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Abstract

In the classical quickest detection problem, one must detect as quickly as possible
when a Brownian motion without drift “changes” into a Brownian motion with positive
drift. The change occurs at an unknown “disorder” time with exponential distribution.
There is a penalty for declaring too early that the change has occurred, and a cost for
late detection proportional to the time between occurrence of the change and the time
when the change is declared. Here, we consider the case where there is also a cost
for observing the process. This stochastic control problem can be formulated using
either the notion of strong solution or of weak solution of the s.d.e. that defines the
observation process. We show that the value function is the same in both cases, even
though no optimal strategy exists in the strong formulation. We determine the optimal
strategy in the weak formulation and show, using a form of the “principle of smooth fit”
and under natural hypotheses on the parameters of the problem, that it is optimal to
observe only when the posterior probability that the change has already occurred, given
the observations, is larger than a threshold A ≥ 0, and to declare that the disorder
time has occurred when this posterior probability exceeds a threshold B ≥ A. The
constants A and B are determined explicitly from the parameters of the problem.
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1 Introduction

The classical quickest detection problem [15, Chapter 4.4] is as follows. An observers observes
a stochastic process X = (Xt)t≥0 that solves the stochastic differential equation (s.d.e.)

dXt = r 1{θ≤t} dt+ σ dBt. (1.1)

Here, r > 0, σ > 0, B = (Bt)t≥0 is a standard Brownian motion, and θ is a nonnegative
random variable that is independent of (Bt), sometimes called a “disorder time,” or a “change
point.” The random variable θ is not observed directly, but only through its effect on the
sample paths of X. When t < θ, the observer is simply watching a Brownian motion, but
when t ≥ θ, a drift (or signal) with intensity r appears. The observer seeks to detect as
quickly as possible the appearance of this signal, while keeping sufficiently low the probability
of a “false alarm”, that is, declaring that the signal has appeared when, in fact, it has not.
Typically, the distribution of θ is assumed known, and, given θ > 0, even equal to an
exponential distribution with known parameter λ > 0 (see [12] for many variations on this
problem and for numerous references).

In this paper, we consider the situation where there is an observation cost b ≥ 0 per unit
time and the observer can choose to observe or not. When he does not observe, the process
X is constant (dXt = 0), and when he does observe, X satisfies (1.1). The objective is to
detect the appearance of the signal as quickly as possible, while keeping low the probability
of false alarm and the cost of observation. Therefore, the problem is no longer an optimal
stopping problem but an optimal stopping/control problem, where the control h = (ht)t≥0 is a
[0, 1]-valued process, where ht = 1 means that observation occurs, and ht = 0 means absence
of observation. Therefore, the observation process is described by the stochastic differential

dXt = r ht1{θ≤t} dt+ σ
√
ht dBt, X0 = 0. (1.2)

Note that when ht ∈ {0, 1}, the square-root has no effect. However, it will be convenient
during the resolution of the problem to consider also ht ∈ [0, 1], and since we are free to
decide the formulation when 0 < ht < 1, we have chosen to use (1.2).

We assume that all objects are defined on a filtered probability space (Ω,F , (F t)t≥0, P ).
Therefore, Bt = Bt(ω), θ = θ(ω), and ht = ht(ω). The assumption that ht depends on ω
(ht = ht(ω)) does not create difficulties with definition of the (“h-controlled”) process X via
formula (1.2). However, we must define precisely what type of information the observer can
use to decide to switch from one value of ht(ω) to another.

It is reasonable to assume that the control function ht depends on ω via the observation
process: ht(ω) = ht(X(ω)). In this case, the s.d.e. (1.2) will take the form

dXt = rht(X)1{θ≤t} dt+ σ
√
ht(X) dBt, (1.3)

and, inevitably, we have to explain how to formualte this s.d.e. and give a precise definition
of the control h = (ht(X))t≥0.
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These questions are considered in Section 2, where we give two precise but distinct formu-
lations of the notion of a solution of equation (1.3), according to whether we interpret X as
a strong or weak solution of (1.3). Then we derive some preliminary properties of the suffi-
cient statistic πht , which is the conditional probability, given the observations (Xs, s ∈ [0, t]),
that θ ≤ t. In Section 3, we study the law of πht , writing it, and the likelihood ratio
ϕht = πht /(1 − πht ), as solutions of diffusion equations in the filtration FX of the observed
process. In this section, we also establish, in the spirit of [4] and [11], a “verification lemma”
(Lemma 3.7) that gives sufficient conditions for the optimality of a strategy.

In Section 4, we give the form of a candidate optimal strategy and associated candidate
value function, and derive the ordinary differential equations with two free boundaries that
characterize this function. These are completed by imposing boundary conditions that imply
continuity and an appropriate degree of smoothness at the boundaries (see (4.10)–(4.14)).
These equations are then solved completely, up to the resolution of a transcendental equation
(see (4.26)). The form of the solution depends on the value of the observation cost b, and it
turns out that there are three regimes: if b is large enough, then it is best never to observe,
and to stop simply when the posterior probability πht exceeds a certain threshold B ∈ ]0, 1[.
For smaller positive values of b, there are two thresholds 0 < A < B < 1 such that it is best
not to observe when πht ≤ A, to observe when πht ∈ ]A,B[ and to declare an alarm when
πht ≥ B. The candidate value function is given in Propositions 4.3 and 4.4, depending on the
size of b. The third regime is when b = 0, which is the classical case of [15] and corresponds
to 0 = A < B < 1.

For small positive values of b, the candidate value function and optimal strategies are
such that it is not clear whether an optimal strategy does indeed exist! In fact, in the strong
formulation, no optimal strategy exists in general, but such an optimal strategy does exist
in the weak formulation. It turns out, however, that the value function is the same in both
formulations. We discuss this question at the end of Section 4.

In Section 5, we show that the candidate value function of Section 4 is indeed the value
function in both the weak and strong formulations (Theorems 5.1 and 5.2). However, because
of the absence of an optimal strategy in the strong formulation, it is not possible to conclude
directly from a “verification lemma” (Lemma 3.7) that the candidate value function is indeed
the value function in the strong formulation. Therefore, we use a different approach in
Theorem 5.2: for ε > 0, we consider strategies that approximate the candidate optimal
strategy but are defined via s.d.e.’s with sufficiently smooth coefficients. We then compute
explicitly the cost associated with these strategies. This requires computing the expected
time to hit a threshold, which, in turn, requires solving another o.d.e (given in (5.11)). We do
this in Section 5, and in Proposition 5.7, we show by direct calculation that the expected costs
of the approximately optimal strategies converge to the candidate value function, proving
that this is indeed the value function in the strong formulation.
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2 Stating the problem

Consider a filtered probability space (Ω,F , (F t)t≥0, P ) with a filtration (F t) (satisfying the
usual hypotheses [13]). Let θ be a random variable defined on Ω that is F0-measurable. We
assume that there is π0 ∈ [0, 1] and λ > 0 such that

P{θ = 0} = π0 and P{θ > x | θ > 0} = e−λx. (2.1)

We let B = (Bt)t≥0 be a standard Brownian motion adapted to (F t)t≥0 such that for
all t ≥ 0, the process (Bs+t − Bt, s ≥ 0) is independent of F t. In particular, (Bt)t≥0 is
independent of θ.

Controls and stopping times

Definition 2.1. A progressively measurable process h = (ht(ω))t≥0 defined on (Ω,F , (F t)t≥0,
P ) with values in [0, 1] will be called a stochastic control.

Let C(R+,R) denote the space of continuous functions from R+ to R.

Definition 2.2. A canonical control h = (ht(x))t≥0 is a map (t, x) 7→ ht(x) from R+ ×
C(R+,R) to [0, 1] that is progressively measurable for the canonical filtration on C(R+,R).

A canonical stopping time τ = τ(x) is a random variable τ : C(R+,R) → R+ that is a
stopping time relative to the canonical filtration on C(R+,R).

Definition 2.3. A stochastic control h = (ht(ω))t≥0 is called an admissible control if it has
the form ht(ω) = ht(X(ω)) for a canonical control ht(x) and the s.d.e.

dXt = rht(X)1{θ≤t} dt+ σ
√
ht(X) dBt, X0 = 0, (2.2)

admits a strong solution in the sense of the next definition (Definition 2.4).

Definition 2.4. Assume that a filtered probability space (Ω,F , (F t)t≥0, P ) is given a priori
together with a random variable θ = θ(ω) which is F0-measurable and satisfies (2.1), and
with a Brownian motion B(ω) = (Bt(ω))t≥0 such that Bt(ω) is F t-measurable, for all t ≥ 0.

