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Abstract: We study the nonlinear fractional stochastic heat equation in the spatial
domain R driven by space-time white noise. The initial condition is taken to be a
measure on R, such as the Dirac delta function, but this measure may also have
non-compact support. Existence and uniqueness, as well as upper and lower bounds
on all p-th moments (p ≥ 2), are obtained. These bounds are uniform in the spatial
variable, which answers an open problem mentioned in Conus and Khoshnevisan
[10]. We improve the weak intermittency statement by Foondun and Khoshnevisan
[15], and we show that the growth indices (of linear type) introduced in [10] are
infinite. We introduce the notion of “growth indices of exponential type” in order
to characterize the manner in which high peaks propagate away from the origin, and
we show that the presence of a fractional differential operator leads to significantly
different behavior compared with the standard stochastic heat equation.
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1 Introduction

In this paper, we consider the following nonlinear fractional stochastic heat equation:
(
∂

∂t
− xD

a
δ

)
u(t, x) = ρ (u(t, x)) Ẇ (t, x), t ∈ R∗+ := ]0,+∞[ , x ∈ R,

u(0, ◦) = µ(◦),
(1.1)
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where a ∈ ]0, 2] is the order of the fractional differential operator xD
a
δ and δ (|δ| ≤ a ∧ (2−

a) := min(a, 2− a)) is its skewness, Ẇ is the space-time white noise, µ is the initial data (a
measure), the function ρ : R 7→ R is Lipschitz continuous, and ◦ denotes the spatial dummy
variable. The definition and properties of the fractional differential operator xD

a
δ are recalled

in Section 2.1.
This equation falls into a class of equations studied by Debbi and Dozzi [13]. According

to [11, Theorem 11], even the linear form of (1.1) (ρ ≡ 1) does not have a solution if a ≤ 1,
so they consider a ∈ ]1, 2]. If we focus on deterministic initial conditions, then in the setting
of (1.1), they proved in [13, Theorem 1] that there is a unique random field solution if µ
has a bounded density. Equation (1.1) is of particular interest since it is an extension of the
classical parabolic Anderson model [5], in which a = 2 and δ = 0, so xD

a
δ is the operator

∂2/∂x2, and ρ(u) = λu is a linear function. Foondun and Khoshnevisan [15] considered
problem (1.1) with the operator xD

a
δ replaced by the L2 (R)-generator L of a Lévy process.

They proved the existence of a random field solution under the assumption that the initial
data µ has a bounded and nonnegative density. In [9], the operator xD

a
δ is replaced by the

generator of a symmetric Lévy process and the authors prove that µ can be any finite Borel
measure on R. Recently, Balan and Conus [1, 2] studied the Anderson model with fractional
Laplacian and bounded initial condition, and with Gaussian, spatially homogeneous noise
that behaves in time like a fractional Brownian motion with Hurst index H > 1/2.

Following the approach of [6], in which the case a = 2 and δ = 0 was considered, we
begin by extending the above results (for the operator xD

a
δ ) to allow a wider class of initial

data: LetM (R) be the set of signed Borel measures on R. From the Jordan decomposition,
µ = µ+ − µ− where µ± are two non-negative Borel measures with disjoint support, and
denote |µ| = µ+ + µ−. Then our admissible initial data is µ ∈Ma(R), where

Ma (R) :=

{
µ ∈M(R) : sup

y∈R

∫
R
|µ|(dx)

1

1 + |x− y|1+a
< +∞

}
, for a ∈ ]1, 2].

We will also use the set Ma,+ (R) = {µ ∈Ma (R) : µ is non negative}. For µ ∈Ma (R), we
obtain estimates for the moments E(|u(t, x)|p) for all p ≥ 2. These estimates have the same
structure as those that are given in [6, Theorem 2.4], but the kernel K that appears in this
reference has quite different properties than those of the kernel K that appears in relation
with equation (1.1): see Section 3.2.

Let us define the upper and lower Lyapunov exponents of order p by

mp(x) := lim sup
t→+∞

1

t
logE (|u(t, x)|p) , mp(x) := lim inf

t→+∞

1

t
logE (|u(t, x)|p) , (1.2)

for all p ≥ 2 and x ∈ R. If the initial data is constant, then mp and mp do not depend on
x. In this case, the solution is called fully intermittent if m2 > 0 and m1 = 0 by Carmona
and Molchanov [5, Definition III.1.1, on p. 55]. For a detailed discussion of the meaning of
this intermittency property, see [17]. Informally, it means that the sample paths of u(t, x)
exhibit “high peaks” separated by “large valleys”.
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Foondun and Khoshnevisan proved weak intermittency in [15], namely, for all p ≥ 2,

m2(x) > 0 , and mp(x) < +∞ for all x ∈ R,

under the conditions that µ(dx) = f(x)dx with infx∈R f(x) > 0 and infx 6=0 |ρ(x)/x| > 0. We
improve this result by showing in Theorem 3.4 that when 1 < a < 2, |δ| < 2 − a (strict
inequality) and µ ∈Ma(R) is nonnegative and nonvanishing, then for all p ≥ 2,

inf
x∈R

mp(x) > 0, and sup
x∈R

mp(x) < +∞.

For this, we need a growth condition on ρ, namely, that for some constants lρ > 0 and ς ≥ 0,

ρ(x)2 ≥ l2ρ
(
ς2 +x2

)
, for all x ∈ R. (1.3)

In a forthcoming paper [8], this weak intermittency property will be extended to full inter-
mittency by showing in addition that m1(x) ≡ 0.

Our result answers an open problem stated by Conus and Khoshnevisan [10]. Indeed, for
the case of the fractional Laplacian, which corresponds to our setting with a ∈ ]1, 2[ and
δ = 0, they ask whether the function t 7→ supx∈R E (|u(t, x)|2) has exponential growth in
t for initial data with exponential decay. Our answer is “yes” under the condition (1.3).
In addition, under these conditions, if µ ∈ Ma,+ (R)and µ 6= 0, then for fixed x ∈ R, the
function t 7→ E (|u(t, x)|2) has at least exponential growth; see Remark 3.5.

We define the following growth indices of exponential type:

e(p) := sup

{
α > 0 : lim

t→∞

1

t
sup

|x|≥exp(αt)
logE (|u(t, x)|p) > 0

}
, (1.4)

e(p) := inf

{
α > 0 : lim

t→∞

1

t
sup

|x|≥exp(αt)
logE (|u(t, x)|p) < 0

}
, (1.5)

in order to give a proper characterization of the propagation speed of “high peaks”. This
concept is discussed in Conus and Khoshnevisan [10]. These authors define analogous indices
λ(p) and λ(p), in which |x| ≥ exp(αt) is replaced by |x| ≥ αt, which we call growth indices
of linear type.

Conus and Khoshnevisan [10] consider the case where xD
a
δ is replaced by the generator L

of a real-valued symmetric Lévy process (Xt, t ≥ 0). They showed in [10, Theorem 1.1 and
Remark 1.2] that if the initial data µ is a nonnegative lower semicontinuous function with
certain exponential decay at infinity, and if X1 has exponential moments, then

0 < λ(p) ≤ λ(p) < +∞ , for all p ∈ [2,+∞) .

For example, a Lévy process that satisfies this assumption is the “truncated symmetric stable
process”.
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Among Lévy processes, stable processes constitute an important subclass with a self-
similarity property. Infinitesimal generators of these processes are not covered by the results
of [10], since even the second moment of X1 does not exists. It turns out that the frac-
tional differential operator xD

a
δ is the infinitesimal generator of a (not necessarily symmetric)

strictly stable process with a ∈ ]1, 2] (see Section 2.1), and we will see that when 1 < a < 2,
the presence of the fractional differential operator xD

a
δ in (1.1) leads to significantly different

behaviors of the speed of propagation of high peaks, compared to that obtained in [10].
Indeed, we show first that if the initial data has sufficiently rapid decay at ±∞, then

e(p) <∞ (see (3.22) and (3.23)). Then we show that if 1 < a < 2 and |δ| < 2− a (meaning
that the underlying stable process has both positive and negative jumps), then

e(p) > 0 , for all p ∈ [2,+∞) and µ ∈Ma,+(R), µ 6= 0, (1.6)

provided ρ satisfies condition (1.3). This conclusion applies, for instance, to the case where
the initial data µ is the Dirac delta function. In particular, for well-localized initial data (for
instance, µ ≥ 0 and

∫
R |y|

ηµ(dy) < ∞ for some η > 0), 0 < e(p) ≤ e(p) < +∞, whereas
for initial data that is bounded below (µ(dx) = f(x)dx with f(x) > c > 0, for all x ∈ R),
e(p) = e(p) = +∞. See Theorem 3.6 for the precise statements. As a direct consequence,
λ(p) = λ(p) = +∞ for all p ∈ [2,∞[.

The structure of this paper is as follows. After defining the operator xD
a
δ and giving the

meaning of (1.1) in Section 2, the main results are presented in Section 3: Existence and
general bounds are given in Theorem 3.1. These bounds are expressed in terms of the kernel
K mentioned above, for which explicit upper and lower bounds are given. These lead to our
results on weak intermittency (Theorem 3.4) and growth indices (Theorem 3.6). Section 4
contains the proof of Theorem 3.1 and Section 5 presents the proofs of Theorems 3.4 and
3.6.

2 Preliminaries and notation

We begin by defining the differential operator xD
a
δ that appears in the SPDE (1.1), then we

shall give the rigorous meaning of the SPDE.

2.1 The Riesz-Feller fractional derivative

Let Ff(ξ) =
∫
R dx e−iξxf(x) denote the Fourier transform. For 0 < a ≤ 2 and |δ| ≤

min(a, 2−a), the Riesz-Feller fractional derivative xD
a
δf of a smooth and integrable function

f is defined (see [19, (2.2)]) by

F(xD
a
δf)(ξ) = δψa(ξ)Ff(ξ), where δψa(ξ) = −|ξ|a exp(−iπδ sgn(ξ)/2). (2.1)

When a = 2 (and therefore δ = 0), this is simply the ordinary second derivative d2

dx2
. For

1 < a < 2 and δ ≤ 2 − a, which is the case that we are most interested in, as stated in
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[19, (2.8)] (in which integrals are understood in the sense of Cauchy principle values), this
is equivalent to the more explicit formula

xD
a
δf(x) = c+a

∫ +∞

0

f(x+ z)− f(x)− zf ′(x)

z1+a
dz + c−a

∫ 0

−∞

f(x+ z)− f(x)− zf ′(x)

(−z)1+a
dz,

(2.2)
where

c±a =
Γ(1 + a)

π
sin
(

(a± δ)π
2

)
and Γ(z) =

∫∞
0
e−ttz−1dt is Euler’s Gamma function [21]. Indeed, taking the Fourier trans-

form of the right-hand side of (2.2) leads to (2.1) by (2.3) below and elementary properties
of Fourier transform.

