Non-independence of excursions of the Brownian sheet

and of additive Brownian motion

Robert C. Dalang' and T. Mountford?

Abstract

A classical and important property of Brownian motion is that given its
zero set, distinct excursions away from zero are independent. In this paper, we
examine the analogous question for the Brownian sheet, and also for additive
Brownian motion. Our main result is that given the level set of the Brownian
sheet at level zero, distinct excursions of the sheet away from zero are not
independent. In fact, given the zero set of the Brownian sheet in the entire
non-negative quadrant, and the sign of all but a finite number of excursions
away from zero, the signs of the remaining excursions are determined. For
additive Brownian motion, we prove the following definitive result: given the
zero set of additive Brownian motion and the sign of a single excursion, the
signs of all other excursions are determined.

In an appendix by John B. Walsh, it is shown that given the absolute value
of the sheet in the entire quadrant and, in addition, the sign of the sheet at a
fixed, non-random time point, then the whole sheet can be recovered.
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1 Introduction

The (standard) Brownian sheet is a centered, continuous Gaussian process W =
(W(t), t € R}), defined on a probability space (2, F, P) and indexed by the positive

quadrant in the plane, with covariance given by
E(W(Sh SQ)W(t17 tz)) == (81 A t1>(8~2 A tz)

It is one of the natural extensions of Brownian motion to higher dimensional time.
Many of its properties are straightforward analogues of properties of Brownian motion,
but in this paper, we shall demonstrate a dramatic qualitative difference between
Brownian motion and the Brownian sheet.

We consider Brownian g-bubbles (or in this paper simply g¢-bubbles), the compo-
nents of the random time set

{(t,t2) « Wt t2) # q}.

Li(q) (resp. L_(q)) will denote the set of (1,13) such that W(ty,t2) > ¢ (resp.
W (t1,12) < q), while L(q) = {(t1,t2) : W(t1,12) = ¢} will simply denote the level set
at level g. Components of L,(q) will be called upward bubbles, while those of L_(q)
will be refered to as downward bubbles. When (q) is absent, Ly, L_ and L refer to
the case ¢ = 0. In this case, we may simply refer to bubbles, and a bubble is said to
be positive if W is positive on it, negative otherwise.

By path continuity of the sheet, bubbles are necessarily open sets. For the sheet,
positive and negative bubbles are natural analogues of positive and negative excur-
sions of Brownian motion B away from zero. It is a much celebrated fact (see e.g.
[4, 8, 9] that given o(|B(t)|, t > 0), the signs of the excursions of B away from 0 are
independent and symmetric; this remains true if o(|B(¢)|, ¢ > 0) is replaced by the
o-field generated by the zero set of B. It is further known that given the zero set of a
Brownian motion, the laws of the respective excursions are independent, with a law
that is well-known (see above references). It seems difficult to develop a theory for
bubbles along the same lines. In great part, this is because, as we show in this paper,
the natural analogue to the first phenomenon does not hold for the sheet: given the
absolute value of the sheet, or even only L(0), the signs of the bubbles are highly
dependent.

Definition 1.1. Consider a given sample path of W.

(a) Forq € R, if C and C are distinct g-bubbles for which there is a point (81,82) €
R such that (51,52 —v) € C and (s1 4 v,s5) € C for all sufficiently small v > 0, we
say that C' and C' are hinged. We also say that C' and C are hinged if, in the above,
we replace (81,82 — v) with (81,32 +v) or (81 + v,89) with (s1 — v, $2).

(b) If, in addition, there is o > 0 such that |W(s1,82 —v) — W(s1,82)| > v* and
W (s14v,82)—W(s1,82)| > v for all sufficiently small v > 0, we say that the growth
exponent of W at (s1,82) is < a. We say that the distance exponent at (sq, s2) is < 3 if
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for all sufficiently small v > 0, d((s1,52—v), L(q)) > v* and d((s1 +v, s2), L(q)) > v7,
where d(s, A) denotes the infimum over t € A of the distance d(s,1).

Theorem 1. With probability one, there is no ¢ € R and a distinct pair of g-bubbles
of the same direction that are hinged.

Theorem 2. Let C(1,1) be the 0-bubble containing (1,1). With probability one,
C(1,1) is hinged to infinitely many other 0-bubbles (necessarily of opposite direction
by Theorem 1). For o > %, these bubbles can be chosen so that the growth exponent
at the corner of the hinge is < «, or so that the distance exponent at the corner of
the hinge is < 2a.

Theorem 2, which extends the result of [1, Theorem 1], has the following inter-
esting consequence. Given the o-field G generated by L (= L(0)) and all null sets
(throughout the paper, all sigma-fields will be assumed to be complete with respect to
the relevant probability measure, even though this will not be explicitly mentioned),
we can ask whether the signs of these bubbles are conditionally independent. A con-
sequence of Theorem 2 is that the answer to this question is negative. We make this
statement precise as follows.

Set

G = o{d(z,L),  with rational coordinates} = o{d(z, L), = € R%}
= o{lrapss, D asquare in Ri}
Let Ky, Fy,... be an enumeration of the 0-bubbles that is measurable with respect
to the o-field G. Such an enumeration can be obtained as follows. Let (¢;, i € N)

be an enumeration of the points in ]0, co[* with rational coordinates. Let E; be the
bubble containing ¢, and for ¢ > 1, let F; be the bubble containing ¢;,, where

Ji =inf{k >1:q, ¢ UZ} E, and W(q;) # 0}.

Given such an enumeration of bubbles, define random variables S; with values in
{—1,1} such that
S;W(t)>0 for t € F;,

that is, S; is the sign of W on F;.
Theorem 3. Forn € N, let F,, =GV o{S;, i >n}. Then for alln >0,
Fn = Fo.

In other words, given the level set L(0) and the sign of all but finitely many bubbles,
one can determine the signs of the remaining bubbles.



A related result, where we are given the absolute value of the Brownian sheet
rather than the level set L(0) and which is due to John B. Walsh, is given in the
Appendix.

