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Abstract

We study a class of hyperbolic stochastic partial differential equations in Euclidean space,
that includes the wave equation and the telegraph equation, driven by Gaussian noise concen-
trated on a hyperplane. The noise is assumed to be white in time but spatially homogeneous
within the hyperplane. Two natural notions of solutions are function-valued solutions and
random field solutions. For the linear form of the equations, we identify the necessary and
sufficient condition on the spectral measure of the spatial covariance for existence of each
type of solution, and it turns out that the conditions differ. In spatial dimensions 2 and 3,
under the condition for existence of a random field solution to the linear form of the equa-
tion, we prove existence and uniqueness of a random field solution to non-linear forms of the
equation.
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1 Introduction

Stochastic partial differential equations (s.p.d.e.’s) driven by spatially homogeneous Gaussian
noise that is white in time, first studied in the parabolic case by Dawson and Salehi [8], has
recently been the subject of several papers, beginning with the work of Mueller [22] and Dalang
and Frangos [7] on the wave equation in two spatial dimensions, and continued in several recent
papers, such as Dalang [5], Millet and Sanz-Solé [20, 21], Peszat [25] and Peszat and Zabczyk
[26].

In this paper, we are interested in equations that might arise when modelling situations such
as the following. Rain falls on the surface of a lake, producing a sound wave that propagates
under water. This noise is produced by a large number of small contributions (the rain droplets).
After suitable rescaling, the noise can be considered to be spatially homogeneous on the surface
of the lake, propagating through a three-dimensional medium. Hence, the noise is concentrated
on the two-dimensional boundary of a three-dimensional domain.

There have been several studies of equations driven by noise concentrated on manifolds. The
noise is generally taken to be a stochastic boundary condition. Many of these are carried out
in spatial dimension one, so the boundary noise is a pointwise noise, as in [2, 10, 18]. There
are also results for parabolic s.p.d.e.’s in higher dimensions [19, 29]. Since parabolic equations
exhibit regularizing properties, the noise can be taken to be concentrated on a rather general
manifold, but there is no reason to expect that similar methods or results will apply to hyperbolic
equations, for which the results are quite different (see Remark 4.10).

In this paper, we fix a, b ∈ R and consider the following non-linear s.p.d.e. and some gener-
alizations of it:















∂2u

∂t2
(t, x) + 2a

∂u

∂t
(t, x) + b u(t, x) − ∆u(t, x) = g(u(t, x1, 0)) δ0(x2)

+h(u(t, x1, 0)) Ḟ (t, x1) δ0(x2), t ∈ R+, x = (x1, x2) ∈ R
d−1 × R,

(1.1)

where g and h are real-valued functions satisfying standard conditions and Ḟ is a Gaussian noise
whose covariance is formally given by

E(Ḟ (t, x1) Ḟ (s, y1)) = δ0(t− s) Γ(x1 − y1).

Note that the variable x1 represents coordinates in the hyperplane R
d−1 ×{0} on which the the

noise is concentrated, and x2 is the coordinate in the direction perpendicular to this hyperplane.
There are at least three interesting special cases of this equation. When a = b = 0, this is

the wave equation. When a > 0 and b = 0, this is the wave equation with damping, also called
the telegraph equation when d = 1. And finally, when a = 0 and b 6= 0, this is the Klein-Gordon
equation.

Given the irregularity of the noise, the first issue is to give a rigorous meaning to this equation.
We do this via Walsh’s theory of martingale measures [30], using an appropriate extension of his
stochastic integral, in the spirit of [5]. The linear case g ≡ 0 and h ≡ 1 is already of considerable
interest. Indeed, it is only in spatial dimension 1 that equation (1.1) will have a real-valued
solution for all choices of the covariance Γ; in higher dimensions, the solution exists in general
only in the space of random (Schwartz) distributions. Our first objective is to characterize those
covariances for which the linear form of (1.1) has a real-valued solution.

In this context, a surprising distinction appears. Indeed, there are at least two natural ways
to define real-valued solutions. One of these is the notion of function-valued solution (see Section
4.1), in which, essentially, the solution is at each time t a random function of the space variable
x. Another is the notion of random field solution (see Section 4.2), in which the solution is a
random field defined for every (t, x) ∈ R+×R

d, with an L2-continuity requirement. It turns out
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that these notions are distinct, and we give in Theorems 4.5 and 4.8, respectively, the necessary
and sufficient conditions on the spectral measure of the covariance for existence of either notion
of solution.

In the case where the linear form of equation (1.1) has a random field solution, it is natural to
consider the non-linear form of the equation. We show in Theorem 5.1 that in spatial dimensions
2 and 3, the non-linear equation has a solution under the same conditions on the covariance as
those obtained for the linear equation.

The outline of this paper is as follows. In Section 2, we consider equation (1.1) with a
slightly more general form of driving noise, which contains the situation of noise concentrated
on a hyperplane, and we construct an extension of Walsh’s martingale measure stochastic integral
following [5]. In Section 3, we analyze the Green’s function of the equation (which is in fact
not a function in dimensions greater than 2) and in particular, the integrability properties of
its Fourier transform in the x1-coordinates. These somewhat technical estimates are the key
to the results of Section 4, in which we establish the necessary and sufficient conditions on the
spectral measure of the noise for existence of the two kinds of real-valued solutions. In Section
5, we establish existence and uniqueness for the non-linear form of the equation. Finally, three
appendices provide some background information: Appendix A contains a reformulation of the
conditions on the spectral measure directly in terms of the covariance function, following the
approaches of [17, 27]; Appendix B contains explicit formulas for the Green’s function of the
equation in spatial dimensions 2 and 3, and Appendix C recalls the properties of Bessel functions
that are needed in this paper.

2 A linear equation driven by Gaussian noise

Let a, b ∈ R. We consider the following linear form of (1.1):



















∂2u

∂t2
(t, x) + 2a

∂u

∂t
(t, x) + b u(t, x) − ∆u(t, x) = Ḟ 0(t, x), (t, x) ∈ R+ × R

d,

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x), x ∈ R

d,

(2.1)

where u0, v0 are two given (Schwartz) distributions on R
d and Ḟ 0 = {Ḟ 0(t, x), (t, x) ∈ R+×R

d}
is a generalized centered Gaussian process whose covariance is informally given by

E(Ḟ 0(t, x) Ḟ 0(s, y)) = δ0(t− s) Γ0(x, y),

where δ0 is the standard Dirac measure on R and Γ0 is a non-negative definite measure on
Rd × Rd, in a sense that will be made precise below.

In order to give a meaning to this equation, several preliminaries are necessary.

2.1 Preliminaries

Fix a positive integer d. Following Schwartz [28], let S(Rd) be the space of complex-valued
C∞-functions on R

d with rapid decrease, OM (Rd) be the space of complex-valued C∞ functions
on R

d with polynomial growth, S ′(Rd) be the space of tempered distributions on R
d (the dual of

S(Rd)), O′
C(Rd) be the space of distributions with rapid decrease on R

d (this is not the dual of
OM (Rd)). The duality form between T ∈ S ′(Rd) and ϕ ∈ S(Rd) is denoted 〈T,ϕ〉. The Fourier
transform Fϕ of ϕ ∈ S(Rd) is defined by

Fϕ(ξ) =

∫

Rd

dx ϕ(x) eiξ·x, ξ ∈ R
d,
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and the Fourier inversion formula reads

F−1ϕ(ξ) =
1

(2π)d
Fϕ(−ξ), ξ ∈ R

d. (2.2)

We will also use the notation FT for the Fourier transform of a tempered distribution T ∈ S ′(Rd).
By [28, Chap. VII, Thm XV],

T ∈ O′
C(Rd) if and only if FT ∈ OM (Rd). (2.3)

For ξ ∈ R
d, we denote by δξ the standard Dirac measure at point ξ and χξ the function defined

by χξ(x) = eiξ·x, x ∈ R
d (note that Fδξ = χξ, so Fχξ = (2π)d δ−ξ by (2.2)).

2.2 Gaussian noise

In order to define the noise process F 0 rigorously, we assume that Γ0 is a signed Borel measure
on R

d × R
d (with total variation measure |Γ0|) which is non-negative definite on R

d × R
d, that

is,

m
∑

i,j=1

ci cj Γ0(Ai ×Aj) ≥ 0, for all m ≥ 1, c1, . . . , cm ∈ C, A1, . . . , Am ∈ Bb(R
d),

where Bb(R
d) denotes the set of bounded Borel subsets of R

d. In particular, Γ0(·, ·) is symmetric
(see [4, p. 68]). Furthermore, we assume that there exists a non-negative Borel measure ν0 on
R

d × R
d, which is also non-negative definite, which dominates |Γ0|, that is,

|Γ0|(A×B) ≤ ν0(A×B), for all A,B ∈ Bb(R
d),

and which is tempered, that is, there exists r > 0 such that

∫

Rd×Rd

ν0(dx, dy)

(1 + |x| + |y|)r <∞.

Note that in general, |Γ0| is not non-negative definite even if Γ0 is.
By the Kolmogorov extension theorem (see [23, Prop. 3.4]), there exists a probability space

(Ω,G,P) and a centered Gaussian process F 0 = {F 0
t (ϕ), t ∈ R+, ϕ ∈ S(Rd)} defined on this

space, whose covariance is given, for all t, s ∈ R+, ϕ,ψ ∈ S(Rd), by

E(F 0
t (ϕ) F 0

s (ψ)) = (t ∧ s)
∫

Rd×Rd

Γ0(dx, dy) ϕ(x) ψ(y). (2.4)

The Gaussian field F 0 is informally related to the noise Ḟ 0(t, x) in (2.1) by the formula

F 0
t (ϕ) =

∫ t

0
ds

∫

Rd

dx Ḟ 0(s, x) ϕ(x), t ∈ R+, ϕ ∈ S(Rd). (2.5)

2.3 Stochastic integral

Since equation (2.1) is linear, it always has a solution in a space of Schwartz distributions. In
order to get an explicit expression for this solution, we shall define a stochastic integral with
respect to F 0. This section refers directly to [30, Chap. 2] and [7, 5], so some details will be
omitted. Consider the filtration

G0
t = σ{F 0

s (ϕ), s ∈ [0, t], ϕ ∈ S(Rd)} ∨ N , t ∈ R+,

4



where N is the class of P-null sets in Ω. As in [7], the field F 0 extends to a worthy martingale
measure M0 = {M0

t (A), G0
t , t ∈ R+, A ∈ Bb(R

d)} (see [30, Chap. 2] for a precise definition)
with covariation measure Q0 and dominating measure K0 given respectively by

Q0([0, t] ×A×B) = t Γ0(A×B) and K0([0, t] ×A×B) = t ν0(A×B),

for t ∈ R+ and A,B ∈ Bb(R
d). Further,

F 0
t (ϕ) =

∫

[0,t]×Rd

ϕ(x) M0(ds, dx).

Let E0 be the space of elementary integrands, that is, functions φ : R+ × R
d × Ω → C such

that
φ(t, x, ω) = 1]a,b](t) 1A(x) X(ω),

where 0 ≤ a ≤ b, A ∈ Bb(R
d) and X is a bounded G0

a-measurable random variable. For such an
element φ of E0, its stochastic integral with respect to the martingale measure M0 is defined by

(φ ·M0)t(B) = X (M0
t∧b(A ∩B) −M0

t∧a(A ∩B)), t ∈ R+, B ∈ Bb(R
d).

One easily checks the following isometry property:

E((φ ·M0)t(B) (ψ ·M0)t(C)) = 〈φ 1B , ψ 1C〉t,0, (2.6)

for all φ,ψ ∈ E0, B,C ∈ Bb(R
d), where

〈φ 1B , ψ 1C〉t,0 = E

(
∫ t

0
ds

∫

B×C
Γ0(dx, dy) φ(s, x) ψ(s, y)

)

. (2.7)

We denote by ‖ · ‖t,0 the semi-norm induced by the semi-inner product 〈·, ·〉t,0.
Let P0 be the predictable σ-field generated by the functions of E0, and term predictable

functions the functions which are P0-measurable. For t ∈ R+ and predictable φ : [0, t]×R
d×Ω →

C, let us define

‖φ‖2
t,+,0 = E

(∫ t

0
ds

∫

Rd×Rd

ν0(dx, dy) |φ(s, x) φ(s, y)|
)

.

Moreover, set

Ht,+,0 = {φ : [0, t] × R
d × Ω → C : φ is predictable and ‖φ‖t,+,0 <∞}.

