. We first prove part (1). Without loss of generality, assume that
µ ≥ 0. Otherwise, we simply replace µ in the following arguments by |µ|. Fix n > 1. By
parts (1) of Propositions 4.4 and 4.5, there exist Cn,i > 0 for i = 1, . . . , 6 such that for all
(t, x) and (t′, x′) ∈ [1/n, n]× [−n, n] with t′ > t, the six inequalities in Propositions 4.4 and
4.5 hold. By (2.1) and Lemma 2.4, for all even integers p ≥ 2,

||I(t, x)− I (t′, x′)||pp ≤ 2p−1zpp Lpρ I1 (t, t′, x, x′)p/2 + 2p−1zpp Lpρ I2 (t, t′ ; x′)p/2
,

where

I1 (t, t′, x, x′) =
∫∫

[0,t]×R
dsdy (Gν (t− s, x− y)−Gν(t′ − s, x′ − y))2 [

ς2 + ||u (s, y)||2p
]
,

(4.10)

I2 (t, t′ ; x′) =
∫∫

[t,t′]×R
dsdy G2

ν (t′ − s, x′ − y)
(
ς2 + ||u (s, y)||2p

)
. (4.11)
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By the subadditivity of x 7→ |x|2/p and since 22(p−1)/p ≤ 4,

||I(t, x)− I (t′, x′)||2p ≤ 4z2
p L2

ρ [I1 (t, t′, x, x′) + I2 (t, t′ ; x′)] .

Notice that

K (t, x; ν, λ) = Υ (t; ν, λ) G2
ν(t, x), with Υ(t; ν, λ) = λ2 + λ4

√
πt

ν
e
λ4t
4ν Φ

λ2

√
t

2ν

.

Denote Υ∗(t) := Υ (t ; ν, ap,ςzp Lρ) < +∞, for all t ∈ R+. Clearly, Υ∗(t) ≤ Υ∗(n) for t ≤ n.
Hence, it follows from (2.5) and (2.4) that

||u (s, y)||2p ≤ 2 J2
0 (s, y) + Υ∗(n)

((
ς2 +2 J2

0

)
? G2

ν

)
(s, y), for s ≤ t ≤ n. (4.12)

We shall use this bound in order to estimate I1 and I2.
We first consider the case where x = x′. Set h = t′ − t. Then

I1(t, t′, x, x) ≤
((
ς2 +2J2

0

)
? (Gν(·, ◦)−Gν(·+ h, ◦))2

)
(t, x)

+ Υ∗(n)
((
ς2 +2J2

0

)
? G2

ν ? (Gν(·, ◦)−Gν(·+ h, ◦))2
)

(t, x).

By parts (1) of Propositions 4.4 and 4.5,

I1(t, t′, x, x) ≤ (Cn,1 + Υ∗(n)Cn,2) |h|1/2.

Similarly, we have that

I2 (t, t′ ; x′) ≤ (Cn,5 + Υ∗(n)Cn,6) |h|1/2.

Hence, for all x ∈ [−n, n] and 1/n ≤ t < t′ ≤ n,

||I(t, x)− I(t′, x)||2p ≤ 4z2
p L2

ρ (Cn,1 + Cn,5 + Υ∗(n) (Cn,2 + Cn,6)) |t′ − t|1/2
. (4.13)

Now consider the case where t = t′ ≥ 1/n. Denote ζ = x′ − x. In this case, I2 = 0. By
(4.12) above and parts (1) of Propositions 4.4 and 4.5,

||I(t, x)− I (t, x′)||2p ≤ 4z2
p L2

ρ [Cn,3 + Υ∗(n)Cn,4] |ζ|.

Combining this with (4.13), we see that

||I(t, x)− I (t′, x′)||2p ≤ C̃p,n
(
|t′ − t|1/2 + |x′ − x|

)
,

for all 1/n ≤ t < t′ ≤ n, x, x′ ∈ [−n, n], where C̃p,n is a finite constant. This proves (1).
The conclusion in part (2) can be proved in the same way by applying parts (2) of

Propositions 4.4 and 4.5 below instead of parts (1). We simply replace all Cn,i above by C∗n,i
for i = 1, . . . , 6. The remaining statements follow immediately. This completes the proof of
Proposition 4.3.
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Remark 4.6 (Case of bounded initial data). In the case where the initial data is bounded:
µ(dx) = f(x)dx, where f is a bounded function such that |f(x)| ≤ C, the conclusions of
Proposition 4.3 follow from the following standard (and much simpler) argument: By (3.1),
for 0 ≤ t ≤ t′ ≤ T , and x, x′ ∈ R

I1(t, t′, x, x′) ≤ AT

∫∫
[0,t′]×R

dsdy (Gν(t− s, x− y)−Gν(t′ − s, x′ − y))2
,

where I1(t, t′, x, x′) is defined in (4.10) and AT is a finite constant. Then by Proposition 5.2,
for some constant C ′ > 0 depending only on ν,

I1 (t, t′, x, x′) ≤ ATC
′
(
|x− x′|+

√
|t′ − t|

)
.

Similarly, I2 (t, t′, x, x′), defined in (4.11), is bounded by ATC
′
√
|t′ − t| with the same con-

stants AT and C ′. Therefore,

||I(t, x)− I (t′, x′)||2p ≤ 4z2
pATC

′
(
|x− x′|+ |t− t′|1/2

)
,

for all 0 ≤ t ≤ t ≤ T and x, x′ ∈ R. The Hölder continuity follows from Proposition 4.2.

4.3 Proofs of part (1) of the Propositions 4.4 and 4.5
Lemma 4.7. For all L > 0, β ∈ ]0, 1[ , t > 0, x ∈ R, ν > 0, and h with |h| ≤ βL, we have
that

|Gν(t, x+ h)−Gν(t, x)|

≤ |h|
(

C√
2νt

+ 1
(1− β)L

) [
Gν(t, x) + e

3L2
2νt {Gν (t, x− 2L ) +Gν (t, x+ 2L )}

]

and

|Gν(t, x+ h) +Gν(t, x− h)− 2Gν(t, x)|

≤ 2|h|
(

C√
2νt

+ 1
(1− β)L

) [
Gν(t, x) + e

3L2
2νt {Gν (t, x− 2L ) +Gν (t, x+ 2L )}

]
,

where C := supx∈R 1
|x| |e

−x2/2 − 1| ≈ 0.451256.