A strong solution of the s.d.e. (2.2) is a continuous stochastic process X = (Xt(ω))t≥0

that satisfies (2.2) and is such that Xt(ω) is F t-measurable, for all t ≥ 0.

One may consider also the case where (2.2) has a weak solution.

Definition 2.5. We assume that a canonical control h = (ht(x))t≥0 and the law of θ in (2.1)
are given a priori. A weak solution of the s.d.e. (2.2) is a system of the following objects:

– a filtered probability space (Ω,F , (F t)t≥0, P ) (which is not given a priori);
– a Brownian motion B = (Bt)t≥0 such that Bt is F t-measurable, for all t ≥ 0;

4



– an F0-measurable random variable θ with the law specified in (2.1);
– an (F t)t≥0-adapted process X = (Xt)t≥0 which satisfies the s.d.e. (2.2), that is, for all

t ≥ 0

Xt =

∫ t

0

rhs(X) 1{θ≤s} ds+

∫ t

0

σ
√
hs(X) dBs. (2.3)

Definition 2.6. For the case of strong solutions, a strategy is a pair (h, τ), where h =
(ht(X(ω)))t≥0, τ = τ(X(ω)) for some canonical control (ht(x))t≥0 and canonical stopping
time τ(x).

For the case of weak solutions, (h, τ,X) is called a control system.

Cost

Definition 2.7. The cost associated with a strategy (h, τ) or a control system (h, τ,X) is

C(h, τ) = C(h, τ,X) = 1{τ(X)<θ} + a(τ(X)− θ)1{τ(X)≥θ} + b

∫ τ(X)

0

ht(X) dt, (2.4)

where a > 0, so as to penalize late detection of the alarm time θ, and b ≥ 0. Since the case
b = 0 is covered in [15, Chapter 4.4], we will focus on the case b > 0.

Objective

Our first objective is to find the value

V = inf
(h,τ)

E(C(h, τ)),

where the infimum is over all strategies, and to find an optimal strategy (h∗, τ ∗) that achieves
this infimum, or at least, to find a strategy that is within ε of this infimum (ε > 0). A second
objective is to find the value

V w = inf
(h,τ,X)

E(C(h, τ,X)),

where the infimum is over all control systems, and an optimal control system (h∗, τ ∗, X∗).
Clearly, V w ≤ V .

Dependence on π0

The quantities V and V w are in fact functions of the number π0 = P{θ = 0}, which we
denote g̃(π0) and g̃w(π0):

g̃(π0) = inf
(h,τ)

E(C(h, τ)), (2.5)

g̃w(π0) = inf
(h,τ,X)

E(C(h, τ,X)). (2.6)
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Clearly, g̃w ≤ g̃. The following simple lemma provides important information about the form
of these two functions.

Lemma 2.1. The functions g̃ and g̃w are concave.

Proof. By the law of total probability,

E(C(h, τ)) = π0E
(
aτ + b

∫ τ(X)

0

ht(X) dt
∣∣∣ θ = 0

)
+(1− π0)E

(
1{τ(X)<θ} + a(τ(X)− θ)1{τ(X)>θ}

+b

∫ τ(X)

0

ht(X) dt
∣∣∣ θ > 0

)
.

The first expectation does not depend on π0, and the second does not either, since the
conditional distribution of θ given that θ > 0 does not depend on π0. Therefore, π0 7→
E(C(h, τ)) is an affine function of π0, and g̃, being the infimum of affine functions, is concave.
The same argument applies to g̃w. �

Sufficient statistic

Let FX = (FXt ) be the natural filtration of the observed process X, augmented with
P -null sets. Let (πht ) be the optional projection of (1{θ≤t}, t ≥ 0) onto this filtration, so that
for all t, πht = P{θ ≤ t | Xs, s ≤ t} a.s. The next several lemmas are identical both for
strategies and for control systems, so we state them only for strategies.

Lemma 2.2. With the above notation,

E(C(h, τ)) = E

(
1− πhτ + a

∫ τ

0

πhs ds+ b

∫ τ

0

hs ds

)
. (2.7)

Proof. Note that E(1{τ<θ}) = E(1− πhτ ) and

E
(
(τ − θ)1{τ>θ}

)
= E

(∫ ∞
0

1{θ<s}1{s<τ}ds

)
=

∫ ∞
0

E
(
πhs 1{s<τ}

)
ds

= E

(∫ τ

0

πhs ds

)
.

This proves the lemma. �

According to Lemma 2.2, the expected cost associated to a strategy (h, τ) is the expec-
tation of an adapted functional of the posterior probability process (πht ). Therefore, it will
be natural to express controls as functionals of (πht ). We proceed with the analysis of this
process.
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3 Semimartingale characteristics of (πht ) and a verifica-

tion lemma

For 0 ≤ u < t, let µu,t be the conditional distribution, given that θ = u, of X restricted to
[0, t], and let µt be the unconditional distribution of X restricted to [0, t].

Lemma 3.1. The Radon–Nikodym derivative of µu,t with respect to µt,t is

dµu,t
dµt,t

= exp

(∫ t

u

r

σ2
dXs −

1

2

∫ t

u

r2

σ2
hs(X) ds

)
. (3.1)

Proof. Recall Girsanov’s theorem [10, thm. 8.6.6. p. 166]: let

dZt = σ(Zt) dBt,

dZ̃t = γt dt+ σ(Z̃t) dBt,

and suppose that under P , the process (Bt) is a standard Brownian motion. Define P̃ by

dP̃

dP
= exp

(
−
∫ t

0

γs

σ(Z̃s)
dBs −

1

2

∫ t

0

(
γs

σ(Z̃s)

)2

ds

)
.

If EP (dP̃
dP

) = 1, then the law of (Z̃t) under P̃ is the same as the law of (Zt) under P .
If θ = u, then the law of (Xs, s ≤ t) is the same as that of (Ys, s ≤ t), where

dYs = rhs(Y )1{u<s} ds+ σ
√
hs(Y ) dBs, 0 < s < t. (3.2)

If θ = t, then the law of (Xs, s ≤ t) is the same as that of (Zs, s ≤ t), where

dZs = σ
√
hs(Z) dBs, 0 < s < t.

Therefore, for A ∈ B(C([0, t],R)),

µu,t(A) = P{Y· ∈ A} = EP (1A(Y·)) = EP̃

(
1A(Y·)

dP

dP̃

)
,

where P̃ is defined by

dP̃

dP
= exp

−∫ t

u

rhs(Y )

σ
√
hs(Y )

dBs −
1

2

∫ t

u

(
rhs(Y )

σ
√
hs(Y )

)2

ds


= exp

(
−
∫ t

u

r

σ2
σ
√
hs(Y ) dBs −

1

2

∫ t

u

( r
σ

)2

hs(Y ) ds

)
.
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Note in particular that Novikov’s condition [10] is satisfied. Using (3.2), we see that this can
be written

dP̃

dP
= exp

(
−
∫ t

u

r

σ2
dYs +

1

2

∫ t

u

( r
σ

)2

hs(Y ) ds

)
.

Therefore, by Girsanov’s theorem,

µu,t(A) = EP

(
1A(Z·) exp

(∫ t

u

r

σ2
dZs −

1

2

∫ t

u

( r
σ

)2

hs(Z) ds

))

=

∫
A

µt,t(dω) exp

(∫ t

u

r

σ2
dXs −

1

2

∫ t

u

( r
σ

)2

hs(X) ds

)
.

This proves Lemma 3.1. �

Let Fθ denote the probability distribution function of θ, so that

Fθ(x) =

{
0, if x < 0,
π0 + (1− π0)(1− e−λx), if x ≥ 0.

Lemma 3.2. We have

πht =

∫ t

0−

dµu,t
dµt

Fθ(du) =
dµt,t
dµt

∫ t

0−

dµu,t
dµt,t

Fθ(du)

(note that the 0− accounts for the discontinuity of Fθ at 0).

Proof. The notation dµu,t

dµt,t
now refers to the right-hand side of (3.1), which is continuous in

u. For the first equality in the lemma, it suffices to show that for all B ∈ B(C([0, t],R)),

E

(
1{X|[0,t]∈B}

∫ t

0−

dµu,t
dµt

Fθ(du)

)
= E

(
1{X|[0,t]∈B}1{θ≤t}

)
.

To see this, observe that∫
{X|[0,t]∈B}

dP (ω)

∫ t

0−

dµu,t
dµt

(ω)Fθ(du)

=

∫ t

0−
Fθ(du)

∫
{X|[0,t]∈B}

dP (ω)
dµu,t(ω)

dµt

=

∫ t

0−
Fθ(du)µu,t

{
X|[0,t] ∈ B

}
= P

{
θ ≤ t, X|[0,t] ∈ B

}
.