It is well-known (see [30, Chap. 2]) that the stochastic integral (φ ·M0)t(B) extends to elements
of Ht,+,0, in such a way that the isometry property (2.6) remains satisfied. In the following, we
will adopt the notation (φ ·M0)t = (φ ·M0)t(R

d).
Note that for a deterministic integrand φ, the stochastic integral process (φ ·M0) = {(φ ·

M0)t, t ∈ R+} is a Gaussian process. Furthermore, for deterministic integrands φ and ψ, the
isometry property becomes

E((φ ·M0)t (ψ ·M0)t) =

∫ t

0
ds

∫

Rd×Rd

Γ0(dx, dy) φ(s, x) ψ(s, y). (2.8)
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2.4 Noise on a hyperplane

Let d ≥ 2 be an integer. For x ∈ R
d ≡ R

d−1 × R, we write x = (x1, x2), where x1 ∈ R
d−1

and x2 ∈ R. For ϕ ∈ S(Rd), let F1ϕ (resp. F2ϕ) denote the Fourier transform of ϕ in the
coordinates x1 (resp. x2):

F1ϕ(ξ1, x2) =

∫

Rd−1

dx1 ϕ(x1, x2) χξ1(x1) and F2ϕ(x1, ξ2) =

∫

R

dx2 ϕ(x1, x2) χξ2(x2).

These Fourier transforms extend to T ∈ S ′(Rd) by the relationship 〈F1T,ϕ〉 = 〈T,F1ϕ〉. Note
that F = F1 ◦ F2 = F2 ◦ F1.

We want to consider the situation of noise concentrated on the hyperplane R
d−1 × {0} and

spatially homogeneous within this hyperplane. Therefore, we shall assume that the measure Γ0

is given by
Γ0(x, y) = Γ(x1 − y1) δ0(x2) δ0(y2),

or, in other words, for all φ,ψ ∈ S(Rd),

∫

Rd×Rd

Γ0(dx, dy) φ(x) ψ(y) =

∫

Rd−1

Γ(dz1) (φ(·, 0) ∗1 ψ̃(·, 0))(z1), (2.9)

where ∗1 denotes the convolution product in R
d−1 and ϕ̃(x1) = ϕ(−x1) for x1 ∈ R

d−1.
We assume that Γ is a signed Borel measure on R

d−1, which is non-negative definite on R
d−1,

that is,
∫

Rd−1

Γ(dz1) (ϕ ∗1 ϕ̃)(z1) ≥ 0, for all ϕ ∈ S(Rd−1). (2.10)

This implies that Γ is symmetric (cf. [28, Chap. VII, Thm XVII]). Moreover, we assume that
there exists a tempered non-negative Borel measure ν on R

d−1 which is non-negative definite
and which dominates |Γ|, that is,

|Γ|(A) ≤ ν(A), for all A ∈ Bb(R
d−1).

Example 2.1. (a) If Γ is a non-negative, tempered and non-negative definite Borel measure on
R

d, then ν = Γ satisfies the required assumptions. This non-negativity assumption was taken
as a basic assumption in [5, 27] (in the case of spatially homogeneous noise on R

d) but we will
only adopt it in our analysis of non-linear equations (see Section 5).

(b) For certain non-negative continuous functions f on ]0,∞[, covariances of the form
Γ(dx1) = f(|x1|) dx1 satisfy (2.10). Examples of such f are

f(r) = r−γ , where γ ∈ ]0, d − 1[.

(c) Let λ be Lebesgue measure on R
d−1. Suppose Γ is a non-negative definite tempered

Borel measure on R
d for which there exists C > 0 such that

Γ + Cλ is a non-negative measure on R
d−1. (2.11)

Then ν = Γ + 2Cλ satisfies the required assumptions: ν is non-negative definite, being the
convex combination of two non-negative definite measures, and

|Γ| = |Γ + Cλ− Cλ| ≤ |Γ + Cλ| + |Cλ| = Γ + 2Cλ = ν.

Note that (2.11) was taken as a basic assumption in [25, 26] (in the case of spatially homogeneous
noise on R

d).
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As in Section 2.3, we associate a Gaussian process F 0 with Γ0. On the other hand, we can
consider the centered Gaussian process F = {Ft(ϕ), t ∈ R+, ϕ ∈ S(Rd−1)} whose covariance is
given for all t, s ∈ R+ and ϕ,ψ ∈ S(Rd−1) by

E(Ft(ϕ) Fs(ψ)) = (t ∧ s)
∫

Rd−1

Γ(dz1) (ϕ ∗1 ψ̃)(z1).

By the Kolmogorov extension theorem (see [23, Prop. 3.4]), this process is well defined on some
probability space (Ω,G,P), and (2.9) implies that

F 0
t (φ)

d
= Ft(φ(·, 0)), for all t ∈ R+, φ ∈ S(Rd),

where
d
= stands for equality in distribution. Setting u0 = v0 = 0, since we are mainly interested

in studying how the regularity of the solution depends on the regularity of the noise, equation
(2.1) may then be formally rewritten as



















∂2u

∂t2
(t, x) + 2a

∂u

∂t
(t, x) + b u(t, x) − ∆u(t, x) = Ḟ (t, x1) δ0(x2), (t, x) ∈ R+ × R

d,

u(0, x) = 0,
∂u

∂t
(0, x) = 0, x ∈ R

d.

(2.12)

2.5 Section 2.3 revisited

We particularize the definitions of Section 2.3 to the noise F on a hyperplane defined in Section
2.4. Let {Gt} denote the natural augmented filtration of the noise F , E the space of elementary
integrands (which are now functions on R+ ×R

d−1 ×Ω) and P the predictable σ-field; the noise
F extends naturally to a worthy martingale measure M and we can define a corresponding
stochastic integral (φ ·M)t for integrands belonging to the set Ht,+ of predictable φ : [0, t] ×
R

d−1 × Ω → C such that

‖φ‖2
t,+ = E

(∫ t

0
ds

∫

Rd−1

ν(dz1) (|φ(s, ·)| ∗1 |φ̃(s, ·)|)(z1)
)

<∞,

using the isometry

E((φ ·M)t (ψ ·M)t) = 〈φ,ψ〉t = E

(∫ t

0
ds

∫

Rd−1

Γ(dz1) (φ(s, ·) ∗1 ψ̃(s, ·))(z1)
)

. (2.13)

Let ‖ · ‖t denote the semi-norm induced by the semi-inner product 〈·, ·〉t.
We will adopt the following notation for the stochastic integral of a predictable integrand

φ : [0, t] × R
d × R × Ω → C restricted to the hyperplane x2 = 0:

(φ(·, ·, 0) ·M)t =

∫

[0,t]×Rd−1

M(ds, dx1) φ(s, x1, 0). (2.14)

2.6 Extension of the stochastic integral

The first technical step towards the study of the regularity of the solution of (2.12) consists in
extending the stochastic integral to distribution-valued integrands, since the processes that will
appear in the following will be expressed as stochastic integrals of such integrands.

Following [5], let Z = {Z(t, x1), (t, x1) ∈ R+ × R
d−1} be a real-valued predictable process

such that for all T > 0,
sup

(t,x1)∈[0,T ]×Rd−1

E(Z(t, x1)
2) <∞. (2.15)
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By [30, Chap. 2], MZ = {(Z ·M)t(B), Gt, t ∈ R+, B ∈ Bb(R
d−1)} defines a worthy martingale

measure with covariation measure

QZ([0, t] ×A×B) = E

(
∫ t

0
ds

∫

Rd−1

Γ(dz1) ((Z(s, ·) 1A) ∗1 (Z̃(s, ·) 1̃B))(z1)

)

and dominating measure

KZ([0, t] ×A×B) = E

(∫ t

0
ds

∫

Rd−1

ν(dz1) ((|Z(s, ·)| 1A) ∗1 (|Z̃(s, ·)| 1̃B))(z1)

)

.

This implies that we can define the stochastic integral (φ ·MZ)t of a Borel-measurable function
φ : [0, t] × R

d−1 → C such that

‖φ‖2
t,+,Z = E

(∫ t

0
ds

∫

Rd−1

ν(dz1) (|φ(s, ·) Z(s, ·)| ∗1 |φ̃(s, ·) Z̃(s, ·)|)(z1)
)

<∞,

and let us denote by Ht,+,Z the space of such (deterministic) integrands. Note that if φ ∈ Ht,+

and φ is deterministic, then

‖φ‖2
t,+,Z ≤ sup

(s,x1)∈[0,t]×Rd−1

E(Z(s, x1)
2) ‖φ‖2

t,+ <∞,

so φ ∈ Ht,+,Z . Moreover, the following isometry property holds:

E((φ ·MZ)t (ψ ·MZ)t) = 〈φ,ψ〉t,Z ,

where

〈φ,ψ〉t,Z = E

(∫ t

0
ds

∫

Rd−1

Γ(dz1) ((φ(s, ·) Z(s, ·)) ∗1 (ψ̃(s, ·) Z̃(s, ·)))(z1)
)

. (2.16)

Let us also denote by ‖ · ‖t,Z the semi-norm induced by the semi-inner product 〈·, ·〉t,Z .

We can now proceed to the extension of the stochastic integral. If we assume that Z satisfies

E(Z(t, x1) Z(t, y1)) = E(Z(t, 0) Z(t, x1 − y1)), for all t ∈ R+, x1, y1 ∈ R
d−1, (2.17)

then the function γ : R+ × R
d−1 → R defined by

γ(t, z1) = E(Z(t, 0) Z(t, z1)), (t, z1) ∈ R+ × R
d−1,

is symmetric and non-negative definite in z1 and for deterministic φ,ψ ∈ Ht,+,Z , (2.16) can be
rewritten as

〈φ,ψ〉t,Z =

∫ t

0
ds

∫

Rd−1

Γ(dz1) γ(s, z1) (φ(s, ·) ∗1 ψ̃(s, ·))(z1). (2.18)

Notice that for s ∈ [0, t], the measure ΓZ
s defined by

ΓZ
s (dz1) = Γ(dz1) γ(s, z1)

is a non-negative definite measure on R
d−1, since this property is conserved by multiplication of

non-negative definite functions/measures.
By the Bochner-Schwartz theorem (see [28, Chap. VII, Thm XVIII]), there exists a non-

negative tempered Borel measure µZ
s on R

d−1 such that ΓZ
s = F1µ

Z
s . Moreover, µZ

s is symmetric
on R

d−1 since ΓZ
s is real-valued. Let us now consider the following subspace of Ht,+:

Ht,0 = {φ : [0, t] × R
d−1 → C Borel-measurable such that

‖φ‖t,+ <∞ and φ(s, ·) ∈ S(Rd−1), for all s ∈ [0, t]}.
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If φ,ψ ∈ Ht,0, then F1φ, F1ψ are Borel-measurable functions and we obtain the following
expression for ‖φ‖t,Z , using basic properties of the Fourier transform:

‖φ‖2
t,Z =

∫ t

0
ds

∫

Rd−1

µZ
s (dξ1) |F1φ(s, ξ1)|2. (2.19)

Note that this formula defines ‖φ‖t,Z even for φ : [0, t] → O′
C(Rd−1) such that (s, ξ1) 7→ F1φ(s, ξ1)

is Borel-measurable. We now define a larger space, which contains (deterministic) distribution-
valued integrands:

Ht,Z = {φ : [0, t] → O′
C(Rd−1) : (s, ξ1) 7→ F1φ(s, ξ1) is Borel-measurable,

‖φ‖t,Z <∞ and ∃(φn) ⊂ Ht,0 such that ‖φ− φn‖t,Z →
n→∞

0}.

The stochastic integral (φ ·MZ)t extends then by isometry to elements of Ht,Z . We continue to
use the notation (2.14) for stochastic integrals even in the case where φ(s, ·, x2) is a distribution
in x1 for each x2 ∈ R.

Note that for the linear equation, we will only need the definition of the stochastic integral
when Z ≡ 1, in which case we denote the space of integrands by Ht and the isometry property
(2.13) becomes

E((φ ·M)t (ψ ·M)t) = 〈φ,ψ〉t =

∫ t

0
ds

∫

Rd−1

µ(dξ1) F1φ(s, ξ1) F1ψ(s, ξ1). (2.20)

Notice that since φ is deterministic, the process (φ ·M) = {(φ ·M)t, t ∈ R+} is a Gaussian
process.