Proof. Fix L > 0 and β ∈ ]0, 1[. Assume that |h| ≤ βL. Define

f(t, x, h) = Gν(t, x+ h) +Gν(t, x− h)− 2Gν(t, x),

I(t, x, h) =

h
−1 G−1

ν (t, x− L)
[
Gν(t, x+ h)−Gν(t, x)

]
if x ≥ 0,

h−1 G−1
ν (t, x+ L)

[
Gν(t, x+ h)−Gν(t, x)

]
if x ≤ 0.
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Clearly, ∣∣∣∣∣ f(t, x, h)
h (Gν(t, x+ L) +Gν(t, x− L))

∣∣∣∣∣ ≤ |I(t, x, h)|+ |I(t, x,−h)| . (4.14)

We will bound |I(t, x, h)| for −βL ≤ h ≤ βL. If x ≥ 0, then

I(t, x, h) = 1
h

( e−
(x+h)2

2νt + (x−L)2
2νt − e−

x2
2νt+ (x−L)2

2νt ),

and so
∂

∂x
I(t, x, h) = − 1

νt
e−

(x+h)2
2νt + (x−L)2

2νt − L

νt
I(t, x, h).

Hence,

|I(t, x, h)| ≤
∫ x

0
(νt)−1e−

(y+h)2
2νt + (y−L)2

2νt dy + L

νt

∫ x

0
|I(t, y, h)| dy + |I(t, 0, h)| .

Let C be the constant defined in the proposition. Then

|I(t, 0, h)| ≤ C√
2νt

e
L2
2νt , for all h ∈ R.

Since |h| ≤ βL,

∫ x

0

1
νt
e−

(y+h)2
2νt + (y−L)2

2νt dy ≤
∫ ∞

0

1
νt
e−

(y+h)2
2νt + (y−L)2

2νt dy = e
L2−h2

2νt

L+ h
≤ e

L2
2νt

(1− β)L.

Therefore,

|I(t, x, h)| ≤ Ct,L,β + L

νt

∫ x

0
|I(t, y, h)| dy, with Ct,L,β :=

(
C√
2νt

+ 1
(1− β)L

)
e
L2
2νt .

Apply Bellman-Gronwall’s lemma (see [18, Lemma 12.2.2]) to get

|I(t, x, h)| ≤ Ct,L,β e
Lx
νt = Ct,L,β e

L|x|
νt ,

and so, by definition of I(t, x, h),

|Gν(t, x+ h)−Gν(t, x)| ≤ Ct,L,β|h| (Gν(t, x+ L) +Gν(t, x− L)) e
L|x|
νt . (4.15)

By symmetry, for x ≤ 0, we get the same bound for |I(t, x, h)|. Hence, from (4.14),

|f(t, x, h)| ≤ 2Ct,L,β|h| (Gν(t, x+ L) +Gν(t, x− L)) exp
(
L|x|
νt

)
. (4.16)
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Finally, some calculations show that(
Gν(t, x+ L)+Gν(t, x− L)

)
e
L|x|
νt

=Gν(t, x)e− L2
2νt +Gν(t, x− 2L)e 3L2

2νt 1{x≥0} +Gν(t, x+ 2L)e 3L2
2νt 1{x≤0}

≤Gν(t, x)e− L2
2νt +

(
Gν(t, x− 2L) +Gν(t, x+ 2L)

)
e

3L2
2νt .

The desired conclusions now follow from (4.15) and (4.16).

Proof of Proposition 4.4 (1). Assume that ς = 0. Set z̄ = (z1 + z2)/2. Set

I(t, x; t′, x′) =
∫∫

[0,t]×R
dsdy [J∗0 (s, y)]2 (Gν (t− s, x− y)−Gν(t′ − s, x′ − y))2

.

Write [J∗0 (s, y)]2 as a double integral and then use Lemma 5.3 to get

I(t, x; t′, x′) =
∫ t

0
ds
∫∫

R2
|µ|(dz1)|µ|(dz2)G2ν(s, z1 − z2)

×
∫
R

dy Gν/2 (s, y − z̄) (Gν (t− s, x− y)−Gν(t′ − s, x′ − y))2
.

(4.17)

In the following, we use
∫

dyG(G−G)2 to denote the dy–integral in (4.17). Expand (G−G)2 =
G2 − 2GG+G2 and apply Lemma 5.3 to each term:

(Gν (t− s, x− y)−Gν(t′ − s, x′ − y))2

= 1√
4πν(t− s)

Gν/2 (t− s, x− y) + 1√
4πν(t′ − s)

Gν/2 (t′ − s, x′ − y)

− 2G2ν

(
t+ t′

2 − s, x− x′
)
Gν/2

(
2(t− s)(t′ − s)
t+ t′ − 2s , y − (t− s)x′ + (t′ − s)x

t+ t′ − 2s

)
.

Then integrate over y using the semigroup property of the heat kernel:∫
R

dy Gν/2(s, y − z̄) (Gν(t− s, x− y)−Gν(t′ − s, x′ − y))2

= 1√
4πν(t− s)

Gν/2 (t, x− z̄) + 1√
4πν(t′ − s)

Gν/2 (t′, x′ − z̄) (4.18)

− 2G2ν

(
t+ t′

2 − s, x− x′
)
Gν/2

(
2(t− s)(t′ − s)
t+ t′ − 2s + s,

(t− s)x′ + (t′ − s)x
t+ t′ − 2s − z̄

)
.

Property (4.3). Set x = x′ in (4.17) and let h = t′ − t. Then 2(t−s)(t′−s)
t+t′−2s + s = t+ (t−s)h

2(t−s)+h
and (4.18) becomes

∫
dy G(G−G)2 =

 1
(4πν(t− s))

1
2

+ 1
(4πν(t′ − s))

1
2
− 1(

πν
(
t+t′

2 − s
)) 1

2

Gν/2 (t, x− z̄)
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+ 1√
4πν(t′ − s)

(
Gν/2 (t′, x− z̄)
Gν/2 (t, x− z̄) − 1

)
Gν/2 (t, x− z̄)

− 1√
πν
(
t+t′

2 − s
)
Gν/2

(
t+ (t−s)h

2(t−s)+h , x− z̄
)

Gν/2 (t, x− z̄) − 1
Gν/2 (t, x− z̄)

:= I1 + I2 − I3 .

We first consider I2. Because 1/n ≤ t ≤ t′ ≤ n, we have that h ∈ [0, n2t], so by Lemma 5.7,
we find after simplification that

|I2| ≤
3
√

1 + n2

4
√
πνt(t′ − s)

G ν(1+n2)
2

(t, x− z̄)
√
h,

and so∫ t

0
ds G2ν(s, z1 − z2)|I2| ≤

√
h
∫ t

0
ds 3

√
1 + n2

4
√
πνt(t′ − s)

Gν(1+n2)/2 (t, x− z̄)G2ν(s, z1 − z2).

Apply Lemma 5.4 to Gν(1+n2)/2 (· · · )G2ν(· · · ) and integrate over dz1dz2 to get

∫∫
R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds G2ν |I2| ≤

3 (1 + n2)
√
h

2
√
πν

(
|µ| ∗G2ν(1+n2)(t, ·)

)2
(x)

∫ t

0

ds√
s(t′ − s)

.