Locally (with time suitably rescaled), the Brownian sheet W closely resembles ad-
ditive Brownian motion, that is, the process X = (X (s1, s2), (51, 52) € R?) defined by
X(s1,82) = Bi(s1) — Ba(s2), where By and Bj are independent (two-sided) Brownian
motions. Thus the following strong result for the process X is of interest.

Theorem 4. For the additive Brownian motion process X,
g'vo{si} = Fy,

where G', S1 and Fy, are the natural analogues for the process X the objects G, Sy and
Fo defined for W. In other words, given the level set of X at level 0 and the sign of

a single excursion, the signs of all the other excursions are determined.

2 Proof of Theorems 1, 2 and 3

We begin by proving Theorem 3, assuming Theorems 1 and 2.

Proof of Theorem 3. We first examine the measurability properties of the bubbles F;.
In the following, a path v will be a continuous function from [0, 1] to R% If 4(0) = s
and v(1) = ¢, we say that v is a path from s to t.

For s,t € R7, let A(s,t) be the event “s and ¢ are in the same bubble.” We first
show that A(s,t) € G. Since an open set in R? is connected if and only if it is path
connected,

A(s,t) ={w € Q: there exists a path v from s to ¢t on which W # 0}.

For m € N, set
D, ={(E27",527™) 14,5 € N}.
For k,m € N, let I'7(s,1) be the set of paths 4 from s to ¢ such that for all ¢ €
{07 R k}?
(i) ¥(3) €Dy, U {s} U {1},

(i) [y(5) = (5 <27,

i—1 1

(iii) ~ is linear on [, £].

We note that the set I'}*(s,t) is finite. Let Q denote the set of rational numbers. It
is not difficult to check that

2

3|

A(‘S?t) = UZO:I Ufnozl UZO:I UWEF}T(S,L‘) m7’6(@0[0,1] {d(’y(?“% L) >
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and the set on the right-hand side clearly belongs to G.

It is straightforward to deduce from this that F; is measurable with respect to G,
in the sense that for all i > 1 and t € R, {t € E;} € G.

Fix 8> 1 and, for n > 1, define

C™i,7) = {3(s1,82) €RL: (51,80 —u) € E;, (s1+u,s) € Ej,

1
d((s1,82—v), L) > v” and d((s1 4 v,82), L) > v or 0 <wv < —}

3

and
C(Z7J> = UZO:I Cn(%.])
Then C(i,j) is the event “bubbles E; and FE; are hinged, with distance exponent

< 3.7 We claim that C(7,j) € G. To prove this, it suffices to show that C"(i,7) € G,
for all n > 1. Letting D, (R) = D, N [0, R]?, this follows from the equality

C™"(i,7) = Ugzi N2y Unizy Usen,, (ry {d(s, L) < 1/¢,
d((5175~2 - U)7 L) > v — 1/¢,
d((s1 4 v,82), L) > v’ — 1/, 0 <o <1/n}.

We now prove the statement in Theorem 3. Fix n > 0. Clearly, F,, C Fo, so we
only need to show that S; is F,-measurable, for n > 1 and : = 1,... n. In fact, by
Theorems 1 and 2, a.s.

g _ 1 on l%msupjﬁoo({Sj =—1}n C’(z,]))
=01 on limsuppn (15, = 131 CGL ),

and the right-hand side is F,-measurable by the definition of F, and the fact that
C(i,7) € G. This proves Theorem 3. O

Proof of Theorem 1. 1t suffices to prove the statement of the theorem for upward
bubbles. Observe that if Jt1,11 + h] x {t2} and {t;} x]t2,t2 + h[ do belong to distinet
components of Ly(q), then W(ty,t3) must equal g. In view of scaling properties of
the Brownian sheet, it is sufficient to show that for fixed A, the event “there does not
exist (t1,t2) € [1,2]* such that properties (i), (ii) and (iii) below hold” has probability
0, where properties (i), (ii) and (iii) are as follows:

(1) W(tl + u7t~2> > W(t17t~2)7 O0<u S h7
(11) W(thtg + ’U) > W(t17t~2)7 0<w S h7
(iii) Jt1, ta+h[x{t2} and {t1}x]ta, ta+h[ belong to distinct components of Ly (W (t1,15)).

In following we take h = 1. It will be clear that the proof carries over to any fixed
positive h.



For s = (s1,82) € Dy,, let F(s,n) be the event just described but with the addi-

tional requirement
(th tz) < [817 S1 —|— .2—‘271] X [827 So —|— .2—‘271].
It suffices to show that P(Usep,, F'(s,n)) = 0, which will certainly follow from the
asymptotic property sup,cp, - P(F(s,n)) = o(27*").
Let
W}%(u> = W(Sl + u, 5‘2) - W(Sh 5‘2)7 Wé(”) = W(Sh So + U) - W(Sh SQ)?

and define

(u1 ,’U,Q)E[Sl 451 -|—'2_2'"‘] X [5—2 452 _|_~2—'2-n]

Go(s,n) = { sup W (ur,uz) — Wi(sq,82)| < n'Z_”} ,

Gr(s,n) = {Wg(u) > -—n27", 0 <u <},

Gu(s,n) = {Wi(v)>-n27" 0<v < =},
G(s,n) = Go(s,n)NGRr(s,n)NGu(s,n).

| — o] —

8]

We show first that P(F(s,n) \ G(s,n)) < Ke™ /2. Indeed, F(s,n) \ G(s,n) is

contained in the union of the three events

{ sup [W(ur,uz) — Wisy, s9)| > n'Z_”} ,

(u1 ,’U,Q)E[Sl 451 _|_~2—'2-n] X [5—2 452 -|—'2_2'"‘]

{sup  sup |W(u,s24+v)—W(u,s2)| >n27"}

1<u<2 0<u<2-2n

and

{ sup  sup |[W(si +u,v)—Wi(sy,v)|>n27"}.