The following theorems will also be useful (cf. [5, Thms 2 and 3] and [6] for proofs, noting
that Theorem 2.3 is a slight variation on the result of [6]). Before stating them, let us denote
by O′

C(Rd−1)+ the space of non-negative distributions with rapid decrease on R
d−1.

Theorem 2.2. Let Z be a process satisfying (2.15) and (2.17). If Γ is a non-negative measure
on R

d−1, φ : [0, t] → O′
C(Rd−1)+ is such that F1φ is a Borel-measurable function and ‖φ‖t <∞,

then φ ∈ Ht,Z and

E(|(φ ·MZ)t|2) =

∫ t

0
ds

∫

Rd−1

µZ
s (dξ1) |F1φ(s, ξ1)|2

≤
∫ t

0
ds sup

x1∈Rd−1

E(Z(s, x1)
2)

∫

Rd−1

µ(dξ1) |F1φ(s, ξ1)|2.

Theorem 2.3. If φ : [0, t] → O′
C(Rd−1) is such that F1φ is a Borel-measurable function,

‖φ‖t <∞ and

lim
h↓0

∫ t

0
ds

∫

Rd−1

µ(dξ1) sup
s<r<s+h

|F1φ(r, ξ1) −F1φ(s, ξ1)|2 = 0, (2.21)

then φ ∈ Ht.

3 The Green kernel and its properties

Let G be the solution of

∂2G

∂t2
+ 2a

∂G

∂t
+ b G− ∆G = 0, G(0) = 0,

∂G

∂t
(0) = δ0. (3.1)

G is termed the Green kernel of equation (2.1). Note that in the following, the dependence on
a or b of the Green kernel or other objects will be omitted in order to simplify the notation.
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3.1 Fourier transform of the Green kernel

The Fourier transform of G in x satisfies


















∂2FG
∂t2

(t, ξ) + 2a
∂FG
∂t

(t, ξ) + (b+ |ξ|2) FG(t, ξ) = 0, t ∈ R, ξ ∈ R
d,

FG(0, ξ) = 0,
∂

∂t
FG(0, ξ) = 1, ξ ∈ R

d.

(3.2)

For ξ fixed, this is an ordinary differential equation in t, whose solution yields the following
expression for FG, which is valid for all dimensions d:

FG(t, ξ) =



































e−at
sin
(

t
√

|ξ|2 + b− a2
)

√

|ξ|2 + b− a2
, if |ξ|2 > a2 − b,

e−at t, if a2 − b ≥ 0 and |ξ|2 = a2 − b,

e−at
sinh

(

t
√

a2 − b− |ξ|2
)

√

a2 − b− |ξ|2
, if a2 − b > 0 and |ξ|2 < a2 − b.

(3.3)

Note that the first of these three expressions contains the other two. From these, we observe that
FG(t, ·) is an even real-valued function on R

d. Moreover, it is a well known fact (see for instance
[16, Thm 12.5.1]) that for fixed t ∈ R+, G(t, ·) is a distribution on R

d compactly supported in
Bd(0, t) (the ball in R

d centered at 0 with radius t), so G(t, ·) ∈ O′
C(Rd) and FG(t, ·) ∈ OM (Rd)

by (2.3).
Let us also define H = ∂G

∂t + 2a G. Then

∂2H

∂t2
+ 2a

∂H

∂t
+ b H − ∆H = 0, H(0) = δ0,

∂H

∂t
(0) = 0. (3.4)

Indeed, the first two equalities follow directly from the definition of H and (3.1), and the third
inequality is obtained by computing FH(t, ξ) from (3.3).

3.2 Fourier transform in x1 of the Green kernel

We first need to establish some properties of the restriction (or trace) of the solution G of
equation (3.1) to the hyperplane R

d−1 × {x2} and of its Fourier transform in the first d − 1
coordinates of x. For (t, ξ1, x2) ∈ R+ × R

d−1 × R, set

L1(t, ξ1, x2) = F−1
2 (FG(t, ξ1, ·))(x2) =

1

2π

∫

R

dξ2 FG(t, ξ1, ξ2) χ−x2
(ξ2),

by (2.2). Using (3.3) and [24, formulas I.5.83 and I.7.61], we see that

L1(t, ξ1, x2)

=



















e−at

2
J0

(

√

(|ξ1|2 + b− a2) (t2 − x2
2)
)

1{|x2| ≤ t}, if |ξ1|2 ≥ a2 − b,

e−at

2
I0

(

√

(a2 − b− |ξ1|2) (t2 − x2
2)
)

1{|x2| ≤ t}, if a2 − b > 0 and |ξ1|2 < a2 − b,

(3.5)

where J0 and I0 are respectively the zero order regular and modified Bessel functions of the
first kind (see Appendix C). In particular, L1 is a real-valued function, which is bounded on
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[0, T ] × R
d−1 × R for all T > 0 and symmetric in ξ1. Further, the element of S′(Rd) associated

with the function (ξ1, x2) 7→ L1(t, ξ1, x2) is F1G(t)(·). Indeed, for ϕ ∈ S(Rd),
∫

Rd−1

dξ1

∫

R

dx2 L1(t, ξ1, x2)ϕ(ξ1, x2) =

∫

Rd−1

dξ1

∫

R

dx2

∫

R

dξ2 FG(t, ξ1, ξ2)χ−x2
(ξ2)ϕ(ξ1, x2)

=

∫

Rd−1

dξ1

∫

R

dξ2 FG(t, ξ1, ξ2)F−1
2 ϕ(ξ1, x2)

= 〈F1G(t), ϕ〉. (3.6)

Proposition 3.1. For (t, x2) ∈ R+ × R, define G1(t, ·, x2) = F−1
1 L1(t, ·, x2), or, equivalently,

F1G1(t, ·, x2) = L1(t, ·, x2). Then G1(t, ·, x2) ∈ O′
C(Rd−1) and for ϕ ∈ S(Rd),

〈G(t), ϕ〉 =

∫

R

dx2 〈G1(t, ·, x2), ϕ(·, x2)〉. (3.7)

Proof. Using the definition of G1 and (3.6), we see that the right-hand side of (3.7) is equal to
∫

R

dx2

∫

Rd−1

dξ1 L1(t, ξ1, x2)F−1
1 ϕ(ξ1, x2) = 〈F1G(t),F−1

1 ϕ〉

= 〈G(t), ϕ〉.

This establishes (3.7), and so G1(t, ·, x2) is a distribution on R
d−1 with compact support in

Bd−1(0, t). Therefore, G(t, ·, x2) ∈ O′
C(Rd−1), and this completes the proof.

According to Proposition 3.1, for fixed t ∈ R+ and x2 ∈ R, G1(t, ·, x2) can be interpreted as
the restriction (or trace) of G(t, ·) to the hyperplane R

d−1 × {x2}.
Example 3.2. In the case a = b = 0, (3.1) is the wave equation, and it is well-known [15, Thms
5.15 and 5.17] that the Green kernel is given, for d even, by

〈G(s), ϕ〉 = Cd

(

1

s

∂

∂s

)N(d)
[

sd−1

∫

Bd(0,1)

dy
√

1 − |y|2
ϕ(sy)

]

= Cd

(

1

s

∂

∂s

)N(d)
[

sd−1

∫ 1

−1
dy2

∫

Bd−1(0,
√

1−y2
2
)
dy1

1
√

1 − y2
2 − |y1|2

ϕ(sy1, sy2)

]

,

while for d odd, it is given by

〈G(s), ϕ〉 = Cd

(

1

s

∂

∂s

)N(d)
[

sd−2

∫

∂Bd(0,1)
σ(d)(dy)ϕ(sy)

]

= Cd

(

1

s

∂

∂s

)N(d)
[

sd−2

∫ 1

−1
dy2

∫

∂Bd−1(0,
√

1−y2
2
)
σ(d−1)(dy1)ϕ(sy1, sy2)

]

,

where N(d) = [(d−2)/2] (resp. [(d−3)/2]) when d is even (resp. odd), σ(d) is (d−1)-dimensional
Hausdorff measure, and Cd is a constant. Therefore, for |x2| < 1 and d even,

〈G1(s, ·, sx2), ϕ(·, sx2)〉 =
Cd

s

(

1

s

∂

∂s

)N(d)
[

sd−1

∫

Bd−1(0,
√

1−x2
2
)
dy1

1
√

1 − x2
2 − |y1|2

ϕ(sy1, sx2)

]

,

and for d odd,

〈G1(s, ·, sx2), ϕ(·, sx2)〉 =
Cd

s

(

1

s

∂

∂s

)N(d)
[

sd−2

∫

∂Bd−1(0,
√

1−x2
2
)
σ(d−1)(dy1)ϕ(sy1, sx2)

]

.
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Our main results will be based on the estimates in the next three lemmas.

Lemma 3.3. For all t > 0, there exists C(t) > 0 such that for all s ∈ [0, t], ξ1 ∈ R
d−1 and

x2 ∈ R,

F1G1(s, ξ1, x2)
2 ≤ C(t)

√

1 + |ξ1|2
1

√

s2 − x2
2

1{|x2| < s}. (3.8)

Proof. For fixed t > 0, for ξ1 bounded and for all s < t and x2 ∈ R with |x2| < s, the right-hand
side of (3.8) is bounded below by a positive constant and the left-hand side is bounded above.
Therefore, it suffices to prove (3.8) for |ξ1| sufficiently large, all s < t and x2 ∈ R with |x2| < s.
In this case,

F1G1(s, ξ1, x2)
2 =

e−2as

4
J2

0

(

√

(|ξ1|2 + b− a2) (s2 − x2
2)

)

1{|x2| < s}

≤ e2a−t

4

C
√

|ξ1|2 + b− a2

1
√

s2 − x2
2

1{|x2| < s}

by (C.2), where a− = max(−a, 0). The conclusion is now clear, since 2
√

|ξ1|2 + b− a2 ≥
√

1 + |ξ1|2 for |ξ1| sufficiently large.

Lemma 3.4. (a) For all t > 0, there exists C(t) > 0 such that for all ξ1 ∈ R
d−1 and x2 ∈ R

∗,

∫ t

0
ds F1G1(s, ξ1, x2)

2 ≤ C(t)
√

1 + |ξ1|2
arccosh

(

t

|x2|

)

1{|x2| < t}. (3.9)

(b) For all t > 0, there exists C(t) > 0 such that for all ξ1 ∈ R
d−1 and x2 ∈ R,

∫ t

0
ds F1G1(s, ξ1, x2)

2 ≤ C(t)
1 + ln(1 + |ξ1|2)
√

1 + |ξ1|2
. (3.10)

Proof. (a) We obtain (3.9) by integrating in s both sides of (3.8).
(b) For fixed t > 0, the left-hand side of (3.10) is a continuous function of ξ1, which is

therefore bounded above for all x2 and |ξ1| bounded. On the other hand, the right-hand side is
bounded below by a positive constant for |ξ1| bounded. Therefore, it suffices to check (3.10) for
|ξ1| sufficiently large. In this case,

∫ t

0
ds F1G1(s, ξ1, x2)

2 =

∫ t

0
ds

e−2as

4
J2

0

(

√

(|ξ1|2 + b− a2) (s2 − x2
2)

)

1{|x2| < s}

≤ C e2a−t

4

∫ t

|x2|
ds

1
√

1 + (|ξ1|2 + b− a2) (s2 − x2
2)

1{|x2| < t},

by (C.2). Using the formula
∫

1√
α+ s2

ds = ln(s+
√

α+ s2), (3.11)

we find that

∫ t

0
ds F1G1(s, ξ1, x2)

2 ≤ C e2a−t

√

|ξ1|2 + b− a2
ln





t+
√

1
|ξ1|2+b−a2 + t2 − x2

2

|x2| + 1√
|ξ1|2+b−a2



 1{|x2| < t}.