This proves the first equality. The second is a consequence of the chain rule for Radon–
Nikodym derivatives. �
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Lemma 3.3. We have

1− πht =
dµt,t
dµt

∫ ∞
t

Fθ(du) = (1− π0)e
−λt dµt,t

dµt
.

Proof. As in Lemma 3.2, one checks that

P{θ > t | Xs, s ≤ t} =

∫ +∞

t

dµu,t
dµt

Fθ(du).

Since dµu,t

dµt,t
= 1 when u > t, the right-hand side is equal to∫ +∞

t

dµu,t
dµt,t

dµt,t
dµt

Fθ(du) =
dµt,t
dµt

∫ +∞

t

Fθ(du).

This proves the first equality in the statement of the lemma. The second equality is a
consequence of the fact that for u > 0, Fθ(du) = (1− π0)λe

−λu du. �

Set

ϕht =
πht

1− πht
and let

Zu,t =

∫ t

u

r

σ2
dXs −

1

2

∫ t

u

r2

σ2
hs ds.

Use Lemmas 3.1, 3.2 and 3.3 to see that

ϕht =
eλt

1− π0

∫ t

0−
exp (Zu,t) Fθ(du)

=
eλt

1− π0

exp (Z0,t)

∫ t

0−
exp (−Z0,u) Fθ(du)

=
eλt

1− π0

exp (Z0,t)

(
π0 + (1− π0)

∫ t

0

exp (−Z0,u)λe
−λu du

)
. (3.3)

Lemma 3.4. The following s.d.e. is satisfied:

dϕht = λ(1 + ϕht ) dt+
r

σ2
ϕht dXt. (3.4)
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Proof. Observe from (1.2) that the quadratic variation of Xt is d〈X〉t = σ2ht dt, so we can
apply Itô’s formula and (3.3) to get

dϕht = λϕht dt

+
eλt

1− π0

exp(Z0,t)

(
r

σ2
dXt −

r2ht
2σ2

dt+
1

2
(
r

σ2
)2 · σ2ht dt

)∫ t

0−
exp(−Z0,u)Fθ(du)

+eλt exp(Z0,t) exp (−Z0,t)λe
−λtdt

= λ(1 + ϕht ) dt+
r

σ2
ϕht dXt.

�

Lemma 3.5. The process X = (Xt)t≥0 has the stochastic differential

dXt = rht(X)πt dt+ σ
√
ht dB̄t,

where (B̄t) is a standard Brownian motion.

Proof. Observe that

dXt − rhtπt dt = (rht1{θ<t} − rhtπt) dt+ σ
√
ht dBt,

and the right-hand side has mean zero (given X|[0,t]) and quadratic variation σ2ht dt. Further,
the left-hand side is adapted to FX , so that the right-hand side is too, and has mean zero.
In particular, it is the differential of a local FX-martingale with quadratic variation σ

√
ht dt.

According to [8, Chapter 3, Theorem 4.2], this term is equal to σ
√
ht times a standard

Brownian motion increment. We note for future reference that (B̄t) need not be FX-adapted,
but the martingale

Mt = σ

∫ t

0

√
hs dB̄t = Xt −

∫ t

0

rhs(X)πsds (3.5)

is clearly FX-adapted.

Lemma 3.6. Set ρ = r
σ

. Then

dπht = λ(1− πht ) dt+
r

σ2
πht (1− πht ) dXt −

r2

σ2
(πht )2(1− πht )ht dt (3.6)

and
dπht = λ(1− πht ) dt+ ρπht (1− πht )

√
ht dB̄t. (3.7)
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Proof. Note that πht = ϕht (1 + ϕht )
−1 = f(ϕht ), where f(x) = x(1 + x)−1. Since f ′(x) =

(1 + x)−2 and f ′′(x) = −2(1 + x)−3, Itô’s formula and Lemma 3.4 yield

dπht = f ′(ϕht ) dϕ
h
t +

1

2
f ′′(ϕht ) d〈ϕh〉t

=
1

(1 + ϕht )
2

(
λ(1 + ϕht ) dt+

r

σ2
ϕht dXt

)
+

1

2

−2

(1 + ϕht )
3

( r
σ2
ϕht

)2

σ2ht dt.

Recall that 1 + ϕht = 1
1−πt

to see that this is equal to

λ(1− πht ) dt+
r

σ2
πht (1− πht ) dXt −

r2

σ2
(πht )2(1− πht )ht dt,

which establishes (3.6). By Lemma 3.5, this is equal to

λ(1− πht )dt+
r

σ2
πht (1− πht )

(
r htπ

h
t dt+ σ

√
ht dB̄t

)
− r2

σ2
(πh)2

t (1− πht )ht dt,

which simplifies to

λ(1− πht ) dt+
r

σ
πht (1− πht )

√
ht dB̄t.

This establishes (3.7).

Strategies expressed in terms of (πht )

According to (3.7), (πht ) is a diffusion process, and therefore an optimal canonical control
will typically be expressed as a function of πht , that is, we will mainly be interested in controls
ht(X) of the form ht(X) = h(t, πht ), where h : R+ × [0, 1] → [0, 1] is measurable and given.
We explain here how to describe the observation process and the admissible control (ht)
associated with such a function h.

Consider the s.d.e.

dpt = λ(1− pt)dt+
r

σ2
pt(1− pt)

(
rh(t, pt)1{θ≤t} dt+ σ

√
h(t, pt) dBt

)
− r2

σ2
(pt)

2(1− pt)h(t, pt) dt, (3.8)

with p0 = P{θ = 0}. Assume that h is such that (3.8) has a strong solution (that is, an
(F t)-adapted solution). Then we define the observation process by X0 = 0 and

dXt = rh(t, pt)1{θ≤t} dt+ σ
√
h(t, pt) dBt. (3.9)
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This process is adapted to (F t), and by (3.8),

dpt = λ(1− pt)dt+
r

σ2
pt(1− pt) dXt −

r2

σ2
(pt)

2(1− pt)h(t, pt) dt. (3.10)

Let qt = pt/(1− pt). Applying Itô’s formula, we find that

dqt = λ(1 + qt)dt+
r

σ2
qt dXt. (3.11)

According to [14, Chapter IX, (2.3)], the solution of this linear s.d.e. is

qt = exp

(
r

σ2
Xt + λt− 1

2

r2

σ4
〈X〉t

)
×
[
q0 +

∫ t

0

exp

(
− r

σ2
Xs − λs+

1

2

r2

σ4
〈X〉s

)
λ ds

]
.

In particular, qt, and therefore pt, is a function of X|[0,t] and we can write pt = ĥt(X), where

(t, x) 7→ ĥt(x) from R+ × C(R+,R) is progressively measurable. Looking back to (3.9), we
see that (Xt) is a strong solution of the s.d.e.

dXt = rht(X)1{θ≤t} dt+ σ
√
ht(X) dBt, (3.12)

where ht(x) = h(t, ĥt(x)). Therefore, (ht) is an admissible control.
Comparing (3.11) and (3.4), we conclude that qt = ϕht and therefore

pt = πht = P{θ ≤ t | FXt }. (3.13)

This means that the control ht(X) is indeed equal to h(t, πht ).
We note that as in (3.7), there is a Brownian motion (B̄t) such that

dpt = λ(1− pt) dt+ ρpt(1− pt)
√
h(t, pt) dB̄t. (3.14)

If τ is a stopping time defined using πht , for instance,

τ = inf{t ≥ 0 : πht ∈ S} (3.15)

for some Borel set S ⊂ [0, 1], then

τ = inf{t ≥ 0 : ĥt(X) ∈ S},

so τ = τ(X) is a canonical stopping time. In particular, ((ht(x)), τ(x)) is a strategy.
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The above discussion shows that if (3.8) has a strong solution, then we can construct a
strategy ((ht), τ) for which (2.1) or (3.12) admits a strong solution (Xt), such that pt = πht
and the expected cost E(C((ht), τ)) is given by (2.7).

In the case where (3.8) admits a weak solution, we would similarly conclude that (2.2)
or (3.12) admits a weak solution, and considering τ as in (3.15), we would conclude that
((ht), τ,X) is a control system with the same expected cost.

Verification lemma

For π ∈ [0, 1], let Eπ denote expectation in the case where π0 = π. Recall that we have
defined

g̃(π) = inf
(h,τ)

Eπ(C(h, τ)), g̃w(π0) = inf
(h,τ,X)

E(C(h, τ,X)).