0<u<2—2n 1<v<2
By the scaling properties of the Brownian sheet, the probability of these last two

events is equal to

P({ sup  sup [W(u,v)|>n}),

1<u<2 0<v<1

and according to [7, Lemma 1.2], this probability is bounded by 4e=m /2 for large n.
By [7], there is ¢ > 0 such that the probability of the first event is < ce™™
Now let 7g (resp. 7r7) be the first time W3 (resp. W§) hits level n?27"!. Then

P(F(s,n)NG(s,n)) (1)
< P(G(s,n) N ({mrV 1y > 027" YU {rp A Ty < 277"})) + P(H(s,n)),



where
H(s,n) = F(s,n)NG(s,n) N {27" <1p Ay < mr V 17 < n°277"},
Clearly,

P(Gr(s,n)N ({rr > n®27Y U {rs < 2_2”}))
< P(Gr(s,n)N{rr >n°27%"}) + P{rp < 27°"}.

Classical properties of the times a Brownian motion takes to leave an interval (see
e.g. [5, Chap. VI, Lemma 8.1]) show that there are positive constants ¢; and ¢; such
that the first term on the right-hand side is bounded above by

c exp(—can),

and the same bound holds for P{rr < 272"}. Therefore, the first term in (1) is
< cexp(—cn?). As for the second term in (1), notice that for large n, on H(s,n),

W(si +7r,s2+v) = W(s)+ Wg(rp) + Wi(v) + Z(v)
> Wi(s)+ n?2 "t 2 4 Z(v),

where Z(v) = A, sy 471]x]52,50+4 W and similarly,
W(si+u, 80+ 7)) > W(s)+n*27" —n27" 4 Z'(u),
where Z'(u) = Ay, s, 4u]x]s,50475]W (we have used here the notation
ALy xlso )W = W, ua) = Wist, ua) = Wi, s2) + Wi(sy, s2),

if 51 < uy and sy < ug). For the particular ¢ = (t1,1,) satisfying (i), (ii) and (iii)
above, W(-)—W (t) must hit 0 on the union of the two segments {s1+7r} X [s2, 2+ 7]
and [s1,81 + Tr] X {s2 + 7}, so for large n, on H(s,n), W(-) — W(s) must hit n27"

on the union of these two segments. Therefore, on H(s,n),

min( inf  Z(v), inf Z'(u)) < —p?27m

0<y<nb22n 0<y<nb2—2n

By the scaling properties of the Brownian sheet, the probability of this event is less
than the following, for all large n:

2P{ sup B(u) >n"'2"} < cexp(—n~%2*").
0<u<1

This completes the proof of Theorem 1. O



Remark 5. [t is not difficult to check that the proof of Theorem 1 extends to the
Brownian sheet with more than two parameters. Regarding Theorem 2, the state-
ment for the two-parameter Brownian sheet implies the analogous statement for the
multiparameter Brownian sheet.

We now turn to the proof of Theorem 2, which relies on several preliminaries and
lemmas. As is usual, for points s = (s1,82) and t = (1,12), we write s < ¢ (or
equivalently, ¢t > s) if s; < ¢, fori =1,2.

Let O = Co(R%,R) be the set of continuous functions @ : R2 — R such that
©(0,0) = 0 (but @ need not vanish elsewhere on the axes). Let (Y (u,v), (u,v) € R})
be the canonical coordinate process

Y (u,v)(@) = @(u,v), €,

&

and let B = o(Y(u,v), (u,v) € R%). We define two one-parameter filtrations (.ﬁ:i, u >

0) and (.7:2 v > 0) and a two-parameter filtration (F,,, (u,v) € R}) by

j:i =o{Y(51,92): 0 <81 <y 0< 82}, .7~:i =o{Y(51,82): 0 < sy, 0 <59 <w},

and )
Fuw=0{Y(51,82) : 0 <33 <, 0<3y <v}.

Recall that a stopping point relative to (.7?“@) is a random variable 7" with values in
R such that {7 < (u,v)} € F,, for all (u,v) € R3.
Let
7. =inf{v > 0:Y(0,v) = ¢},

and let C.(&) be the connected component of {(u,v) € R ¢ Y(u,v)(@) > 0} that

contains (0,7.(@)).
Fix @ > 1. Let G. be the event “there exists (ug,vo) € [0,2%] x [, 7. + 7]
such that Y > 0 on ([0, uo] x {7:}) U ({uo} X [7-,v0[) and there is d; > 0 such that

Y (ug, v0 — u) > u® and Y (ug + u,v9) < —u® for 0 < u < §;. Finally, set

F = limsup él/n. (2)

n—00

Notice that the events . and F have been defined without reference to a probability
measure on (Q, [5’) We now define a family of such probability measures.

For t = (11,13) € R7, let P, be the probability measure on (Q,B) under which Y
has the same law as the process

(u, ’U) — W(tl + u7t~2 + ’U) — W(th tz)
We note that under P, the law of Y is identical to that of
VEB (1) + Vi Ba(v) + W (u,0),
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where By, By and W are independent, B; and B; are standard Brownian motions
and W is a standard Brownian sheet.

The following zero-one law follows from the usual classical argument [7], given the
independent increments property of ¥ and the continuity of ¥ under P,.

Lemma 6. Under P, every event in the o-field Ny, 5,50 o{Y (u,v) : (u,v) < (s1,82)}
has probability 0 or 1.

Lemma 7. (a) There is a constant co > 0 such that, for all0 < e <1 andt > (1,1),

Pt(G6> Z Cq. N
(b) For all t > (1,1), P(F)=1.