This last expression is maximum when x2 = 0, in which case it is bounded above for |ξ1| large
by the right-hand side of (3.10).
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Lemma 3.5. (a) For all t > 0 and x2 ∈ R such that |x2| < t, there exists C(t, x2) > 0 such that
for all ξ1 ∈ R

d−1,
∫ t

0
ds F1G1(s, ξ1, x2)

2 ≥ C(t, x2)
√

1 + |ξ1|2
. (3.12)

(b) For all t > 0, there exist C(t) > 0 such that for all ξ1 ∈ R
d−1,

∫ t

0
ds F1G1(s, ξ1, 0)

2 ≥ C(t)
ln(1 + |ξ1|2)
√

1 + |ξ1|2
. (3.13)

Proof. (a) For fixed t > 0 and x2 ∈ R, the left-hand side of (3.12) is a positive and continuous
function of |ξ1|, which is therefore bounded below by a positive constant for |ξ1| bounded. On
the other hand, the right-hand side is bounded above. Therefore, it suffices to prove (3.12) for
|ξ1| sufficiently large. In this case,

∫ t

0
ds F1G1(s, ξ1, x2)

2 =

∫ t

0
ds

e−2as

4
J2

0

(

√

(|ξ1|2 + b− a2) (s2 − x2
2)

)

1{|x2| < s}

≥ e−2a+t

4

∫ t

|x2|
ds J2

0

(

√

(|ξ1|2 + b− a2) (s2 − x2
2)

)

,

where a+ = max(a, 0). Use the change of variables r =
√

(|ξ1|2 + b− a2) (s2 − x2
2), so that

ds =
r dr

s (|ξ1|2 + b− a2)
≥ r dr

t (|ξ1|2 + b− a2)
,

and set R =
√

(|ξ1|2 + b− a2) (t2 − x2
2) to see that

∫ t

0
ds F1G1(s, ξ1, x2)

2 ≥ e−2a+t

4t

1

|ξ1|2 + b− a2

∫ R

0
dr r J2

0 (r).

Since R ≥ 1 for large |ξ1|, we obtain using Lemma C.1 that for such ξ1,

∫ t

0
ds F1G1(s, ξ1, x2)

2 ≥ C e−2a+t

4t

√

(|ξ1|2 + b− a2) (t2 − x2
2)

|ξ1|2 + b− a2

≥ C(t, x2)
√

1 + |ξ1|2
.

This completes the proof of (a).
(b) For fixed t > 0, the left-hand side of (3.13) is a continuous and positive function of ξ1,

which is therefore bounded below by a positive constant for |ξ1| bounded. On the other hand,
the right-hand side of (3.13) is bounded above. Therefore, it suffices to check (3.13) for |ξ1|
sufficiently large. In this case,

∫ t

0
ds F1G1(s, ξ1, 0)

2 ≥ e−2a+t

4

∫ t

0
ds J2

0

(

s
√

|ξ1|2 + b− a2
)

=
e−2a+t

4
√

|ξ1|2 + b− a2

∫ t
√

|ξ1|2+b−a2

0
dr J2

0 (r),

by the change of variable r = s
√

|ξ1|2 + b− a2. By Lemma C.2, the integral is bounded below
by

c ln(t
√

|ξ1|2 + b− a2),

which yields (3.13).
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4 Solutions to the linear s.p.d.e.

The most classical notion of solution to (2.12) is the notion of weak solution: a weak solution
of (2.12) is an adapted process (u(t), t ≥ 0) with values in S ′(Rd) such that for all t > 0 and
ϕ ∈ C∞

0 (Rd),
〈

∂2u(t)

∂t2
(·) + 2a

∂u(t)

∂t
(·) + b u(t)(·) − ∆u(t)(·), ϕ

〉

= 〈Ḟ (t, ·), ϕ(·, 0)〉, P − a.s.

It is well-known (see for instance [7, 30, 32]) that the unique weak solution to (2.12) is given by
the formula

〈u(t), ϕ〉 =

∫

[0,t]×Rd−1

M(ds, dx1) (G(t− s) ∗ ϕ)(x1, 0), t ∈ R+, ϕ ∈ S(Rd), (4.1)

where G is the Green kernel of equation (3.1), whose properties are listed in Section 3.

Remark 4.1. Note that we could intepret the noise term as a boundary term, and therefore
consider that (4.1) is the weak solution of the following equation in the upper half space:

∂2u

∂t2
(t, x) + 2a

∂u

∂t
(t, x) + b u(t, x) − ∆u(t, x) = 0, (t, x) ∈ R+ × R

d−1 × R+,

with the stochastic boundary condition

∂u

∂x2
(t, x1, 0) = Ḟ (t, x1).

Indeed, this problem leads to the same weak formulation as (4.1).

In many contexts, stronger notions of solution than that in (4.1) are useful. We shall examine
two such notions defined in Sections 4.1 and 4.2 below: function-valued solutions and random
field solutions. We shall see that the conditions for existence of a function-valued solution and
of a random field solution are not the same!

4.1 Function-valued solutions

A function-valued solution to (2.12) is an adapted process (u(t), t ≥ 0) with values in L2
loc(R

d)
such that

ϕ 7→
∫

Rd

dxu(t)(x)ϕ(x), ϕ ∈ C∞
0 (Rd), t ≥ 0,

coincides with the weak solution (4.1) of (2.12). This type of solution is often considered in [9].
Note that for fixed t ≥ 0, u(t)(x) need only be defined for almost all x ∈ R

d. We shall show
that a function-valued solution exists if and only if the following condition is satisfied.

Assumption B0.
∫

Rd−1

µ(dξ1)
√

1 + |ξ1|2
<∞.

A refomulation of this condition into a condition on the covariance of the noise is given in
Appendix A. Note that this condition is stronger than that needed for the equation driven by
spatially homogeneous noise on R

d (see [5, 17], or even [11]), for which the square root does not
appear. This is to be expected since our noise is concentrated on a hyperplane, which makes
it more singular than noise spread out over R

d. We point out that Lebesgue measure on R
d−1

(which is the spectral measure of white noise on R
d−1) does not satisfy this condition for any

dimension d > 1.
We begin by establishing two lemmas.
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Lemma 4.2. Under Assumption B0 and for (t, x1, x2) ∈ R+×R
d−1 ×R

∗, the function φt,x1,x2
:

[0, t] → O′
C(Rd−1) defined by

φt,x1,x2
(s) = G1(t− s, x1 − ·, x2), s ∈ [0, t],

belongs to Ht.

Proof. Notice that
F1φt,x1,x2

(s, ξ1) = F1G1(t− s,−ξ1, x2) χx1
(ξ1).

Thus, for all s ∈ [0, t], F1φt,x1,x2
(s, ·) ∈ OM (Rd−1) (see Section 2.1) and this implies that

φt,x1,x2
(s, ·) ∈ O′

C(Rd−1), by (2.3). Moreover, F1φt,x1,x2
is a Borel-measurable function and

using Lemma 3.4(a) and Assumption B0, we obtain

‖φt,x1,x2
‖2

t =

∫

Rd−1

µ(dξ1)

∫ t

0
ds F1G1(t− s,−ξ1, x2)

2

≤ C(t)

∫

Rd−1

µ(dξ1)
√

1 + |ξ1|2
arccosh

(

t

|x2|

)

1{|x2| < t} <∞, (4.2)

since x2 6= 0. With the change of variables s→ t− s, (2.21) is implied by

lim
h↓0

∫ t

0
ds

∫

Rd−1

µ(dξ1) sup
s<r<s+h

|F1G1(r,−ξ1, x2) −F1G1(s, ξ1, x2)|2 = 0. (4.3)

Fix ξ1 and s 6= |x2|. If s < |x2|, then for h sufficiently small and r ∈ ]s, s + h[, r < |x2|, so the
integrand in (4.3) vanishes. For s > |x2| and r ∈ ]s, s+ h[, r > |x2|, so the integrand is equal to

sup
s<r<s+h

∣

∣

∣

∣

e−asJ

(

√

(|ξ1|2 + b− a2)(r2 − x2
2)

)

− e−arJ

(

√

(|ξ1|2 + b− a2)(s2 − x2
2)

)∣

∣

∣

∣

2

,

where J(r) is either J0(r) or I0(ir). By uniform continuity of J , this expression converges to 0
as h ↓ 0. Therefore, the integrand in (4.3) converges pointwise to 0, for a.a. ξ1 and s.

In order to apply the dominated convergence theorem, we note from Lemma 3.3 that

sup
s<r<s+h

|F1G1(r,−ξ1, x2) −F1G1(s,−ξ1, x2)|2

≤ C
√

1 + |ξ1|2
1{|x2|<s} sup

s<r<s+h

(

1
√

r2 − |x2
2|

+
1

√

s2 − |x2
2|

)

≤ C
√

1 + |ξ1|2
2

√

s2 − |x2
2|

1{|x2|<s}.

By Assumption B0, this last expression is ds×µ(dξ1)-integrable, so the dominated convergence
theorem applies and (4.3) is proved. The conclusion now follows from Theorem 2.3.

Lemma 4.3. Let M be the worthy martingale measure defined in Section 2.5. Under Assumption
B0, the real-valued process X = {X(t, x1, x2), (t, x1, x2) ∈ R+ × R

d−1 × R
∗} defined by

X(t, x1, x2) =

∫

[0,t]×Rd−1

M(ds, dy1) G1(t− s, x1 − y1, x2), (t, x1, x2) ∈ R+ × R
d−1 × R

∗,

is a centered Gaussian process whose covariance is given by

E(X(t, x1, x2) X(s, y1, y2))

=

∫

Rd−1

µ(dξ1)

∫ t∧s

0
dr F1G1(t− r,−ξ1, x2) F1G1(s− r,−ξ1, y2) χx1−y1

(ξ1), (4.4)

and such that the map (t, x1, x2) 7→ X(t, x1, x2) is continuous from R+ × R
d−1 × R

∗ to L2(Ω).
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Remark 4.4. This result and [23, Prop. 3.6 and Cor. 3.8] imply that the process X admits a
modification X̃ such that the map (t, x1, x2, ω) 7→ X̃(t, x1, x2, ω) is jointly measurable. We will
implicitly consider this modification in the following.

Proof of Lemma 4.3. By Lemma 4.2, the process X is well defined. The fact that X is a centered
Gaussian process with the covariance given in (4.4) follows easily from the isometry (2.20), and
since µ and F1G are symmetric in ξ1, (4.4) is equal to

∫

Rd−1

µ(dξ1)

∫ t∧s

0
dr F1G1(t− r,−ξ1, x2) F1G1(s− r,−ξ1, y2) cos(ξ1 · (x1 − y1)),

so X is real-valued.
In order to show that the map (t, x1, x2) 7→ X(t, x1, x2) is continuous from R+ × R

d−1 × R
∗

to L2(Ω), we show that for all T > 0, it is continuous from [0, T ]×R
d−1 ×R

∗ to L2(Ω), showing
first that the map x2 7→ X(t, x1, x2) is continuous in L2(Ω) uniformly in (t, x1) ∈ [0, T ] × R

d−1,
then that for fixed x2 ∈ R

∗, the map x1 7→ X(t, x1, x2) is continuous in L2(Ω) uniformly in
t ∈ [0, T ] and finally that for fixed (x1, x2) ∈ R

d−1 × R
∗, the map t 7→ X(t, x1, x2) is continuous

in L2(Ω).
Let x2, y2 ∈ R

∗. Using the isometry (2.20) (or (4.4)), we obtain

sup
(t,x1)∈[0,T ]×Rd−1

E((X(t, x1, y2) −X(t, x1, x2))
2)

≤
∫

Rd−1

µ(dξ1)

∫ T

0
dr (F1G1(r,−ξ1, y2) −F1G1(r,−ξ1, x2))

2. (4.5)

We will show that this expression converges to 0 as y2 → x2. First note that for each ξ1 ∈ R
d−1

and r 6= |x2|,
(F1G1(r,−ξ1, y2) −F1G1(r,−ξ1, x2))

2 →
y2→x2

0.

Moreover, since F1G1 is bounded on [0, T ]×R
d−1×R, we obtain from the dominated convergence

theorem that
∫ T

0
dr (F1G1(r,−ξ1, y2) −F1G1(r,−ξ1, x2))

2 →
y2→x2

0.

But for ε ∈ ]0, |x2|[ and |y2 − x2| < ε, we obtain by Lemma 3.4(a) that

∫ T

0
dr (F1G1(r,−ξ1, y2) −F1G1(r,−ξ1, x2))

2 (4.6)

≤ 2 C(T )
√

1 + |ξ1|2

(

arccosh

(

T

|y2|

)

1{|y2| < T} + arccosh

(

T

|x2|

)

1{|x2| < T}
)

≤ 2 C(T )
√

1 + |ξ1|2

(

arccosh

(

T

|x2| − ε

)

1{|x2| − ε < T} + arccosh

(

T

|x2|

)

1{|x2| < T}
)

,

since |y2| > |x2| − ε. Therefore, by Assumption B0 and the dominated convergence theorem,
(4.5) converges to 0 as y2 → x2.