From the point of view of a probabilist, the operator xD
a
δ is the infinitesimal generator of

a strictly a-stable Lévy process X = (Xt, t ≥ 0) (where “strictly” refers to the fact that the
process is centered: see [23, Chapter 3]), with Lévy measure

νa(dz) = c+a
dz

z1+a
1{z>0} + c−a

dz

(−z)1+a
1{z<0}.

Indeed, the general form of the infinitesimal generator of X, given in terms of its Lévy
measure in [23, Theorem 31.5, p. 208], is

Lf(x) = c+a

∫ +∞

0

f(x+ z)− f(x)− zf ′(x)

z1+a
dz + c−a

∫ 0

−∞

f(x+ z)− f(x)− zf ′(x)

(−z)1+a
dz,

where no “truncation function” nor additional drift term appears because of the centering,
and the characteristic function of Xt, given by the Lévy-Khintchine formula [23, Theorem
8.1], is

exp

[
−t
∫ +∞

−∞
(eiξz − 1− iξz) νa(dz)

]
= exp(−t δψa(ξ)), (2.3)

where the right-hand side can be obtained from the left-hand side via a direct calculation
using the formula Γ(a)Γ(1− a) = π/ sin(πa) [21, 5.5.3, p. 138] and the identity∫ +∞

0

e−qz − 1 + qz

z1+a
dz = qa Γ(−a), q ∈ C, 1 < <(a) < 2,

which follows from [21, 5.9.5, p. 140].
In order to study the SPDE (1.1), we need the fundamental solution of the operator

∂
∂t
− xD

a
δ . According to the above discussion, this is

δGa(t, x) := F−1 [exp { δψa(·)t}] (x) =
1

2π

∫
R

dξ exp
{
iξx− t|ξ|ae−iπδ sgn(ξ)/2

}
, (2.4)

where F−1 is the inverse Fourier transform. This is (one way to represent) the density of the
strictly a-stable random variable Xt with Lévy measure tνa, as given in the representation
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(C) in [27, p. 17]. For comparison, the expression in [23, Theorem 14.15] corresponds to the
representation (A) in [27, p. 9]. For strictly stable laws, in particular the case 1 < a < 2,
these two representations are equivalent: see [27, (I.28), (I.26) and Theorem C.3]. Properties
of δGa will be given in Lemma 4.1 below. We refer to [19] for more details on these fractional
differential operators.

In this paper, we denote the solution to the homogeneous equation
(
∂

∂t
− xD

a
δ

)
u(t, x) = 0, t ∈ R∗+ , x ∈ R,

u(0, ◦) = µ(◦),

by

J0(t, x) := ( δGa(t, ◦) ∗ µ) (x) =

∫
R
µ(dy) δGa(t, x− y),

where “∗” denotes the convolution in the space variable.

2.2 The stochastic PDE

Let W = {Wt(A), A ∈ Bb(R), t ≥ 0} be a space-time white noise defined on a probability
space (Ω,F , P ), where Bb (R) is the collection of Borel sets with finite Lebesgue measure.
Let (Ft, t ≥ 0) be the filtration generated by W and augmented by the σ-field N generated
by all P -null sets in F :

Ft = σ (Ws(A) : 0 ≤ s ≤ t, A ∈ Bb (R)) ∨N , t ≥ 0.

In the following, we fix this filtered probability space {Ω,F , (Ft, t ≥ 0), P}. We use ||·||p to
denote the Lp(Ω)-norm (p ≥ 1). With this setup, W becomes a worthy martingale measure
in the sense of Walsh [25], and

∫∫
[0,t]×RX(s, y)W (ds, dy) is well-defined in this reference for

a suitable class of random fields {X(s, y), (s, y) ∈ R+ × R}.
The rigorous meaning of the SPDE (1.1) uses the integral formulation

u(t, x) = J0(t, x) + I(t, x), where

I(t, x) =

∫∫
[0,t]×R

δGa (t− s, x− y) ρ (u(s, y))W (ds, dy).
(2.5)

Definition 2.1. A process u =
(
u(t, x), (t, x) ∈ R∗+ × R

)
is called a random field solution

to (1.1) if:

(1) u is adapted, i.e., for all (t, x) ∈ R∗+ × R, u(t, x) is Ft-measurable;

(2) u is jointly measurable with respect to B
(
R∗+ × R

)
×F ;
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(3)
(
δG

2
a ? ||ρ(u)||22

)
(t, x) < +∞ for all (t, x) ∈ R∗+×R, where “?” denotes the simultaneous

convolution in both space and time variables, that is,(
δG

2
a ? ||ρ(u)||22

)
(t, x) :=

∫ t

0

ds

∫
R

dy δG
2
a(t− s, x− y) ||ρ(u(s, y))||22 ;

(4) For all (t, x) ∈ R∗+ × R, u(t, x) satisfies (2.5) a.s.;

(5) The function (t, x) 7→ I(t, x) mapping R∗+ × R into L2(Ω) is continuous.

Assume that the function ρ : R 7→ R is globally Lipschitz continuous with Lipschitz
constant Lipρ > 0. This implies a growth condition on ρ: for some constants Lρ > 0 and
ς ≥ 0,

ρ(x)2 ≤ L2
ρ

(
ς2 +x2

)
, for all x ∈ R. (2.6)

Note that one can take ς = |ρ(0)| and Lρ ≤
√

2 Lipρ (and the inequality may even be strict).
We shall also specially consider the linear case ρ(u) = λu with λ 6= 0, which is related to
the parabolic Anderson model (a = 2). It is a special case of the following near-linear growth
condition: for some constant ς ≥ 0,

ρ(x)2 = λ2
(
ς2 +x2

)
, for all x ∈ R . (2.7)

For all (t, x) ∈ R∗+ × R, n ∈ N and λ ∈ R, define

L0 (t, x;λ) := λ2 δG
2
a(t, x),

Ln (t, x;λ) := (L0 ? · · · ? L0)︸ ︷︷ ︸
n+ 1 factors L0(·,◦;λ)

(t, x;λ), for n ≥ 1, (2.8)

and

K (t, x;λ) :=
∞∑
n=0

Ln (t, x;λ) (2.9)

(the convergence of this series is established in Proposition 3.2). For t ≥ 0, define

H(t;λ) := (1 ?K(·, ◦;λ)) (t, x)

(notice that the right-hand side does not depend on x).
Let zp be the universal constant in the Burkholder-Davis-Gundy inequality (in particular,

z2 = 1), and so zp ≤ 2
√
p for all p ≥ 2; see [4, Appendix]. Define

ap,ς =


2(p−1)/p if ς 6= 0 and p > 2,√

2 if ς = 0 and p > 2,

1 if p = 2.
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We apply the following conventions to the kernel functions K(t, x;λ) (and similarly to
H(t;λ)):

K(t, x) := K(t, x;λ), K(t, x) := K (t, x; Lρ) ,

K(t, x) := K (t, x; lρ) , K̂p(t, x) := K (t, x; ap,ς zp Lρ) , for p ≥ 2 .

3 Main results

3.1 Existence, uniqueness and moments

The following theorem extends the result of [6, Theorem 2.4] from a = 2 to a ∈ ]1, 2]. In
view of the related result [7, Theorem 2.3] and Remark 2.4 in this reference, the bounds in
this theorem are not a surprise, though they do require a proof. The main effort will be to
turn these abstract bounds into concrete estimates, via explicit upper and lower bounds on
the functions K and H (see Section 3.2). For τ ≥ t > 0 and x, y ∈ R, define

I(t, x, τ, y; ς, λ) :=λ2
∫ t

0

dr

∫
R

dz
[
J2
0 (r, z) +

(
J2
0 (·, ◦) ?K(·, ◦;λ)

)
(r, z) + ς2 (H(r;λ) + 1)

]
× δGa(t− r, x− z) δGa(τ − r, y − z).

Theorem 3.1 (Existence,uniqueness and moments). Suppose that

(i) 1 < a ≤ 2 and |δ| ≤ 2− a;

(ii) the function ρ is Lipschitz continuous and satisfies the growth condition (2.6);

(iii) the initial data are such that µ ∈Ma (R).

Then the stochastic PDE (1.1) has a random field solution (u(t, x), (t, x) ∈ R∗+×R). More-
over:
(1) u(t, x) is unique in the sense of versions;
(2) (t, x) 7→ u(t, x) is Lp(Ω)-continuous for all integers p ≥ 2;
(3) For all even integers p ≥ 2, all τ ≥ t > 0 and x, y ∈ R,

||u(t, x)||2p ≤

{
J2
0 (t, x) +

(
[ς2 +J2

0 ] ?K
)

(t, x), if p = 2 ,

2J2
0 (t, x) +

(
[ς2 +2J2

0 ] ? K̂p
)

(t, x), if p > 2 ,
(3.1)

and
E [u(t, x)u (τ, y)] ≤ J0(t, x)J0 (τ, y) + I(t, x, τ, y; ς,Lρ) . (3.2)

(4) If ρ satisfies (1.3), then for all τ ≥ t > 0 and x, y ∈ R,

||u(t, x)||22 ≥ J2
0 (t, x) +

((
ς2 +J2

0

)
?K
)

(t, x), (3.3)
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and
E [u(t, x)u (τ, y)] ≥ J0(t, x)J0 (τ, y) + I(t, x, τ, y; ς, lρ) . (3.4)

(5) If ρ satisfies (2.7), then for all τ ≥ t > 0 and x, y ∈ R,

||u(t, x)||22 = J2
0 (t, x) +

((
ς2 +J2

0

)
?K
)

(t, x), (3.5)

and
E [u(t, x)u (τ, y)] = J0(t, x)J0 (τ, y) + I(t, x, τ, y; ς, λ) . (3.6)

The proof of this theorem is explained in Section 4.

3.2 Estimates on the kernel function K(t, x)

Recall that if the partial differential operator is the heat operator ∂
∂t
− ν

2
∆, then

Kheat(t, x;λ) = G ν
2
(t, x)

(
λ2√
4πνt

+
λ4

2ν
e
λ4t
4ν Φ

(
λ2
√

t

2ν

))
, (3.7)

where ν > 0 and Φ(x) is the distribution function of a standard Normal random variable; see
[6, Proposition 2.2]. When the partial differential operator is the wave operator ∂2

∂t2
− κ2∆,

Kwave(t, x;λ) =
λ2

4
I0

(√
λ2((κt)2 − x2)

2κ

)
1{|x|≤κt}, (3.8)

where κ > 0 and I0(x) is the modified Bessel function of the first kind of order 0; see [7,
Proposition 3.1].