Proof. Fix 0 < e <1 and t = (t4,t2) > (1,1).
(a) Let Vo =ty + 7. Fori=1,...,2%", set ; = ic?27?" and

i = inf{o >0:Y(x;/V., 7. + v/t1) = 0}.
Define the event

Fi(i,n) = Fon Fi(i,n) N Fy(i,n) N Fs(i,n),
where

Fo = {Y(u/V.,7) >¢/2, for 0 <u <&’}

Fi(i,n) = {w < e,

Fy(iyn) = {Y(x;/Ve,7e 4 (pp —0) /1) >0 =277, for 0 < v <y},

Iy ) o= AY((zi+u)/ Ve, 7o+ i ft) < —e' 720 4277, for 0 < u < 2}

(i,n

(i,n

Notice that z;/V. is .i:é—measurable, and therefore is a stopping time relative to (.7?11)
Because H; = (a;/V., 7. + i; /11) is a stopping point relative to (F,,) and Y(H;) =0,

conditionally given F ; Vs
u Y((2i 4+ u) Ve, 7o + pufth) (3)

1
is a Brownian motion started at 0 with speed (V. + m/tl)%/v:. On Fi(2,n), this
speed is in [1,1 + &*] C [1,2]. By scaling properties of Brownian motion, on Fy(7,n),

Pi(Fa(i,n)|F,y, y,) = P{B(u) < —u” +27" /2, 0 <u < 1},
Therefore, according to [1, Lemma 12], there is a universal constant ¢; > 0 such that

Pt(Fg(i,n)L?’N:;/Vs) > 27" e on Fy(i,n).

Notice that the process

UHY(xi/‘/E77~—6+(/”Li_U>/t1)7 0<w S/M?

9



is ﬁii/vs—measurable, and has the law of a Bessel(3) process with speed

(t+ 2/ V2)7 17

run until it first hits an independent N(e,7c?27?") random variable, which is > £/2
on Fy. This speed is in the interval [1,1 + ¢?] C [1,2]. Because v — v is a lower
escape function for the Bessel(3) process [6, Example 5.4.7], on Fy,

P,(Fy(i,n) N Fy(i,n)|FL) > e,

where ¢; > 0 is a universal constant. Finally, because (0,7.) is a stopping point
relative to (F.),
ur Y(u/V.,7.) = Y(0,7.)

is a standard Brownian motion, so Pi(Fy) > c3, where ¢3 > 0 is a universal constant.
Setting ¢ = ¢jeye3, we conclude that

Pt(Ft(Z7n>> 2 C.Z_n/€7 = 17. P 2 1 < N. (4)

Let Y, (t) be the number of i € {1,...,22"} such that Fi(i,n) occurs. We want to
show that P{Y,(¢) > 0} is bounded below by a positive constant not depending on
n, ¢ or t. Observe using (4) that

-2'2-77,

E(Y, (1) =Y Pi(Fi(i.n)) > 227" e = 2" [e. (5)

=1

Next, we show that there is a universal finite constant K; > 0 such that for 1 <1 <
J<n,

1

Pi(Fy(i,n) N Fy(5,n)) < K127 o, — 2|72, (6)
Indeed, notice that Fi(i,n) N Fi(j,n) is contained in

FO N Fl(z,n) N Fl(j7 n)
Y ((x; +u)/ Ve, Te + i /1) <277, 0<u < a; —a;} (7)

ALY (25 4+ 0) Vi 7o 1y 1) <277, 0 < u < ). (3)

Using again that (3) (with ¢ replaced by j) defines a Brownian motion conditionally
independent of .7:;]/‘/5, with speed in [1,2] on Fi(j,n), the conditional probability of
the event in (8) given .i:ij/vs is < K127 /e on Fi(j,n). The event above becomes
more likely if we remove Fi(j,n) from the intersection. With the same reasoning,

the conditional probability of the event in (7) given .7~:;/V5 is < K27 a; — ;L’Z|_% on
Fi(2,n). This proves (6).
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Notice that

E(Y,(1)?) = Z P(Fi(i,n)) + 2 Z Z P(Fy(i,n) 0 F(j,n)).

One checks as in (6)-(8) that there is a universal finite constant K3 > 0 such that
Py(Fi(i,n)) < K327" /e, so that this expression is not greater than

-2'2-77, -2'2-77,

S 20 A20—2n_—1|/: N\ _20—2n|—=
AQ?HZ N KPR (- )2
=1 j=i+1
2n -2'2-77, -2'2-77,
. e oL
:[X2?+2[X12 €2ZZ|]—Z| 2.
=1 j=i1+1

The double sum is bounded by

-2'2-77, -2'2-77, ) 4
/ d;l;/ dy |y —z|72 = =2°".
0 z 3

on

. 9 - o
E(Y(1)") < Ky— + 21&’15—22“ < K22, ()

Therefore,

for some universal constant K. From (5) and (9), we conclude that

K 2E,(Y, (1))
K 2E,(Y, (1)) PAY,(t) > 0},

so P{Y,(t) >0} > ¢*/K > 0. Notice that this lower bound does not depend on n, ¢
or t.
Set G(t) = limsup,_,..{Yn(t) > 0}. Applying Fatou’s Lemma, we conclude that

Pi(G(t)) > limsup P{Y,(t) > 0} > /K.
n—ro00
Notice that for w € G(1), there is a sequence ny 1 oo such that Y, (¢)(w) > 0, for all
k., that is, there is 1 < i < ny such that w € Fy(ix,ni). By passing to a subsequence,
we can assume that (z;,, ;) converges to (x, ), say. Then

(2/Ves 7o+ pufta) € [0,€7/Va] X [72, 72 4 €7 /1],

YV{(e/Ve, 7o+ (n=v)/t) = lim V(i /Ve, 7o + (ps, = v)/t)

k—oco

> v

bl
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for 0 < v < p, and similarly,
Y (@i +u)/ Ve, 7o + p/th) < —u”, for 0 < u < &2,

Finally, Y(u/V.,7.) > /2 for 0 < u < &%, so G(t) C éﬁ since (ug,vo) = (x/Vo, 7 +
(/t1) has the required properties. This proves (a).

(b) By Fatou’s lemma and (a), we obtain P,(F) > ¢; > 0. By Lemma 6, we
conclude that Pt(F ) = 1. This proves Lemma 7. O

The next two lemmas establish some technical properties of the Brownian sheet.