Now, let x1, y1 ∈ R
d−1 and x2 ∈ R

∗. By (4.4), we have

sup
t∈[0,T ]

E((X(t, y1, x2) −X(t, x1, x2))
2)

≤
∫

Rd−1

µ(dξ1)

∫ T

0
dr F1G1(r,−ξ1, x2)

2 2 (1 − cos(ξ1 · (y1 − x1))). (4.7)
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The integrand in (4.7) converges to 0 as y1 → x1, so for fixed ξ1 ∈ R
d−1, the inner integral

does too since F1G1 is bounded on [0, T ] × R
d−1 × R. By Lemma 3.4(a), which applies since

x2 6= 0 and Assumption B0 holds, we conclude from the dominated convergence theorem that
the expresssion in (4.7) converges to 0 as y1 → x1.

Finally, let t, h ∈ R+, x1 ∈ R
d−1 and x2 ∈ R

∗. ¿From (4.4), we obtain

E((X(t+ h, x1, x2) −X(t, x1, x2))
2)

=

∫

Rd−1

µ(dξ1)

∫ t

0
dr (F1G1(r + h,−ξ1, x2) −F1G1(r,−ξ1, x2))

2 (4.8)

+

∫

Rd−1

µ(dξ1)

∫ h

0
dq F1G1(q,−ξ1, x2)

2. (4.9)

By (4.3), the expression in (4.8) converges to 0 as h→ 0. On the other hand, from Assumption
B0 and Lemma 3.4(a), which applies since x2 6= 0, the integral in (4.9) converges also to 0 as
h→ 0, and this shows the right-continuity in t of the process X (in L2(Ω)). The left-continuity
follows in the same way and this completes the proof. �

With these two lemmas in hand, we can now prove the following theorem.

Theorem 4.5. There exists a function-valued solution (u(t), t ≥ 0) to equation (2.12) if and
only if Assumption B0 is satisfied. In this case, u(t)(x1, x2) = X(t, x1, x2), x2 6= 0, x1 ∈ R

d−1,
is the function-valued solution, where (X(t, x1, x2)) is defined in Lemma 4.3.

Proof. Let us first suppose that Assumption B0 is satisfied. Let X be the process defined in
Lemma 4.3: it is continuous in L2(Ω) on R+ × R

d−1 × R
∗ and is a centered Gaussian process

whose covariance is given by (4.4). Set u(t)(x1, x2) = X(t, x1, x2), x2 6= 0, x1 ∈ R
d. Observe

that for fixed t ∈ R+, we have by (4.4),

E(X(t, x1, x2)
2) =

∫

Rd−1

µ(dξ1)

∫ t

0
ds F1G1(t− s,−ξ1, x2)

2.

By Lemma 3.4(a) and Assumption B0, this is bounded above by

C(t) arccosh

(

t

|x2|

)

1{|x2| < t} ∼
x2→0

ln

(

1

|x2|

)

. (4.10)

This is integrable in the neighborhood of x2 = 0, so a.s., u(t) ∈ L2
loc(R

d).
We now prove that for ϕ ∈ S(Rd),

〈u(t), ϕ〉 =

∫

Rd

dx u(t)(x) ϕ(x), P − a.s., (4.11)

where 〈u(t), ϕ〉 denotes the right-hand side of (4.1). By Lemma 4.3 and Remark 4.4, the integral
on the right-hand side of (4.11) is well defined. We show that both sides of (4.11) are equal
P-a.s., by showing that both their variances are equal to their covariance. By (4.1) and (2.20),

E(|〈u(t), ϕ〉|2) = E





∣

∣

∣

∣

∣

∫

[0,t]×Rd−1

M(ds, dx1) (G(t− s) ∗ ϕ)(x1, 0)

∣

∣

∣

∣

∣

2




=

∫

Rd−1

µ(dξ1)

∫ t

0
ds |F1(G(t− s) ∗ ϕ)(ξ1, 0)|2.

Since F1 = F−1
2 F and F(G ∗H) = FG · FH,

F1(G(t− s) ∗ ϕ)(ξ1, 0) = F−1
2 (FG(t− s) · Fϕ)(ξ1, 0)

=
1

2π

∫

R

dξ2 FG(t− s, ξ1, ξ2) Fϕ(ξ1, ξ2), (4.12)
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so

E(|〈u(t), ϕ〉|2) =

∫

Rd−1

µ(dξ1)

∫ t

0
ds

∣

∣

∣

∣

1

2π

∫

R

dξ2 FG(t− s, ξ1, ξ2) Fϕ(ξ1, ξ2)

∣

∣

∣

∣

2

. (4.13)

On the other hand, by Fubini’s theorem and (4.4),

E

(

∣

∣

∣

∣

∫

Rd

dx X(t, x) ϕ(x)

∣

∣

∣

∣

2
)

=

∫

Rd

dx

∫

Rd

dy E(X(t, x) X(t, y)) ϕ(x) ϕ(y)

=

∫

Rd−1

µ(dξ1)

∫ t

0
ds

∣

∣

∣

∣

∫

Rd−1

dx1

∫

R

dx2 F1G1(t− s,−ξ1, x2) χξ1(x1) ϕ(x1, x2)

∣

∣

∣

∣

2

.(4.14)

By definition of G1, the double integral inside the modulus is equal to

∫

R

dx2 F1G1(t− s,−ξ1, x2) F1ϕ(ξ1, x2) =
1

2π

∫

R

dξ2 FG(t− s,−ξ1,−ξ2) Fϕ(ξ1, ξ2), (4.15)

which is equal to (4.12), so (4.13) and (4.14) are equal. It remains to compute, using Fubini’s
theorem, (4.1) and (2.20),

E

(

〈u(t), ϕ〉 ·
∫

Rd

dx X(t, x) ϕ(x)

)

(4.16)

=

∫

Rd−1

µ(dξ1)

∫ t

0
ds

(

F1(G(t− s) ∗ ϕ)(ξ1, 0)

·
∫

Rd

dx F1G1(t− s,−ξ1, x2) χξ1(x1) ϕ(x)

)

.

Using calculations (4.12) and (4.15), we obtain that the two factors in the last integrand are
equal, so (4.16) is also equal to (4.13) and (4.14). This proves (4.11) and therefore the sufficiency
of Assumption B0.

Let us now prove the necessity of Assumption B0. We assume that there is a process
(u(t), t ≥ 0) with values in L2

loc(R
d) that satisfies (4.11). For (t, x1, x2) ∈ R+ × R

d−1 × R such

that |x2| < t, let ϕ
(n)
x1,x2 = δ(x1,x2) ∗ ψn ∈ S(Rd), where (ψn) is a sequence of non-negative and

compactly supported approximations of δ0 in R
d. The assumptions made on u and Fubini’s

theorem imply that

E(|〈u(t), ϕ(n)
x1 ,x2

〉|2) = E

(

∣

∣

∣

∣

∫

Rd

dy1 dy2 u(t)(y1, y2) ϕ
(n)
x1,x2

(y1, y2)

∣

∣

∣

∣

2
)

=

∫

Rd

dy1 dy2

∫

Rd

dz1 dz2 E(u(t)(y1, y2) u(t)(z1, z2)) ϕ
(n)
x1,x2

(y1, y2) ϕ
(n)
x1,x2

(z1, z2) (4.17)

By the Lebesgue Differentiation Theorem [31, Chap. 7, Exercise 2], this converges as n → ∞
for a.a. x to E(u(t)(x)2) <∞.

On the other hand, replacing ϕ by ϕ
(n)
x1,x2

in (4.13) gives

E(|〈u(t), ϕ(n)
x1,x2

〉|2) =

∫

Rd−1

µ(dξ1)

∫ t

0
ds

∣

∣

∣

∣

1

2π

∫

R

dξ2 FG(t− s, ξ1, ξ2) Fϕ(n)
x1,x2

(ξ1, ξ2)

∣

∣

∣

∣

2

.
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Let us then compute

1

2π

∫

R

dξ2 FG(t− s, ξ1, ξ2) Fϕ(n)
x1,x2

(ξ1, ξ2) (4.18)

=

∫

R

dy2 F1G1(t− s, ξ1,−y2) F1ϕ
(n)
x1,x2

(ξ1, y2)

=

∫

Rd

dy1

∫

R

dy2 F1G1(t− s, ξ1,−y2) χξ1(y1) ϕ
(n)
x1,x2

(y1, y2)

→
n→∞

F1G1(t− s, ξ1,−x2) χx1
(ξ1),

for all (s, ξ1) ∈ [0, t]×R
d−1 such that s 6= t−|x2|. Fatou’s lemma and Lemma 3.5(a) then imply

that

lim inf
n→∞

E(|〈u(t), ϕ(n)
x1,x2

〉|2) ≥
∫

Rd−1

µ(dξ1)

∫ t

0
ds F1G1(t− s, ξ1,−x2)

2

≥ C6(t, x2)

∫

Rd−1

µ(dξ1)
√

1 + |ξ1|2
.

Since the above lim inf is a finite limit for a.a. (x1, x2) by (4.17), Assumption B0 is satisfied and
this completes the proof.

Remark 4.6. If E(X(t, x1, x2)
2) behaves as ln( 1

|x2|
) for x2 → 0, as (4.10) suggests, then the

process X cannot be continuously extended to the hyperplane x2 = 0. In the next section,
we shall see that a stronger assumption on the spectral measure µ is needed to ensure that a
continuous extension to the hyperplane x2 = 0 is possible.

4.2 Random field solutions

In this section, we consider a third notion of solution: a random field solution to (2.12) is an
adapted process (u(t, x), (t, x) ∈ R+×R

d) such that (t, x) 7→ u(t, x) is continuous from R+×R
d

into L2(Ω) and

ϕ 7→
∫

Rd

dxu(t, x)ϕ(x), ϕ ∈ C∞
0 (Rd), t ≥ 0, (4.19)

coincides with the weak solution of (2.12).
Note that if (u(t), t ≥ 0) is a function-valued solution, then u(t)(x) is only defined for a.a. x,

and there is no continuity requirement on the map x 7→ u(t)(x), whereas such a continuity
requirement is specified in the notion of random field solution. We shall show that the existence
of a random field solution is equivalent to the following condition on the spectral measure µ,
which is stronger than Assumption B0.

Assumption B′
0.

∫

Rd−1

µ(dξ1)
ln(1 + |ξ1|2)
√

1 + |ξ1|2
<∞.

Note the extra logarithmic factor in this assumption compared to Assumption B0. In Ex-
ample 4.9 below, we give an example of a spectral measure µ which does not satisfy Assumption
B′

0 but does satisfy Assumption B0.
We shall need the following lemma, which is analogous to Lemma 4.2. The crucial distinctions

are that Assumption B0 is replaced by Assumption B′
0 and the conclusion is now valid even for

x2 = 0.
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Lemma 4.7. Under Assumption B′
0 and for (t, x1, x2) ∈ R+ × R

d−1 × R, the function φt,x1,x2
:

[0, t] → O′
C(Rd−1) defined by

φt,x1,x2
(s) = G1(t− s, x1 − ·, x2), s ∈ [0, t],

belongs to Ht.

Proof. We shall show that φt,x1,x2
∈ Ht by using the definition of this space (see the end of

Section 2.6). Fix therefore (t, x1, x2) ∈ R+ ×R
d−1 ×R. As in the proof of Lemma 4.2, note that

for all s ∈ [0, t], ξ1 ∈ R
d−1,

F1φt,x1,x2
(s, ξ1) = F1G1(t− s,−ξ1, x2) χx1

(ξ1),

and that φt,x1,x2
(s, ·) ∈ O′

C(Rd−1). Moreover, F1φt,x1,x2
is a Borel-measurable function and

using Lemma 3.4(b) and Assumption B′
0, we obtain

‖φt,x1,x2
‖2

t =

∫

Rd−1

µ(dξ1)

∫ t

0
ds F1G1(t− s,−ξ1, x2)

2

≤ C(t)

∫

Rd−1

µ(dξ1)
1 + ln(1 + |ξ1|2)
√

1 + |ξ1|2
<∞. (4.20)

Let us now define

φ
(n)
t,x1,x2

(s, y1) = (φt,x1,x2
(s) ∗1 ψn) (y1), s ∈ [0, t], y1 ∈ R

d−1, (4.21)

where (ψn) is a sequence of non-negative approximations of δ0 in R
d−1, compactly supported

in Bd−1(0, 1) and which satisfy
∫

Rd−1 dx1 ψn(x1) = 1. In particular, limn→∞F1ψn(ξ1) = 1 and
|F1ψn(ξ1)| ≤ 1, for all ξ1 ∈ R

d−1.
For each n,

F1φ
(n)
t,x1,x2

(s, ξ1) = F1φt,x1,x2
(s, ξ1) F1ψn(ξ1),

which implies that

‖φt,x1,x2
− φ

(n)
t,x1,x2

‖2
t =

∫ t

0
ds

∫

Rd−1

µ(dξ1) |F1φt,x1,x2
(s, ξ1)|2 |1 −F1ψn(ξ1)|2.