By the Beta integral (see (3.3)), the ds–integral is less than or equal to π. So
∫∫

R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds G2ν(· · · )|I2| ≤

3 (1 + n2)
√
π

2
√
ν

(
|µ| ∗G2ν(1+n2)(t, ·)

)2
(x)
√
h.

(4.19)

As for I3, notice that since s ∈ [0, t], (t−s)h
2(t−s)+h ≤

th
h
≤ n2t for all h ≥ 0. Apply Lemma 5.7

with r = (t−s)h
2(t−s)+h to obtain that

∣∣∣∣∣∣
Gν/2

(
t+ (t−s)h

2(t−s)+h , x− z̄
)

Gν/2 (t, x− z̄) − 1

∣∣∣∣∣∣ ≤ 3
2
√

2
exp

(
n2(x− z̄)2

νt (1 + n2)

) √
h√
t
, for all h ≥ 0,

where we have used the inequality (t−s)h
2(t−s)+h ≤

h
2 . Multiplying out the exponentials, we obtain

|I3| ≤
3
√

1 + n2

2
√

2πνt(t− s)
Gν(1+n2)/2 (t, x− z̄)

√
h.
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Then by the same arguments as for I2, we have that∫∫
R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds G2ν |I3| =

3 (1 + n2)
√
π√

2ν
(
|µ| ∗G2ν(1+n2)(t, ·)

)2
(x)
√
h.

Now let us consider I1. Apply Lemma 5.4 to G2ν (s, z1 − z2)Gν/2 (t, x− z̄) to get∫ t

0
ds G2ν(s, z1 − z2)|I1| ≤

√
t√
πν
G2ν(t, x− z1)G2ν(t, x− z2)

×
∫ t

0
ds

∣∣∣∣∣∣(s(t− s))− 1
2 + (s(t′ − s))−

1
2 − 2

(
s

[
t+ t′

2 − s
])− 1

2
∣∣∣∣∣∣ .

The integrand is bounded by∣∣∣∣∣∣(s(t− s))− 1
2 −

(
s

[
t+ t′

2 − s
])− 1

2
∣∣∣∣∣∣+

∣∣∣∣∣∣(s(t′ − s))− 1
2 −

(
s

[
t+ t′

2 − s
])− 1

2
∣∣∣∣∣∣ .

Taking into account the signs of the increment, this is equal to [s(t− s)]−1/2− [s(t′ − s)]−1/2.
Integrate the r.h.s. of the above inequality using the formula

∫ t
0

ds√
s(t′−s)

= 2 arctan
( √

t√
t′−t

)
for all t′ > t ≥ 0 to find that

∫ t

0
ds

∣∣∣∣∣∣(s(t− s))− 1
2 + (s(t′ − s))−

1
2 − 2

(
s

[
t+ t′

2 − s
])− 1

2
∣∣∣∣∣∣ ≤ π − 2 arctan

(√
t/h

)
.

It is an elementary calculus exercise to show that the function f(x) := x (π − 2 arctan (x))
for x ≥ 0 is non-negative and bounded from above, and f(x) ≤ limx→+∞ f(x) = 2. Hence,
π − 2 arctan

(√
t/h

)
≤ 2

√
h/t. Therefore,

∫∫
R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds G2ν(s, z1 − z2)|I1| ≤

2
√
h√
πν

(|µ| ∗G2ν(t, ·))2 (x). (4.20)

We conclude from (4.19)–(4.20) that for all (t, x), (t′, x) ∈ [1/n, n]× [−n, n] with t′ > t,

I(t, x; t′, x) ≤
(
C?
ν (|µ| ∗G2ν(t, ·))2 (x) + C∗n,ν

(
|µ| ∗G2ν(1+n2)(t, ·)

)2
(x)
) √

h,

where

C?
ν = 2√

πν
, and C∗n,ν :=

3
√
π
(
1 +
√

2
)

(1 + n2)
2
√
ν

.

As for the contribution of the constant ς, it corresponds to the initial data µ(dx) ≡ ς dx and
we apply Proposition 5.2. Finally, by the smoothing effect of the heat kernel (Lemma 2.3),
we can choose the following constant

Cn,1 = ς2
√

2− 1√
πν

+ sup 2
(
C?
ν (|µ| ∗G2ν(s, ·))2 (y) + C∗n,ν

(
|µ| ∗G2ν(1+n2)(s, ·)

)2
(y)
)
,
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for (4.3), where the supremum is over (s, y) ∈ [1/n, n]× [−n, n]. This proves (4.3).

Property (4.4). Set t = t′ in (4.17) and x̄ = x+x′
2 . Consider the integral in (4.17)

∫ t

0
ds G2ν(s, z1 − z2)

∫
dy G(G−G)2,

which is denoted by
∫

ds G
∫

dy G(G−G)2 for convenience. By (4.18),∫
dy Gν/2(s, y − z̄) (Gν(t− s, x− y)−Gν(t− s, x′ − y))2

= 1√
4πν(t− s)

[
Gν/2 (t, x− z̄) +Gν/2 (t, x′ − z̄)

]
− 2G2ν (t− s, x− x′)Gν/2 (t, x̄− z̄) .

(4.21)

Then apply Lemma 5.5 to integrate over s:
∫

ds G
∫

dy G(G−G)2 = 1
4ν
(
Gν/2 (t, x− z̄) +Gν/2 (t, x′ − z̄)

)
erfc

(
|z1 − z2|√

4νt

)

− 1
2νGν/2 (t, x̄− z̄) erfc

(
1√
2t

[
|z1 − z2|√

2ν
+ |x− x

′|√
2ν

])
.

It follows from the definition of erfc(x) that erfc (|x|+ h) ≥ erfc (|x|)− 2e−x2
√
π
h for h ≥ 0 and

we apply this inequality to the last factor to obtain,∫
ds G

∫
dy G(G−G)2

≤ 1
ν
Gν/2 (t, x̄− z̄) |x− x

′|√
4πνt

exp
(
−(z1 − z2)2

4νt

)

+ 1
4ν

Gν/2 (t, x− z̄) +Gν/2 (t, x′ − z̄)− 2Gν/2 (t, x̄− z̄)
erfc

(
|z1 − z2|√

4νt

)
.

Now apply Lemma 4.7 with h = x′−x
2 , L = 2n and β = 1/2: there are two constants

C ′n = sup
s∈[1/n,n]

C2n,1/2,νs = C
√
n√

2ν
+ 1
n
, C ≈ 0.451256 ,

C ′′n = sup
s∈[1/n,n]

C ′′2n,1/2,νs = C ′n exp
(

6 n3

ν

)
,

where C ′L,β,νs and C ′′L,β,νs are defined in Lemma 4.7, such that for
∣∣∣x−x′2

∣∣∣ ≤ βL = n,
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∣∣∣∣∣∣Gν/2 (t, x− z̄) +Gν/2 (t, x′ − z̄)− 2Gν/2 (t, x̄− z̄)

∣∣∣∣∣∣
≤
{
C ′′n

[
Gν/2 (t, x̄− z̄ − 2L) +Gν/2 (t, x̄− z̄ + 2L)

]
+ C ′n Gν/2 (t, x̄− z̄)

}
|x− x′| .