For t € R3, set F; = of{W(s), s < t} and recall that a stopping point for W is a

random variable T' such that for each t € R2, {T' <t} € F,.
Lemma 8. Set T' = (T',1) where

Tl = ll'lf{tl >1: W(th 1) == 0}

Then T is a stopping point and, fort, > 1, the conditional distribution of (W7 (u,v) =
W(T\+u,1+v), (u,v) € RL) given T = (t1, 1) is equal to the distribution of Y under
P(tl,l)'

Proof. The fact that T is a stopping point follows immediately from the definitions.
Set

Bi(u) =W(Ti +u,1),  Ba(v) = W(Ti,1+v), (10)
W(u,0) = W(T) +u,14+v) = W(T) +u,1) — W(Ty,1+v).

Because W(T') = 0 a.s., W is a Brownian sheet that is independent of Fr (see e.g.
[11, Theorem 1.6]), and given T' = (#1,1), By and By are conditionnally independent
Brownian motions, independent of W, with speeds 1 and +/#;, respectively. Because

WT(u,v) = By (u) + By(v) + W(u,v),

the conditional distribution of W7 given T = (¢;,1) is equal to the distribution of Y’
under Py, 1. O

The following lemma gives bounds on certain hitting times of the Brownian sheet
restricted to certain lines. These bounds are rather crude, but are sufficient for our
purposes.

Lemma 9. Fiz 5 €]0,1]. WithT and Ty as in Lemma 8, define

7. = inf{o>0: W(T,1+v) =¢e},
7! inf{v>0:W(Ti,1+v) _el_ﬁ}

&

o = inf{fu>0:|W(Ty —u,1)| =¢}.

bl
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(a) With probability 1, there is ¢o > 0 such that for all 0 < & < &¢, 0. < 20179,
(b) With probability 1, there is eq > 0 such that for all 0 < & < ¢, 7. < 277 and
7. < 7l

Proof. (a) Consider the event
Aln) = {oamn > (2772079},
(the factor 1/4 will be used below, to get a statement valid for all £ > 0). Set
b(u) = |W(Ty — u,1)| (11)

and recall [2, Lemma 2.4] that (b(u), 0 <wu < Ty —1) is a Bessel(3) process run until
it last hits a N(0,1)-Gaussian random variable. Set b.(u) = supyc,<, b(v). By the
scaling property of this process,

P(Am) < PL(32)079) <27
= P{b.(1) < 2!},

Because b has the same law as the modulus of a 3-dimensional Brownian motion,
for large n, this is (much) smaller than (2!=77)3. Therefore, 72 P(A(n)) < oo, and

n=1
from the Borel-Cantelli lemma, we conclude that P(limsup,_,., A(n)) = 0.
Fix w ¢ limsup,_,.. A(n). There is no(w) > 0 such that go-n(w) < 1(277)21=5)
for n > ng(w). Set g = 2-m0(@) and consider 0 < & < co(w). There is n > no(w) such

that 2-("+1) < = < 27" Therefore,

(g—n)‘2(1—ﬁ) < 1(25)2(1—@ < 201-5)
=7 <

|

o:(w) < o3-n(w) <

This proves (a).
(b) This follows the same idea as in (a). Consider the event

C(n) = (> @™ PHU {rhon < 2 (27)9),

Let B*(u) = supge,<, B(u), where B(u) is a standard Brownian motion independent
of W. Because v — W(Ti,1 + v) has the same law as v — /T1B(v), the scaling

property of Brownian motion implies that

P(C(n)) < P{B(1) <277} 4 P{B*(1) > 2"7/%}

<
< (0272,

Therefore Y~ P(C(n)) < oo and P(limsup,,_,.. C(n)) = 0.
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Fix w & limsup,_, ., C(n). There is ng(w) > 0 such that for n > ng(w),

1
ATy (w)

1
Ti(w)

Ty—n(w) < ('2_”)2_ﬁ and 7y, (w) > (2_”)2_5,

Because Ty(w) > 1, we conclude, as in part (a) above, that 7.(w) < e?# for 0 < e <
co(w) = 2-70(«) " Further, for such an e, there is n > no(w) such that 2-(t1) = <
27", Then

1 . 1 .
- < men(w) < 27" h < 9= (n+1))2-5
R s KRS o0 L
< Tty (@) < 7l(w)
This proves (b). O

Lemma 10. Let T be as in Lemma 8 and let 7. be as in Lemma 9. A.s. on
{W(1,1) > 0}, there is ¢¢ > 0 such that for 0 < ¢ < &o, (Th,1 4+ 7.) € C(1,1),
where C(1,1) denotes the component of {(t1,t2) € R : W(ty,t3) > 0} that contains

(1,1).

Proof. Set 3 =1/10. By Lemma 9, a.s, there is g > 0 such that for 0 < & < &,
7. <min(7,e??)  and  g,a-p < (2e17F)HIP),
Let I'y (resp. I'z) be the vertical (resp. horizontal) segment defined by

Fl = {Tl —0'261—,6} X [171—|—TE]7
FQ = [Tl — 0'261—,67T1] X {1 + Te}7

and set I' = I'; U 'y, Clearly, (71 — 09a-5,1) € C(1,1), and W(Ty, Ty + 7.) = > 0.
It therefore suffices to show that W > 0 along I.
Let By(u) be defined as in (10), b(u) as in (11), and set
2(u,v)=W(Ty,1+v)—W(Ty —u, 1 +v)+ W(Ty —u,1).
Because Ty > 1 and W(T') =0, (z(u,v), (u,v) € [0,1] x R4) is a Brownian sheet and
W(Ty —u,1 +v)=b(u) + Ba(v) — z(u,v).

