Jordan curves in the level sets

of additive Brownian motion
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Abstract

This paper studies the topological and connectivity properties of the level sets of
additive Brownian motion. More precisely, for each excursion set of this process from
a fixed level, we give an explicit construction of a closed Jordan curve contained in the
boundary of this excursion set, and in particular, in the level set of this process.
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1 Introduction

Given two independent (real-valued) Brownian motions (By(t1), t; > 0) and (Bz(t2), t3 > 0)
defined on the same probability space (Q, F, P), one defines (real-valued) additive Brownian
motion (W (ty,13), (t1,t2) € IR%) to be the two-parameter process

W(t1,12) = Bi(t1) — Ba(t2)

(we put a minus instead of a plus for later convenience). This process, and its higher
dimensional versions, arise in many contexts, including the study of self-intersections of
Brownian motions [6], multiparameter potential theory [8], and in the study of the Brownian
sheet. For instance, papers such as [4, 7, 10] make strong use of the fact that the local
behavior of the Brownian sheet in the neighborhood of certain points is well-approximated
by additive Brownian motion. In particular, it has been used in the study of level sets [1, 4]
and points of increase [2, 3] of the Brownian sheet.

Recall that a bubble (or excursion set) of additive Brownian motion is a connected com-
ponent of the random open set

L#(O) = {(thtz) € Ri : W(tl,tz) 7£ 0}7
and the level set (at level 0) of additive Brownian motion is the random closed set
L(O) = {(tl,tz) & Ri : W(thtg) = 0}

The bubbles of additive Brownian motion have been rather completely described in [5], along
with formulas for the expected area of the bubble given the height of the excursion over this
bubble.

In this paper, we are interested in topological and connectivity properties of the level set
of additive Brownian motion. As pointed out in [7], L(0) cannot be totally disconnected,
but this says nothing about the possibility of existence of arc-connected subsets in L(0). For
instance, does L(0) contain a Jordan arc? Our main result is that the answer is positive
and we establish this by constructing for each bubble a particular closed Jordan curve that
surrounds the entire bubble and is contained in the boundary of the bubble. We note,
following the result of [1] transposed from the Brownian sheet to additive Brownian motion,
that this curve is nowhere differentiable, and following the result of [10], transposed in the
same way, that the Hausdorff dimension of this curve is strictly less than 3/2 (the precise
value of this Hausdorff dimension remains unknown). We mention that in the case where W
is a Brownian sheet, then the question of existence of Jordan arcs in a level set is an open
problem.

2 Bubbles of additive Brownian motion

In this section, following [5], we briefly recall some elements regarding the structure of
bubbles. This structure is described in [5, Proposition 2.2] (see also Remark 2.3 in that

paper).



Figure 1: A distinguished bubble and the associated rectangle.

FEach bubble Cq arises in the following way. There are two (random) levels m < M and
two (random) intervals [oq, 7] and [o3, 2] such that [0y, 71] is an excursion interval of By
above level m, [oq, 73] is an excursion interval of By below level M,

sup Bi(ti)) =M and inf  By(ty) =m.

o1 <t1<71 02 <1<
Let Sy € [o1,71] and Sy € [02, T3] be the unique times such that
Bl(Sl) =M and Bz(Sz) =m.

Then (51, .53) belongs to Cq and is the point in Cq at which W attains its maximum height
M — m within Cq. The four points

(51702)7 (5177—2% (0-175‘2>7 (7_175‘2>7

belong to the boundary dCq of Cq, and Cq contains the union of the two open segments
lon, T x{S2} and {S1}x Joa, 7.

Of course, the rectangle R = [0y, 71| X [0, T3] contains other bubbles than Cgy, but the bubble
Co plays a distinguished role within this rectangle and there is a one-to-one correspondence
between distinguished bubbles and rectangles R as described. The situation is schematically
described in Figure 1. A picture obtained by simulation can be found in [5], and a precise
description of those points in R that also belong to Cq is given in [5, Proposition 2.2].

Recall that a Jordan arc in the plane is a continuous and one-to-one image of a non-
degenerate interval, and a closed Jordan curve is the continuous and one-to-one image of the
unit circle. The main result of this paper is the following.

Theorem 1 Let Co, m, M, o1, 71, 03, T2, S1, and Sy be as above. Then there is a unique
Jordan arc contained in 0Co C L(0) with extremities (o1,S2) and (S1,72), and even a unique
closed Jordan curve contained in L(0) N 0Cq that passes through the four points (oy,S3),
(S1,72), (11,5%) and (Sy,03).