Note that t ≥ 1/n is essential for this inequality to be valid. By Lemma 5.5, we have that
erfc

(
|z1−z2|√

4νt

)
≤
√

4πνt G2ν (t, z1 − z2), and so
∣∣∣∣∫ ds G

∫
dy G(G−G)2

∣∣∣∣ ≤
(

1
ν

+
√
πt√
4ν
C ′n

)
|x− x′| Gν/2 (t, x̄− z̄)G2ν (t, z1 − z2)

+
√
πt C ′′n√

4ν
|x− x′| Gν/2 (t, x̄− z̄ − 2L)G2ν (t, z1 − z2)

+
√
πt C ′′n√

4ν
|x− x′| Gν/2 (t, x̄− z̄ + 2L)G2ν (t, z1 − z2) .

Now apply Lemma 5.4:∣∣∣∣∫ ds G
∫

dy G(G−G)2
∣∣∣∣ ≤

(
1
ν

+
√
πn√
4ν
C ′n

)
|x− x′|G2ν (t, x̃1 − z1)G2ν (t, x̃1 − z2)

+
√
πn C ′′n√

4ν
|x− x′| G2ν (t, x̃2 − z1)G2ν (t, x̃2 − z2)

+
√
πn C ′′n√

4ν
|x− x′| G2ν (t, x̃3 − z1)G2ν (t, x̃3 − z2) ,

where x̃1 = x̄, x̃2 = x̄ − 2L and x̃3 = x̄ + 2L. Clearly, x̃i ∈ [−5n, 5n] for all i = 1, 2, 3.
Finally, after integrating over |µ|(dz1) and |µ|(dz2), we see that

I(t, x; t, x′) ≤ C ′n,3 |x− x′|

for all t ∈ [1/n, n], and x, x′ ∈ [−n, n], where the constant is equal to

C ′n,3 =
(

1
ν

+
√
πn√
4ν

(C ′n + 2C ′′n)
)

sup
(s,y)∈[1/n,n]×[−5n,5n]

(|µ| ∗G2ν(s, ·))2 (y) .

As for the contribution of the constant ς, it corresponds to the initial data |µ|(dx) ≡ ς dx
and we apply Proposition 5.2. Finally, one can choose, for (4.4),

Cn,3 = ς2

ν
+
(

2
ν

+
√
πn√
ν

(C ′n + 2C ′′n)
)

sup
(s,y)∈[1/n,n]×[−5n,5n]

(|µ| ∗G2ν(s, ·))2 (y) .

This constant Cn,3 is clearly finite. This completes the proof of (4.4).

Property (4.5). We first consider the contribution of J∗0 (t, x). As before, let

I (t, x; t′, x′) =
∫∫

[t,t′]×R
dsdy [J∗0 (s, y)]2 G2

ν(t′ − s, x′ − y).
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Set z̄ = (z1 + z2)/2. Similar to the arguments leading to (4.17), we have

I (t, x; t′, x′) =
∫ t′

t
ds
∫∫

R2
|µ|(dz1)|µ|(dz2)G2ν(s, z1 − z2)

×
∫
R

dy Gν/2 (s, y − z̄)G2
ν (t′ − s, x′ − y) .

(4.22)

Apply Lemma 5.3 to G2
ν (t′ − s, x′ − y) and then integrate over y,

I (t, x; t′, x′) =
∫ t′

t
ds
∫∫

R2
|µ|(dz1)|µ|(dz2) 1√

4πν(t′ − s)
G2ν(s, z1 − z2)Gν/2 (t′, x′ − z̄) .

Now apply Lemma 5.4 to G2ν(s, z1 − z2)Gν/2 (t′, x′ − z̄). Then by Lemma 5.8 and the fact
that arcsin(x) ≤ πx/2 for x ∈ [0, 1], we see that

I (t, x; t′, x′) ≤ |J∗0 (2t′, x′)|2 2
√
t′√
πν

arcsin
√t′ − t

t′

 ≤ |J∗0 (2t′, x′)|2
√
π

ν

√
t′ − t.

Therefore,

I (t, x; t′, x′) ≤ C ′n,5
√
t′ − t, with C ′n,5 =

√
π

ν
sup

(s,y)∈[1/n,n]×[−n,n]
|J∗0 (2s, y)|2.

As for the contribution of ς, it corresponds to the initial data |µ|(dx) ≡ ς dx and we apply
Proposition 5.2. Finally, we can choose

Cn,5 = ς2
√
πν

+ 2
√
π

ν
sup

(s,y)∈[1/n,n]×[−n,n]
|J∗0 (2s, y)|2 (4.23)

for (4.5). This completes the proof of (4.5) and therefore part (1) of Proposition 4.4.

Proof of Proposition 4.5 (1). We first prove (4.7) and (4.8). Denote

I(t, x; t′, x′) =
∫∫

[0,t]×R
dsdy

(
|J∗0 |

2 ? G2
ν

)
(s, y) (Gν (t− s, x− y)−Gν(t′ − s, x′ − y))2

.

Let z̄ = (z1 + z2)/2. As in (4.17), replace |J∗0 (u, z)|2 by the double integral. By Lemma 5.3,

I (t, x; t′, x′) =
∫∫

R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds
∫ s

0
du 1√

4νπ(s− u)
G2ν(u, z1 − z2)

×
∫∫

R2
dydz Gν/2 (u, z − z̄)Gν/2(s− u, y − z)

× (Gν (t− s, x− y)−Gν (t′ − s, x′ − y))2
.
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We first integrate over dz using the semigroup property and then integrate over du by using
Lemma 5.5 and use the fact that s ≤ t ≤ n to obtain

I (t, x; t′, x′) ≤
√
πn√
4ν

∫ t

0
ds
∫∫

R2
|µ|(dz1)|µ|(dz2)G2ν(s, z1 − z2)

×
∫
R

dy Gν/2 (s, y − z̄) (Gν (t− s, x− y)−Gν (t′ − s, x′ − y))2
.

(4.24)

Comparing this upper bound with (4.17), we can apply Proposition 4.4 to conclude that
(4.7) and (4.8) are true with the constants Cn,2 and Cn,4 given in (4.6). As for (4.9), let

I (t, x; t′, x′) =
∫∫

[t,t′]×R
dsdy

(
|J∗0 |

2 ? G2
ν

)
(s, y)G2

ν(t′ − s, x′ − y).