An upper bound on x is given by the law of the iterated logarithm for the Brownian
sheet [7, Theorem 2.2]:

1
0<a< 5 =lim  sup  (hk)*|x(h,k)| =0,

10 g<h<e, O<k<e

14



so, after possibly reducing the value of £¢, we can assume that for 0 < ¢ < &g,

sup  (hk)|a(h, k) < 1,

0<h<s, 0<k<e
and, in particular, recalling that 5 = 1/10,
|2(h, k)| < ((26179)2075) . g278)2/3 < 4.2 for (h,k) € [0, 09.1-5] x [0,7.].  (12)
Let v be such that (77 — 09.-5,1 +v) € I'1. Then, because 7. < 7/ and by (12),

W(Ty — 09c1-5,1 +v) = 277 4 By(v) — 2(09.1-5,)
2e17F 1P _ 4¢?
0.

ARV

Let u be such that (77 — u, 1+ 7.) € T'y. Then, because b(u) > 0 and by (12),

W(Ty —u,1+7.) b(u) 4+ e — x(u,7.)

> 04 e — 4e2
> 0.
This establishes that W > 0 along I" and proves the lemma. O

The next lemmais the analogue at level 0 of the corresponding result of [2, Theorem
2.1] for level 1, which we state without proof.

Lemma 11. let T' be as in Lemma 8. With probability one, there exists a sequence
of disjoint contours (I'y,, n > 1) with diameter tending to 0 as n — oo, each of which
contains T in its interior and on which W has the same sign as W(1,1).

We now have all the necessary ingredients needed to prove Theorem 2.

Proof of Theorem 2. Tt suffices to show that a.s. on {W(1,1) > 0}, C(1,1) is hinged
to infinitely many negative bubbles.

Fix g = 1/10. Let T, Ty and 7. be as Lemmas 8 and 9, and let S* = (57,.55),
where 57 =Ty and S5 = 1+7.. Fixa > % Let Gi. be the event “there exists (s, 32) €
[S%,.95 4 %] x [S5, .95 4+ ¢?] such that W > 0 on ([.S5,51] x {S5}) U ({s1} x [S5, s2[) and
there is §; > 0 such that W(sy, s2—u) > u® and W(s;+u, s2) < —u® for 0 < u < 6,.”

Because W(T') = 0 a.s., the event (i, is a statement about the behavior of W7T
(defined in Lemma 8). Formally, let F and G. be the event defined in (and just
before) (2), and let D, € B be such that

G.={Y e D.}.

Then, comparing definitions, we clearly have G. = {W7T € D.}.

15



Let F' = limsup,_,., Gi/, and D = limsup,_,. Dy, so that F = {WT € D}.
For t € R, let P; be the probability measure on (Q,B) defined before Lemma 6.
Using the fact that the conditional distribution of W7 given T is a.s. equal to the
distribution of Y under Pr, we see that

P(F) = E(P(F|T))= E(P{WT e D|T})
= B(Pr{Y € D})

= E(Pr(F))
=1

bl

by Lemma 7(b). It follows that a.s., Gy, occurs for infinitely many n. Therefore, by
Lemma 10, for a.a. w € {W(1,1) > 0} and large enough n such that w € Gy,,, C(1,1)
is hinged to a negative bubble at some point within [Ty, Ty + %] x [1,1 + 2¢'?], with
a growth exponent < « at the corner of the bubble. By Lemma 11, infinitely many
of these negative bubbles are distinct. This proves that on {W(1,1) > 0}, C(1,1)
is hinged to infinitely many negative bubbles with growth exponent at the corner of
the hinge < o (recall that o > I was fixed before (2)). To check that the distance
exponent of these hinges is < 2a//(1—4¢), for all £ > 0, we shall use the Lévy modulus
of continuity of the Brownian sheet [11, Proposition 1.4]: for ¢ > 0 fixed,

(W (t) = W(s)| < Kl|s — 1[5,

where K is an a.s. finite random variable. Let (t1,13) be the corner of a hinge with
growth exponent < a. For small v > 0, W (ty,15—v) > v®. Therefore, for s such that
|S o (thtz o U)| < ,U‘2a/(1—46)7

Wty ty —v) — Kls — (ty, 1y — v)|7~
a(1—2¢)/(1—4e)

Wi(s)
v — Ko

0,

AR VARV

for small v > 0, so d((t;,1; — v), L(0)) > v?*/0=4) This concludes the proof of
Theorem 2. O

3 Proof of Theorem 4

Recall that we have set

X(s1,82) = Bi(s1) — Ba(s2), (13)

where By, By are two independent two-sided Brownian motions. For definiteness, we
treat the case where B1(0) = B2(0) = 0, but the only consequence of this assumption
that we will use is that X(s1,s2) # 0 a.s., for (s1,82) # (0,0). The process X is
indexed by R2, but the proofs carry over to the case where the index set is the first
quadrant.
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We will term a cross a pair €' of line segments

{Isi, [ x{v}, {u}x sy, tof}

such that u €]sy, 11 and v €]sy, 15[ (that is, the two open line segments intersect).
The point (u,v) is the center of the cross. Given a cross C as above, we set R(C') =
[s1,11] X [s2,12], and term R(C') the rectangle generated by C'.

A complete description of bubbles for the process X is given in [3, Section 2]: see
in particular Remark 2.3(b) of that paper. We briefly recall the properties of these
bubbles that we will need further on.

Every bubble is bounded, and to each bubble FE. there corresponds a (random)
distinguished cross

C(E) = {]o1, n[ x{Sa2}, {S1}x Joa, m[}

such that C(F) C E C R(C(FE)), with the following additional properties.

If the bubble E is positive, then the interval Joy, ([ is an excursion interval for
By from some (random) value m up to some (random) maximum value M > m,
and Bi(S1) = M, Bi(o1) = Bi(m1) = m, while the interval ]o,, 73] is an excursion
interval for By from value M down to the minimum value m, and By(S;) = m,
By(02) = Ba(ms) = M. The positive value M — m at the point (.S, .53) is the unique
maximum of X on R(C(F)).