By Lemma 2.1, g̃ is concave, and by Lemma 2.2,

g̃(π) = inf
(h,τ)

Eπ

(
1− πhτ + a

∫ τ

0

πhs ds+ b

∫ τ

0

hs ds

)
,

with a similar properties for g̃w. According to [4, Theorem 3.67], we expect to be able to
characterize each of these two functions as a function g∗ with certain properties concerning
martingales and submartingales. The next lemma gives conditions that will allow us to show
that a function g∗ is equal to g̃ (resp. g̃w) and check that a strategy ((h∗t ), τ

∗) (resp. a control
system ((h∗t ), τ

∗, X∗)) is optimal.

Lemma 3.7. (Verification Lemma)
Suppose that g∗ is a bounded continuous function defined on [0, 1] such that 0 ≤ g∗(x) ≤

1− x, x ∈ [0, 1].
(1) Suppose that for any π ∈ [0, 1], the following property holds:

(a) for any strategy ((ht), τ) (resp. for any control system (h, τ,X)), the process (Yt)
is an FX-submartingale under Pπ, where

Yt = g∗(πht ) + a

∫ t

0

πhs ds+ b

∫ t

0

hs ds. (3.16)

Then g∗ ≤ g̃ (resp. g∗ ≤ g̃w).
(2) Suppose that for any π ∈ [0, 1], in addition to (a), the following three properties hold:

(b) for the strategy ((h∗t ), τ
∗) (resp. the control system ((h∗t ), τ

∗, X∗)), the process (Y ∗t∧τ∗)
is an FX-martingale under Pπ, where

Y ∗t = g∗(πh
∗

t ) + a

∫ t

0

πh
∗

s ds+ b

∫ t

0

h∗s ds;

(c) Eπ(τ ∗) < +∞;
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(d) g∗(πh
∗
τ∗ ) = 1− πh∗τ∗ .

Then g∗ = g̃ and ((h∗t ), τ
∗) is an optimal strategy (resp. g∗ = g̃w and ((h∗t ), τ

∗, X∗) is an
optimal control system).

Proof. We first establish (1). Let ((ht), τ) be a strategy. If E(τ) = +∞, then E(C(h, τ)) =
+∞. Indeed, by (2.4), E(C(h, τ)) ≥ a E(τ 1{τ>θ})− aE(θ). Since

E(τ) = E(τ 1{τ>θ}) + E(τ 1{τ≤θ})

and the second term is no greater than E(θ) < +∞, we conclude that E(τ 1{τ>θ}) = +∞
and so E(C(h, τ)) = +∞.

Therefore, in the definition of g̃, we can restrict the infimum to those strategies for which
E(τ) < +∞. Since 1− x ≥ g∗(x), Lemma 2.2 implies that

Eπ(C(h, τ)) ≥ E(Yτ ).

Since (Yt) is a submartingale by (a) and t ∧ τ is a bounded stopping time, Eπ(Yt∧τ ) ≥
Eπ(Y0) = g∗(π). By Fatou’s lemma in the form E(lim supYn∧τ ) ≥ lim supE(Yn∧τ ) (cf. [1,
Chapter 1], which applies since E(τ) < +∞, we see that

Eπ(Yτ ) ≥ lim sup
t→∞

Eπ(Yt∧τ ) ≥ g∗(π).

We conclude that Eπ(C(h, τ)) ≥ g∗(π) for all strategies ((ht), τ), and therefore g̃ ≥ g∗. The
proof for g̃w is identical and is omitted.

We now establish (2) for g̃. It suffices to show that g∗(π) = Eπ(Y ∗τ∗). Indeed, this will
complete the proof, since by (d) and Lemma 2.2,

g∗(π) = Eπ(Y ∗τ∗) = Eπ

(
g∗(πh

∗

τ∗ ) + a

∫ τ∗

0

πh
∗

s ds+ b

∫ τ∗

0

h∗s ds

)
= Eπ(C(h∗, τ ∗)) ≥ g̃(π).

Since we have already proved that g̃ ≥ g∗, this shows that g∗(π) = g̃(π).
In order to check that g∗(π) = Eπ(Y ∗τ∗), note that 0 ≤ Y ∗t ≤ 1+(a+b)t and Eπ(τ ∗) < +∞

by (c). Therefore, (Y ∗t∧τ∗), which is a martingale by (b), is uniformly integrable. By the
Optional Sampling Theorem [3], E(Y ∗τ ) = E(Y ∗0 ) = g∗(π). This completes the proof for g̃.
The proof for g̃w is identical and is omitted.
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4 A candidate for the value function

We now seek analytical conditions on a function g∗ that will guarantee the properties of
Lemma 3.7. Consider the process (Yt) defined in (3.16) (we write g instead of g∗ to simplify
the notation). By Itô’s formula and Lemma 3.6,

dYt = g′(πht ) dπht +
1

2
g′′(πht ) d〈πh〉t + aπht dt+ bht dt

=

[
λg′(πht )(1− πht ) +

1

2
g′′(πht )(ρπht (1− πht ))2ht + aπht + bht

]
dt (4.1)

+g′(πht )
r

σ
πht (1− πht )

√
ht dB̄t.

Therefore, (Yt) will be a submartingale if the term in brackets is nonnegative, for any value of
ht. Since this term is an affine function of ht, this is equivalent to this term being nonnegative
for ht = 0 and ht = 1, that is, for all x ∈ [0, 1],

λg′(x)(1− x) + ax ≥ 0 (4.2)

and

λg′(x)(1− x) +
1

2
g′′(x)(ρx(1− x))2 + ax+ b ≥ 0. (4.3)

Intuition and smooth fit

We can imagine that the optimal strategy, in either the strong or the weak formulation, is
of the following form: do not observe if πht is small, declare the alarm if πht is close to 1, and
observe otherwise. More precisely, we postulate that there are two constants 0 ≤ A ≤ B ≤ 1
such that on [0, A], it is optimal not to observe, on ]A,B[ it is optimal to observe without
declaring an alarm, and on [B, 1], it is optimal to stop and declare the alarm. That is,

h∗t = 1{πh∗
t >A} and τ ∗ = inf{t ≥ 0 : πh

∗

t ≥ B}. (4.4)

In order to satisfy condition (b) of Lemma 3.7, we need

λg′(x)(1− x) + ax = 0, x ∈ ]0, A], (4.5)

and

λg′(x)(1− x) + ax+
1

2
g′′(x)ρ2x2(1− x)2 + b = 0, x ∈ ]A,B[. (4.6)

In order to satisfy condition (d) of Lemma 3.7, we need

g(x) = 1− x, x ∈ [B, 1]. (4.7)
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In order to find an expression for g, it is natural to solve first the differential equations
(4.5) and (4.6) separately, that is, to seek two functions g1 and g2 such that

λg′1(x)(1− x) + ax = 0, 0 < x < A, (4.8)

and

λg′2(x)(1− x) + ax+
1

2
g′′2(x)ρ2x2(1− x)2 + b = 0, A < x < B. (4.9)

Three constants of integration will appear, one for g1 and two for g2. These constants can
then be determined by “pasting together” g1 and g2, that is, requiring equalities such as

g1(A) = g2(A) (4.10)

and, by (4.7),
g2(B) = 1−B. (4.11)

These two equalities are referred to as “continuous fit” [12]. As in most problems of optimal
stopping or control, they are not sufficient to determine the five unknown constants, namely,
the three constants of integration and the two “free boundaries” A and B. For this, it is
necessary to use a version of the “principle of smooth fit” (see [12]). In particular, one can
postulate that

g′2(B) = −1 (4.12)

and
g′1(A) = g′2(A). (4.13)

We need one more equation in addition to (4.10)-(4.13), since there are five unknown con-
stants. Since we want to apply Itô’s formula, it is natural to want g to be twice differentiable
at A. This gives one more equation:

g′′1(A) = g′′2(A). (4.14)

Solving the equations

We seek functions g1 and g2 defined on [0, 1] satisfying (4.8)–(4.14). Set

f1(x) = g′1(x), f2(x) = g′2(x).

The value of A

For 0 < x < A, differentiate (4.8) to get

−λf1(x) + λf ′1(x)(1− x) + a = 0,
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that is,

f ′1(x) =
λf1(x)− a
λ(1− x)

. (4.15)

From (4.9), we get

f ′2(x) =
−ax− b− λf2(x)(1− x)

1
2
ρ2x2(1− x)2

. (4.16)

By (4.14), if we plug x = A into (4.15), (4.16), we get

−λ(aA+ b)− λ2f2(A)(1− A) = −a
2
ρ2A2(1− A) +

λρ2

2
A2(1− A)f1(A).

Since f2(A) = f1(A) by (4.13), we solve for f1(A):

f1(A) =
aρ2

2
A2(1− A)− λ(aA+ b)

(1− A)(λ2 + λρ2

2
A2)

. (4.17)

Plugging (4.17) into (4.8) gives an equation for A, whose solution is

A =

√
2λb

aρ2
. (4.18)

For the observation region ]A,B[ to be non-empty, we must have A < 1, but further, since
we want g1 to be concave by Lemma 2.1, we also must have

f1(A) = g′1(A) > −1. (4.19)

From (4.8),

g′1(x) = −a
λ

x

1− x
, (4.20)

so (4.8) and (4.19) give

−a
λ

A

1− A
> −1,

or equivalently,

A <
λ

a+ λ
.