Except in the above two cases, we do not have an explicit formula for the kernel function
K(t, x) in (2.9). In order to make use of the moment formulas in (3.1) and (3.3), we derive
upper and lower bounds on this kernel function in the following two propositions. We will
need the two-parameter Mittag-Leffler function [22, Section 1.2]:

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (3.9)

Let a∗ be the dual of a: 1/a+ 1/a∗ = 1. By Lemma 4.1 below (Property (ii)), the constant

Λ = δΛa := sup
x∈R

δGa(1, x) (3.10)

is finite. In particular,

0Λa = 0Ga(1, 0) =
1

2π

∫
R

dξ exp (−|ξ|a) =
1

aπ

∫ ∞
0

dt e−t t−1+1/a =
Γ (1 + 1/a)

π
.

9



In the following, we often omit the dependence of δΛa on δ and a and simply write Λ instead
of δΛa. Define

γ := λ2Λ Γ(1/a∗), γ := L2
ρ Λ Γ(1/a∗),

γ := l2ρ Λ Γ(1/a∗), γ̂p := a2p,ςz
2
p L2

ρ Λ Γ(1/a∗), for p ≥ 2.
(3.11)

Clearly, γ̂2 = γ.

Proposition 3.2 (Upper bound on K(t, x)). Suppose that a ∈ ]1, 2] and |δ| ≤ 2 − a. The
kernel function K(t, x) defined in (2.9) satisfies, for all t ≥ 0 and x ∈ R,

K(t, x) ≤ δGa(t, x)
γ

t1/a
E1/a∗,1/a∗

(
γt1/a

∗)
(3.12)

≤ C

t1/a
δGa(t, x)

(
1 + t1/a exp

(
γa
∗
t
))
, (3.13)

where the constant C = C(a, δ, λ) can be chosen as

C(a, δ, λ) := γ sup
t≥0

E1/a∗,1/a∗
(
γ t1/a

∗)
1 + t1/a exp (γa∗t)

< +∞ . (3.14)

This proposition is proved in Section 4. For a lower bound on K(t, x), we need another
family of kernel functions: for a > 0, t > 0 and x ∈ R, define

ga(t, x) :=
1

π

t

(t2/a + x2)
a
2
+ 1

2

. (3.15)

These functions have the same scaling property as δGa(t, x) (see Lemma 4.1(iv) below):

ga(t, x) =
1

t1/a
ga

(
1,

x

t1/a

)
.

Note that g1(t, x) is the Poisson kernel (see, e.g., [26, p. 268]), which satisfies the semigroup
property

(g1(t− s, ·) ∗ g1(s, ·)) (x) = g1(t, x), 0 ≤ s ≤ t, x ∈ R.
For a ∈ ]1, 2[ and |δ| < 2− a, define

C̃a,δ := inf
(t,x)∈R∗+×R

δGa(t, x)

πga(t, x)
> 0 (3.16)

(for the strict positivity, see Lemma 5.1 below). Then let

Υ(λ, a, δ) :=
λ2 C̃2

a,δ C
2
a+1/2 Γ (1/a∗)

π 22(a+3+1/a)
, (3.17)

where

Cν :=
Γ(ν)Γ(1/2)

2 Γ(ν + 1/2)
, ν ≥ 1/2 . (3.18)
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Proposition 3.3 (Lower bound on K(t, x)). Fix a ∈ ]1, 2[ and |δ| < 2 − a (note the strict
inequality). Then for all t > 0 and x ∈ R,

K(t, x) ≥ π2 C̃2
a,δ λ

2 Γ(1/a∗) g2a (t, x) E1/a∗,1/a∗
(
Υ(λ, a, δ) t1/a

∗)
. (3.19)

In particular, for all t > 0 and x ∈ R,

(1 ?K) (t, x) ≥
π1/2 C̃2

a,δ λ
2 Γ(1/a∗)Γ(a+ 1/2)

Γ(1 + a)
t1/a

∗
E1/a∗,1+1/a∗

(
Υ(λ, a, δ) t1/a

∗)
. (3.20)

This proposition is proved in Section 5.1.

3.3 Growth indices and weak intermittency

Theorem 3.4 (Weak intermittency). Suppose that a ∈ ]1, 2] and |δ| ≤ 2− a.
(1) If ρ satisfies (2.6) and µ ∈Ma(R), then for all even integers p ≥ 2,

sup
x∈R

mp(x) ≤ 1

2

(
16 L2

ρ ΛΓ(1/a∗)
)a∗

p2+1/(a−1). (3.21)

(2) Suppose ρ satisfies (1.3), |δ| < 2 − a (strict inequality) and µ ∈ Ma,+ (R). If either
µ 6= 0 or ς 6= 0, then for all p ≥ 2,

inf
x∈R

mp(x) ≥ p

2
Υ (lρ, a, δ)

a∗ > 0.

Note that if a = 2, then (3.21) implies that for some constant C, we have mp ≤ Cp3,
which recovers previous analyses (see [3], [6, Example 2.7], etc).

Remark 3.5. Fix p ≥ 2. Clearly, Theorem 3.4 implies that for all x ∈ R,

lim inf
t→∞

1

t
sup
y∈R

logE (|u(t, y)|p) ≥ lim inf
t→∞

1

t
logE (|u(t, x)|p) = mp(x) ≥ p

2
Υ (lρ, a, δ)

a∗ > 0 .

Hence, the function t 7→ supy∈R E (|u(t, y)|p) has at least exponential growth. This answers
the second open problem stated by Conus and Khoshnevisan in [10]. Moreover, Theorem 3.4
implies that for all fixed x ∈ R, the function t 7→ E (|u(t, x)|p) also has at least exponential
growth.

Recall the definitions of the constants γ̂p and Υ(lρ, a, δ) in (3.11) and (3.17), respectively.

Theorem 3.6 (Growth indices). (1) Suppose that a ∈ ]1, 2], |δ| ≤ 2−a and ρ satisfies (2.6)
with ς = 0. If there are C <∞, α > 0 and β > 0 such that for all (t, x) ∈ [1,∞[×R,

|J0(t, x)| ≤ C(1 + tα)(1 + |x|)−β. (3.22)
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Then

e(p) ≤
γ̂a
∗
p

β
< +∞. (3.23)

In particular, if, for some η > 0,
∫
R |µ|(dy)(1+|y|η) <∞, then (3.22) and (3.23) are satisfied

with β = min(η, 1 + a).
(2) Suppose that a ∈ ]1, 2[ (note that a 6= 2), |δ| < 2 − a (strict inequality) and ρ satisfies
(1.3). For all µ ∈Ma,+ (R), µ 6= 0 and all p ≥ 2, if ς = 0, then

e(p) ≥ Υ (lρ, a, δ)
a∗

2(a+ 1)
> 0.

For these µ, if ς = 0 and there is c > 0 such that

J0(t, x) ≥ c, for all (t, x) ∈ R+ × R, (3.24)

or if ς 6= 0, then e(p) = e(p) = +∞. In particular, λ(p) = λ(p) = +∞ for all p ≥ 2, and a
sufficient condition for (3.24) is that µ(dx) = f(x)dx with f(x) ≥ c, for all x ∈ R.

The two theorems above are proved in Section 5.

Remark 3.7. In the case of the classical parabolic Anderson model, in which a = 2, δ = 0
and ρ(u) = λu, it was shown in [6] that λ(2) = λ(2) = λ2/2 when the initial data has compact
support (for instance). Here, it is natural to ask whether e(p) = e(p) when ρ(u) = λu, for
instance for initial data with compact support. This remains an open question.

4 Proof of Theorem 3.1

We need some technical results. The proof of Theorem 3.1 will be presented at the end of
this section.

The Green functions defined in (2.4) are densities of stable random variables. Some key
properties are stated in the next lemma. Recall that a probability density function f : R→
R+ is called bell-shaped if f is infinitely differentiable and its k-th derivative f (k) has exactly
k zeros in its support for all k.

Lemma 4.1. For a ∈ ]0, 2], the following properties hold:

(i) For fixed t > 0, the function δGa(t, ·) is a bell-shaped density function. In particular,∫
R δGa(t, x)dx = 1.

(ii) The unique mode is located on the positive semi-axis x > 0 if δ > 0, on the negative
semi-axis x < 0 if δ < 0, and at x = 0 if δ = 0.

12



(iii) δGa(t, x) satisfies the semigroup property, i.e., for 0 < s < t,

δGa(t+ s, x) = ( δGa(t, ◦) ∗ δGa(s, ◦))(x).

(iv) δGa(t, x) has the following scaling property: For all n ≥ 0,

∂n

∂xn
δGa(t, x) = t−

n+1
a

∂n

∂ξn
δGa(1, ξ)

∣∣∣∣
ξ=t−1/ax

. (4.1)

(v) For 0 < a < 2 with a 6= 1, when x→ ±∞,

δGa(1, x) =
1

π

N∑
j=1

|x|−aj−1 (−1)j+1

j!
Γ(aj + 1) sin (j(a± δ)π/2) +O

(
|x|−a(N+1)−1) .

(vi) If a ∈ ]1, 2], then there exist finite constants Ka,n such that∣∣∣∣ ∂n∂xn δGa(1, x)

∣∣∣∣ ≤ Ka,n

1 + |x|1+n+a
, for n ≥ 0. (4.2)

Moreover, for all T ≥ t > 0, n ≥ 0 and x ∈ R,∣∣∣∣ ∂n∂xn δGa(t, x)

∣∣∣∣ ≤ t−
n+1
a

Ka,n

1 + |t−1/ax|1+n+a
≤ Ka,n t

−n+1
a

(T ∨ 1)1+
n+1
a

1 + |x|1+n+a
. (4.3)

(vii) limt↓0 δGa(t, x) = δ0(x), where δ0(x) is the Dirac delta function with unit mass at zero.

Proof. Most of these properties appear in several books [27, 24, 18]. We refer the interested
readers to [13, Lemma 1] for Properties (i) (except the bell-shaped density), (iii) and (iv).
Formula (v) can be found in [18], (5.9.3) in Sec. 5.9 and (5.8.6) in Sec. 5.8; for x→ −∞, use
(5.8.2c) in this reference (note that the formula in [13, Lemma 1(vii)] is not quite correct for
x→ −∞). The proof that the density is bell-shaped is due to Gawronski [16]. Property (ii)
can be found in the summary part of [27, Section 2.7, p. 143–147].

Now we prove (vi). Property (4.2) follows from [13, Corollary 1]. By the scaling property
(4.1) and (4.2),∣∣∣∣ ∂n∂xn δGa(t, x)

∣∣∣∣ ≤ t−
n+1
a

Ka,n

1 + |t−1/ax|1+n+a
= t−

n+1
a

Ka,n t
1+n+1

a

t1+
n+1
a + |x|1+n+a

.