If the bubble FE is negative, then the interval |og, 15[ is an excursion interval for
By from some (random) value m up to some (random) maximum value M > m,
and B3(Sz) = M, Bz(02) = Bs(m) = m, while the interval oy, 7| is an excursion
interval for By from value M down to the minimum value m, and By(S;) = m,
Bi(o1) = Bi(m1) = M. The negative value m — M at the point (51, 52) is the unique
minimum of X on R(C(F)).

The distinguished cross is the only cross contained in the bubble E such that

X(Sy,02) = X(51,72) = X(01,52) = X(71,5,) =0, (14)

X # 0 on this cross, and, if the bubble is positive (resp. negative), the maximum
(resp. minimum) of X over the segment [0, 7] x {53} is equal to its maximum
(resp. minimum) over the segment {S1} X [0, 72], and this maximum (resp. minimum)
is attained at the center (S1,.5;) of the cross.

Lemma 12. Given a bubble F with distinguished cross C(E) as described above, the
four corners of R(C(FE)) are a.s. in a single bubble and

X(o1,00) = X(11,02) = X(01,72) = X(71,72)
= —X(S51,5,).
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Proof. 1t is noted in [3] that the four corners of R(C(F)) are a.s. in a single bubble:
see the proof of Lemma 5.3 of that paper.
For a rectangle R = [s1,%1] X [s2,12], set

ARX = X(tth) - X(Shtz) - X(thSz) + X(817S~2>7
and notice from (13) that AgX = 0, for any rectangle R. Therefore,
X(Sh Sz) — X(Sha'g) — X(O’h Sz) + X(0-170-~2> =0.

Because X(S1,02) = X(01,52) = 0 by (14), it follows that X(oq,02) = —X (51, 5).

15
A similar argument proves the statement for the other three corners of R(C(F)). O

We now examine measurability properties of the variables S;, 7, and o;.

Lemma 13. Given r € R*\ {(0,0)}, let E™ denote the bubble that contains r, and
let S;, 7 and o; be the random variables defined above for the bubble E = E”". Then

S;, 7; and o; are measurable with respect to G'.

Proof. For t € R?% set D(t) = Dy(t) + Da(t) + Ds(t) + D4(t), where

Di(t) = inf{u: X(t+ (u,0)) =0}, Ds(t) = inf{u : X(t + (—u,0)) =0},
Dsy(t) = inf{u: X(t+ (0,u)) =0}, Dy(t) = inf{u : X (¢ + (0,—u)) = 0}.

Clearly, D(t) is measurable with respect to G’, and by path continuity of X, a.s.,
t — D(t) is lower semicontinuous. Let A’(s,t) be the event denoted A(s,t) in the
proof of Theorem 3, but with W replaced by X. Then A'(s,t) € G', and so for
r e R?\ {(0,0)} fixed,
D'(r) < sup(D(#) 1 s
tER?

is G-measurable. The properties of bubbles mentioned above imply that D'(r) < oo
a.s., and D(51,5) = D'(r). By lower semicontinuity of ¢ — D(t), there exists a
sequence of rational points ¢, € I such that D(g,)14(r4,) — D'(r) as n — co. The
properties of bubbles of X discussed above imply that for any sequence (g, ) such that
D(qn)1 4(r,g,) — D'(r), it must be the case that ¢, — (51,.5).

Let (¢, n € N) be an enumeration of Q*. For m > 1, let 7,, = inf{n :
D(q(”))lA(nq(n)) > D'(r) — 1/m}. Then D(q(T'm))lA(nq(Tm)) — D'(r), so ¢'™ —
(S1,5;). Therefore, S; is measurable with respect to G, i = 1,2. The measurability
of 7; and o; with respect to G’ is now immediate. O

Given r = (ry,72) # (0,0) (so that a.s., r is within a bubble), let £ = E] denote

the bubble that contains r. We term the cross sequence of r the sequence of crosses

(CF = {Joi(r), ([ x{S5(r)}, {513 xob(r),m(r)[}, i > 1), (15)
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such that C7 = C(E7), and for 1 > 1, C7, is the distinguished cross for the bubble
that contains the four corner vertices of R(C?). The bubble corresponding to C7 will
be denoted by E!'. The next two lemmas are direct consequences of Lemmas 13 and
12.

Lemma 14. The sequence (C7, i =1,2,...) is measurable with respect to G'.
Lemma 15. For: > 1, the sign of E is the opposite of the sign of EI_,.

Proof. Because (o(r),o4(r)) € El,; and (S}(r), Si(r)) € EI, the conclusion follows
immediately from Lemma 12. O

We now show that the union over 7 > 1 of the rectangles R(CT) is R

Lemma 16. With probability one, for all r # (0,0) and N > 0, there exists ng =
no(N,r) < oo such that
[-N,NJ*> C R(C,).

Proof. The minimaand maximaof By over |a{(r), 7{(r)[ and also of By over |oi(r), 74(r)]
will be denoted m;(r) and M;(r). We note that for j = 1,2,

U;+1(T) < 0';(7“) < T;(T) < T]H_l(?“) (16)

and
mip1(r) < my(r) < Mi(r) < Mip.(r),

since otherwise the independent Brownian motions B; and B, would have shared
values at local extrema.

Every bubble contains a point with rational coordinates, so in order to prove the
lemma, it suffices to show that for every fixed r # (0,0), a.s.,

lim oi(r) = lim ai(r) = —co and lim 7(r) = lim 7(r) = +oo0. (17)
1—00

11— 00 11— 00 11— 00

Without loss of generality, we assume that X is positive in F{. In this case, by
Lemma 15, for odd ¢ > 1, X is positive on K7, so

mi(r) = Bi(oy(r)) = Bi(i(r)) = Ba(S(r)).