With (4.18), we conclude that the observation region ]A,B[ is not empty if

b <
λaρ2

2(a+ λ)2
. (4.21)

Determining f2(x)
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For A < x < B, equation (4.9) becomes

λf2(x)(1− x) + ax+
1

2
f ′2(x)ρ2x2(1− x)2 + b = 0. (4.22)

A solution of the homogeneous equation

λf(x)(1− x) +
1

2
f ′(x)ρ2x2(1− x)2 = 0

is

f(x) =

(
1− x
x

)α
eα/x, where α =

2λ

ρ2
. (4.23)

Therefore, the solution of the inhomogeneous equation (4.22) is

f2(x) = K1f(x) + f(x)

∫ x

A

−2

ρ2

ay + b

y2(1− y)2

1

f(y)
dy. (4.24)

From (4.13) and (4.8), we conclude that

K1 = −a
λ

A

1− A
1

f(A)
. (4.25)

Formulas (4.25) and (4.24) together determine f2(x).

Remark 4.1. In the case where b = 0, then A = 0 by (4.18), and we must have K1 = 0 in
order that f2(x) be bounded. This recovers the case discussed in [15, Chapter 4.4]. Therefore,
we consider the case b > 0.

Determining B

Observe that
lim
x→1

f(x) = 0 and lim
x→1

f2(x) = −∞.

Indeed, the first equality is obvious and the second holds because for x near 1,

f(x) ∼ (1− x)α,

and, using l’Hopital’s rule,

f2(x) ∼ −2

ρ2
(1− x)α

∫ x

A

(a+ b)e−α

(1− y)2+α
dy ∼ −(1− x)1+α(1− x)−2−α

∼ −(1− x)−1.
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Therefore, if (4.21) holds, then f2(A) = K1f(A) = − a
λ

A
1−A > −1, so there is B ∈ ]A, 1[ such

that
f2(B) = −1. (4.26)

With this choice of B, (4.12) is satisfied. The next lemma shows that in fact, there is only
one solution to (4.26).

Lemma 4.2. The function f2 defined in (4.24) is strictly decreasing on [A, 1[, and therefore,
there is a unique B ∈ ]A, 1[ satisfying (4.26).

Proof. By (4.22),

f ′2(x) =
2λ

ρ2

1

x2(1− x)
(ψ(x)− f2(x)), (4.27)

where

ψ(x) = − ax+ b

λ(1− x)
.

Therefore, f ′2(x) < 0 if and only if ψ(x) < f2(x). In fact, we will see in (4.51) (see also
(4.32)) that

f2(x) > −a
λ

x

1− x
> ψ(x), x ∈ ]A, 1[.

We conclude that f ′2(x) < 0 for x ∈ ]A, 1[, and this proves the lemma.

Determining g2(x)

Because g′2(x) = f2(x), g2(x) can be written

g2(x) =

∫ x

A

f2(y) dy +K2. (4.28)

From (4.11), we see that

K2 = 1−B −
∫ B

A

f2(y) dy, (4.29)

so that

g2(x) =

∫ x

B

f2(y) dy + 1−B. (4.30)

Determining g1(x)

Because g′1(x) = f1(x), g1(x) can be written

g1(x) =

∫ x

A

f1(y) dy +K3, (4.31)
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where f1(x) is determined from (4.8):

f1(x) = −a
λ

x

1− x
. (4.32)

From (4.10), (4.28) and (4.31), we get

K3 = K2. (4.33)

We can perform the integration in (4.31) to get

g1(x) =
a

λ
(x+ ln(1− x)− A− ln(1− A)) +K2, (4.34)

with K2 determined by (4.29).

We have now found two functions g1 and g2 that solve (4.8)–(4.14). In order to ensure
that this solves our optimal control problem, slightly more is needed: in particular, we need
the inequalities (4.2) and (4.3) for all x ∈ [0, 1]. Set

L1g(x) = λ g′(x)(1− x) + ax, (4.35)

L2g(x) = λ g′(x)(1− x) + ax+
1

2
g′′(x)ρ2x2(1− x)2 + b. (4.36)

Proposition 4.3. (Candidate value function) Suppose that 0 < b < λaρ2/(2(a+λ)2). Define
g(x) on [0, 1] by

g(x) =


g1(x) if 0 ≤ x ≤ A,
g2(x) if A ≤ x ≤ B,
1− x if B ≤ x ≤ 1,

(4.37)

where A is defined in (4.18) and B is defined in (4.26). Then g is strictly concave in [0, B],
and

0 ≤ g(x) ≤ 1− x, 0 ≤ x ≤ 1, (4.38)

L1g(x) = 0, 0 ≤ x ≤ A, (4.39)

L2g(x) = 0, A ≤ x < B. (4.40)

Furthermore,

L2g(x) ≥ 0, 0 ≤ x ≤ A, (4.41)

L1g(x) ≥ 0, A ≤ x ≤ B, (4.42)

L1g(x) ≥ 0, B ≤ x ≤ 1, (4.43)

L2g(x) ≥ 0, B ≤ x ≤ 1. (4.44)
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Proof. Properties (4.39) and (4.40) follow from the construction of g1 and g2 (see (4.8)
and (4.9)). The strict concavity of g1 and g2 (hence of g on [0, B]) follow from (4.32) and
Lemma 4.2. This concavity property and (4.26) imply g(x) ≤ 1−x, 0 ≤ x ≤ 1. Finally, since
g′1(x) = f1(x) < 0 for 0 < x ≤ A and g′2(x) = f2(x) ≤ 0 for A ≤ x ≤ B, g is non-decreasing
on [0, B], therefore nonnegative on [0, B] since g2(B) = 1−B ≥ 0. This proves (4.38).

Note that (4.43) implies (4.44), and on [B, 1], (4.43) becomes

−λ(1− x) + ax ≥ 0,

that is,

x ≥ λ

a+ λ
.

Therefore, (4.43) will hold provided we show that

B ≥ λ

a+ λ
. (4.45)

To see this, note from (4.32) that

f1

(
λ

a+ λ

)
= −a

λ
·

λ
a+λ

1− λ
a+λ

= −1, (4.46)

We shall show that
f2(x) ≥ f1(x), for x ≥ A. (4.47)

Then, (4.47) and (4.46) imply that

f2

(
λ

a+ λ

)
≥ −1, that is, B ≥ λ

a+ λ

(since f2(x) < −1 for x > B, by (4.26) and Lemma 4.2), proving (4.45).
It remains to prove (4.47). Set h(x) = f2(x) − f1(x). From (4.8) and (4.9), we see that

for x > A,

λh(x)(1− x) +
1

2
h′(x)ρ2x2(1− x)2 + b+

1

2
f ′1(x)ρ2x2(1− x)2 = 0. (4.48)

By (4.20),

f ′1(x) = −a
λ

1

(1− x)2
, (4.49)

so (4.48) becomes

λh(x)(1− x) +
1

2
h′(x)ρ2x2(1− x)2 + b− aρ2

2λ
x2 = 0. (4.50)
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Recall from (4.18) that b − aρ2

2λ
x2 < 0 for x > A. We note that h(A) = h′(A) = 0 by

(4.13) and (4.14), and from (4.50), the following holds: for x > A, it is not possible to have
simultaneously h(x) < 0 and h′(x) < 0. Since h(A) = 0, this implies that for x > A, h(x)
cannot be negative (since otherwise, there would be y ∈ ]A, x[ with h(y) < 0 and h′(y) < 0),
therefore h(x) > 0 for x > A, that is,

f2(x) > f1(x) for x > A. (4.51)

This proves (4.47). Therefore, (4.43) is proved.
To check (4.41), we use (4.8), to see that for 0 ≤ x ≤ A,

L2g(x) =
1

2
g′′1(x)ρ2x2(1− x)2 + b,

and from (4.49),

g′′1(x) = −a
λ

1

(1− x)2
,

therefore,

L2g(x) = − a

2λ
ρ2x2 + b, x ≤ A,

and the right-hand side is nonnegative for x ≤ A by (4.18). This proves (4.41).
Finally, (4.42) is a consequence of (4.47), since (4.47) implies that

L1g2(x) ≥ L1g1(x) = 0.