Using the fact that the function t 7→ t
t+z

is monotone increasing on R+, the above quantity
is less than

t−
n+1
a

Ka,n (T ∨ 1)1+
n+1
a

(T ∨ 1)1+
n+1
a + |x|1+n+a

≤ t−
n+1
a
Ka,n (T ∨ 1)1+

n+1
a

1 + |x|1+n+a
.

This proves (4.3).
Property (vii) follows easily by taking Fourier transforms F(δGa(t, ·))(ξ) = exp ( δψa(ξ)t)→

1 as t ↓ 0. This completes the proof of Lemma 4.1.
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Let Ln(t, x;λ), K(t, x;λ), and Λ = δΛa be defined in (2.8), (2.9), and (3.10), respectively.
Recall that 1/a+ 1/a∗ = 1.

Lemma 4.2 (Theorem 1.3 p. 32 in [22]). If 0 < α < 2, β is an arbitrary complex number
and µ is an arbitrary real number such that

πα/2 < µ < π ∧ (πα) ,

then for an arbitrary integer p ≥ 1 the following expression holds:

Eα,β(z) =
1

α
z(1−β)/α exp

(
z1/α

)
−

p∑
k=1

z−k

Γ(β − αk)
+O

(
|z|−1−p

)
, |z| → ∞, | arg(z)| ≤ µ .

Proposition 4.3. For 1 < a ≤ 2, |δ| ≤ 2− a and λ > 0, we have the following properties:

(i) Ln(t, x;λ) is non-negative and for all n ≥ 0 and (t, x) ∈ R∗+ × R,

Ln(t, x;λ) ≤ Bn+1(t;λ) δGa(t, x) , (4.4)

where

Bn (t;λ) := λ2nΛnΓ (1/a∗)n

Γ (n/a∗)
t−1+n/a

∗
(n ≥ 0, λ ∈ R).

(ii) Bn (t ;λ) ≥ 0 and for all m ∈ N∗,
∑∞

n=0Bn (t ;λ)1/m < +∞.

(iii) For all t > 0 and λ > 0, the series
∑∞

n=1 Ln(t, x;λ) converges uniformly over x ∈ R
and hence K(t, x;λ) in (2.9) is well defined.

Proof. (i) Non-negativity is clear. The scaling property (4.1) and the definition of Λ in (3.10)
imply that

δGa(t, x) ≤ t−1/aΛ , (4.5)

which establishes the case n = 0 in (4.4). Suppose by induction that the relation (4.4) holds
up to n− 1. Then by (4.5), we have

Ln(t, x;λ) =

∫ t

0

ds

∫
R

dy Ln−1 (t− s, x− y)λ2 δG
2
a (s, y)

≤λ2(n+1)Λn+1Γ (1/a∗)n

Γ (n/a∗)

∫ t

0

ds (t− s)−1+n/a∗s−1/a

×
∫
R

dy δGa (t− s, x− y) δGa (s, y) .

The conclusion now follows from the semigroup property of δGa(t, x) and Euler’s Beta
integral (see [21, 5.12.1, on p. 142]):∫ t

0

ds sa−1(t− s)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
ta+b−1, with <(a) > 0 and <(b) > 0. (4.6)
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(ii) The non-negativity is clear. Denote β := 1/a∗. In order to show convergence of∑
nBn (t ;λ)1/m, we use the ratio test:(

Bn (t ;λ)

Bn−1 (t ;λ)

)1/m

=
(
λ2ΛΓ (β) tβ

)1/m(Γ ((n− 1)/a∗)

Γ(n/a∗)

)1/m

.

By the asymptotic expansion of the Gamma function ([21, 5.11.2, on p. 140]),

Γ ((n− 1)/a∗)

Γ (n/a∗)
≈
(
e

β

)β (
1− 1

n

)(n−1)β
1

nβ
≈ 1

(βn)β
,

for large n. Clearly, β > 0 since 1/a < 1. Hence for all t > 0, for large n,(
Bn (t ;λ)

Bn−1 (t ;λ)

)1/m

≈
(
λ2ΛΓ (β) tβ

)1/m 1

(βn)β/m
,

and this goes to zero as n→ +∞.
(iii) By (4.4) and (4.5),

Ln(t, x;λ) ≤ Bn+1 (t ;λ) t−1/aΛ,

so (ii) implies (iii). This completes the proof of Proposition 4.3.

Proof of Proposition 3.2. The bound (3.12) follows from the fact that

∞∑
k=1

zk

Γ(αk)
= zEα,α(z) , (4.7)

which can be easily seen from the definition, and the bound in Proposition 4.3 (i):

K (t, x;λ) ≤ δGa(t, x)
∞∑
n=1

Bn (t;λ) =
1

t
δGa(t, x)

∞∑
n=1

(
λ2ΛΓ(1/a∗) t1/a

∗)n
Γ(n/a∗)

= λ2ΛΓ(1/a∗)t−1/a δGa(t, x)E1/a∗,1/a∗
(
λ2ΛΓ(1/a∗)t1/a

∗)
.

As for (3.13), we only need to show that the constant C defined in (3.14) is finite. Let

f(t) =
E1/a∗,1/a∗

(
γ t1/a

∗)
1 + t1/a exp (γa∗ t)

.

By Lemma 4.2 with the real non-negative value z = γ t1/a
∗

and p = 1,

γE1/a∗,1/a∗
(
γ t1/a

∗) ≤ a∗ γa
∗
t1/a exp

(
γa
∗
t
)

+O

(
1

|t|2/a∗
)
, t→ +∞ ,

where we have used the convention that 1/Γ(0) = 0 (see [21, 5.7.1, p.139]), therefore

lim
t→+∞

f(t) ≤ a∗γa
∗
.

Since Eα,α(·) is continuous (by uniform convergence of the series in (3.9)), we conclude that
supt≥0 f(t) < +∞. This completes the proof of Proposition 3.2.
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The next proposition is in principle a consequence of certain calculations in [13]. It is
however not stated explicitly there, so we include a proof for the convenience of the reader.

Proposition 4.4. Fix 1 < a ≤ 2, |δ| ≤ 2− a and 1/a+ 1/a∗ = 1. There are three universal
constants

C1 :=

∫
R

1− cos(u)

2π cos(πδ/2)|u|a
du , C3 :=

a∗Γ(1 + 1/a)

21/aπ cos1/a(πδ/2)
,

and

C2 :=
(
21/a − 1

)
C3 +

Γ(1 + 1/a) sin2(πδ/2)

2πa[cos(πδ/2)]2+1/a
,

such that

(i) for all t > 0 and x, y ∈ R,∫ t

0

dr

∫
R

dz [ δGa(t− r, x− z)− δGa(t− r, y − z)]2 ≤ C1|x− y|a−1 ; (4.8)

(ii) for all s, t ∈ R∗+ with s ≤ t, and x ∈ R,∫ s

0

dr

∫
R

dz [ δGa(t− r, x− z)− δGa(s− r, x− z)]2 ≤ C2(t− s)1−1/a (4.9)

and ∫ t

s

dr

∫
R

dz [ δGa(t− r, x− z)]2 ≤ C3(t− s)1−1/a . (4.10)

Remark 4.5. This proposition is a generalization of [6, Proposition 3.5] for the heat equa-
tion. In fact, if we take a = 2 and δ = 0, then δGa(t, x) = G2(t, x) = 1√

4πt
exp (−x2/(4t)).

Let C ′i, i = 1, 2, 3, be the optimal constants given in [6, Proposition 3.5] with ν = 2. Then
we have the following relations:

C ′1
2

= C1 =
1

2
,

C ′2√
2

= C2 =

√
2− 1√

2π
,

C ′3√
2

= C3 =
1√
2π

,

where for C1, we use the fact that
∫
R

1−cos(u)
u2

du = 2
∫∞
0

sin(u)
u

du = π; see [21, 4.26.12, on p.
122] for the last integral. This recovers the optimal inequalities of [6, Proposition 3.5], since
ν appears in the right-hand side of the inequalities in this reference.

Proof of Proposition 4.4. (i) Note that

F( δGa(t, ·))(ξ) :=

∫
R

dx e−iξx δGa(t, x) = exp {t δψa(ξ)} = exp
{
−t|ξ|ae−iπδ sgn(ξ)/2

}
.
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By Plancherel’s theorem, the left hand side of (4.8) equals

1

2π

∫ t

0

dr

∫
R

dξ
∣∣∣e−iξx−(t−r)|ξ|aeiπδ sgn(ξ)/2 − e−iξy−(t−r)|ξ|aeiπδ sgn(ξ)/2∣∣∣2
=

1

2π

∫ t

0

dr

∫
R

dξ exp{−2(t− r)|ξ|a cos(πδ/2)}
∣∣e−iξx − e−iξy∣∣2

=
1

π

∫ t

0

dr

∫
R

dξ exp{−2(t− r)|ξ|a cos(πδ/2)} (1− cos(ξ(x− y))) .

After integrating over r, the above integral equals

1

π

∫
R

dξ
1− exp{−2t|ξ|a cos(πδ/2)}

2 cos(πδ/2)|ξ|a
(1− cos(ξ(x− y))) .

Use the change of variables ξ = u/|x− y| to see that this is equal to

1

π
|x− y|a−1

∫
R

du
1− exp(−2t|u|a cos(πδ/2)/|x− y|a)

2 cos(πδ/2)|u|a
(1− cos(u)) ≤ C ′1 |x− y|a−1,

where

C ′1 =

∫
R

1− cos(u)

2π cos(πδ/2)|u|a
du.

This proves (4.8).
(ii) Denote the left hand side of (4.9) by I. Apply Plancherel’s theorem to I:

I =
1

2π

∫ s

0

dr

∫
R

dξ | exp(−iξx− (t− r)|ξ|aeiπδ sgn(ξ)/2)

− exp(−iξx− (s− r)|ξ|aeiπδ sgn(ξ)/2)|2

=
1

2π

∫ s

0

dr

∫
R

dξ | exp(−(t− r)|ξ|aeiπδ sgn(ξ)/2)− exp(−(s− r)|ξ|aeiπδ sgn(ξ)/2)|2.

Denote β := πδ sgn(ξ)/2 ∈ ]− π
2
, π
2
[ and

Ar,t := (t− r)|ξ|a cos(β), Br,t := (t− r)|ξ|a sin(β) .

Then ∣∣exp(−(t− r)|ξ|aeiπδ sgn(ξ)/2)− exp(−(s− r)|ξ|aeiπδ sgn(ξ)/2)
∣∣2

=
∣∣e−Ar,t cos(Br,t)− ie−Ar,t sin(Br,t)− e−Ar,s cos(Br,s) + ie−Ar,s sin(Br,s)

∣∣2
= e−2Ar,t + e−2Ar,s − 2e−(Ar,t+Ar,s) cos (Br,t −Br,s) .