Figure 2: Sy (resp. S2) from Figure 1 replaced by 71 (resp. 7).

3 Towards the proof of Theorem 1

The second statement in the theorem is in fact a consequence of the first, because the four
sub-rectangles

[01,51] X [S2, 7], [S1,71] X [S2, 7], 0
[01,51] X [o2, 53], [S1,71] X [o2, S2],

all play similar roles, and so the closed Jordan curve is just the union of the four Jordan arcs
contained in L(0) N dCq that link (oy,S2) to (Si,72), (S1,72) to (71,5%), (71, S2) to (Si,09),
and finally (S1,02) to (o1, 52). Therefore, in the proof of the theorem, we will focus on the
first statement.

We are first going to prove the statement for fixed sample paths Bi(-;w) and Bs(-;w).
Since we focus on the first of the four rectangles listed in (1), we replace the sample paths
of By and B, respectively by deterministic continuous functions f; and f,. These functions
will need to have certain properties, which will appear during the proof, and we will check
later on that sample paths of Brownian motions, or even of more general diffusions, satisfy
these properties.

In order to simplify the notation, we put ourselves in the following situation. Fix real
numbers m < M, oy < 71, and 09 < 7. Assume that

filor) = fa(oa)  and  fi(m) = fa(m2).

We are interested in constructing a Jordan arc contained in {(s1,$2) : fi(s1) = fa(s2)} with
extremities (o1, 02) and (7, 72). The situation is shown schematically in Figure 2. Notice
that the point (oy,03) (resp. (71,72)) plays the role that was played in Figure 1 by (o1, .5)
(resp. (51, 72)).

For two arbitrary continuous functions f; and f;, this construction is not always possible,
as the example below shows, but we will show that with probability 1, it is possible if f; and
[ are sample paths of independent diffusions.

Example 2 Fix m < M, oy < 71 and 02 < 7. We shall construct a couple (fi, f2) of
continuous functions, with respective domains [o1, 7] and [o3, 2], such that fi(oy) = m =
falo2), film) = M = fo(re), m < fi(s1) < M for o1 < 81 < 71 and m < fa(s2) < M for
03 < 89 < T2, but there is no Jordan arc in the set C' = {(s1,82) : fi(s1) = fa(s2)} with
extremities (o1, 02) and (71, 72).



Fori=1,2,let s; =0, + (7, — 0:)/3, ti = 0, + 2(1; — 0;)/3 and set r = (M 4+ m)/2. Let

fi(x) =rfor sy < x <y, and let f; be linear on [o1, s1] and on [t1,71]. Let

M—-—my—sy . ( 1
sin

2 Ty — 02 Y — 382

foy) =7+ )7 for sy <y <t
f2(s2) = r, and let fy be linear on [02, s3] and on [ty, 72]. We claim that this couple (fi, f2)
of continuous functions is the desired example.

Indeed, let Sgn) be the decreasing sequence of zeros of f; —r on ]sy,t3]. Then C' contains
each of the segments [sq,#;] x {Sgn)}, and each of these segments is connected to the next (in
(') by shorter and shorter arcs. C also contains the segment [sq,%1] X {s2}, but clearly, the
set C' is not arc-connected. Therefore, there is no Jordan arc in C' with endpoints (o4, 03)
and (71, 72).

In the next section, we shall identify the hypotheses on f; and f; that make possible the
construction of the desired Jordan arc.

4 Constructing the Jordan arc

In this section, we work with fixed deterministic continuous functions f; and f5, with common
range. Define the (partial) orders < and A on IR? by

(81782) S (tth) < S1 S tl and S9 S t~27

(s1,82) A (t1,t2) <= 51 <t and sy > 15,
and set |(s1,82)] = [s1] + |s2]. We begin by examining a special case, which never occurs
for sample paths of diffusions but does occur for the past minimum process or the future

minimum process of a diffusion, and will be used further on. This special case will be a key
ingredient for the general case.

The monotone case

The case where f; and f; are monotone is particularly simple. In order to state the result,
we shall need the following definition, which also appears in [9].

Definition. Two monotone functions f; and f, have a common flat level if the inverse
functions f;' and f;' have a common point of discontinuity.