Using the dominated convergence theorem, which applies since the integrand converges to 0,

|1 −F1ψn(ξ1)| ≤ 2 and ‖φt,x1,x2
‖t <∞, we conclude that limn→∞ ‖φt,x1,x2

− φ
(n)
t,x1,x2

‖t = 0.

It remains to check that φ
(n)
t,x1,x2

∈ Ht,0 for each n. By (4.21) and definition of φ
(n)
t,x1,x2

,

F1φ
(n)
t,x1,x2

is a Borel-measurable function and for all s ∈ [0, t], φ
(n)
t,x1,x2

(s, ·) ∈ S(Rd−1), since

φt,x1,x2
(s, ·) ∈ O′

C(Rd−1). The last condition to be verified is that ‖φ(n)
t,x1,x2

‖t,+ <∞.

The definition of φ
(n)
t,x1,x2

implies that for all s ∈ [0, t], φ
(n)
t,x1,x2

(s, ·) is compactly supported,

and therefore belongs to C∞
0 (Rd−1) and so does φ

(n)
t,x1,x2

(s, ·) ∗1 φ
(n)
t,x1,x2

(s, ·). Moreover, since
supp G(s, x1 − ·, x2) ⊂ Bd−1(0, |x1| + t) for all s ∈ [0, t] and x2 ∈ R, we obtain that for R =
2(|x1| + t+ 1),

sup
s∈[0,t]

(|φ(n)
t,x1,x2

(s, ·)| ∗1 |φ(n)
t,x1,x2

(s, ·)|)(z1) = 0, for all z1 ∈ R
d−1 with |z1| > R.

This implies that

‖φ(n)
t,x1,x2

‖2
t,+ =

∫ t

0
ds

∫

Rd−1

ν(dz1) (|φ(n)
t,x1,x2

(s, ·)| ∗1 |φ(n)
t,x1,x2

(s, ·))|(z1) <∞,

which completes the proof.
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Theorem 4.8. There exists a random field solution (u(t, x), (t, x) ∈ R+ × R
d) to (2.12) if and

only if Assumption B′
0 is satisfied. In this case, u(t, x1, x2) = X(t, x1, x2) is the random field

solution to (2.12), where X is defined as in Lemma 4.3, but for all (t, x) ∈ R+ × R
d.

Proof. Suppose that Assumption B′
0 in satisfied. Then the statement of Lemma 4.3 remains

valid for all x2, though the proof must be modified as follows. First, by Lemma 4.7, the process
X is well defined for all x2 ∈ R and x1 ∈ R

d−1, and (4.4) holds.
The L2-increments of X can be estimated as follows. Let us first consider x2, y2 ∈ R. We

express
sup

(t,x1)∈[0,T ]×Rd−1

E((X(t, x1, y2) −X(t, x1, x2))
2)

as in (4.5). Using twice the dominated convergence theorem as in the proof of Lemma 4.3,
but applying this time Lemma 3.4(b) and Assumption B′

0 for (4.6), we obtain that the above
expression converges to 0 as y2 → x2.

Now, let x1, y1 ∈ R
d−1 and x2 ∈ R. We express

sup
t∈[0,T ]

E((X(t, y1, x2) −X(t, x1, x2))
2)

as in (4.7). Once again, using twice the dominated convergence theorem jointly with Lemma
3.4(b) and Assumption B′

0, we obtain that this expression converges to 0 as y1 → x1.
Finally, let t, h ∈ R+, x1 ∈ R

d−1 and x2 ∈ R. We write

E((X(t+ h, x1, x2) −X(t, x1, x2))
2)

as in (4.8) and (4.9). Since F1G1 is bounded on [0, T ] × R
d−1 × R, the inner integral in these

equations converges to 0 as h→ 0. We then use Lemma 3.4(b) and Assumption B′
0 to conclude

via the dominated convergence theorem that these expressions converge to 0 as h→ 0.
A similar argument allows us to prove the left-continuity. Summing up these results gives

us the L2-continuity of the process X on R+ × R
d, then the existence of a jointly measurable

modification.
One now verifies that (4.19) coincides with the weak solution of (2.12): this is identical to

the proof of (4.11). Therefore, Assumption B′
0 implies the existence of a random field solution

to (2.12).
In order to prove that Assumption B′

0 is necessary, we also follow the proof of Theorem 4.5.
Assuming that there is a random field solution (u(t, x)) to (2.12), we have

∞ > E(u(t, x1, 0)
2) = lim

n→∞
E(|〈u(t), ϕ(n)

x1,0〉|2, (4.22)

where ϕ
(n)
x1,0 →

n→∞
δx1,0 in S ′(Rd). Using (4.13), we obtain

E(|〈u(t), ϕ(n)
x1,0〉|2) =

∫

Rd−1

µ(dξ1)

∫ t

0
ds

∣

∣

∣

∣

1

2π

∫

R

dξ2 FG(t− s, ξ1, ξ2) Fϕ(n)
x1,0(ξ1, ξ2)

∣

∣

∣

∣

2

.

So by the same calculations as in (4.18) and using Fatou’s lemma, we obtain

lim
n→∞

E(|〈u(t), ϕ(n)
x1,0〉|2 ≥

∫

Rd−1

µ(dξ1)

∫ t

0
ds F1G1(t− s, ξ1, 0)

2.

By Lemma 3.5(b),
∫

Rd−1

µ(dξ1)

∫ t

0
ds F1G1(t− s, ξ1, 0)

2 ≥
∫

Rd−1

µ(dξ1) C(t)
ln(1 + |ξ1|2)
√

1 + |ξ1|2
. (4.23)

Using (4.22), we conclude that Assumption B′
0 is satisfied, and this completes the proof.
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Example 4.9. We give here an example of a spectral measure that satisfies Assumption B0

but not Assumption B′
0, for which the function-valued solution to (2.12) cannot therefore be

extended continuously to x2 = 0.
Let d = 2 (so that µ is a measure on R) and describe µ by its density φ given by

φ(r) = 3 − 2

e
r if r ∈ [0, e[, φ(r) = ln−2(r) if r ∈ [e,∞[,

and φ(r) = φ(−r) for r < 0. One can easily check that µ satisfies Assumption B0, but not
Assumption B′

0.
We now check that the corresponding covariance Γ = F1µ is a non-negative and non-negative

definite measure. Clearly, µ is a non-negative tempered Borel measure on R, so Γ is a tem-
pered non-negative definite distribution by the Bochner-Schwartz theorem [28, Chap. VII, Thm
XVIII]. In order to show that Γ is a non-negative measure on R, observe that φ is continuous,
decreasing and convex on [0,∞[, so by Polya’s criterion (see for example [13, §2.3.d]), φ is a
(symmetric) non-negative definite function on R. By the classical Bochner theorem, this implies
that Γ is a non-negative finite measure on R. Therefore, the spectral measure µ defined above
is indeed a relevant example.

Remark 4.10. One can ask about existence of function-valued solutions or random field solu-
tions to the stochastic heat equation driven by noise on a hyperplane, that is,











∂u

∂t
(t, x) − ∆u(t, x) = Ḟ (t, x1) δ0(x2), t ∈ R+, x = (x1, x2) ∈ R

d−1 × R,

u(0, x) = 0, x ∈ R
d,

(4.24)

For this parabolic s.p.d.e., the conclusions are completely different from those of Theorems 4.5
and 4.8 (this contrasts with the spatially homogeneous case [5, 26]). Indeed, in this case,

G(t, x) =
1

(2πt)d/2
e−|x|2/(2t), G1(t, x1, x2) = G(t, x),

and

FG(t, ξ) = e−t|ξ|2/2, F1G1(t, ξ1, x2) = e−t|ξ1|2/2 1√
2πt

e−x2
2/(2t).

Defining φt,x1,x2
(s) as in Lemma 4.2, one sees that the integral arising in (4.2) is equal to

∫

Rd−1

µ(dξ1)

∫ t

0
ds e−s|ξ1|2 1

2πs
e−x2

2
/s. (4.25)

When |ξ1| ≥ 1, we have
∫ t

0
ds e−s|ξ1|2 1

2πs
e−x2

2
/s ≤

∫ ∞

0
ds e−s|ξ1|2 1

2πs
e−x2

2
/s =

1

π
K0(2 |x2| |ξ1|),

by [3, formula I.5.34] (where K0 is the zero order modified Bessel function of the second kind
defined in Appendix C). When |ξ1| ≤ 1 and x2 6= 0, we have

∫ t

0
ds e−s|ξ1|2 1

2πs
e−x2

2/s ≤
∫ t

0
ds

1

2πs
e−x2

2/s <∞.

Using these two estimates, (C.6) and the fact that µ is a tempered measure, it is not difficult to
see that (4.25) is finite for x2 6= 0 and therefore that a function-valued solution to (4.24) always
exists. This is compatible with the result of Sowers [29].

On the other hand, carrying out the computation in (4.23), one finds that the left-hand side
of (4.23) is infinite, no matter the measure µ, because the ds-integral is already infinite. It is
not difficult to conclude from this that a random field solution to (4.24) never exists.
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5 Non-linear equation driven by noise on a hyperplane

In this section, we shall extend the result of Theorem 4.8 to establish the existence of a random
field solution to a non-linear form of equation (2.12). We shall need the following assumption.

Assumption C0.

(i) The covariance Γ of the noise is a non-negative measure on R
d−1.

(ii) d ∈ {2, 3} and a2 ≥ b.

Part (ii) of this assumption implies that the “hyperplane” x2 = 0 is either a straight line
or a plane, and from the expressions of G1 listed in Appendix B, we see that for all t ∈ R+

and x2 ∈ R, G1(t, ·, x2) (defined in Proposition 3.1) is a non-negative measure on R
d−1. These

non-negativity assumptions are needed to use Theorem 2.2, which we shall do repeatedly in the
following.

Consider the following formal non-linear equation:



































∂2u

∂t2
(t, x) + 2a

∂u

∂t
(t, x) + b u(t, x) − ∆u(t, x)

= g(u(t, x1, 0)) δ0(x2) + h(u(t, x1, 0)) Ḟ (t, x1) δ0(x2), t ∈ R+, x ∈ R
d,

u(0, x) =
∂u

∂t
(0, x) = 0, x ∈ R

d,

(5.1)

where g and h are real-valued functions and Ḟ is the noise concentrated on the hyperplane
x2 = 0 considered in Section 2.4. Note that we consider vanishing initial conditions, but this
can be improved: see Remark 5.3.

The integral formulation of (5.1) is

u(t, x1, x2) =

∫ t

0
ds

∫

Rd−1

G1(s, dz1, x2) g(u(t− s, x1 − z1, 0))

+

∫

[0,t]×Rd−1

M(ds, dz1) h(u(s, z1, 0)) G1(t− s, x1 − z1, x2), (5.2)

P-a.s., for all (t, x1, x2) ∈ R+ × R
d−1 × R, where M is the worthy martingale measure defined

in Section 2.5. The stochastic integral is interpreted as in Section 2.6. A jointly measurable
adapted process u = {u(t, x), (t, x) ∈ R+ × R

d} which satisfies (5.2) is termed a mild solution
of equation (5.1).

When g ≡ 0 and h ≡ 1, the solution of (5.1) is precisely the random-field solution of equation
(2.12), which is well defined on R+×R

d (see Theorem 4.8) under Assumption B′
0. The following

theorem extends this to the non-linear case.

Theorem 5.1. Under Assumptions B′
0 and C0, and if g and h are globally Lipschitz functions,

then there exists a unique mild solution u = {u(t, x), (t, x) ∈ R+ × R
d} to equation (5.1).