Case where b ≥ λaρ2

2(a+λ)2

In this case, we postulate that the observation region ]A,B[ is empty (i.e. B = A), so we
seek g1(x) such that

λg′1(x)(1− x) + ax = 0, 0 ≤ x < B, (4.52)

g1(B) = 1−B (4.53)

g′1(B) = −1. (4.54)

From (4.52), we see that

g′1(x) = −a
λ

x

1− x
=
a

λ

(
1− 1

1− x

)
, (4.55)
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so for some constant K to be determined,

g1(x) = K +
a

λ
x+

a

λ
ln(1− x). (4.56)

From (4.55) and (4.54), we see that

a

λ

(
1− 1

1−B

)
= −1,

that is,

B =
λ

a+ λ
. (4.57)

From (4.53) and (4.56), we obtain

K = 1−B − a

λ
B − a

λ
ln(1−B)

= −a
λ

ln

(
a

a+ λ

)
,

Therefore,

g1(x) =
a

λ
x+

a

λ

(
ln(1− x)− ln

(
a

a+ λ

))
. (4.58)

We note that g′1(x) is decreasing, g′1(0) = 0 and g′1(B) = −1, so 1−x ≥ g1(x) for 0 ≤ x ≤ B,
by (4.53). Since 1− x ≥ a/(a+ λ) = 1−B for x ≤ B, g1(x) ≥ 0 for 0 ≤ x ≤ B.

Proposition 4.4. (Candidate value function) Suppose that b ≥ λaρ2/(2(a + λ)2). Define
g1(x) as in (4.58) and g(x) on [0, 1] by

g(x) =

{
g1(x) if 0 ≤ x ≤ B,
1− x if B ≤ x ≤ 1,

(4.59)

where B is defined in (4.57). Then g is strictly concave on [0, B],

0 ≤ g(x) ≤ 1− x, 0 ≤ x ≤ 1, (4.60)

L1g(x) = 0, x ∈ [0, B], (4.61)

and furthermore,
L1g(x) ≥ 0, for B ≤ x ≤ 1, (4.62)

L2g(x) ≥ 0, for 0 ≤ x ≤ 1. (4.63)
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Proof. Property (4.61) follows from (4.52), and the strict concavity of g1, hence of g, on
[0, B] and (4.60) are established just after (4.58).

Note that for B ≤ x ≤ 1,

L1g(x) ≥ 0 ⇐⇒ −λ(1− x) + ax ≥ 0

⇐⇒ x ≥ λ

a+ λ
= B,

and this is indeed that case, so (4.62) holds.
For B ≤ x ≤ 1, L2g(x) = L1g(x) + b, and both of these terms are nonnegative, so

L2g(x) ≥ 0 for these x, proving part of (4.63).
For 0 < x < B,

L2g(x) = L2g1(x) = L1g1(x) +
1

2
g′′1(x)ρ2x2(1− x)2 + b.

Since L1g1(x) = 0,

L2g(x) =
1

2

a

λ

−1

(1− x)2
ρ2x2(1− x)2 + b

= −aρ
2x2

2λ
+ b,

so

L2g(x) ≥ 0 ⇐⇒ aρ2x2

2λ
≤ b ⇐⇒ x ≤

√
2λb

aρ2
.

This will hold for x ≤ B provided it holds for x = B. Now

B ≤

√
2λb

aρ2
⇐⇒

(
λ

a+ λ

)2

≤ 2λb

aρ2
⇐⇒ b ≥ λaρ2

2(a+ λ)2
,

which is the assumption of this Case. This proves (4.63).

Comments on the optimal strategy

In the case where b ≥ λaρ2/(2(a + λ)2), the observation region is empty, the candidate
optimal control is h∗t ≡ 0 (with this control, (2.2) obviously has a strong solution), and the
candidate optimal stopping time is

τ ∗ = inf{t ≥ 0 : π∗t ≥ B}, (4.64)
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where (π∗t ) is defined by
dπ∗t = λ(1− π∗t )dt, π∗0 = π0 (4.65)

(so π∗t = πh
∗
t , where (πh

∗
t ) is defined in (3.6) with h there replaced by h∗). It is straight-

forward to check that (h∗, τ ∗) is indeed an optimal strategy (both in the weak and strong
formulations), and we do this in Section 5 in the proof of Theorem 5.1.

On the other hand, in the case where b < λaρ2/(2(a + λ)2), the optimal strategy should
take the form mentioned in (4.4):

h∗t = 1{π∗t>A} and τ ∗ = inf{t ≥ 0 : π∗t ≥ B}, (4.66)

where the law of (π∗t ) should be determined by the diffusion equation

dπ∗t = λ(1− π∗t )dt+ ρπ∗t (1− π∗t )1{π∗t>A}dB̄t, (4.67)

or, looking back to (3.8) and (3.6),

dπ∗t = λ(1− π∗t )dt+
r

σ2
π∗t (1− π∗t )1{π∗t>A}(r1{θ≤t}dt+ σdBt)

− r2

σ2
(π∗t )

2(1− π∗t )1{π∗t>A} dt. (4.68)

Because of the irregularity of p 7→ 1{p>A}, equations such as (4.67) and (4.68) do not have a
strong solution in general (see for instance [2, 16, 7]), but according to the theory developed
in [5, Chapter 5, § 24], they do have a weak solution (such that the process (π∗t ) spends an
amount of time at A that has positive Lebesgue measure). Therefore, from the discussion in
(3.8)–(3.15), we expect (4.66) to determine an optimal control system in the weak formulation
of our problem, but there will be no optimal strategy in the strong formulation! This means
that we will be able to use the Verification Lemma 3.7 to prove, in Section 5, that the function
g defined in Proposition 4.3 is equal to the value function g̃w, but a different approach via
ε-optimal strategies will be used to show that g is equal to g̃.

5 The value function

Formulas (4.37) and (4.59) provide candidates, denoted g, for the value functions g̃ and g̃w

defined respectively in (2.5) and (2.6). The objective of this section is to prove that indeed,
these two value functions are equal, and equal to g.

Theorem 5.1. (a) Case where 0 < b < λaρ2/(2(a + λ)2). Define A by (4.18), let f be as
in (4.23), K1 as in (4.25), f2 as in (4.24), B as in (4.26), K2 as in (4.29), g1 as in (4.34)
and g2 as in (4.30). Then the function g defined in (4.37) is equal to the value function
g̃w defined in (2.6). Further, the control system associated to h(t, p) = 1{p>A} and to τ ∗ in
(4.66) is optimal.
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(b) Case where b ≥ λaρ2/(2(a + λ)2). Define B by (4.57) and g1 by (4.58). Then the
function g defined in (4.59) is equal to the value function g̃w defined in (2.6).

Theorem 5.2. In both cases of Theorem 5.1, the two value functions g̃ (strong formulation)
and g̃w (weak formulation), defined respectively in (2.5) and (2.6), are equal (and equal to
the function g of Theorem 5.1).

Remark 5.3. It is interesting to observe how the value function g̃ and the thresholds A
and B depend on the observation cost b: we write g̃(x, b), A(b) and B(b) to indicate this
dependence.

From (2.4) and (2.5), b 7→ g̃(x, b) is nondecreasing. For b = 0, g(·, 0) is the value function
obtained in [15, Chapter 4.4, Theorem 9]. As b increases from 0 to bc = λaρ2/(2(a + b)2),
B(b) decreases from B(0) to B(bc), and A(b) increases from 0 to A(bc) = λ/(a+ λ) = B(bc)
(see (4.18) for the first equality and the second follows from the lines preceding (4.26) since
f2(A(bc)) = −1). For b ≥ bc, g̃(·, b) = g̃(·, bc) since there is no dependence on b.

Theorem 5.1 will be proved in two steps. We begin by showing that g ≤ g̃w.

Lemma 5.4. In both cases (a) and (b) of Theorem 5.1, the inequality g ≤ g̃w holds.