By arguments similar to those leading to (4.24), we have that

I (t, x; t′, x′) ≤
√
πn

4ν

∫ t′

t
ds
∫∫

R2
|µ|(dz1)|µ|(dz2)G2ν(s, z1 − z2)

×
∫
R

dy Gν/2 (s, y − z̄)G2
ν(t′ − s, x′ − y).

Comparing this upper bound with (4.22), we can apply Proposition 4.4 to conclude that
(4.9) is true with the corresponding constant Cn,6 given in (4.6). This completes the proof
of part (1) of Proposition 4.5.

4.4 Proofs of part (2) of the Propositions 4.4 and 4.5
Lemma 4.8. For a ≥ 1 and b ≥ (a e)−1, we have that |x| ≤ eb|x|

a for all x ∈ R.

Proof. The case where x = 0 is clearly true. We only need to consider the case where x > 0.
Equivalently, we need to solve the critical case where the graphs of the two functions log x
and b xa intersect exactly once (x > 0), that is,

log x = b xa, and 1
x

= a b xa−1,

which implies x = e1/a and b = (ae)−1. When b is bigger than this critical value, the function
b|x|a will dominate log x for all x > 0.

Lemma 4.9. Let g(x) = ec|x|
a with c > 0 and a > 1. For all n > 0, the following properties

hold:
(1) For all x, z ∈ R, 0 ≤ t ≤ t′ ≤ n,∣∣∣g (x−√t z)− g (x−√t′ z)∣∣∣ ≤ a c exp (c1|x|a + c2|z|a) |t′ − t|1/2

,

where the two constants c1 := c1(a, c) and c2 := c2(n, a, c) can be chosen as follows:

c1(a, c) =
(
c+ a− 1

a e

)
2a−1, and c2(n, a, c) = c1(a, c) na/2 + 1

a e
.
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(2) For all x, x′ ∈ [−n, n], z ∈ R and t ∈ [0, n],∣∣∣g (x−√t z)− g (x′ −√t z)∣∣∣ ≤ c3 exp (c4|z|a) |x′ − x|

where the two constants c3 := c3(n, a, c) and c4 := c4(n, a, c) can be chosen as follows:

c3(n, a, c) := a c ec1 n
a

, and c4(n, a, c) = c1 n
a/2.

Proof. (1) Because a > 1, the function g belongs to C1(R), is convex and g′(x) ≥ 0 for
x ≥ 0. Hence,∣∣∣g (x−√t z)− g (x−√t′ z)∣∣∣ ≤ ∣∣∣g′ (|x|+√n |z|)∣∣∣ · ∣∣∣√t′ z −√t z∣∣∣ .
Let b = (a e)−1. By Lemma 4.8, |g′(x)| = a c |x|a−1ec|x|

a ≤ a c e(c+(a−1)b)|x|a . Thus∣∣∣g′ (|x|+√n |z|)∣∣∣ ≤ a c e(c+(a−1)b)(|x|+√n |z|)a ≤ a c ec1|x|
a+c1na/2|z|a , (4.25)

where we have applied the inequality (x+ y)a ≤ 2a−1(xa + ya) for all x, y ≥ 0. Clearly,

|
√
t′ −
√
t| ≤
√
t′ − t. (4.26)

Finally, apply Lemma 4.8 to |z|, and combining all the above bounds proves (1).
(2) Similarly to (1),∣∣∣g (x−√t z)− g (x′ −√t z)∣∣∣ ≤ ∣∣∣g′ (|n|+√n |z|)∣∣∣ · |x− x′| ,

and by (4.25), |g′ (|n|+
√
n |z|)| ≤ a c ec1n

a+c1na/2|z|a . This proves (2).

For c > 0 and a ∈ [0, 2[ , define the constant

Ka,c(νt) :=
(
ec|·|

a ∗Gν(t, ·)
)

(0) .

For 0 ≤ t ≤ n, we have that

Ka,c(νt) =
∫
R

dy ec(
√
t |y|)aGν(1, y) ≤

∫
R

dy ec(
√
n |y|)aGν(1, y) = Ka,c(νn). (4.27)

Proof of Proposition 4.4 (2). Because µ ∈ M∗
H(R), there are a function f(x) and two con-

stants a ∈ [1, 2[ and c > 0 such that µ(dx) = f(x)dx and c = supx∈R |f(x)|e−|x|a < +∞. In
the following, we assume that x, x′ ∈ [−n, n], and t, t′ ∈ [0, n]. Set g(x) = e2a|x|a and assume
that ς = 0. From (4.17),

I(t, x; t′, x′) ≤c2
∫ t

0
ds
∫∫

R2
dz1dz2 e

|z1|a+|z2|aG2ν(s, z1 − z2)
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×
∫
R

dy Gν/2 (s, y − z̄) (Gν (t− s, x− y)−Gν(t′ − s, x′ − y))2
.

We shall apply the change of variables z = z̄ and w = ∆z: since

|z1|a + |z2|a =
∣∣∣∣z + w

2

∣∣∣∣a +
∣∣∣∣z − w

2

∣∣∣∣a ≤ 2a−1
(
|z|a +

∣∣∣∣w2
∣∣∣∣a)× 2 = 2a|z|a + |w|a,

we see that

e|z1|
a+|z2|a ≤ e2a|z|a+|w|a = e|w|

a

g(z),

and it follows that

I(t, x; t′, x′) ≤ c2
∫ t

0
ds
∫
R

dz
(
e|·|

a ∗G2ν(s, ·)
)

(0)g(z)

×
∫
R

dy Gν/2(s, y − z) (Gν(t− s, x− y)−Gν(t′ − s, x′ − y))2

≤ c2 Ka,1(2νn)
∫ t

0
ds
∫
R

dz g(z)

×
∫
R

dy Gν/2(s, y − z) (Gν(t− s, x− y)−Gν(t′ − s, x′ − y))2
, (4.28)

where the second inequality is due to (4.27).

Property (4.3). For the moment, we continue to assume that ς = 0. Set x = x′. Apply
(4.18) with x = x′ and z̄ replaced by z, integrate over dz, and use (4.28) to see that,

I(t, x; t′, x) ≤ c2 Ka,1(2νn)
∫ t

0
ds
 1√

4πν(t− s)

(
g ∗Gν/2(t, ·)

)
(x)

+ 1√
4πν(t′ − s)

(
g ∗Gν/2(t′, ·)

)
(x)

− 2√
4πν

(
t+t′

2 − s
)
(
g ∗Gν/2

(
t+ (t− s)h

2(t− s) + h
, ·
))

(x)


≤ c2 Ka,1(2νn)
∫ t

0
ds (I1 + I2 + I3) ,

where, letting h = t′ − t,

I1 =
(4πν(t− s))−

1
2 + (4πν(t′ − s))−

1
2 −

(
πν

(
t+ t′

2 − s
))− 1

2
 (g ∗Gν/2(t, ·)

)
(x),

I2 = 1√
4πν(t′ − s)

[(
g ∗Gν/2(t′, ·)

)
(x)−

(
g ∗Gν/2(t, ·)

)
(x)
]
,
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I3 = 2√
4πν

(
t+t′

2 − s
)
[(
g ∗Gν/2

(
t+ (t− s)h

2(t− s) + h
, ·
))

(x)−
(
g ∗Gν/2(t, ·)

)
(x)
]
.