Lemma 3 Assume m < M, oy < 71 and 09 < 1. For 1 = 1,2, let f; be a continuous
monotone function with domain [o;,7;] and range [m, M]. Assume that m < fi;(s) < M for
o, <s<mT,1=1,2, and f; and fy have no common flat levels. Then the set

C(f1, fo) = {(s1,52) : fils1) = fa(s2)}



is a monotone curve with endpoints (o1,71) and (o2, 72). If fi and fy are non-decreasing and
a < b, then the function v : C(f1, f2) — [a,b] defined by (s1,82) = a4+ (s1+ 32— 01— 02)(b—
a)/(m1 + 2 — 01 — 09) is continuous and one-to-one, or equivalently, 1)~' is a continuous
one-to-one parametrization of C(f1, f2).

PrRoOOF. We only consider the case where f; and f; are non-decreasing. Let D = {(s1,353) :
fi(s1) > fa(s2)}. This set satisfies the conditions of [11, Theorem 2.7], and therefore its
upper-left boundary A is a monotone curve and ¥ : A — IR defined by ¥(s1,$2) = s1 + 32
is continuous and one-to-one (according to Walsh’s proof). So we only need to show that
C(fi, f2) = A

By our assumptions, (01, 82) € D for 03 < $3 < 7. For any such sy and (s1,s2) € A such
that oy < sy < 7 and any large n, (s1 — L,55+ L) € D, sy — L € [0, 7], 52 + = € [02, 7],
and therefore fi(s1 — %) < folsa + %)

Letting n — oo, it follows by continuity that fi(s1) < fa(s2). But fi(s1) > fa(s2) since
(81,82) € A C D, so fi(s1) = fa(s2) and (s1,82) € C(f1, f2). Therefore A C C(f1, f2).

We now establish the converse inclusion. Fix (s1,82) € C(f1, f2). Assume (s1,35) € A,
that is, there is (#1,%2) € D such that ¢; < s; and 3 > s3. Then since t1 < s1, (t1,12) € D
and sy < 19, we see that

fi(s1) > fi(ty) > fa(te) > fa(s2),

so all of these inequalities are equalities because fi(s1) = fa(s2). But then f; and f; have a
common flat level, which contradicts the hypothesis. Therefore C'( f1, f2) C A. &

Remark 4 (a) There is a one-to-one correspondence between horizontal (resp. vertical)
segments of C'(f1, f2) and intervals on which f; (resp. f3) is constant.

(b) If fi is non-increasing and f5 is non-decreasing, then one should replace s; + sy by
$1 — 83 in the definition of ¥ (sy, s2). If both f; and f; are non-decreasing, then no change is
necessary.

The non-monotone case

We no longer assume that f; and f; are monotone, but we will assume that Hypothesis
1 below is satisfied. Fix
m < M, oy < T, 0y < T (2)

as in Lemma 3. We assume now that f; is a continuous function with domain Dom f; = [0}, 7]
and range Range f; = [m, M], satisfying the following hypothesis.

Hypothesis 1.

(a) fi(int Dom f;) C int Range f; ;

(b) the values of fi (resp. f2) at distinct local extrema are distinct (in particular, there
is no non-degenerate interval on which fi (resp. f2) is constant);



(c) the functions f , and f, have no common flat levels, where f and f  are defined as

- Srsr%isgifi(t% if fi(o:) < film),
LEI=0 T £, i filon) > film).

0;<t<s

follows :

When this hypothesis is satisfied, the functions f and f, satisfy the assumptions of
Lemma 3, and we can consider the set C'(f,, f.).

The set {s: fi(s) > f,(s)} is an open set, therefore a countable union of open intervals,
each of which corresponds to an excursion of f; above f , and also to an open horizontal
segment of C'(f,, f) (f, is constant on each of these intervals). Similar statements are true
of the set {s: fy(s) > f (s)}. Let S(fi,f2) be the union of all of these open segments, and
set

L{fi, f2) = C(f,5 £,)\ SUs o)

This defines a closed set which is totally ordered (for < or for A), but is not connected. Notice
that each horizontal segment of C'(f, f,) (on which f; > f ) corresponds to a horizontal
gap in L(fi, f2), while each vertical segment of C'(f , f) (on which f; > f ) corresponds to
a vertical gap in L( f1, f2). In addition, for each (s1,$2) € L(f1, f2),

fils1) = £, (s1) = [f,(s2) = fa(s2),

L(f1, f2) C{(s1,52) = fi(s1) = fa(s2)}- (3)

Also, notice that each horizontal segment of C(f1, f2) is of the form [sq,#1] X {s2}, where
[s1,1] is an excursion interval of f; above f,» and similar statement is true for vertical
segments of C'(f1, f2).