Proof. We are going to use part (1) of Lemma 3.7. Suppose first that we are in Case (a)
of Theorem 5.1. By construction, and in particular by (4.10), (4.13) and (4.14), g is C2 on
[0, B[, and C1 on [0, 1] by (4.12) and (4.7):

g′(B−) = g′(B+) = −1. (5.1)

By (4.38), 0 ≤ g(x) ≤ 1− x. Let ((ht), τ,X) be a control system and set

Yt = g(πht ) + a

∫ t

0

πhs ds+ b

∫ t

0

hs ds. (5.2)

We now apply Itô’s formula, in the form given in [12, Section 3.5]:

Yt = Y0 +

∫ t

0

g′(πhs ) dπhs +

∫ t

0

(aπhs + bhs) ds+
1

2

∫ t

0

g′′(πhs ) d〈πh〉s

+
1

2
(g′(B+)− g′(B−))LBt , (5.3)

where LBt is the local time of (πhs ) at B. By (5.1), the factor g′(B+)− g′(B−) vanishes, so
as in (4.1), we find that

Yt = Y0 +

∫ t

0

g′(πhs )
r

σ
πhs (1− πhs )

√
hs dB̄s +

∫ t

0

Φ(πhs , hs) ds, (5.4)
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where

Φ(x, η) = L1g(x) + η

[
1

2
g′′(x)(ρx(1− x))2 + b

]
, η ∈ [0, 1],

and L1 is defined in (4.35). We note that by construction and by Proposition 4.3,

Φ(x, 0) = L1g(x) ≥ 0, for all x ∈ [0, 1],

Φ(x, 1) = L2g(x) ≥ 0, for all x ∈ [0, 1] \ {B},

where L2 is defined in (4.36), and since η 7→ Φ(x, η) is an affine function, we conclude that
Φ(x, η) ≥ 0, for all η ∈ [0, 1]. Since g′ is bounded on [0, 1], the stochastic integral in (5.4) is
an FX-martingale (recall (3.5)), and therefore (Yt) is an FX-submartingale. The conclusion
now follows from part (1) of Lemma 3.7.

Now suppose that we are in Case (b) of Theorem 5.1. By construction, g is C2 on [0, B[,
and C1 on [0, 1] by (4.53) and (4.54):

g′(B−) = g′(B+) = −1.

By (4.60), 0 ≤ g(x) ≤ 1 − x, for all x ∈ [0, 1]. Let ((ht), τ,X) be a control system and
define Yt as in (5.2). Applying Itô’s formula, we obtain (5.3), and this leads again to (5.4).
Using this time Proposition 4.4, we see that Φ(x, η) ≥ 0, for all η ∈ [0, 1]. Therefore, we
conclude, as before, that (Yt) is an FX-submartingale, and the conclusion follows from part
(1) of Lemma 3.7.

We now prove Theorem 5.1.

Proof of Theorem 5.1. We begin with Case (b). As mentioned in (4.64) and (4.65), the
candidate optimal control system is (h∗, τ ∗, X∗), where h∗t ≡ 0, X∗ ≡ 0 and

τ ∗ = inf{t ≥ 0 : π∗t ≥ B},

where (π∗t ) is defined in (4.65). Clearly, (h∗, τ ∗, X∗) is a control system, and so it suffices to
check properties (b), (c) and (d) of Lemma 3.7. By (4.61),

dY ∗t = L1g(π∗t ) dt = 0 for t < τ ∗.

Therefore, (Y ∗t∧τ∗) is a (constant and deterministic) martingale, proving (b).
Further, since (π∗t ) is deterministic, we solve (4.65) to find that

τ ∗ =

{
1
λ

ln
(

1−π0

1−B

)
if π0 < B,

0 if π0 ≥ B,
(5.5)

so (c) holds. Finally, if π0 < B, then

g(π∗τ∗) = g(B) = 1−B = 1− π∗τ∗
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by (4.53), and if π0 ≥ B, then

g(π∗τ∗) = g(π∗0) = 1− π∗0 = 1− π∗τ∗

by (4.59). This proves Case (b) of Theorem 5.1.
We now consider Case (a). We have seen in Lemma 5.4 that g ≤ g̃w. In order to establish

the converse inequality, consider (h∗t ) and τ ∗ defined in (4.66), and the associated control
system ((h∗t ), τ

∗, X∗) constructed as in (3.8)–(3.15) using the function h(t, p) = 1{p>A}, and
π∗t defined as a weak solution of (4.68). Then for t ≤ τ ∗,

dY ∗t =

{
L1g(π∗t ) if π∗t < A,
L2g(π∗t ) if π∗t ∈ [A,B[,

= 0

by (4.39) and (4.40). Therefore, (Y ∗t∧τ∗) is an FX-martingale. According to Lemma 5.5
below, Eπ(τ ∗) <∞, and g(πh

∗
τ∗ ) = g(B) = 1−B by (4.66) and (4.37). This proves properties

(b), (c), and (d) of Lemma 3.7 and concludes the proof that g = g̃w and ((h∗t ), τ
∗, X∗) is

an optimal control system, since we already verified (a) of Lemma 3.7 during the proof of
Lemma 5.4. �

Lemma 5.5. Suppose that we are in Case (a) of Theorem 5.1. Let τ ∗ be defined as in (4.66).
Then for all π ∈ [0, 1], Eπ(τ ∗) <∞.

Proof. If π ∈ [B, 1], then Eπ(τ ∗) = 0, and if π ∈ [0, A[, then (πt) reaches A at the de-
terministic time λ−1 ln((1 − π)/(1 − A)) (see (5.5)), so the problem reduces to considering
π ∈ [A,B[.

Recall from (3.14) and (4.67) that (π∗t ) solves, in the terminology of [5, Chapter 5, § 24],
an s.d.e. with delayed reflection at the boundary point A, and this process is associated to a
diffusion (ξt) with instantaneous reflection at the boundary:

dξt = λ(1− ξt)dt+ ρ ξt(1− ξt) dB̄t + dζt, (5.6)

where (ζt) is an nondecreasing process that increases at those points where ξt = A. As
explained in [5], (π∗t ) the same law as ξτt , where τt is defined by the relation

t = τt +
1

1− A
ζτt .

Therefore, τ ∗ has the same law as T = inf{t ∈ R+ : ξτt = B}. Letting σ = inf{s ∈ R+ :
ξs = B}, we see that σ = τT . Further, according to Lemma 5 in [5, Chapter 5, § 23],
Eπ(σ) = V0(y)− V0(π), where V0(A) = 0 and for y ∈ ]A, 1[,

λ(1− y)V ′0(y) +
1

2
ρ2y2(1− y)2V ′′0 (y) = 1.
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An explicit expression for V0 can be obtained by using (4.24) with K1 = 0 and a = b = 0,
and then integrating from A to y. In particular, Eπ(σ) < +∞.

Notice that

T = τT +
1

1− A
ζτT = σ +

1

1− A
ζσ.

Therefore, it suffices to show that Eπ(ζσ) < +∞. By (5.6),

ξt∧σ = ξ0 +

∫ t∧σ

0

λ(1− ξs)ds+

∫ t∧σ

0

ρ ξs(1− ξs) dB̄s + ζt∧σ. (5.7)

The stochastic integral is an L2-bounded martingale, since

Eπ

(∫ t∧σ

0

ρ2 ξ2
s (1− ξs)2 ds

)
≤ ρ2Eπ(σ) < +∞.

Therefore, the optional sampling theorem can be applied and, since the ds-integral in (5.7)
is nonnegative, we find that

B = Eπ(ξσ) ≥ π + Eπ(ζσ),

so Eπ(ζσ) < +∞, as was to be proved.

For the remainder of this section, we put ourselves in Case (a) of Theorem 5.1. Since we
have observed just after (2.6) that g̃ ≥ g̃w, and g̃w = g by Theorem 5.1(a), in order to prove
Theorem 5.2, it suffices to establish the inequality g ≥ g̃. For ε > 0, we are going to define
an admissible control hε, and a strategy (hε, τ ε), with associated cost g̃ε = E(C(hε, τ ε)), and
we shall show that g̃ε → g as ε ↓ 0. From the definition of g̃ in (2.5), this will establish that
g ≥ g̃, and this will prove Theorem 5.1.

An almost optimal strategy

Define the function

h(ε)(x) =
x− A
ε

1]A,A+ε[(x) + 1[A+ε,∞[(x).

Consider the s.d.e.

dpεt = λ(1− pεt)dt+
r

σ2
pεt(1− pεt)

(
rh(ε)(pεt)1{θ<t}dt+ σ

√
h(ε)(pεt) dBt

)
− r2

σ2
(pεt)

2(1− pεt)h(ε)(pεt)dt, (5.8)

with pε0 = π0. According to [6, Theorem 3.2 p.168], this s.d.e. has a unique strong solution

(pεt , t ≥ 0), since
√
h(ε) is Hölder-continuous with exponent 1/2.
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Set

τ ε =

{
inf{t ≥ 0 : pεt ≥ B} if {· · · } 6= ∅,
+∞ otherwise,

(5.9)

Using (3.8)–(3.15), we associate to (h(ε), τ ε) a strategy ((hεt), τ
ε).

We are now going to determine the cost of the strategy (hε, τ ε), and we will see in
Proposition 5.7 below that for ε small, this strategy is nearly optimal. Let

g̃ε(π0) = E(C(hε, τ ε)). (5.10)

In order to determine the function g̃ε, we will use the following lemma.