Set t̄ = t+t′
2 . By (4.26),∫ t

0
I1ds = 1√

πν

(√
t+
√
t′ −
√
h− 2

√
t̄+ 2

√
t̄− t

) (
g ∗Gν/2(t, ·)

)
(x)

≤ 1√
πν

∣∣∣√t−√t̄∣∣∣+ ∣∣∣√t′ −√t̄∣∣∣−√h+ 2
√
h

2

 (
g ∗Gν/2(t, ·)

)
(x)

≤ 1√
πν

4
√
h

2 −
√
h

 (
g ∗Gν/2(t, ·)

)
(x).

By Lemma 4.9, for some constants ci > 0, i = 1, 2,

|I2| ≤
1√

4πν(t′ − s)

∫
R

dz
∣∣∣g (x−√t z)− g (x−√t′ z)∣∣∣Gν/2(1, z)

≤ 1√
4πν(t− s)

a 2aec1|x|a
(
ec2|·|

a ∗Gν/2(1, ·)
)

(0)
√
h .

Hence, for all 0 ≤ t ≤ t′ ≤ n and x ∈ [−n, n],∫ t

0
ds |I2| ≤

a 2a
√
n√

πν
ec1|n|

a

Ka,c2

(
ν

2

) √
h .

Similarly, because (t−s)h
2(t−s)+h ≤

h
2 , for all 0 ≤ s ≤ t ≤ t′ ≤ n and x ∈ [−n, n],

∫ t

0
ds |I3| ≤

a 2a
√
n√

2πν
ec1|n|

a

Ka,c2

(
ν

2

) √
h .

Therefore, for all 0 ≤ t ≤ t′ ≤ n and x ∈ [−n, n], I(t, x; t′, x) ≤ C̃∗n,1
√
t′ − t with

C̃∗n,1 = c2 Ka,1(2νn)√
2πν

 (√2 + 1
)
a 2a
√
n ec1|n|

a

Ka,c2

(
ν

2

)

+
(
4−
√

2
)

sup
(s,y)∈[0,n]×[−n,n]

(
e2a|·|a ∗Gν/2(s, ·)

)
(y)
.

Finally, as for (4.3), the contribution of the constant ς can be calculated by using Proposition
5.2. Therefore, one can choose

C∗n,1 = ς2
√

2− 1√
πν

+ 2 C̃∗n,1.

25



Property (4.4). Assume again that ς = 0. Set t = t′ and x̄ = x+x′
2 . Recalling (4.21), we

see that the inequality (4.28) reduces to

I(t, x; t, x′) ≤ c2 Ka,1(2νn)
∫ t

0
ds
∫
R

dz g(z)

 1√
4πν(t− s)

[
Gν/2(t, x− z) +Gν/2(t, x′ − z)

]

− 2G2ν(t− s, x− x′)Gν/2(t, x̄− z)

.
Then integrate over ds using Lemma 5.6:

I(t, x; t, x′) ≤ c2 Ka,1(2νn)
∫
R

dz g(z)


√
t√
πν

[
Gν/2(t, x− z) +Gν/2(t, x′ − z)

]

− 2
[
2t G2ν(t, x− x′)−

1
2ν |x− x

′| erfc
(
|x− x′|√

4νt

)]
Gν/2(t, x̄− z)

.
Denote F (x) =

(
g ∗Gν/2(t, ·)

)
(x). Then integrating over dz gives

I(t, x; t, x′) ≤ c2 Ka,1(2νn)


√
t√
πν

[F (x) + F (x′)]

− 2
[ √

t√
πν
e−

(x−x′)2
4νt − 1

2ν |x− x
′| erfc

(
|x− x′|√

4νt

)]
F (x̄)


≤ c2 Ka,1(2νn)


√
t√
πν
|F (x)− F (x̄)|+

√
t√
πν
|F (x′)− F (x̄)|

+ 2
√
t√

πν

(
1− e−

|x−x′|2
4νt

)
F (x̄) + 1

ν
|x− x′| F (x̄)

.
Notice that 0 ≤ 1 − e−x2/2 ≤ C̃ |x|, where the universal constant C̃ is given in Lemma 4.7.
By part (2) of Lemma 4.9, for some constants ci, i = 3, 4,

|F (x)− F (x̄)| ≤
∫
R

dz
∣∣∣g (x−√t z)− g (x̄−√t z)∣∣∣Gν/2(1, z)

≤ c3
(
ec4|·|

a ∗Gν/2(1, ·)
)

(0) |x− x̄|

= c3

2 Ka,c4

(
ν

2

)
|x− x′|.

Similarly, |F (x′)− F (x̄)| ≤ c3
2 Ka,c4

(
ν
2

)
|x− x′|. Hence,

I(t, x; t, x′) ≤ c2 Ka,1(2νn)

c3
√
n√

πν
Ka,c4

(
ν

2

)
+
(
C̃
√

2
ν
√
π

+ 1
ν

)
F (x̄)

 |x− x′| .
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Therefore, for all 0 ≤ t ≤ n and x, x′ ∈ [−n, n], I(t, x; t, x′) ≤ C̃∗n,3 |x− x′| with

C̃∗n,3 = c2 Ka,1(2νn)

c3
√
n√

πν
Ka,c4

(
ν

2

)
+
(
C̃
√

2
ν
√
π

+ 1
ν

)
sup

(s,y)∈[0,n]×[−n,n]

(
g ∗Gν/2(s, ·)

)
(y)

 ,

and C̃∗n,3 < +∞ by definition of g. Finally, the contribution of the constant ς in (4.4) is
given in Proposition 5.2. Therefore, one can choose

C∗n,3 = ς2

ν
+ 2 C̃∗n,3 .

Property (4.5). As for (4.5), notice that J∗0 (t, x) ≤ c
(
e|·|

a ∗Gν(t, ·)
)

(x). By checking the
proof of part (1) (see (4.23)), one can choose,

C∗n,5 = ς2
√
πν

+ 2 c2
√
π/ν sup

(s,y)∈[0,n]×[−n,n]

(
e|·|

a ∗Gν(2s, ·)
)2

(y).

This completes the proof of part (2) of Proposition 4.4.

Proof of Proposition 4.5 (2). If µ ∈ M∗
H(R), then by Proposition 4.4 (2), the l.h.s. of (4.7)

is bounded by

C∗n,1
√
t′ − t

(
1 ? G2

ν

)
(t, x) = C∗n,1

√
t√
πν

√
t′ − t ≤ C∗n,1

√
n√
πν

√
t′ − t.