Moreover, the map (t, x) 7→ u(t, x) from R+ × R
d to L2(Ω) has the continuity property

lim
h↓0, y1→x1, |y2|↑|x2|

E((u(t + h, y1, y2) − u(t, x1, x2))
2) = 0, (5.3)

for all (t, x1, x2) ∈ R+ × R
−1 × R. Further, for all T > 0,

sup
(t,x)∈[0,T ]×Rd

E(u(t, x)2) <∞. (5.4)
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We will need the following lemma on the behavior of F1G1.

Lemma 5.2. For all t > 0, there exists C(t) > 0 such that for all s ∈ [0, t] and ξ1 ∈ R
d−1,

|F1G1(s, ξ1, x2)| ≤
C(t)

(1 + |ξ1|2(s2 − x2
2))

1

4

1{|x2|≤s}. (5.5)

Proof of Lemma 5.2. Since F1G1(s, ξ1, x2) = ea(
√

s2−x2
2
−s)F1G1(

√

s2 − x2
2, ξ1, 0), it suffices to

prove (5.5) with x2 = 0. In this case, the left-hand side of (5.5) is a continuous function of
(s, ξ1), which is therefore bounded above for |ξ1| bounded and s ∈ [0, t]. On the other hand, the
right-hand side of (5.5) is bounded below for such ξ1 and s. Therefore, it suffices to check (5.5)
for s ∈ [0, t] and |ξ1| sufficiently large. In this case, by (3.5) and (C.2),

|F1G1(s, ξ1, 0)| =
e−as

2

∣

∣

∣J0

(

√

(|ξ1|2 + b− a2) s
)∣

∣

∣ ≤ ea
−t

2

C

(1 + (|ξ1|2 + b− a2) s2)
1

4

.

There is c > 0 such that for |ξ1| sufficiently large, |ξ1|2 + b− a2 ≥ c|ξ1|2, and this leads to (5.5).
�

With this tool in hand, we can now prove the theorem.

Proof of Theorem 5.1. Let us consider v(t, x1) = u(t, x1, 0), (t, x1) ∈ R+ ×R
d−1. Equation (5.2)

evaluated at x2 = 0 gives the following (closed) equation for v:

v(t, x1) =

∫ t

0
ds

∫

Rd−1

G1(s, dz1, 0) g(v(t− s, x1 − z1))

+

∫

[0,t]×Rd−1

M(ds, dz1) h(v(s, z1)) G1(t− s, x1 − z1, 0). (5.6)

Although G1(·, ·, 0) is not the Green kernel of any “standard” partial differential equation in
R+ ×R

d−1, the above equation is of the type of those studied in [5], and we can therefore apply
Theorem 13 of that paper. This reference applies (see [6]) since for all t ∈ R+, G1(t, ·, 0) ∈
O′

C(Rd−1)+ (by (ii) of Assumption C0), since for all ξ1 ∈ R
d−1, the map t 7→ F1G1(t, ξ1, 0)

is continuous (by (3.5)) and, finally, since for all t > 0, there exists h0 > 0 and k : [0, t] →
O′

C(Rd−1)+ such that for all s ∈ [0, t], h ∈ [0, h0] and ξ1 ∈ R
d−1,

|F1G1(s + h, ξ1, 0) −F1G1(s, ξ1, 0)| ≤ F1k(s, ξ1), (5.7)

and
∫ t

0
ds

∫

Rd−1

µ(dξ1) F1k(s, ξ1)
2 <∞. (5.8)

Indeed, by Lemma 5.2, it suffices to let k be the distribution-valued function whose Fourier
transform is given by

F1k(s, ξ1) =
2 C(t)

(1 + (|ξ1|s)2)
1

4

.

Then (5.7) clearly holds, and for all s ∈ [0, t], F1k(s, ·) ∈ OM (Rd−1), so k(s, ·) ∈ O′
C(Rd−1)

by (2.3). Moreover, k(s, ·) is a non-negative distribution on R
d−1 since when s = 0, k(s, ·) =

2 C(t) δ0(·) which is non-negative, and when s > 0, by (A.2),

k(s, x1) = C̃(t) s(1−2d)/4 |x1|(3−2d)/4 K(2d−3)/4

( |x1|
s

)

, d ∈ {2, 3},
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where Kν is the modified Bessel function of order ν of the second kind, which is non-negative
on R+ (see Appendix C). By using formula (3.11), we obtain that

∫ t

0
ds

∫

Rd−1

µ(dξ1) F1k(s, ξ1)
2 =

∫ t

0
ds

∫

Rd−1

µ(dξ1)
4 C(t)2

√

1 + (|ξ1|s)2

≤ C̃(t)

∫

Rd−1

µ(dξ1)
1 + ln(1 + |ξ1|2)
√

1 + |ξ1|2
, (5.9)

which is finite by Assumption B′
0. Therefore, (5.8) is proved.

Theorem 13 of [5] now states that there exists a unique jointly measurable adapted process
v which satisfies (5.6). Moreover, the law of v(t, x1) is stationnary in x1 and the map (t, x1) 7→
v(t, x1) from R+ × R

d−1 to L2(Ω) is right-continuous in t and continuous in x1 (note that the
right-continuity in t is uniform in x1 ∈ R

d−1). Further, for all T > 0,

sup
(t,x1)∈[0,T ]×Rd−1

E(v(t, x1)
2) <∞. (5.10)

It follows that u(t, x1, 0) = v(t, x1) gives the solution of equation (5.2) on the hyperplane
x2 = 0. For x2 6= 0, let us now define u(t, x1, x2) by

u(t, x1, x2) =

∫ t

0
ds

∫

Rd−1

G1(s, dz1, x2) g(v(t− s, x1 − z1)) + (G1(t− ·, x1 − ·, x2) ·Mh(v))t,

which is not anymore an equation, since (h(v(t, x1))) is now a given process (note that since
G1(t−·, x1 −·, x2) is non-negative, ‖G1(t−·, x1 −·, x2)‖t <∞ and Z = h(v) satisfies conditions
(2.15) and (2.17), the stochastic integral is well defined by Theorem 2.2).

With u so defined, it is clear that u satisfies equation (5.2) and that it is the unique process to
do so. Moreover, it satisfies (5.4) and admits a jointly measurable modification since it satisfies
the continuity condition (5.3), as we now prove.

To this end, write
u(t, x1, x2) = A(t, x1, x2) +B(t, x1, x2),

where

A(t, x1, x2) =

∫ t

0
ds

∫

Rd−1

G(s, dz1, x2) g(v(t − s, x1 − z1))

and
B(t, x1, x2) = (G(t− ·, x1 − ·, x2) ·Mh(v))t.

We first verify the L2-continuity property (5.3) for the process B. Notice that for x2 = 0, this
reduces to the continuity property of v(t, x1), which has already been established. For x2 6= 0,
we assume without loss of generality that x2 > 0, and fix (t, x1, x2) ∈ R+ × R

d−1 × R such that
x2 < t. According to the formulas in Appendix B,

B(t, x1, x2) =

∫ t−x2

0

∫

Rd−1

M(ds, dz1) h(v(s, z1)) G1

(

√

(t− s)2 − x2
2, x1 − z1, 0

)

.

Therefore, for h > 0 and 0 < y2 < x2,

B(t+ h, x1, y2) −B(t, x1, x2) = B1 +B2,
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where

B1 =

∫ t−x2

0

∫

Rd−1

M(ds, dz1) h(v(s, z1))

(

G1

(

√

(t+ h− s)2 − y2
2, x1 − z1, 0

)

−G1

(

√

(t− s)2 − x2
2, x1 − z1, 0

)

)

,

B2 =

∫ t+h−y2

t−x2

∫

Rd−1

M(ds, dz1) h(v(s, z1)) G1

(

√

(t+ h− s)2 − y2
2, x1 − z1, 0

)

.

By (2.19),

E(B2
1) =

∫ t−x2

0
ds

∫

Rd−1

µh(v)
s (dξ1)

∣

∣

∣

∣

∣

F1G1

(

√

(t+ h− s)2 − y2
2 ,−ξ1, 0

)

−F1G1

(

√

(t− s)2 − x2
2,−ξ1, 0

)

∣

∣

∣

∣

∣

2

, (5.11)

E(B2
2) =

∫ t

0
ds

∫

Rd−1

µh(v)
s (dξ1) 1{t−x2<s<t+h−y2}

∣

∣

∣

∣

∣

F1G1

(

√

(t+ h− s)2 − y2
2,−ξ1, 0

)

∣

∣

∣

∣

∣

2

.

(5.12)
The integrand in (5.11) converges pointwise to 0 as h ↓ 0, y2 ↑ x2, and, according to (5.7), is
bounded above by F1k(

√

(t− s)2 − x2
2,−ξ1). Since k ≥ 0, the inequality in Theorem 2.2 is valid

with φ replaced by k, so we conclude that

∫ t−x2

0
ds

∫

Rd−1

µh(v)
s (dξ1) F1k

(

√

(t− s)2 − x2
2,−ξ1

)2

≤ C

∫ t−x2

0
ds

∫

Rd−1

µ(dξ1) F1k

(

√

(t− s)2 − x2
2,−ξ1

)2

.

Now proceed as in (5.9) to conclude, by Assumption B′
0, that the right-hand side is finite.

Therefore, the dominated convergence theorem applies and we conclude that E(B2
1) → 0 as

h ↓ 0 and y2 ↑ x2. The convergence is uniform in x1 since the right-hand side of (5.11) does not
depend on x1.

Since G1 is a non-negative distribution, a similar dominated convergence argument shows
that E(B2

2) → 0 uniformly in x1 as h ↓ 0 and y2 ↑ x2. Therefore, B(t+ h, x1, y2) → B(t, x1, x2)
in L2, uniformly in x1, as h ↓ 0 and y2 ↑ x2.

In order to check (5.3) for the processB, it remains to show that for (t, x2) fixed, B(t, y1, x2) →
B(t, x1, x2) in L2 as y1 → x1. By (2.19),

E((B(t, y1, x2)−B(t, x1, x2))
2) =

∫ t

0
ds

∫

Rd−1

µh(v)
s (dξ1) |F1G1(t−s,−ξ1, x2)|2 · |1−eiξ1(y1−xi)|2.

(5.13)
The integrand in (5.13) converges to 0 pointwise as y1 → x1 and is bounded above by 4|F1G1(t−
s,−ξ1, x2)|2. Since G1 is a non-negative distribution, we use the inequality in Theorem 2.2 and
(5.10) to conclude that

∫ t

0
ds

∫

Rd−1

µh(v)
s (dξ1)|F1G1(t− s,−ξ1, x2)|2 ≤ C

∫ t

0
ds

∫

Rd−1

µ(dξ1)|F1G1(t− s,−ξ1, x2)|2.
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By Fubini’s theorem, Lemma 3.4(b) and Assumption B′
0, the right-hand side is finite. By the

dominated convergence theorem, we conclude that the right-hand side of (5.13) converges to 0
as y1 → x1. This completes the proof of (5.3) for the process B.

We now verify the L2-continuity property of the process A. Because of the Lipschitz property
of g, (5.10) and the L2-continuity property of v, there is no special difficulty in checking that
for fixed (t, x1, x2), A(t+ h, y1, x2) converges in L2 to A(t, x1, x2), uniformly in x2, as h ↓ 0 and
y1 → x1. For fixed (t, x1, x2), the L2-convergence of A(t, x1, y2) to A(t, x1, x2) as y2 → x2 is more
delicate, since the variable y2 appears via the measure G(s, dz1, y2). To handle this problem,
notice by (B.1)–(B.3) that

A(t, x1, y2) =

∫ t

|y2|
ds ea(

√
s2−x2

2
−s)

∫

Rd−1

G

(

√

s2 − x2
2, dz1, 0

)

g(v(t− s, x1 − z1))

=

∫ t

|y2|
ds e−as(s2 − x2

2)
(d−2)/2

∫

Rd−1

ν(d)(dy1) g
(d)

(

√

s2 − x2
2, y1

)

· g
(

v

(

t− s,
√

x2 − x2
2(y1 − z1)

))

,

where ν(d) and g(d) are defined in Appendix B. In this expression, the measure ν(d) no longer
depends on x2. Therefore, the continuity property of g(d), the Lipschitz property of g and the
L2-continuity properties of v lead, via technical but straightforward calculations, to the desired
L2-continuity property of y2 7→ A(t, x1, y2).

This completes the proof of property (5.3) for u, and hence the proof of Theorem 5.1. �

Remark 5.3. As in [5], our proof of Theorem 5.1 applies to equation (5.1) with non-vanishing
initial conditions provided they are stationary in x1.