Now, according to [21, Equation 5.9.1, p.139], for z ∈ C with <(z) > 0,∫
R

dξ e−z|ξ|
a

= 2

∫ ∞
0

dξ e−zξ
a

= 2z−1/aΓ (1 + 1/a) . (4.11)
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Hence, since cos (β) = cos(πδ/2), which does not depend on ξ,∫
R

dξ e−2Ar,t =

∫
R

dξ e−2(t−r) cos(β)|ξ|
a

=
21/a∗Γ (1 + 1/a)

cos1/a(β)

1

(t− r)1/a
. (4.12)

Similarly, ∫
R

dξ e−2Ar,s =
21/a∗Γ (1 + 1/a)

cos1/a(β)

1

(s− r)1/a
.

For the third term, notice that

e−(Ar,t+Ar,s) cos(Br,t −Br,s) = exp

(
−
(
t+ s

2
− r
)

2 |ξ|a cos(β)

)
cos ((t− s) |ξ|a sin(β))

= <
[
exp

{
−
[(

t+ s

2
− r
)

2 cos(β) + i(t− s) sin(β)

]
|ξ|a
}]

.

Apply (4.11) with z =
(
t+s
2
− r
)

2 cos(β) + i(t− s) sin(β):∫
R

dξ exp

{
−
[(

t+ s

2
− r
)

2 cos(β) + i(t− s) sin(β)

]
|ξ|a
}

= 2Γ(1 + 1/a)

[(
t+ s

2
− r
)

2 cos(β) + i(t− s) sin(β)

]−1/a
.

Apply Lemma 4.6 below with c = 1/a, b =
(
t+s
2
− r
)

2 cos(β) and x = (t− s)2 sin2(β):[(
t+ s

2
− r
)

2 cos(β) + i(t− s) sin(β)

]−1/a
≥ 1

21/a cos1/a(β)

1

((t+ s)/2− r)1/a

− (a+ 1) sin2(β)

2a2 [2 cos(β)]2+1/a

(t− s)2

((t+ s)/2− r)2+1/a
.

Hence,

2

∫
R

dξ e−(Ar,t+Ar,s) cos(Br,t −Br,s) ≥21+1/a∗Γ(1 + 1/a)

cos1/a(β)

1

((t+ s)/2− r)1/a

− 2Γ(1 + 1/a)(a+ 1) sin2(β)

a2 [2 cos(β)]2+1/a

(t− s)2

((t+ s)/2− r)2+1/a
.

Integrating over r and then applying Lemma 4.7 below, we get

I ≤ Γ(1 + 1/a)

21/aπ cos1/a(β)

∫ s

0

dr

(
1

(t− r)1/a
+

1

(s− r)1/a
− 2

[(t+ s)/2− r]1/a

)

+
Γ(1 + 1/a)(a+ 1) sin2(β)

πa2 [2 cos(β)]2+1/a

∫ s

0

dr
(t− s)2

((t+ s)/2− r)2+1/a
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≤C2(t− s)1/a
∗
,

where 1/a∗ + 1/a = 1.
As for (4.10), from (4.12), we have∫ t

s

dr

∫
R

dz [ δGa(t− r, x− z)]2 =
1

2π

∫ t

s

dr

∫
R

dξ e−2(t−r)|ξ|
a cos(β)

=
Γ(1 + 1/a)

21/aπ cos1/a(β)

∫ t

s

dr
1

(t− r)1/a
=

a∗Γ(1 + 1/a)

21/aπ cos1/a(β)
(t− s)1/a∗ . (4.13)

This completes the proof of Proposition 4.4.

Lemma 4.6. Suppose b > 0 and c ∈ ]0, 1]. Then for all x ≥ 0,

<
(
(b± i

√
x)−c

)
≥ 1

bc
− c(1 + c)

2

x

b2+c
.

Proof. Let θ = arctan(
√
x/b) ∈ [0, π/2[ and denote f(x) := < ((b± i

√
x)−c). Then

f(x) =
(
b2 + x

)−c/2
cos (c θ) .

Because cos(θ) ≥ 1− θ2/2 and arctan(y) ≤ y for y ≥ 0, we have that

cos (c θ) ≥ 1− c2 θ2

2
≥ 1− c2x

2b2
.

By Taylor’s theorem, for some ζ ∈ [0, x],(
b2 + x

)−c/2
= b−c − 1

2
cx(b2 + ζ)−1−c/2 ≥ b−c − 1

2
cxb−2−c.

Combining the above two lower bounds proves the lemma.

Lemma 4.7. For all t ≥ s ≥ 0 and a ∈ ]1, 2], we have∫ s

0

dr

(
1

(t− r)1/a
+

1

(s− r)1/a
− 2

((t+ s)/2− r)1/a

)
≤ a∗(21/a − 1) (t− s)1/a

∗
,

and ∫ s

0

dr
(t− s)2

((t+ s)/2− r)2+1/a
≤ a

a+ 1
21+1/a (t− s)1/a∗ ,

where a∗ is the dual of a: 1/a+ 1/a∗ = 1.
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Proof. Clearly,

1

a∗

∫ s

0

dr

(
1

(t− r)1/a
+

1

(s− r)1/a
− 2

((t+ s)/2− r)1/a

)
= s1/a

∗
+ t1/a

∗ − (t− s)1/a∗ + 21/a(t− s)1/a∗ − 21/a(t+ s)1/a
∗
.

We shall to prove that

(t− s)−1/a∗ [s1/a
∗

+ t1/a
∗ − (t− s)1/a∗ + 21/a(t− s)1/a∗ − 21/a(t+ s)1/a

∗
]

is bounded from above for all 0 ≤ s ≤ t, or, equivalently, that

g(r) :=
r1/a

∗
+ 1− (1− r)1/a∗ + 21/a(1− r)1/a∗ − 21/a(1 + r)1/a

∗

(1− r)1/a∗

is bounded for all r ∈ [0, 1]. Clearly, g(0) = 0 and limr↑1 g(r) = 21/a − 1 (by applying
L’Hospital’s rule once). Hence supr∈[0,1] g(r) <∞. In addition,

g′(r) =

(
(1 + r)1/a + (1 + 1/r)1/a

)
− 21+1/a

a∗(1− r)2−1/a(1 + r)1/a
,

and notice that for all r ∈ ]0, 1],

(1 + r)1/a + (1 + 1/r)1/a ≥ 2 [(1 + r)(1 + 1/r)]1/(2a) = 2

(√
r +

1√
r

)1/a

≥ 21+1/a .

Hence g′(r) ≥ 0 for r ∈ ]0, 1] and supr∈[0,1] g(r) = limr↑1 g(r) = 21/a − 1. Therefore, the first

inequality is proved with the constant a∗(21/a − 1).
As for the second inequality, we have that∫ s

0

dr
(t− s)2

((t+ s)/2− r)2+1/a
=

a

a+ 1
21+1/a

(
(t+ s)1+1/a − (t− s)1+1/a

)
(t+ s)1+1/a

(t− s)1/a∗

≤ a

a+ 1
21+1/a (t− s)1/a∗ ,

which completes the proof of the Lemma 4.7.

The following proposition is useful to prove the Lp(Ω)–continuity of I(t, x).

Proposition 4.8. Suppose that a ∈ ]1, 2] and |δ| ≤ 2− a. Fix (t, x) ∈ R∗+ × R. Denote

B := Bt,x =
{

(t′, x′) ∈ R∗+ × R : 0 ≤ t′ ≤ t+ 1/2, |x− x′| ≤ 1
}
.

Then there exists a constant A > 0 such that for all (t′, x′) ∈ B, s ∈ [0, t′[ and |y| ≥ A,

δGa (t′ − s, x′ − y) ≤ −δGa (t+ 1− s, x− y) + δGa (t+ 1− s, x− y) .
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Proof. The case where a = 2 is proved in [6, Proposition A.3], so we only need to prove the
case where 1 < a < 2. Denote F (t, x) := δGa (t, x) + −δGa (t, x). Suppose the mode of the
density δGa (1, x) is located at m ∈ R. By the scaling property, the mode of the density

δGa (t, x) is located at t1/am. Hence, when x ≥ t1/a|m| (resp. x ≤ −t1/a|m|), the function
x 7→ F (t, x) is decreasing (resp. increasing).

Fix (t, x) ∈ R∗+×R. Assume that |y−x| > 1+(t+1/2)1/a|m|. From the above observation,
we deduce that for all (t′, x′) ∈ B,

δGa (t′ − s, x′ − y) ≤ F (t′ − s, |y − x| − |x− x′|) ≤ F (t′ − s, |y − x| − 1) . (4.14)

Apply Lemma 4.1(v) with N = 1 and use the scaling property of δGa(t, x) to get

F (t, x) = 2
Γ(a+ 1)

π
sin
(π

2
a
)

cos
(π

2
δ
)
t |x|−1−a +O

(
t2 |x|−1−2a

)
.

Because |δ| ≤ 2− a and a ∈ ]1, 2[ , we see that sin(πa/2) cos(πδ/2) 6= 0. Hence,

F (t+ 1− s, x− y)

F (t′ − s, |y − x| − 1)
=

(t+ 1− s)|x− y|−1−a +O ((t+ 1− s)2 |x− y|−1−2a)
(t′ − s) ||y − x| − 1|−1−a +O ((t′ − s)2||y − x| − 1|−1−2a)

=
t+ 1− s
t′ − s

|x− y|−1−a +O ((t+ 1− s) |x− y|−1−2a)
||y − x| − 1|−1−a +O ((t′ − s) ||y − x| − 1|−1−2a)

.

Now it is clear that

lim
|y|→+∞

inf
(t′,x′)∈B, s∈[0,t′[

|x− y|−1−a +O ((t+ 1− s)|x− y|−1−2a)
||y − x| − 1|−1−a +O ((t′ − s) ||y − x| − 1|−1−2a)

= 1,

which implies that

lim
|y|→+∞

inf
(t′,x′)∈B, s∈[0,t′[

F (t+ 1− s, x− y)

F (t′ − s, |y − x| − 1)
≥ inf

(t′,x′)∈B, s∈[0,t′[

t+ 1− s
t+ 1/2− s

=
t+ 1

t+ 1/2
= 1 +

1

2t+ 1
> 1,

where we have used the fact that s 7→ (t + 1 − s)/(t + 1/2 − s) is increasing. Hence, by
(4.14), we can choose a large constant A such that for all |y| ≥ A, (t′, x′) ∈ B and s ∈ [0, t′[,
the inequality

F (t+ 1− s, x− y)

δGa (t′ − s, x′ − y)
≥ 1 +

1

2(t+ 1)
> 1

holds. This completes the proof of Proposition 4.8.