Hence, C∗n,2 =
√
n√
πν
C∗n,1. The same arguments apply to the other two constants C∗n,4 and C∗n,6,

i.e., (4.8) and (4.9). Note that it was not possible to use the above argument in the proof of
part (1) of Proposition 4.4. This completes the proof of Proposition 4.5 (2).

4.5 Checking the initial condition
Proof of Proposition 3.4. Because u(t, x) = J0(t, x)+I(t, x), and because it is standard that
(see [14, Chapter 7, Section 6] and also [4, Lemma 2.6.14, p.89]),

lim
t→0+

∫
R

dx J0(t, x)φ(x) =
∫
R
µ(dx) φ(x),

we only need to prove that

lim
t→0+

∫
R

dx I(t, x)φ(x) = 0 in L2(Ω).
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Recall that the Lipschitz continuity of ρ implies the linear growth condition (2.1). Fix
φ ∈ C∞c (R). Denote L(t) :=

∫
R I(t, x)φ(x)dx. By the stochastic Fubini theorem (see [28,

Theorem 2.6, p. 296]), whose assumptions are easily checked,

L(t) =
∫ t

0

∫
R

(∫
R

dx Gν(t− s, x− y)φ(x)
)
ρ(u(s, y))W (ds, dy).

Hence, by (2.1),

E
[
L(t)2

]
≤ L2

ρ

∫ t

0
ds
∫
R

dy
(∫

R
dx Gν(t− s, x− y)φ(x)

)2 (
ς2 + ||u(s, y)||22

)
.

By the moment formula (2.5), we can write the above upper bound as

E
[
L(t)2

]
≤ L2

ρ [L1(t) + L2(t) + L3(t) + L4(t)] ,

where

L1(t) =
∫ t

0
ds
∫
R

dy
(∫

R
dx Gν(t− s, x− y)φ(x)

)2
J2

0 (s, y),

L2(t) =
∫ t

0
ds
∫
R

dy
(∫

R
dx Gν(t− s, x− y)φ(x)

)2 (
J2

0 ?K
)

(s, y),

L3(t) = ς2
∫ t

0
dsH(s)

∫
R

dy
(∫

R
dx Gν(t− s, x− y)φ(x)

)2
,

L4(t) = ς2
∫ t

0
ds
∫
R

dy
(∫

R
dx Gν(t− s, x− y)φ(x)

)2
.

From now on, we may assume that µ ∈MH,+(R), because otherwise, one can simply replace
the above J0(s, y) by J∗0 (s, y) = (|µ| ∗Gν(s, ◦)) (y).

(1) Consider L1(t) first. Write out both J2
0 (s, y) and (

∫
R dx Gν(t− s, x− y)φ(x))2 in the

forms of double integrals, and apply Lemma 5.3, to see that

L1(t) =
∫ t

0
ds
∫
R

dy
(∫∫

R2
dx1dx2 Gν/2(t− s, x̄− y)G2ν(t− s,∆x)φ(x1)φ(x2)

)
×
∫∫

R2
µ(dz1)µ(dz2) Gν/2(s, z̄ − y)G2ν(s,∆z),

(4.29)

where x̄ = x1+x2
2 , ∆x = x1− x2 and similarly for z̄ and ∆z. Integrate over dy first using the

semigroup property of the heat kernel and then integrate over ds by using Lemma 5.5, we
see that

L1(t) =
∫∫

R2
dx1dx2 φ(x1)φ(x2)

∫∫
R2
µ(dz1)µ(dz2) Gν/2(t, x̄−z̄) 1

4ν erfc
(

1√
4νt

[|∆x|+ |∆z|]
)
.

By (5.2),

erfc
(

1√
4νt

[|∆x|+ |∆z|]
)
≤ e−

(|∆x|+|∆z|)2
4νt ≤ e−

|∆x|2
4νt e−

|∆z|2
4νt = 4πν

√
t G2ν

(
1, ∆x√

t

)
G2ν(t,∆z).
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By the change of variables y = (x1 + x2)/2 and w = (x1 − x2)/
√
t,

L1(t) ≤π t
∫∫

R2
dydw G2ν(1, w)φ

(
y +
√
t

2 w

)
φ

(
y −
√
t

2 w

)

×
∫∫

R2
µ(dz1)µ(dz2)Gν/2(t, y − z̄)G2ν(t,∆z).

By Lemma 5.4,∫∫
R2
µ(dz1)µ(dz2)Gν/2(t, y − z̄)G2ν(t,∆z) ≤ 2 (µ ∗G2ν(t, ·))2 (y) = 2J2

0 (2t, y).

For some constants a and c ≥ 0, |φ(x)| ≤ c 1[−a,a](x). If |y| > a, then the two sets{
w ∈ R :

∣∣∣√t2 w ± y∣∣∣ ≤ a
}

have empty intersection. Hence,

L1(t) ≤ 2c2π
∫
|y|≤a

dy t J2
0 (2t, y)

∫
R

dw G2ν(1, w) = 2c2π
∫
|y|≤a

dy t J2
0 (2t, y).

Clearly, by assuming that t ≤ 1,
√
t J0(2t, y) =

∫
R
µ(dx) 1√

4πν
e−

(y−x)2
4νt ≤

∫
R
µ(dx) 1√

4πν
e−

(y−x)2
4ν = J0(2, y).

Hence, Lebesgue’s dominated convergence theorem implies that

lim
t→0

√
t J0(2t, y) = 0.

Because
∫
|y|≤a dyJ2

0 (2, y) < +∞, by another application of Lebesgue’s dominated convergence
theorem, we see that limt→0 L1(t) = 0.

(2) As for L2(t), because K(t, x) ≤ Gν/2(t, x) 1√
t
h(t), where h(t) := L2

ρ( 1√
4πν + L2

ρ

√
t

2ν e
L4
ρ t

4ν )
is a nondecreasing function in t, we see that as in (4.29),

L2(t) ≤
∫ t

0
ds
∫
R

dy
∫∫

R
dx1dx2 Gν/2(t− s, x̄− y)G2ν(t− s,∆x)φ(x1)φ(x2)

×
∫ s

0
dr
∫
R

dw Gν/2(s− r, y − w) 1√
s− r

h(t)

×
∫∫

R2
µ(dz1)µ(dz2)Gν/2(r, z̄ − w)G2ν(r,∆z).

Integrate first over dw using the semigroup property of the heat kernel, and then integrate
over dr using (5.1), to find that

L2(t) ≤πh(t)
√
t
∫ t

0
ds
∫
R

dy
∫∫

R
dx1dx2 Gν/2(t− s, x̄− y)G2ν(t− s,∆x)φ(x1)φ(x2)
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×
∫∫

R2
µ(dz1)µ(dz2)Gν/2(s, z̄ − y)G2ν(s,∆z).