A Reformulation of the condition on the spectral measure

In this appendix, we reformulate Assumption B0 of Section 4.1 into an explicit condition on the
covariance of the noise (as has been done in [17, 27]). More generally, consider the condition

∫

Rd−1

µ(dξ1)

(1 + |ξ1|2)η
<∞, (A.1)

where η > 0 and d ≥ 2, so Assumption B0 corresponds to the case η = 1
2 .

Set

Gd−1,η(x1) = F−1
1

(

1

(1 + |ξ1|2)η
)

(x1), x1 ∈ R
d−1.

By [24, formula I.2.7] and a (somewhat tedious) iterative application of [24, formula I.18.29],

Gd−1,η(x1) = Cd |x1|η−
d−1

2 K d−1

2
−η(|x1|), (A.2)

where Kν is the modified Bessel function of the second kind and of order ν defined in Appendix
C (this formula appears in [12, Section 56]). If η ≤ (d − 1)/2, then, for definiteness, we set
Gd−1,η(0) = +∞. Let us moreover define the (non-negative) function

Hd−1,η(y1) =

∫

Rd−1

Γ(dx1) Gd−1,η(x1 − y1), y1 ∈ R
d−1.
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Proposition A.1. Assume that the covariance measure Γ is non-negative on R
d−1. Then

condition (A.1) holds if and only if

sup
y1∈Rd−1

Hd−1,η(y1) <∞. (A.3)

Remark A.2. Note that (A.3) implies

Hd−1,η(0) =

∫

Rd−1

Γ(dx1) Gd−1,η(x1) <∞, (A.4)

which, because of the exponential decrease of Gd−1,η(x1) as |x1| → ∞ (see (C.6)), can be
reformulated in turn (see formula (C.7)) as







































no particular condition on Γ, when η > d−1
2 ,

∫

Bd−1(0,1)
Γ(dx1) ln

(

1

|x1|

)

<∞, when η = d−1
2 ,

∫

Bd−1(0,1)
Γ(dx1)

1

|x1|d−1−2η
<∞, when η < d−1

2 .

On the other hand, note that since Hd−1,η is non-negative definite, the condition “Hd−1,η is
continuous at 0” implies (A.3) (see [28, Chap. VII, p. 276]).

Proof of Proposition A.1. Suppose first that condition (A.1) is satisfied. Let pt = F−1
1 (e−t |ξ1|2)

denote the heat kernel in R
d−1. Since

(Gd−1,η ∗ pt)(x1 − y1) →
t↓0

Gd−1,η(x1 − y1), for all x1 ∈ R
d−1,

Fatou’s lemma implies that

Hd−1,η(y1) =

∫

Rd−1

Γ(dx1) Gd−1,η(x1 − y1) ≤ lim inf
t↓0

∫

Rd−1

Γ(dx1) (Gd−1,η ∗ pt)(x1 − y1).

Now, since

∫

Rd−1

Γ(dx1) (Gd−1,η ∗ pt)(x1 − y1) =

∫

Rd−1

µ(dξ1)
1

(1 + |ξ1|2)η
e−t |ξ1|2 eiξ1·y1 (A.5)

and
∣

∣

∣

∣

∫

Rd−1

µ(dξ1)
1

(1 + |ξ1|2)η
e−t |ξ1|2 eiξ1·y1

∣

∣

∣

∣

≤
∫

Rd−1

µ(dξ1)
1

(1 + |ξ1|2)η
<∞

by assumption (A.1), we obtain that Hd−1,η is a bounded function on R
d−1.

In order to prove the converse, assume Hd−1,η is bounded and note that since pt is a proba-
bility measure on R

d−1 for all t ∈ R+, we have

sup
t∈R+

∫

Rd−1

dy1 pt(y1) Hd−1,η(y1) ≤ sup
y1∈Rd−1

Hd−1,η(y1) <∞.

On the other hand,

∫

Rd−1

dy1 pt(y1) Hd−1,η(y1) =

∫

Rd−1

Γ(dx1) (Gd−1,η ∗ pt)(x1),
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by definition of Hd−1,η and Fubini’s theorem. By (A.5), this expression is equal to

∫

Rd−1

µ(dξ1)
1

(1 + |ξ1|2)η
e−t |ξ1|2 ,

and this converges by the monotone convergence theorem to
∫

Rd−1

µ(dξ1)
1

(1 + |ξ1|2)η
, as t ↓ 0.

The proposition is proved. �

B Green kernel of the hyperbolic equation in Rd

When d ∈ {2, 3} and a2 ≥ b, we have the following expressions for G1(t, ·, x2) (which can be
computed using the expression for FG and the Fourier inversion formula). Fix t ∈ R+ and
x2 ∈ ] − t, t[. For d = 2, we have

G1(t, x1, x2) =
e−at

2π
1{|x2|<t}

cosh
(

√

(a2 − b) (t2 − x2
2 − x2

1)
)

√

t2 − x2
2 − x2

1

1{
|x1|<

√
t2−x2

2

} (B.1)

= ea(
√

t2−x2
2
−t)G1

(

√

t2 − x2
2, x1, 0

)

,

and for d = 3, we have

G1(t, dx1, x2) =
e−at

4π
1{|x2|<t}

(

1
√

t2 − x2
2

σ(3)(dx1)1∂B(0,
√

t2−x2
2

(x1)

+
√

a2 − b
I1

(

√

(a2 − b) (t2 − x2
2 − |x1|2)

)

√

t2 − x2
2 − |x1|2

1{
|x1|<

√
t2−x2

2

} dx1

)

(B.2)

= ea(
√

t2−x2
2
−t)G1

(

√

t2 − x2
2, dx1, 0

)

where I1 is the first order modified Bessel function of the first kind (see Appendix C), and σ(3)

is 2-dimensional Hausdorff measure as in Example 3.2 (for a = 0, the above formula can be
found in [14, formula (7.3.88)]). These two formulas show that for d ∈ {2, 3}, G1(t, ·, x2) is a
non-negative measure.

Observe in addition that for any Borel function h : R
d−1 → R,

∫

Rd−1

G(r, dx1, 0)h(x1) = 1{r>0}r
d−2e−ar

∫

Rd−1

ν(d)(dy1) g
(d)(r, y1)h(ry1), (B.3)

where for d = 2,

ν(2)(dy1) = 1{|y1|<1}
dy1

√

1 − y2
1

, g(2)(r, y1) = cosh

(

r
√

(a2 − b)(1 − y2
1)

)

,

and for d = 3,

ν(3)(dy1) = σ(3)(dy1) 1∂B(0,1)(y1) +
√

a2 − b 1{|y1|<1}
dy1

√

1 − |y1|2
,

g(3)(r, y1) = I1

(

r
√

(a2 − b)(1 − |y1|2)
)

.
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C Bessel functions

The zero order regular and modified Bessel funtions of the first kind are given respectively (see
formulas 9.1.10 and 9.6.10 in [1]) by

J0(r) =
∑

n∈N

(−1)n
( r
2)2n

(n!)2
and I0(r) =

∑

n∈N

( r
2)2n

(n!)2
, r ∈ R+,

and we have the following integral representations (see formulas 9.1.18 and 9.6.16 in [1]):

J0(r) =
1

π

∫ π

0
cos(r sin(t)) dt and I0(r) =

1

π

∫ π

0
cosh(r cos(t)) dt, r ∈ R+.

Therefore, J0(0) = 1 and J0 is decreasing on [0, 1] since J ′
0(r) < 0 on this interval. Moreover,

|J0(r)| ≤ 1 for all r ∈ R+ and J0 only has a countable set of zeros [1, Sect. 9.5]. On the other
hand, I0(0) = 1 and I0 is increasing on R+. By formula 9.2.1 in [1], there exists C > 0 such that

∣

∣

∣

∣

∣

J0(r) −
√

2

πr
cos
(

r − π

4

)

∣

∣

∣

∣

∣

≤ C

r3/2
, for all r > 0. (C.1)

In particular, there exists C > 0 such that for all r ≥ 0,

J0(r)
2 ≤ C√

1 + r2
≤ C

r
. (C.2)

Lemma C.1. There exists C > 0 such that for all R ≥ 1,

1

R

∫ R

0
dr r J0(r)

2 ≥ C.

Proof. Since the left-hand side of the inequality is a continuous and strictly positive function of
R (for R 6= 0), it suffices to show that

lim
R→∞

1

R

∫ R

0
dr r J0(r)

2 =
1

π
. (C.3)

To see this, note that by (C.1) and (C.2),

∣

∣

∣

∣

r J0(r)
2 − 2

π
cos2

(π

4
− r
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√
r J0(r) −

√

2

π
cos
(π

4
− r
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
r J0(r) +

√

2

π
cos
(π

4
− r
)

∣

∣

∣

∣

∣

≤ C

1 + r
. (C.4)

This implies that

∣

∣

∣

∣

∫ R

0
dr r J0(r)

2 − 2

π

∫ R

0
dr cos2

(π

4
− r
)

∣

∣

∣

∣

≤ C ln(1 +R).

Since

lim
R→∞

1

R

∫ R

0
dr cos2

(π

4
− r
)

=
1

2
,

(C.3) holds, and this completes the proof.
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Lemma C.2. There exists c > 0 such that for all R > 0,

∫ R

0
dr J0(r)

2 ≥ c ln(R).

Proof. The left-hand side is a positive and continuous function of R, while the right-hand side
is negative for R < 1 and vanishes at R = 1. Therefore, it is sufficient to check the inequality
for R sufficiently large.

By (C.4), there exists C > 0 such that for all r ≥ 1,

∣

∣

∣

∣

J0(r)
2 − 2

πr
cos2

(π

4
− r
)

∣

∣

∣

∣

≤ C

r2
.

Therefore, for R ≥ 2,

∣

∣

∣

∣

∫ R

1
dr J0(r)

2 − 2

π

∫ R

1
dr

1

r
cos2

(π

4
− r
)

∣

∣

∣

∣

≤ C

∫ ∞

1
dr

1

r2
≤ c2 <∞. (C.5)

Elementary computations show that for large R,

∫ R

1
dr

cos2
(

π
4 − r

)

r
≥ c̃1 ln(R),

and since the expressions on both sides are continuous functions of R, we conclude that there is
c1 > 0 such that for R ≥ 2,

∫ R

0
dr J0(r)

2 ≥
∫ R

1
dr J0(r)

2 ≥ c1 ln(R) − c2.

For R sufficiently large, the right-hand side is bounded below by 1
2c1 ln(R), and this completes

the proof.

The modified Bessel function of first order, denoted I1 and appearing in expression (B.2), is
defined by I1(r) = I ′0(r), r ∈ R+ (see formula 9.6.27 in [1]). It is therefore non-negative, since
I0 is increasing, and I1(0) = 0.

Finally, for ν ∈ R+, the modified Bessel functions of the second kind and of order ν are given
(see formula 9.6.23 in [1]) by

Kν(r) =

√
π

Γ(ν + 1
2 )

(r

2

)ν
∫ ∞

1
dt e−rt (t2 − 1)ν−

1

2 , r ∈ R+,

where Γ is the Euler Gamma function, and K−ν(r) = Kν(r) by formula 9.6.6 in [1]. From this
definition, we see that Kν is non-negative, for all ν ∈ R+. By formula 9.7.2 in [1], there exists
C > 0 such that

Kν(r) ≤ C e−r, for all r ≥ 1. (C.6)

On the other hand, when r → 0, we have by formulas 9.6.8 and 9.6.9 in [1]:

Kν(r) ∼







ln
(

1
r

)

if ν = 0,

r−|ν| if ν 6= 0.

(C.7)
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[24] Oberhettinger F., “Tables of Fourier transforms and Fourier transforms of distributions”,
1990, Springer Verlag.

[25] Peszat S., “The Cauchy problem for a nonlinear stochastic wave equation in any dimen-
sion”, J. Evol. Eq., Vol.2, 2002, pp. 383-394.

[26] Peszat S., Zabczyck J., “Nonlinear stochastic wave and heat equations”, Prob. Th. and
Rel. Fields, Vol. 116, 2000, pp. 421-443.

[27] Sanz-Solé M., Sarrà M., “Path properties of a class of Gaussian processes with appli-
cations to SPDE’s”, in: Stochastic processes, physics and geometry: new interplays, I
(Leipzig, 1999), CMS Conf. Proc., Vol. 28, 2000, Amer. Math. Soc., Providence, RI, pp.
303-316.
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