Lemma 4.9. For all m,n ∈ N, there exist polynomials {P (n,m)
i (x), i = 0, . . . , n}, such that:

(1) the P
(n,m)
i (x) are of degree ≤ i and they satisfy

∂n+m

∂tn∂xm
δGa(t, x) =

1

(at)n

n∑
i=0

P
(n,m)
i (x)

∂i+m

∂xi+m
δGa(t, x) ;
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(2) For fixed t > 0, the partial derivative ∂n+m

∂tn∂xm δGa(t, ·) as a function of x is smooth and
integrable.

Proof. Part (2) is a direct consequence of (1) and (i) and (vi) in Lemma 4.1. We now prove

(1). It is clearly true for n = m = 0: in this case, P
(0,0)
0 (x) ≡ 1. Moreover, if n = 0, then it

is trivially true, with P
(0,m)
0 (x) = 1. Consider the case n = 1 and m = 0. Using the scaling

properties twice, we have

∂

∂t
δGa(t, x) =

[
− 1/a

t1+1/a δGa (1, ξ)− 1

t1/a
∂ δGa(1, ξ)

∂ξ

x/a

t1+1/a

]∣∣∣∣
ξ=t−1/ax

=− 1

at

(
1

t1/a
δGa

(
1,

x

t1/a

)
+

x

t2/a
∂ δGa(1, ξ)

∂ξ

∣∣∣∣
ξ=t−1/ax

)

=− 1

at

(
δGa(t, x) + x

∂

∂x
δGa(t, x)

)
.

So in this case, P
(1,0)
0 (x) = −1 and P

(1,0)
1 (x) = −x. Now suppose that (1) is true for n,m ∈ N.

It is easy to see that (1) is true also for n,m+ 1 with

P
(n,m+1)
i (x) = P

(n,m)
i (x) +

d

dx
P

(n,m)
i+1 (x), for i = 0, . . . , n− 1, P (n,m+1)

n (x) = P (n,m)
n (x),

so P
(n,m+1)
i (x) is a polynomial of degree ≤ i.

Now assume by induction that n ≥ 1 and the property is true for ñ ≤ n and all m ≥ 0.
We shall establish the property for n+ 1 and m. By the induction assumption, we have

∂n+1+m

∂tn+1∂xm
δGa(t, x) =

−na
(at)n+1

n∑
i=0

P
(n,m)
i (x)

∂i+m

∂xi+m
δGa(t, x)+

1

(at)n

n∑
i=0

P
(n,m)
i (x)

∂1+i+m

∂t∂xi+m
δGa(t, x).

Then replace ∂1+i+m

∂t∂xi+m δGa(t, x) by the following sum using the induction assumption:

∂1+i+m

∂t∂xi+m
δGa(t, x) =

1

at

(
P

(1,i+m)
0 (x)

∂i+m

∂xi+m
δGa(t, x) + P

(1,i+m)
1 (x)

∂i+m+1

∂xi+m+1 δGa(t, x)

)
.

Finally, after grouping terms one can choose the following polynomials:

P
(n+1,m)
0 (x) =− naP (n,m)

0 (x) + P
(n,m)
0 (x)P

(1,m)
0 (x),

which is a polynomial of order 0,

P
(n+1,m)
i (x) =− naP (n,m)

i (x) + P
(n,m)
i (x)P

(1,i+m)
0 (x) + P

(n,m)
i−1 (x)P

(1,i+m−1)
1 (x),

which are polynomials of degree ≤ i, for i = 1, . . . , n, and

P
(n+1,m)
n+1 (x) =P (n,m)

n (x)P
(1,n+m)
1 (x),

which are polynomials of degree ≤ n+ 1. This completes the proof of Lemma 4.9.
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Lemma 4.10. Suppose that a ∈ ]1, 2] and µ ∈Ma (R).

(1) The function J0(t, x) = ( δGa(t, ·) ∗ µ) (x) belongs to C∞
(
R∗+ × R

)
.

(2) For all compact sets K ⊂ R∗+ × R and v ∈ R,

sup
(t,x)∈K

([
v2 + J2

0

]
?K
)

(t, x) <∞. (4.15)

In fact, for all (t, x) ∈ R∗+ × R,(
J2
0 ?K

)
(t, x) ≤ C ′(t ∨ 1)2(1+1/a)t1−2/a

[
t−1/a + exp

(
γa
∗
t
)]
, (4.16)

where

C ′ := CA2
aK

2
a,0 max

(
a∗,

Γ(1/a∗)2

Γ(2/a∗)

)
, (4.17)

C = C(a, δ, λ) is defined in (3.14), Ka,0 is defined in (4.2), and

Aa := sup
y∈R

∫
R

|µ|(dz)

1 + |y − z|1+a
. (4.18)

Proof. (1) Fix 0 < t ≤ T and n,m ∈ N. By Lemma 4.9 and (4.3),∣∣∣∣ ∂n+m∂tn∂xm
δGa(t, x)

∣∣∣∣ ≤ 1

(at)n

n∑
i=0

∣∣∣P (n,m)
i (x)

∣∣∣Ka,i+m t
−(i+m+1)/a (T ∨ 1)1+(i+m+1)/a

1 + |x|1+i+m+a
.

Since the polynomials P
(n,m)
i (x) are of degree ≤ i, for some finite constant C > 0 depending

on a, m, n and T , the above bound reduces to∣∣∣∣ ∂n+m∂tn∂xm
δGa(t, x)

∣∣∣∣ ≤ C
g(t)

1 + |x|m+1+a
, with g(t) :=

n∑
i=0

t−n−(i+m+1)/a.

Hence, for 0 < t1 < t2 ≤ T ,∫ t2

t1

ds

∫
R
µ(dz)

∣∣∣∣ ∂n+m∂sn∂xm
δGa(s, z)

∣∣∣∣ < +∞. (4.19)

By Fubini’s theorem and induction, it is now possible to conclude that J0(·, ◦) ∈ C∞(R∗+×R).
Indeed, the first step of this induction argument is:

J0(t2, x)− J0(t1, x) =

∫
R
µ(dy)( δGa(t2, x− y)− δGa(t1, x− y))

=

∫
R
µ(dy)

∫ t2

t1

dt
∂

∂t
δGa(t, x− y) =

∫ t2

t1

dt

∫
R
µ(dy)

∂

∂t
δGa(t, x− y),
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where we have used Fubini’s theorem, which applies by (4.19). This shows that

∂

∂t
J0(t, x) =

∫
R
µ(dy)

∂

∂t
δGa(t, x− y),

and higher derivatives are obtained by induction. This proves (1).
(2) By (4.3), for 0 < s ≤ t,

|J0 (s, y) | ≤ Aa Ka,0 (t ∨ 1)1+1/as−1/a, (4.20)

where Aa is defined in (4.18). Let (t, x) ∈ R∗+ × R. By (3.13), and by replacing one factor
|J0(s, y)| of J2

0 (s, y) by the above bound, we have that

(
J2
0 ?K

)
(t, x) ≤ C

∫ t

0

ds

(
1

(t− s)1/a
+ exp

(
γa
∗
(t− s)

))∫
R

dy δGa (t− s, x− y)

× AaKa,0(t ∨ 1)1+1/as−1/a
∣∣∣∣∫

R
µ(dz) δGa(s, y − z)

∣∣∣∣ ,
where the constant C := C(a, δ, λ) is defined in (3.14). Integrate over dy using the semigroup
property, and then integrate over µ(dz):

(
J2
0 ?K

)
(t, x) ≤ CAaKa,0(t ∨ 1)1+1/a|J0(t, x)|

∫ t

0

ds
1

s1/a

[
1

(t− s)1/a
+ exp

(
γa
∗
(t− s)

)]
.

(4.21)

Apply (4.20) to J0(t, x). The integral over s gives∫ t

0

ds

[
1

s1/a(t− s)1/a
+

1

s1/a
exp

(
γa
∗
(t− s)

)]
≤
∫ t

0

ds

[
1

s1/a(t− s)1/a
+

1

s1/a
exp

(
γa
∗
t
)]
.

Use (4.6) to see that this is equal to

t1−2/a
Γ (1− 1/a)2

Γ (2− 2/a)
+ a∗t1/a

∗
exp

(
γa
∗
t
)

= t1/a
∗

[
1

t1/a
Γ (1/a∗)2

Γ (2/a∗)
+ a∗ exp

(
γa
∗
t
)]
. (4.22)

Hence, combining the above facts proves (4.16).
For (4.15), we consider the case µ(dx) = v dx, for which µ ∈ Ma (R) and J0(t, x) ≡ v.

Together with (4.16) for all µ ∈ Ma (R), we obtain (4.15). This completes the proof of
Lemma 4.10.

Proof of Theorem 3.1. The proof follows the same six steps as those in the proof of [6,
Theorem 2.4] with some minor changes:

(1) Both proofs rely on estimates on the kernel function K(t, x). Instead of an explicit
formula as for the heat equation case (see [6, Proposition 2.2]), Proposition 3.2 ensures the
finiteness and provides a bound on the kernel function K(t, x).
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(2) In the Picard iteration scheme (i.e., Steps 1–4 in the proof of [6, Theorem 2.4]), we
need to check the Lp(Ω)-continuity of the stochastic integral, which then guarantees that at
the next step, the integrand is again in P2, via [6, Proposition 3.4]. Here, the statement
of [6, Proposition 3.4] is still true by replacing in its proof [6, Propositions 3.5 and A.3] by
Propositions 4.4 and 4.8, respectively. Note that when applying Proposition 4.8, we need to
replace the G2

ν in [6, (3.8)] by ( −δGa + δGa)
2 ≤ 2 −δG

2
a + 2 δG

2
a.

(3) In the first step of the Picard iteration scheme, the following property is useful: For
all compact sets K ⊆ R+ × R,

sup
(t,x)∈K

([
1 + J2

0

]
? δG

2
a

)
(t, x) < +∞.

For the heat equation, this property is discussed in [6, Lemma 3.9]. Here, Lemma 4.10 gives
the desired result with minimal requirements on the initial data. This property, together
with the calculation of the upper bound on the function K in Proposition 3.2, guarantees (as
in [6, Lemmas 3.3 and 3.7]) that all the Lp(Ω)-moments of u(t, x) are finite. This property
is also used to establish uniform convergence of the Picard iteration scheme, hence Lp(Ω)–
continuity of (t, x) 7→ I(t, x).

The proofs of (3.1)–(3.4) are identical to those of the corresponding properties in [6,
Theorem 2.4], and (3.5) and (3.6) are direct consequences of the preceding statements.

This completes the proof of Theorem 3.1.

5 Proofs of Theorems 3.4 and 3.6

We begin with the upper bound in Theorem 3.4.

Proof of Theorem 3.4(1). Recall from (3.11) that γ̂p = a2p,ςz
2
p L2

ρ ΛΓ(1/a∗), and a∗ = a/(a −
1). By (3.1), (4.16) and (4.20), for all x ∈ R,

mp(x) = lim sup
t→∞

log ||u(t, x)||pp
t

≤
γ̂a
∗
p p

2
=
p

2

[
a2p,ςz

2
p L2

ρ Λ Γ (1/a∗)
]a∗

.