Finally, if I is any non-degenerate closed interval, then L(fi, f2) can be parametrized by
a continuous and one-to-one function ¢( f1, f2, ) defined on a closed subset of I, by defining
¥ as in Lemma 3 using f, and f and with [a,b] = I and setting

(fis for I) = V7 u(wifrosa))- (4)

As the range of ¢ is contained in IR?, we use the notation ¢ = (¢1,p2). This function is
continuous on its domain, even though the domain is not an interval but a closed set.
Given the domains of f; and f;, we can define the rectangle

R(f1, f2) = (Dom f1) x (Dom f3).

Note that L(f1, f2) C R(f1, f2), and except for two points on the extremities of one of the
diagonals of R(f1, f2), OR(f1, f2) is contained in {(s1,32) : fi(s1) # fa(s2)}.

The set L( f1, f2) will be part of the Jordan curve that we shall construct. Since this set
is not connected, we must add additional points to create a Jordan curve. We shall do this
by a recursive procedure, taking the union and the closure of the sets that are constructed.
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1. Filling in a horizontal gap
Suppose [s1,11] X {s3} is a horizontal gap in L( f1, f2). In particular

Jilsi) = [,(s1) = [, (t1) = fi(t) = fa(s2) = [, (s2)

and fi(s) > il(s) for 1 < s < t1. We assume for simplicity that fi(o1) = m = fi(o2),
because the procedure in the other cases is similar.

Let s; € [s1,t1] be an absolute maximum of f; on [s1,1]; by Hypothesis 1(b), there is a
single such maximum. Set

ty = inf{t > sy : fo(t) = fi(s1)}- (5)

Note that sy < {3 < 72, and since f, and f, have no common flat levels by Hypothesis 1(c),
fa(s2) < fa(t) < fa(ta) for sy < t < t2

We now construct two pairs of functions (g1, g2) and (hq, ha) which satisfy (a) and (b) of
Hypothesis 1. The function ¢; has domain [s,s;] and is equal to f; on this interval. The
function Ay has domain [sy,#;] and is equal to f; on this interval. The two functions ¢, and
hy are equal and have domain [s,,?5] and are equal to f; on this interval.

We can now consider the sets L(gi,g2) and L(hy, hy). Notice that

L(g1,92) N L(hi,ha) = {(31,12)},

R(g1,92) N L(f1, f2) = {(s1,82)},

R(hi,ha) VW L(f1, f2) = {(t1,82)},

R(g1,92) N R(hi,ha) = {31} X [s2,12],

R(g1,92) U B(h1,ha) C R(f1, f2). (6)

We call R(g1,92)U R(hq1, hay) = [s1,t1] X [89, T3] the rectangle associated with the gap [s1,11] ¥

{s2}.
1. Filling in a vertical gap

This is similar to filling in a horizontal gap. Suppose {u;} X [uz,v] is a vertical gap in
L(f1, f2). In particular,

Fau2) = f(uz) = fi(v2) = fa(v2) = fi(wa) = [ (w1),

and fy(u) > i_z(uz) for us < u < vy. We assume for simplicity that fi(o1) = m = fi(o2),
because the procedure in the other cases is similar.

Let vy € [uz, 5] be an absolute maximum of f on [ug, v2]; by Hypothesis 1(b), there is a
single such maximum. Set

vy = inf{u > uy @ fi(u) = fa(vs)}



Note that u; < vy < 7y, and, since i1 and iz have no common flat levels, fi(uy) < fi(u) <
fi(vr) for uy < u < vy.

We now construct two pairs of functions (¢1,¢2) and (hq, h2), which satisfy (a) and (b) of
Hypothesis 1. The functions ¢; and hy are equal, both have domain [u;,v] and are equal
to fi on this interval. The function ¢o (resp. hz2) has domain [ug, v,] (resp. [v,,v2]) and is
equal to f; on its domain.

We can now consider the sets L(g1,g2) and L(hy, hy). Notice that

L(g1,92) 0 L(h1,h2) = {(vi,09)},

R(g1,92) N L(f1. f2) = {(w,u2)},

R(hy, ha) N L(f1, f2) = {(u1,v2)},

R(g1,92) N R(h1,ha) = [ur, 1] x {L5},

R(g1,92) U B(h1,ha) C R(f1, [2)- (7)
Again, we call R(g1,¢2) U R(hy, he) = [ug,v1] X [uz, vs] the rectangle associated with the gap
{ur} X [uq, va].

III. Parametrizing filled in gaps

Suppose [s1,11] X {82} is a horizontal gap in L(fi, f2), which corresponds to an interval
Jee, B[ C I in the complement of the domain of ¢( f1, f2, I).
In order to parameterize L(g1,g2) and L(hy, ha)), we use respectively the intervals

pt] it

Notice that IyUly = [a, 3] and I;N 15 is a singleton. Moreover, neither of these intervals over-
laps with the domain of ¢(fi, f2, I), except at one endpoint, where both parameterizations
agree. Further, distinct gaps in L( f1, f2) lead to disjoint intervals.