Comparing the above bound with (4.29), we see that

L2(t) ≤ π
√
t h(t)L1(t)→ 0, as t→ 0.

(3) Notice that L3(t) ≤ H(t) L4(t), so we only need to consider L4(t), which is a special
case of L1(t) with µ(dx) = ς dx. Since this µ belongs to MH(R), limt→0+ L4(t) = 0 by part
(1). This completes the proof of Proposition 3.4.

5 Appendix
Lemma 5.1. If |f(x)| ≤ c1e

c2|x|a for all x ∈ R with c1, c2 > 0 and a ∈ ]1, 2[ , then there is
c3 < +∞ such that for all b ∈ ]a, 2[ , |f(x)| ≤ c3e

|x|b for all x ∈ R.

Proof. Notice that c2|x|a ≥ |x|b if and only if |x| ≤ c
1
b−a
2 . Hence, c2|x|a− |x|b ≤ c2 c

a
b−a
2 − 0 =

c
b
b−a
2 . Therefore, c1 exp

(
c2|x|a − |x|b

)
≤ c1 exp(c

b
b−a
2 ) =: c3.

Proposition 5.2 (Proposition 3.5 of [5]). There are three universal and optimal constants
C1 = 1, C2 =

√
2−1√
π

, and C3 = 1√
π

, such that for all s, t with 0 ≤ s ≤ t and x ∈ R,

∫ t

0
dr
∫
R

dz [Gν(t− r, x− z)−Gν(t− r, y − z)]2 ≤ C1

ν
|x− y| ,∫ s

0
dr
∫
R

dz [Gν(t− r, x− z)−Gν(s− r, x− z)]2 ≤ C2√
ν

√
t− s ,∫ t

s
dr
∫
R

dz [Gν(t− r, x− z)]2 ≤ C3√
ν

√
t− s ,

∫∫
R+×R

(Gν(t− r, x− z)−Gν(s− r, y − z))2 drdz ≤ 2C1

 |x− y|
ν

+

√
|t− s|
√
ν

 ,

where we use the convention that Gν(t, ·) ≡ 0 if t ≤ 0.

Lemma 5.3 (Lemma 5.4 of [5]). For all t, s > 0 and x, y ∈ R, we have that G2
ν(t, x) =

1√
4πνtGν/2(t, x) and Gν(t, x)Gν (s, y) = Gν

(
ts
t+s ,

sx+ty
t+s

)
Gν (t+ s, x− y).

Lemma 5.4 (Lemma 5.5 of [5]). For all x, z1 z2 ∈ R and t, s > 0, denote z̄ = z1+z2
2 ,

∆z = z1 − z2. Then G1 (t, x− z̄)G1 (s,∆z) ≤ (4t)∨s√
ts
G1((4t) ∨ s, x− z1)G1((4t) ∨ s, x− z2),

where a ∨ b := max(a, b).
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Lemma 5.5 (Lemma 5.10 of [5]). For 0 ≤ s ≤ t and x, y ∈ R, we have that∫ t

0
ds Gν(s, x)Gσ(t− s, y) = 1

2
√
νσ

erfc
(

1√
2t

(
|x|√
ν

+ |y|√
σ

))
,

where ν and σ are strictly positive. In particular, by letting x = 0, we have that∫ t

0
ds Gσ(t− s, y)√

2πνs
= 1

2
√
νσ

erfc
(
|y|√
2σt

)
≤
√
πt√
2ν
Gσ (t, y) . (5.1)

Note that the inequality in (5.1) is because by [19, (7.7.1), p.162],

erfc(x) = 2
π
e−x

2
∫ ∞

0
dt e

−x2t2

1 + t2
≤ 2
π
e−x

2
∫ ∞

0
dt 1

1 + t2
= e−x

2
, (5.2)

Lemma 5.6. For t > 0, ν > 0 and x ∈ R, we have that∫ t

0
ds Gν(s, x) = 2t Gν(t, x)− |x|

ν
erfc

(
|x|√
2νt

)
.

Proof. The case where x = 0 can be easily verified. Assume that x 6= 0. By change of
variables y = |x|/

√
2νs and integration by parts, we have that

∫ t

0
ds Gν(s, x) =

∫ +∞

|x|√
2νt

dy |x|√
π ν y2 e

−y2 = |x|√
π ν y

e−y
2
∣∣∣∣∣
|x|√
2νt

+∞
− |x|

ν

∫ +∞

|x|√
2νt

dy 2√
π
e−y

2
.

Therefore, the conclusion follows from the definition of the function erfc(·).
Lemma 5.7. If ν > 0, t > 0, n > 1 and x ∈ R, then for r ∈ [0, n2t],∣∣∣∣∣Gν/2 (t+ r, x)

Gν/2 (t, x) − 1
∣∣∣∣∣ ≤ 3r

t+ r
exp

(
n2x2

νt (1 + n2)

)
≤ 3

2

√
r(1 + n2)
√
t

G−1
ν
2

(t, x)G ν(1+n2)
2

(t, x).

Proof. Fix ν > 0, t > 0, n > 1, and x ∈ R. For r ∈ [0, n2t], define

gt,x(r) = Gν/2 (t+ r, x)
Gν/2 (t, x) − 1 =

√
t√

t+ r
exp

(
x2

νt

r

t+ r

)
− 1 .

Clearly gt,x(0) = 0. Notice that

|gt,x(r)| ≤
∣∣∣∣∣exp

(
x2

νt

r

t+ r

)
− 1

∣∣∣∣∣+ exp
(
x2

νt

r

t+ r

) ∣∣∣∣∣
√
t√

t+ r
− 1

∣∣∣∣∣ .
The second term on the right-hand side is bounded by exp

(
n2x2

ν(1+n2)t

)
r
t+r for all r ∈ [0, n2t],

because r
r+t ∈

[
0, n2

1+n2

]
for r ∈ [0, n2t]. To bound the first term, we use the fact that for

fixed a > 0 and b > 0, 0 ≤ eah−1 ≤ eab h
b

for all h ∈ [0, b]. Apply this fact to exp
(
x2

νt
r
t+r

)
−1

with a = x2

νt
, h = r

r+t and b = n2

1+n2 : the first term is bounded by 2 exp
(

n2x2

νt(1+n2)

)
r
r+t for all

r ∈ [0, n2t]. Adding these two bounds proves the first inequality. The second one follows
from the inequality t+ r ≥ 2

√
tr.
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Lemma 5.8.
∫ t′
t

1√
s(t′−s)

ds = 2 arcsin
(√

t′−t
t′

)
for all t′ > 0 with t′ ≥ t ≥ 0.

Proof. For t = 0, the l.h.s. reduces to the Beta integral (see, e.g., (3.3). If t ∈ ]0, t′],
differentiate with respect to t on both sides.
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