Since ap,ς ≤ 2 and zp ≤ 2
√
p, (3.21) follows.

5.1 Lower bound on K(t, x) (Proposition 3.3)

We need some properties of ga(t, x) defined in (3.15).

Lemma 5.1. Suppose that a ∈ ]1, 2[ and |δ| < 2 − a. Then the constant C̃a,δ defined in
(3.16) is strictly positive, and so for all t > 0 and x ∈ R,

δGa(t, x) ≥ C̃a,δ π ga(t, x) =
C̃a,δ t

(t2/a + x2)
a
2
+ 1

2

. (5.1)
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Proof. By the scaling property of both δGa and ga(t, x),

inf
(t,x)∈R∗+×R

δGa(t, x)

πga(t, x)
=

1

π
inf
y∈R

δGa(1, y)

ga(1, y)
.

Let f(y) = δGa(1, y)/ga(1, y). In the case where 1 < a < 2 and |δ| < 2− a, both δGa(1, y)
and ga(1, y) have tails at ±∞ with polynomial decay of the same rate as |y|−1−a: see [27, p.
143] (we use here the fact that |δ| 6= 2−a). Since y 7→ δGa(t, y) is unimodal (see [18, Lemma
5.10.1]), we conclude that f(y) > 0 for all y ∈ R, and that limy→±∞ f(y) > 0 . Therefore,
infy∈R f(y) > 0, and this completes the proof of Lemma 5.1.

Lemma 5.2. Let fb,ν(x) = f(x) := (b2 + x2)
−ν−1/2

with b > 0 and ν ≥ 1/2. Then

F [f ](z) =

∫
R

dx e−izxf(x) ≥ Cν b
−2ν exp (−b|z|) , (5.2)

for all b > 0 and z ∈ R, where the constant Cν > 0 is given in (3.18).

Proof. Note that the function f(x) is an even function, so its Fourier transform is real-valued,
instead of complex-valued, which allows us to bound this transform from below. Indeed, by
[14, (7), p. 11], we have that

F [f ](z) =

(
|z|
b

)ν √
π

2νΓ (ν + 1/2)
Kν (b|z|) , for <(b) > 0 and ν > −1/2,

where Kν(x) is the modified Bessel function of the second kind. Equivalently, we need to
prove that the function

R+ × R 3 (b, z) 7→
(
|z|
b

)ν √
π

2νΓ (ν + 1/2)
Kν (b|z|) b2ν exp (b|z|)

is uniformly bounded away from zero. By choosing u = b|z|, we reduce this problem to
bounding the following function

R+ 3 u 7→
√
π

2νΓ (ν + 1/2)
h(u) (5.3)

away from zero, where h(u) := uνeuKν(u). By the differential formula for x±νKν(x) (see,
for instance, [20, 51:10:4, p. 532]),

h′(u) = euuν (Kν(u)−Kν−1(u)) .

By the integral representation of Kν(z) in [21, 10.32.9, p. 252],

Kν(u)−Kν−1(u) =
1

2

∫ ∞
0

e−u cosh(t)
(
eνt − e−(ν−1)t

) (
1− e−t

)
dt ≥ 0
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since ν ≥ 1/2. Hence, h′(u) > 0 and

inf
u∈R+

h(u) = lim
u→0

h(u) = 2ν−1Γ(ν) ,

where we have used the property Kν(u) ∼ 1
2
Γ(ν)(1

2
u)−ν as u ↓ 0 (see [21, 10.30.2, p. 252]).

Therefore,

Cν = inf
u∈R+

√
π

2νΓ (ν + 1/2)
h(u) =

Γ(ν)Γ(1/2)

2Γ(ν + 1/2)
,

This completes the proof of Lemma 5.2.

In the next lemma, we gather some properties of the function ga(t, x).

Lemma 5.3. (1) For a > 0 and t > 0, ga(t, x− y) ≥ π2−(a+1)t1/aga(t, x)ga(t, y).

(2) For t > 0 and z ∈ R, F [g2a(t, ·)](z) ≥ Ca+1/2 π
−2t−1/a exp(−t1/a|z|).

(3) For all a > 0, t ≥ s > 0 and x ∈ R, we have

(
g2a (t− s, ·) ∗ g2a (s, ·)

)
(x) ≥

C2
a+1/2

π3 22a+3
(ts)−1/a(t− s)1/ag2a(t− s, x),

where the constant Ca+1/2 is defined in (3.18).

(4) For t ≥ r ≥ t/2 > 0, ga(r, x) ≥ (t/r)1/a 2−1−1/aga(t, x).

Proof. (1) Because 1 + (u − v)2 ≤ 1 + 2u2 + 2v2 ≤ (1 + 2u2)(1 + 2v2), ga(t, x − y) is
bounded from below by πt1/aga

(
t,
√

2 x
)
ga
(
t,
√

2 y
)
. Then use the inequality ga

(
t,
√

2 x
)
≥

2−(a+1)/2ga(t, x).
(2) We apply Lemma 5.2 with ν = a+ 1/2 and b = t1/a.
(3) By (1),

(
g2a (t− s, ·) ∗ g2a (s, ·)

)
(x) ≥ π22−2(a+1)(t− s)2/ag2a (t− s, x)

∫
R

dy g2a (t− s, y) g2a (s, y) .

The integral can be bounded using Plancherel’s identity and (2):∫
R

dy g2a (t− s, y) g2a (s, y) ≥ 1

2π

∫
R

dz
C2
a+1/2

π4
((t− s)s)−1/a exp{−|z|((t− s)1/a + s1/a)}

=
C2
a+1/2

2π5
((t− s)s)−1/a 2

(t− s)1/a + s1/a

≥
C2
a+1/2

2π5
((t− s)s)−1/a t−1/a.

This proves (3).
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(4) Notice that for t ≥ r ≥ t/2 > 0,

ga(r, x) =
r−1/a

π

(
1 +

x2

r2/a

)−(a+1)/2

≥ r−1/a

π

(
1 +

x2

(t/2)2/a

)−(a+1)/2

≥ r−1/a

π
(t/2)1+1/a((t/2)2/a + x2)−(a+1)/2

=
r−1/a

π21+1/a
t1+1/a((t/2)2/a + x2)−(a+1)/2 ≥ r−1/a

21+1/a
t1/aga(t, x).

Proof of Proposition 3.3. Denote(
g2a
)?n

(t, x) :=
(
g2a ? · · · ? g2a

)︸ ︷︷ ︸
n factors g2a

(t, x) .

Notice that by (2.9) and (5.1),

K(t, x;λ) =
∞∑
n=0

(
λ2 δG

2
a

)?(n+1)
(t, x) ≥

∞∑
n=0

(
λ2 C̃2

a,δ π
2 g2a

)?(n+1)

(t, x) . (5.4)

We now bound space-time convolutions of g2a with itself. We claim that

(
λ2g2a

)?(n+1)
(t, x) ≥ λ2(n+1) Θn

a Γ(1/a∗)n+1

Γ((n+ 1)/a∗)
tn/a

∗
g2a(t, x) for all n ≥ 0, (5.5)

where
Θa := C2

a+1/2 π
−3 2−2(a+3+1/a).

The case where n = 0 is clear. Consider n ≥ 1 and assume by induction that (5.5) holds for
n− 1. By the induction hypothesis and Lemma 5.3(3),

(
λ2g2a

)?(n+1)
(t, x) ≥ λ2(n+1)Θn−1

a Γ(1/a∗)n

Γ(n/a∗)

∫ t

0

ds (t− s)(n−1)/a∗(g2a(t− s, ·) ∗ g2a(s, ·))(x)

≥ Kn t
−1/a

∫ t

0

ds g2a(t− s, x) [(t− s)s]−1/a (t− s)
n−1
a∗ + 2

a , (5.6)

where

Kn =
λ2(n+1)Θn−1

a Γ(1/a∗)n C2
a+1/2

Γ(n/a∗) π3 22a+3
.

Notice that t− s ≥ t/2 for 0 ≤ s ≤ t/2, so we apply Lemma 5.3(4) to see that

(
λ2g2a

)?(n+1)
(t, x) ≥ Kn

22+2/a
t1/ag2a(t, x)

∫ t/2

0

ds [s(t− s)]−1/a(t− s)
n−1
a∗ . (5.7)
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For 0 ≤ s ≤ t/2, we have t− s ≥ s, so we replace the last factor t− s by s to see that(
λ2g2a

)?(n+1)
(t, x) ≥ Kn

22+2/a
t1/ag2a(t, x)

∫ t/2

0

ds [s(t− s)]−1/as
n−1
a∗ .

Use the change of variables s 7→ t− s in (5.7) and add to this last integral to see that(
λ2g2a

)?(n+1)
(t, x) ≥ Kn

22+2/a
t1/ag2a(t, x)

1

2

∫ t

0

ds [s(t− s)]−1/as
n−1
a∗ .

Then apply Euler’s Beta integral (4.6). This proves (5.5).
Therefore, by (5.4), (5.5) and (3.9),

K(t, x;λ) ≥
+∞∑
n=0

(
λ2 C̃2

a,δ π
2g2a

)?(n+1)

(t, x)

≥ π2 C̃2
a,δ λ

2 Γ(1/a∗)g2a(t, x)
+∞∑
n=0

(λ2 C̃2
a,δ π

2 Θa Γ(1/a∗)t1/a
∗
)n

Γ((n+ 1)/a∗)

= π2 C̃2
a,δ λ

2 Γ(1/a∗)g2a(t, x)E1/a∗,1/a∗(λ
2 C̃2

a,δ π
2 Θa Γ(1/a∗)t1/a

∗
).

This proves the statement (3.19) in Proposition 3.3.
As for (3.20), notice that by (3.19),

(1 ?K) (t, x) =

∫ t

0

ds

∫
R
dyK(s, y) ≥ C

∫ t

0

dsE1/a∗,1/a∗
(
Υ(λ, a, δ) s1/a

∗) ∫
R
dy g2a(s, y),

where C = π2 C̃2
a,δ λ

2 Γ(1/a∗). By [21, 5.12.3, p.142] and Euler’s beta integral,∫
R

dy g2a(s, y) =
s−1/a

π2
2

∫ ∞
0

dz
1

(1 + z2)a+1
=
s−1/a

π2

∫ ∞
0

dy
1

y1/2(1 + y)a+1

=
Γ(a+ 1/2)

Γ(1 + a)π3/2
s−1/a.

By [22, (1.99), p. 24],∫ t

0

ds s−1/a E1/a∗,1/a∗
(
Υ(λ, a, δ) s1/a

∗)
= t1/a

∗
E1/a∗,1+1/a∗

(
Υ(λ, a, δ) t1/a

∗)
.