For vertical gaps, one proceeds similarly.

IV. Non-intersection of rectangles associated with distinct gaps

We assume again that we are in the case where fi(o1) = m = f3(03), because the situation
in the other cases is similar.

It is clear from T and II that rectangles associated with distinct horizontal (resp. vertical)
gaps are disjoint. We shall show that a rectangle associated with a horizontal gap will be
disjoint from any rectan le associated with a vertical gap.

Suppose that (g§ ), g3 ) (resp. (g§ ), gg ))) is a pair constructed while filling in a horizontal

gap [s1,t1] X {s2} (resp. a vertical gap {u1} X [ug,v3]) in L(f1, f2). Then
B(gi",04") (e w2) + £y(w2) = £ ()} (8)

while

R(gP,9) € {(1,22) = f,(22) < £, (1)} (9)

9



Figure 3: Disposition of vertical and horizontal gaps.

Therefore, R(g?),g.gl)) and R(gf),g.gz)) are “on opposite sides” of the curve C(f , f,) (see
Figure 3), and, in particular,

R(g\", ") N R(¢, 7)€ C(S,, 1,)- (10)

But R(g?),g.gl)) N C’(il,i_z) is a horizontal gap in L(f1, f2), while R(gf),g.gz)) N C’(il,i_z)
is a vertical gap in L(fi, f2). So (10) implies that R(g?),g.gl)) and R(gf),g.gz)) are in fact
disjoint.

V. Relationships between vertical and horizontal gaps

Let (g?),g.gl)) and (g?),ggz)) be as in IV (we are still in the case where fi(oy) = m =
f2(02)). The vertical projections onto the horizontal axis of R(g?),g.gl)) and R(gf),g.gz))
need not be disjoint, but if they overlap, then there are various relationships between them.
Since we do not need these for the proof of Theorem 1, we only briefly describe one such
relationship, in the case where f; and f, are sample paths of independent Brownian motions.

Using the notations in T and II, suppose for instance that uy < s; < vy, that is, the
intervals [s1, 1] and [uq,v1] overlap. By (8) and (9), this is only possible if, in fact, vy < s2.

Suppose, in addition, that s; < vy. We are going to show that in this case, one even
has vy > t; and there is yo such that [sy,71] X {y2} is a horizontal gap in L(g?),g.gz)). This
situation is shown schematically in Figure 3: the horizontal gap [sy,#1] X {y2} is vertically
aligned with the horizontal gap [s1,#1] x {s3}.

As remarked just after (3), [s1,%1] X {s2} corresponds to an excursion interval of f; above
f,- Recall also that gfz) = f1 on [uy,vy]. If 5, < vy, then gfz)(gl) = f1(s;) belongs to the

range of g.gz), so by definition of v,, fa(vy) > g?)(gl). Therefore, fi(vi) = fa(vy) > fi(sy).
Since the height of a local maximum is not common to two independent Brownian motions,
this inequality is in fact strict. Because fi(-) < fi(s;) on |s;, 1], we must have vy > ¢, and
ﬂ(12) = f, on [ug, t;]. Tt follows that [uy,vi] D [s1,#1] and [s1,%1] is an excursion interval of

gf) above 3(12)' Therefore, there is y, € Jug, vo[ such that [sy, 1] X {y2} is a horizontal gap in
L(gt”, g7).

Constructing the Jordan arc

We begin with m, M, o1, 71, 03, 73 as in (2). For i = 1,2, we assume that f; is continuous
with domain [o;, 7;] and range [m, M] and satisfies Hypothesis 1.

10



We shall inductively define a sequence (Ly, k& > 0) of sets of pairs of functions. A pair in
Ly, will be referred to as a level k pair.
We assume that the following occurs.

Hypothesis 2. Hypothesis 1 is satisfied by all the pairs of functions that arise in the con-
struction of the sequence (Ly, k > 0).

By definition, there is a single level 0 pair ( 1(0), .2(0)), equal to (f1, f2), with parameteri-
zation interval 1(®) = [ = [0, 1] and parameterization defined as in (4).