M;(r) = Ba(oy(r)) = Ba(ry(r)) = Bi(Si(r)),

and X is negative on K |, so
misi(r) = Bao3 (1)) = Ba(r " (1)) = Ba(S17 (1)),

Mia(r) = Bi(o7"(r)) = Bi(r"(r)) = Bo( S5+ (r)).
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In particular,

Bi(a77(r)) = Bi(ai(r))

Miyi(r) — ma(r)

> Mi(r) —ma(r)
> 0,
and
Bi(oi"(r)) = Bi(01"2(r)) = Mipa(r) — miga(r)
> Mi(r) —mu(r)
> 0.

Therefore, for all 7 > 1,
| Bi(o(r)) = Bi(oy*' (r)| = Mi(r) — ma(r) > 0.

Because Bi(-) is continuous, this implies, together with (16), that lim;_. oi(r) =
—o0. One obtains the other three limits in (17) in a similar way. O

Lemma 17. For any two fived r,v" € R?\ {(0,0)}, there exist (random) a.s. non-
negative integers N and M so that By = Ej; (and R(CY) = R(C%,)) a.s. In fact,

one can take

N = inf{n>1: v € R(C]_))},
M = inf{fm>1: E" QA R(Cx_,)° #0}.

With this choice, N and M are G'-measurable.

Proof. Let N and M be defined as in the statement of the lemma: these random
variables are G’-measurable by Lemma 14. Note that by Lemma 16, N < oo and
M < oo a.s. Observe that I, contains points in R(C;_,), and R(C%;_,) is contained
in R(Cy_,). So by the definition of a bubble, there must exist a path in E}{; from
inside R(C%_,) to strictly outside R(C%_,) on which X is nonzero. This path crosses
the boundary of R(Cx_;), at a point where X is non-zero, which therefore belongs
to E%. Tt follows that Ej = ;. O

Proof of Theorem 4. Tt suffices to show that for » € R*\{(0,0)}, sign X(r) is mea-
surable with respect to o{sign X(1,1)} V G’. We apply Lemma 17 to points r and
" = (1,1). As noted in Lemma 14, given G', we can determine the sequences E
and E!', i > 1. By Lemma 17, there exist G"-measurable random variables N and M
such that £} = E}{; It follows from the alternating sign property of Lemma 15 that
X)X (=DM > 0 as. Thus {X(r) > 0} = {X(1,1)(=1)N*M > 0}, and this
event clearly belongs to o(sign X(1,1)) V G'. Theorem 4 is proved. O
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4 Appendix, by John B. Walsh

The following result concerning non-independence of excursions of the Brownian sheet
was inspired by the results in Theorems 2 and 4.

Theorem 18. o{|W(s)|, s € R3} V o{sign W(1,1)} = o{W(s),s € R3}. In other
words, given the absolute value of the sheet in the non-negative quadrant and its sign
at a single point, one can determine the sign of the sheet everywhere in the quadrant.

The proof of this theorem is based on the following lemma for Brownian motions.

Lemma 19. Fiza >0 and b > 0. Let By and B, be independent Brownian motions.
Foru >0, set X1(u) = a Bi(u), Xa(u) = aBy(u)+b By(u), and define the two o-fields

G = o 1%l 1K), u > 0}V ofsin Xi(1)},
Gs = of|Xq(uw)|, | Xa(u)], u>0}Vo{sign Xi(1),sign Xy(1)}.

Then G1 = G4. In other words, for such Brownian motions X| and X5, the observa-
tion over time of their absolute values and the sign of one of them at any given time
determines the sign of the other at the same time.

Proof. Recall that the quadratic variation (X) of a diffusion (X (u), u > 0) is given
by
2]
(X)u = lim Y (X(k27") = X((k—1)27"))" as.

n—00
k=1

The diffusion X can be replaced by |X| to define (| X|), and it is well-known that
(| X)u = (X)u, for all u > 0, a.s. In particular, (X), is o(| X|)-measurable.

Clearly, the o-fields G; and G, satisfy G; C Ga, and recall, as mentioned in the
Introduction, that these o-fields are completed by P-null sets. For the converse
inclusion, we show that sign X3(1) is Gi-measurable. Set Y(u) = | Xq(u)| + | X2(u)|,
so that the process (Y (u), u > 0) is G;-measurable. Clearly,

| 2aBi(u) + b By(u)| if Xq(u) - Xy(u) >0,
Vo= { it X (1) - Xa(u) < 0,

SO

dY)u [ 4a®> +0* if Xy(u)- Xo(u) >0,

Therefore, writing equality between sets that differ only by a null set,

d{Y ).
du

. . d{Y), .
oo = 40+ 8, X,(1) > 0p 0 {20 82, x,(1) < o)

{51)>00 = | 7

€ g
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The lemma is proved. O

Proof of Theorem 18. Let
Hy = o{|W(s)|, s € R1} V o{sign W(1,1)}
and
Ho = o{W(s),s € R}

Clearly, H; C Hs. In order to show that H, C H;, it suffices to show that
sign W (sy,s2) is Hi-measurable, for all (sq1,s;) € R?I_.
Fix us > 1, ug € Q, and set Xy(u) = Wi(u, 1),

Xo(u) = Wiu,ug) = Bi(u) + Vuz — 1 Ba(u),

where B; and B, are the independent Brownian motions defined by

Bi(w) = W(w,1),  B(u) = \/uzli_l(W(u,u-z)—W(u,l)).

By Lemma 19, sign (W(1,uz)) is Hi-measurable.
Fix u; > 1, uy € Q, and set Xy(v) = W(1,v),

Xa(v) = W(ug,v) = Bl(v) +Vu; — 1 B-z(v),

where |
Bl(”) = W(17U>7 BZ(”) = m (W(uhU) - W(17U>>
By Lemma 19, sign W(uq,v) is Hi-measurable because sign W(1,v) is.
This shows that sign W(uy,v) is Hi-measurable, for all u; > 1 and v > 1. To show

that sign W(uq,v) is Hi-measurable for (uq,v) in the other three quadrants relative

to (1, 1), one can use the time-inversion properties of the Brownian sheet or continue
with arguments similar to those above. This proves the theorem. O
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