This establishes (3.20) and completes the proof of Proposition 3.3.

5.2 Proofs of Theorems 3.6 and 3.4(2)

Lemma 5.4. Suppose that a ∈ ]1, 2[, |δ| < 2 − a and µ ∈ Ma,+ (R), µ 6= 0. Then for all
ε > 0, there exists a constant C such that for all t ≥ 0 and x ∈ R,

( δGa(t, ·) ∗ µ) (x) ≥ C 1[ε,∞[(t) ga (t, x) .
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Proof. Denote J0(t, x) = ( δGa(t, ·) ∗ µ) (x). By the lower bound on δGa(t, x) in (5.1), Lemma
5.3(1) and the scaling property of ga(t, x), we have

J0(t, x) ≥ C̃a,δ π

∫
R
µ(dy) ga(t, x− y)

≥ C̃a,δ π
2

2a+1
t1/aga (t, x)

∫
R
µ(dy) ga (t, y)

=
C̃a,δ π

2a+1
ga (t, x)

∫
R
µ(dy)

(
1 +

y2

t2/a

)−a+1
2

.

The above integrand is non-decreasing with respect to t. Hence

J0(t, x) ≥ C̃a,δ π

2a+1
1{t≥ε} ga (t, x)

∫
R
µ(dy)

(
1 +

y2

ε2/a

)−a+1
2

=
C̃a,δ π

2 ε1/a

2a+1
1{t≥ε} ga (t, x)

∫
R
µ(dy) ga (ε, y) .

Since the function y 7→ ga (ε, y) is strictly positive and µ is nonnegative and non-vanishing,

the integral is positive. Finally, we can take C := C̃a,δ π
2 ε1/a 2−(a+1)

∫
R µ(dy) ga (ε, y).

Lemma 5.5. Suppose β > 1. For all x ∈ R,

min
y∈R

(
|x− y|β + |y|

)
≥

{
β

β
1−β +

∣∣∣|x| − β 1
1−β

∣∣∣ if |x| ≥ β
1

1−β ,

|x|β otherwise.

Proof. Fix x ∈ R and set f(y) = |x − y|β + |y|. Assume first that x ≥ 0. By studying the

sign of the derivative of f ′(y), we find that if x ≥ β
1

1−β , then f achieves its minimum at

y = x− β
1

1−β . If 0 ≤ x ≤ β
1

1−β , then f achieves it minimum at 0. The case x < 0 is treated
similarly.

Proof of Theorem 3.6. (1) In the following, we use C to denote some nonnegative constant,
which may depend on a, δ and Lρ, and can change from line to line. Fix p ≥ 2. By (4.21)
and (4.22), when t ≥ 1,(

J2
0 ? K̂p

)
(t, x) ≤ Ct2

(
1 + exp(γ̂a

∗

p t)
)
|J0(t, x)| ,

where the constant γ̂p is defined in (3.11). By (3.1) with ς = 0 and (3.22), for α ≥ 0,

lim
t→+∞

1

t
sup

|x|≥exp(αt)
log ||u(t, x)||2p = lim

t→+∞

1

t
sup

|x|≥exp(αt)
log
(
J2
0 ? K̂p

)
(t, x) ≤ γ̂a

∗

p − αβ.
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Now, γ̂a
∗
p − αβ < 0 if and only if α > β−1 γ̂a

∗
p . Therefore,

e(p) := inf

{
α > 0 : lim

t→∞

1

t
sup

|x|≥exp(αt)
logE (|u(t, x)|p) < 0

}
≤
γ̂a
∗
p

β
< +∞.

Concerning the sufficient condition for (3.22), suppose that for some η > 0,
∫
R |µ|(dy)(1 +

|y|η) <∞. We consider first the case where η ∈ ]0, 1 + a[. Then by (4.3),

|J0(t, x)| ≤
∫
R
|µ|(dy)

Ka,0(1 + t)

1 + |x− y|1+a
≤ CKa,0(1 + t) sup

y∈R

[
(1 + |y|)(1 + |x− y|)(1+a)/η

]−η
.

Let β̃ = (1 + a)/η > 1. Notice that

(1 + |x− y|β̃)(1 + |y|) ≥ 1 + |x− y|β̃ + |y|.

By Lemma 5.5, we see that

|J0(t, x)| ≤ C̃(1 + t)
1

1 + |x|η
,

which is condition (3.22) with β = η.
Now consider the case where η ≥ 1 + a. Notice that if η > 1 + a, then we generally do not

expect (3.22) to hold with β = η, since for instance, J0(t, x) ∼ 1/|x|1+a as |x| → ∞ when
µ = δ0. Observe that

|J0(t, x)| ≤
∫
R

|µ|(dy)

1 + |x− y|1+a δGa(t, x− y)
(
1 + |x− y|1+a

)
.

From (4.3), we deduce that for t ≥ 1,

δGa(t, x− y)
(
1 + |x− y|1+a

)
≤ Ka,n t.

Let ϕ = η/(1 + a), so that ϕ ≥ 1. Since for some c̃ > 0,

(1 + |x− y|2)(1 + |y|2ϕ) ≥ 1

2
+ |x− y|2 +

1

2
+ |y|2ϕ ≥ c̃

[
1 + |x− y|2 + |y|2

]
≥ c̃

(
1 +

x2

2

)
,

we see that for all t ≥ 1 and x ∈ R, there is c > 0 such that

|J0(t, x)| ≤ CKa,n t

∫
R

|µ|(dy)

[(1 + |x− y|2)(1 + |y|2ϕ)](1+a)/2
(1 + |y|η)

≤ C̃
t

(1 + x2)(1+a)/2

∫
R
|µ|(dy) (1 + |y|η),
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which implies (3.22) with β = 1 + a.
(2) We only need to consider the case p = 2 because e(p) ≥ e(2) for p ≥ 2. Assume first

that ς = 0. Fix any ε ∈ ]0, t/2[ , choose a constant Ĉ according to Lemma 5.4 such that

J0(t, x) = ( δGa(t, ·) ∗ µ) ≥ Ĉ 1[ε,∞[(t) ga (t, x) =: Iε(t, x).

By (3.3),
||u(t, x)||22 ≥ J2

0 (t, x) +
(
J2
0 ?K

)
(t, x) ≥

(
I2ε ?K

)
(t, x).

Set Υ = Υ (lρ, a, δ) (see (3.17)). By Proposition 3.3 and Lemma 5.3(3),

(
I2ε ?K

)
(t, x) ≥ Ĉ2C

∫ t−ε

0

ds E1/a∗,1/a∗
(
Υs1/a

∗) ∫
R

dy g2a (t− s, x− y) g2a (s, y)

≥
Ĉ2 C C2

a+1/2

π3 22a+3
t−1/a

∫ t−ε

0

ds E1/a∗,1/a∗
(
Υs1/a

∗)
s−1/a(t− s)1/ag2a(t− s, x).

Notice that
g2a(t− s, x) ≥ (t− s)2t−2g2a(t, x).

Hence,

(
I2ε ?K

)
(t, x) ≥

Ĉ2 C C2
a+1/2

π3 22a+3
t−2−1/ag2a(t, x)

∫ t−ε

0

ds E1/a∗,1/a∗
(
Υs1/a

∗)
s−1/a(t− s)2+1/a.

The above integral is bounded from below by

E1/a∗,1/a∗
(
Υ (t− 2ε)1/a

∗) ∫ t−ε

t−2ε
ds s−1/a(t− s)2+1/a ≥ E1/a∗,1/a∗

(
Υ (t− 2ε)1/a

∗) ε2+1/a

(t− ε)1/a
ε.

Therefore, we have(
I2ε ?K

)
(t, x) ≥ C g2a (t, x) t−2−1/a (t− ε)−1/aE1/a∗,1/a∗

(
Υ(t− 2ε)1/a

∗)
, (5.8)

where

C =
ε3+1/a Ĉ2 C C2

a+1/2

π3 22a+3
.

Because x 7→ ga(t, x) is an even function, decreasing for x ≥ 0, we deduce that for all β > 0,

sup
|x|>exp(βt)

||u(t, x)||22 ≥ C g2a (t, exp(βt)) t−2−1/a(t− ε)−1/aE1/a∗,1/a∗
(
Υ(t− 2ε)1/a

∗)
.

Because a > 0, there exists t0 ≥ 0 such that for all t ≥ t0, t
2/a ≤ e2βt, so

g2a (t, exp(βt)) =
1

π2

t2

(t2/a + e2βt)
a+1 ≥

1

π2

t2

2a+1e2β(a+1)t
.
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Finally, by the asymptotic expansion of the Mittag-Leffler function in Lemma 4.2,

lim
t→∞

1

t
sup

|x|>exp(βt)

log ||u(t, x)||22 ≥ Υa∗ − 2β(a+ 1) . (5.9)

Therefore,

e(2) = sup

{
β > 0 : lim

t→+∞

1

t
sup

|x|>exp(βt)

log ||u(t, x)||22 > 0

}

≥ sup
{
β > 0 : Υa∗ − 2β(a+ 1) > 0

}
=

Υa∗

2(a+ 1)
.

Now let us consider the case where there is c > 0 with J0 ≥ c, or ς 6= 0. In this case, by
(3.3) and Proposition 3.3,

||u(t, x)||22 ≥ (c2 + ς2) (1 ?K) (t, x) ≥ Ct1/a
∗
E1/a∗,1+1/a∗

(
Υt1/a

∗)
.

This lower bound does not depend on x and hence, by Lemma 4.2, we get (5.9) with the
right-hand side replaced by Υa∗ . This completes the proof of Theorem 3.6.

Proof of Theorem 3.4 (2). If ς 6= 0, then from (3.3) and Proposition 3.3, for some constant
C > 0,

||u(t, x)||22 ≥ ς2 (1 ?K) (t, x) ≥ C ς2 t1/a
∗
E1/a∗,1+1/a∗

(
Υ(lρ, a, δ)t

1/a∗
)
,

where the constant Υ(lρ, a, δ) is defined in (3.17). Then use the asymptotic expansion of
Eα,β(z) in Lemma 4.2 to obtain

m2(x) ≥ Υ (lρ, a, δ)
a∗ . (5.10)

If ς = 0, then from (3.3), (5.8) and the asymptotics of Eα,β(z) in Lemma 4.2, we obtain, via
the calculation that led to (5.9), but without replacing x by exp(βt), the same lower bound
as (5.10). Note that this lower bound does not depend on x. This proves the statement (2)
with p = 2. For p > 2, we use Hölder’s inequality

E
[
|u(t, x)|2

]
≤ E [|u(t, x)|p]2/p .

Hence, mp(x) ≥ p
2
m2(x). This completes the proof of Theorem 3.4.
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