Once the set L}, of all level k£ pairs of functions has been constructed, we construct the set

) )

with its parameterization set, and construct all functions which arise while filling in horizontal

, we consider L( ,

L1 of level k41 pairs as follows. For each level k pair (

or vertical gaps in this set (two new pairs for each gap), together with their parameterizations,
following the procedures described in I, IT and 11T above. The parameterization of L( l(k), 2(k))
will be denoted ¢( l(k), 2(k)) The domain of this parameterization is determined as described
in ITI.

All level k + 1 pairs are therefore obtained from filling in gaps of level k pairs. All pairs
are the restriction of (f1, f2) to some pair of intervals.

Given an interval I, we let || denote the length of I and we set
Var(fi, I) =sup fi — irIlf 1.
T

Lemma 5 (a) For all € > 0, there is wi(¢) > 0 such that for i = 1,2, |fi(s) — fi(t)| < e if
|s —t| < wi(e) and s,t € [o;,7;].

(b) For all £ > 0, there is wy(e) > 0 such that Var(fi, 1) > wa(e) if |I| > «.

(¢) For all e > 0, there is v(¢) > 0 such that for « = 1,2 and all intervals I C [o;, 7],
if J C [03-iy73-i] is an interval such that |J| < ~v(¢) and Var(fs—;,JJ) = Var(fi,I), then
|| < e.

ProoF. (a) This follows immediately from the uniform continuity of f; and fs.

(b) Fix ¢ > 0. We argue by contradiction, supposing that such an wy(¢) does not exist.
Then there is a sequence [; of intervals of length at least ¢ such that Var(fi, ;) < 1/j or
Var(fs, I;) < 1/j. FEither the first inequality or the second is satisfied by infinitely many
of the I;, so we suppose without loss of generality that Var(fi, ;) < 1/7, for all j. Let
I; = [s;,t;]. By passing to a subsequence, we may suppose that s; — s and t; — ¢, where
t — s > e. By construction and by continuity of fi, Var(fi,[s,t]) = 0, which contradicts
Hypothesis 1(b).

(c) Tt suffices to set y(g) = wi(wa(e)). Indeed, using the notations in the statement of the
lemma, if |.J| < wi(wa(e)), then Var(f;, I) = Var(fs—;, J) < w2(e) by (a), therefore |I| < & by
(b). &

11



Consider the set .
L= U L ), (11)
k=0 (g1,92)€Lx

parametrized by ¢ defined as follows. The domain of ¢ is

U U Dom 99(91792)7

k=0 (91792)€£k
and for z € Dom ¢,
o) =p(g1,92)(x), if 2 € Dom (g1, ga)-

This definition is coherent, since if x belongs to more than one such domain, all corresponding
parametrizations coincide at x. We shall prove the following.

Theorem 6 The closure I of L is a Jordan arc (with extremities (o1, 04) and (71,72 in the

case where f1(o1) =m = fy(02)).

The theorem is an immediate consequence of the following three lemmas.
Lemma 7 ¢ is uniformly continuous on Dom .
Lemma 8 The closure of Dom ¢ is [0,1].

Lemma 9 The continuous extension of ¢ to [0,1] is one-to-one.

PRrROOF OF LEMMA 7. Notice that the restriction ¢ of ¢ to the union of domains of level
< k pairs is continuous, and uniformly continuous since this set is compact. Let pi(e) be its
modulus of continuity.

Fact 1. Fix 6 > 0. Let [sy,t1] x {s2} be a horizontal gap of length at least § in some
level k& pair. Then any horizontal gap obtained while filling in [sy,¢1] x {s3} has length
< ty—s1—wi(wa(d)), where wy(+) and wy(-) are defined in Lemma 5. The analogous statement
for vertical gaps also holds.

Proof. Using the notation in I, we see that Var(fi,[s1,t1]) = fi(s;) — fi(t1) > wa(4), by
Lemma 5(b). By Lemma 5(a), t1 —s8; > wi(w2(d)), s0 81 —s1 < 11— 81 —wi(we(d)). Similarly,
81— 81 > wi(wa(d)), so 1 — 84 <ty — 81 — wi(wq(d)). This means that any horizontal gap
obtained when filling in [s1,%1] X {s2} has length <#; — 51 — wi(wy(d)). Fact 1 is proved.

Fact 2. For all £ > 0, there is a level K such that all gaps in pairs of level & > K have
length < e.
Proof. Set

™ — 01 Ty — O3

(@) T @)

M =
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where wi(-), ws(-) and () are defined in Lemma 5, and let K be an integer such that
K > 2max(vy, 14).

Let G}, be a horizontal gap in some level k pair. Suppose that the length of G is at least
e, and that we have arrived at this gap by filling in successively gaps G in the level 0 pair,
G1 in a level 1 pair, ..., Gr_y in a level k — 1 pair. Since k > K > vy + 15, either

(i) at least 14 of these gaps are horizontal
or

(ii) at least vy of these gaps are vertical.

Suppose (i). Then by (6) and (7) these vy horizontal gaps all have length at least equal
to the length of Gk, that is their length is > . But by Fact 1, (6) and (7), the length of G}
would be <7 — 0y — 14 - wi(wa(e)) = 0, a contradiction.

Suppose (ii). Let Ry = Iy x Ji be the rectangle associated with G. Then Var(fs, Ji) =
Var( fi1, I). Suppose |J| > ~(¢). Then these v vertical gaps have length at least v(=), so by
Fact 1, (6) and 7), the length of .J;, would be < 75— 03 —15-wi(wa(v(€))) = 0, a contradiction.
Therefore, |Ji| < v(¢). By Lemma 5(¢), |I;| < £, so we are back in Case (i). We conclude
that the length of GG must be < ¢.

The proof in the case where (G, is a vertical gap is similar and is omitted.

We now complete the proof of Lemma 7. Fix ¢ > 0, set § = v(¢), and by Fact 2, let K
be the largest level which contains a gap of length > min(4,¢). Set

é = min(67 pK+1(5)7 6)'

If 21,29 € Dom ¢ and |z; — 25| < §, then either:

(a) both 1 and x5 are at levels < K + 1; or

(b) one of ; and x3, say xy, is at a level < K + 1 and the other, say x5, is at a level
> K+ 1;or

(¢) both z; and x5 are at level > K + 1.
If (a) occurs, then |o(x1) — p(x2)] < & by definition of the modulus of continuity px41(€).
If (b) occurs, we can assume for instance that x; < x5. Then x5 is contained in an interval
which corresponds to a level K'+1 gap (with associated rectangle R = I x.J), which therefore
has length < min(é,¢). The left extremity y; of this interval is in [2, 25]. But then

lp(z1) — pla2)| < [p(z1) —e(yn)| + le(yr) — @(22)]-

The first term is < ¢ because |1 — y1| < pr41(£). Now both ¢(y1) and ¢(x3) belong to R,
and one of I and .J has length < min(y(¢), ). But from I and 11, Var(fi, ) = Var(fs,.J), so
Lemma 5(c) implies that the other of [ and .J has length < &, so both I and .J have length
< e. Therefore, |o(y1) — @(x2)| < 2e. Tt follows that

lo(z1) — @(a2)| < 3e.

Finally, if (c) occurs, we assume again that #; < 3. Then each is in a level K + 1 gap. If
it is the same gap, then |p(21) — ¢(22)| < € + € by the choice of K if not, then there is a
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point in the domain of a function in a level K + 1 pair in between 1 and 5. Let y; (resp.
y2) be the smallest (resp. largest) such point. Then

lp(z1) — e(y)] + le(y1) — e(y2)| + le(y2) — @(22)]
(e+e)te+(e+e)
= DHe.

lp(z1) —@(x2)] <
<

%

PROOF OF LEMMA 8. Suppose [0, 1]\ Dom ¢ is not empty. In this case, it is an open set,

hence a countable union of disjoint open intervals. Let I = ]zy,x3[ be one such interval,

where x; < x3. Then [ does not meet (t})le c(lo)main of any function in any level k£ pair, so,
k) (k

for each k, there is an interval [, = [z, x5 ] corresponding to a level k gap (vertical or
horizontal), such that Iy D . As the sets

U U Dom ¢(g1,2), k>1,

<k (g1,92)€L,

form a non-decreasing sequence, we must have I, D [;y;. Therefore, ;L’(lk) < ;l}(lk+1) < z; and

Te < xgk—l_l) < xgk) for all £, so limg_. ;L’(lk)

exists and limy_,oo ;L’(lk) < xy, limg_o ;Z}.(zk) exists
and limy_ ;Z}.(zk) > 19 > x1.
However, by construction of the parametrization in III,
k1 k1) 1, (x k
T =l < (el )

so this is impossible. &

bl

PrROOF OF LEMMA 9. Since ¢ is uniformly continuous on its domain by Lemma 7, it admits
a continuous extension to the closure of Dom ¢. Fix 21 < 29, and show ¢(x1) # ¢(x2). Let
@k be, as above, the restriction of ¢ to the union of domains of level < k pairs.

Case 1. xq is in the domain of ¢ and x5 in the domain of ¢,. Then i(x1) # (1) by
(IV).

Case 2. wq is in the domain of ¢ and came from filling in a level k gap [s1,71] X {s2},
but x5 is not in the domain of ¢y, for any /. In particular, there is an interval containing
@(x2) which corresponds to a level k + 1 gap, with associated rectangle R. By (IV) and the
properties in (6) and (7), @(x1) € R but ¢(x2) € R, so ¢(x1) # @(x2).

Case 3. Neither z1 nor x5 is in the domain of ¢, for any k. Let k be the first level such
that there is a level k point in ]y, 23] (such a k exists by Lemma 8). Then z; and x5 are in
intervals which correspond to filling in distinct level £ 4+ 1 gaps with associated rectangles
RM and R®. By (6) and (7), ¢(x1) and ¢(z4) belong respectively to R and R®?), these
rectangles are disjoint by IV, and so ¢(21) # ¢(x2). &

Uniqueness of the Jordan arc

14



Proposition 10 The Jordan arc L constructed in Theorem 6 is the unique (Jordan) arc
contained in F'={(s1,32) : f1(s1) = fa(s2)} N ([o1, 1] X [02, T2]) with extremities (o1, 03) and
(11,72). Further, this arc is contained in the boundary of a component of {(s1,2) : fi(s1) #

fa(s2)}-

PROOF. We assume again that we are in the case where ¢1(01) = m = @pa(03). Fori=1,2
and m < @ < M, set p;(x) = sup{s; : Bi(s;) = x}. Let I' be a Jordan arc in F with
extremities (o, 03) and (71, 72). We shall show that T' = L.

Claim 1. For x € [m, M], T passes through the point (¢1(2), ¢2(x)). Indeed, consider the
path which consists of the four segments

[o1,¢1(2)] x {72}, {e1(2)} X [pa(2), 7,
lei(x), mi] x {pa(2)}, {m} x [o2, pa(2)].

Notice that by construction, f; > f; on the first two segments, while f; > f, on the last two
segments. Therefore, I' must pass through the point (¢1(2), 2(2)), and this point belongs
to the boundary of the component Cq of {(s1,82) : fi(s1) # fa(s2)} that contains (o2, 7).

Let [s1,11] X {s2} be a horizontal gap in L( f1, f2). Let s; be the (unique) maximum of f;
on [s1,t1]. Define t5 as in (5).

Claim 2. T must pass through (sy,72). Indeed, by construction, there is an increasing
sequence (x,) such that @ (z,) T s;, ¢+ = 1,2. Consider the path consisting of the four
segments

Je1(wn), 51] X {pa(wa)}, {51} X [pa(wn), tal,

Jer(zn), 5,] x {ta}, {o1(zn)} > Jea(zn), ta].
Then fi > f5 on the first two segments, while fy > f; on the last two. So to get from (s1, s5)
to (t1,s2) within F', I' must pass through (s,,%2). Notice also that on ]sq,s,] X {s2}, fo > f1,
while on {s1}x |s2, 2] and [s1, 8, [x{t2}, f2 > fi. In addition, notice that (s,,13) also belongs
to JC,.

Similarly, on [sy,¢t[x{s2}, fi > fo, while on {t;}x ]sa, 1] and [sy, s2[x{t2}, f2 > fi.

We can now proceed as above to check that each point in L(gi,g2) belongs to I' and
to dCo, for every pair (g1, ¢2) that enters into the union (11) which defines L. Therefore,
L C 9Cy and L C T. Because L and I' are both Jordan arcs with the same extremities, this
implies that ' = L. &

5 End of the proof of Theorem 1

By Theorem 6, it suffices to show that if B; and B; are independent diffusions, and m < M,
o1 < S; < 71 and 03 < Sy < 7 are (random) numbers as in Section 2, then for almost
all w € Q, the functions fi(-) = Bi(-;w) (resp. fa(+) = Ba(-;w)) defined on [oy(w), Si(w)]
(resp. [S2(w), 72(w)]) satisfy Hypotheses 1 and 2.

Hypothesis 1(a) holds because [o;(w), ;(w)] is an excursion interval of B;(w), ¢+ = 1,2.
Hypothesis 1(b) is a well-known property of diffusions. The proof that Hypothesis 1(c)
holds is found in [9, Prop. 5].
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As for Hypothesis 2, notice that there are only countably many pairs that arise in the
construction of the sequence (L, k& > 0), and each pair consists of two independent diffu-
sions, each defined on one of its own excursion intervals. Therefore, Hypothesis 1 holds for
this pair, and it follows that Hypothesis 2 holds. This completes the proof of Theorem 1. <
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