Lemma 5.6. Suppose that we are in Case (a) of Theorem 5.1 and that we can find a
continuous function gε on [0, 1] that is C2 on [0, 1] \ {A,B}, C1 on [0, 1] \ {B} and such that

Lgε(x) = −(ax+ bh(ε)(x)), (5.11)

where Lgε(x) is defined by

Lgε(x) = λ(1− x)g′ε(x) +
1

2
ρ2x2(1− x)2h(ε)(x)g′′ε (x), (5.12)

and
gε(x) = 1− x, for x ∈ [B, 1]. (5.13)

If, in addition,
Ex(τε) < +∞, for all x ∈ [0, 1], (5.14)

then gε = g̃ε.

Proof. Suppose π0 ∈ [B, 1]. Then gε(π0) = 1− π0, and since τ ε = 0 a.s., (2.4) gives

g̃ε(π0) = E(C(hε, τ ε)) = P{θ > 0} = 1− π0.

Therefore, by (5.13), gε(π0) = g̃ε(π0) in this case.
Now suppose that π0 ∈ [0, B[. According to Lemma 2.2 and (3.13),

g̃ε(p
ε
0) = E(C(hε, τ ε)) = E

(
1− pετε + a

∫ τε

0

pεs ds+ b

∫ τε

0

hεs

)
.

Since τ ε < +∞ a.s. by (5.14), pετε = B, and 1−B = gε(B) by (5.13), so

E(C(hε, τ ε)) = E

(
gε(p

ε
τε) + a

∫ τε

0

pεs ds+ b

∫ τε

0

h(ε)(pεs) ds

)
.
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As in Lemmas 3.5 and 3.6, we see from (5.8) and (3.9) that

dpεt = λ(1− pεt)dt+ ρpεt(1− pεt)
√
h(ε)(pεt) dB̄

ε
t , (5.15)

where (B̄ε
t ) is an Brownian motion. From (5.11) and Itô’s formula in the form given in [12,

Section 3.5.3] and using the fact that g′ε(A−) = g′ε(A+), we see that (Mt∧τε , t ≥ 0) is an
FXε

-martingale, where

Mt = gε(p
ε
t) + a

∫ t

0

pεs ds+ b

∫ t

0

h(ε)(pεs) ds.

Since, by (3.13), 0 ≤ pεs ≤ 1, and 0 ≤ h(ε) ≤ 1 and gε is bounded, we see that |Mt| ≤
A+ (a+ b)t, so |Mt∧τε| ≤ A+ (a+ b)τ ε. Since Eπ0(τ

ε) < +∞ by (5.14), (Mt∧τε) is uniformly
integrable, and so

g̃ε(π0) = E(C(hε, τ ε)) = Eπ0(Mτε) = Eπ0(M0) = gε(p
ε
0) = gε(π0).

Therefore, gε(π0) = g̃ε(π0) as claimed. This completes the proof of Lemma 5.6.

Constructing gε

It remains to construct the function gε satisfying the assumptions of Lemma 5.6. Notice
that on ]0, A[, writing ḡ1 instead of gε, equation (5.11) becomes

λ(1− x)ḡ′1(x) + ax = 0, (5.16)

and as in (4.56), the solution of this differential equation is

ḡ1(x) =
a

λ
(x+ ln(1− x)) +Kε

1 , (5.17)

where Kε
1 is a constant to be determined.

On ]A+ ε, B[, writing ḡ3 instead of gε, equation (5.11) becomes

λ(1− x)ḡ′3(x) +
1

2
ρ2x2(1− x)2ḡ′′3(x) + ax+ b = 0, (5.18)

which is the same equation as in (4.9), and as in (4.28), its solution is

ḡ3(x) =

∫ x

A+ε

h̄3(y) dy +K3
ε , (5.19)

where

h̄3(x) = Kε
2f(x) + f(x)

∫ x

A+ε

−2

ρ2

ay + b

y2(1− y)2

1

f(y)
dy, (5.20)
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and

f(x) =

(
1− x
x

)α
eα/x, where α =

2λ

ρ2
, (5.21)

and Kε
2 , Kε

3 are constants to be determined.
Finally, on ]A,A+ ε[, writing ḡ2 instead of gε, equation (5.11) becomes

λ(1− x)ḡ′2(x) +
1

2
ρ2x2(1− x)2x− A

ε
ḡ′′2(x) + ax+ b

x− A
ε

= 0, (5.22)

Let h̄2(x) = ḡ′2(x), so the associated homogeneous equation is

λ(1− x)f̄2(x) +
1

2
ρ2x2(1− x)2x− A

ε
f̄ ′2(x) = 0, (5.23)

whose solution is
f̄ ε2 (x) = ψε(x)(x− A)−βε , (5.24)

where

βε =
1

A2(1− A)

2λε

ρ2
,

and

ψε(x) = x2λε(1+A)/(ρA)2(1− x)2λε/(ρ2(1−A)) exp

(
− 2λε

Aρ2

1

x

)
.

Therefore,

h̄2(x) = Kf̄ ε2 (x) + f̄ ε2 (x)

∫ x

A

−2ε

ρ2

(
ay + b

y − A
ε

)
1

y2(1− y)2(y − A)

1

f̄ ε2 (y)
dy, (5.25)

and if we want h̄2 to be bounded as x ↓ A, then we must set K = 0 (notice that there is no
integrability problem at y = A). We conclude that

h̄2(x) = f̄ ε2 (x)

∫ x

A

−2ε

ρ2

(
ay + b

y − A
ε

)
1

y2(1− y)2(y − A)

1

f̄ ε2 (y)
dy (5.26)

and

ḡ2(x) =

∫ x

A

h̄2(y) dy +Kε
4 , (5.27)

where Kε
4 is a constant to be determined.

In order to determine the four constants Kε
1 , . . . , K

ε
4 , we shall impose the four equations

ḡ3(B) = 1−B (5.28)

ḡ3(A+ ε) = ḡ2(A+ ε) (5.29)

ḡ′3(A+ ε) = ḡ′2(A+ ε) (5.30)

ḡ1(A) = ḡ2(A). (5.31)
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We note that (5.29) and (5.30), together with (5.18) and (5.22), imply that ḡ′′3(A + ε) =
ḡ′′2(A+ ε), and (5.31), together with (5.16) and (5.22), implies that ḡ′1(A) = ḡ′2(A).

From (5.28) and (5.19), we see that

Kε
3 = 1−B −

∫ B

A+ε

h̄3(y) dy, (5.32)

while (5.29), (5.19) and (5.27) imply that

Kε
3 =

∫ A+ε

A

h̄2(y) dy +Kε
4 . (5.33)

Equality (5.30), (5.20) and (5.26) give the relation

Kε
2 =

f̄ ε2 (A+ ε)

f(A+ ε)

∫ A+ε

A

−2ε

ρ2

(
ay + b

y − A
ε

)
1

y2(1− y)2(y − A)

1

f̄ ε2 (y)
dy, (5.34)

while (5.31), (5.17) and (5.27) give

a

λ
(A+ ln(1− A)) +Kε

1 = Kε
4 . (5.35)

Therefore, (5.34) determines Kε
2 , (5.32) determines Kε

3 , then (5.33) determines Kε
4 and (5.35)

determines Kε
1 .

Proposition 5.7. For ε > 0, let Kε
1 , . . . , K

ε
4 be determined by (5.32)–(5.35), define ḡ1(x) as

in (5.17), ḡ2(x) as in (5.27), and ḡ3(x) as in (5.19). Set

gε(x) =


ḡ1(x), if 0 ≤ x ≤ A,
ḡ2(x), if A < x < A+ ε,
ḡ3(x), if A+ ε ≤ x < B,
1− x, if B ≤ x ≤ 1.

Then gε satisfies the assumptions of Lemma 5.6. Further, let g be as in Case (a) of Theo-
rem 5.1. Then

lim
ε↓0

gε(x) = g(x), for all x ∈ [0, 1].

Proof. By the comments that follow (5.31), gε is C2 on [0, 1] \ {A,B}, C1 on [0, 1] \ {B} and
continuous on [0, 1]. For x ∈ [B, 1], gε(x) = 1 − x = g(x), so we consider the case where
x ∈ [0, B[.
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Case 1: x ∈ ]A,B[. We first check that Kε
2 → K1, where K1 is defined in (4.25). We note

that

Kε
2 =

ψε(A+ ε)

f(A+ ε)
ε−βε

∫ A+ε

A

−2ε

ρ2

(
ay + b

y − A
ε

)
1

y2(1− y)2

1

ψε(y)
(y − A)βε−1 dy.

Notice that ψε(A+ ε)→ 1 and f(A+ ε)→ f(A) as ε ↓ 0. Set

λ0 =
1

A2(1− A)

2λ

ρ2
, so that βε = λ0ε.

Then

K2
ε ∼

1

f(A)
ε1−λ0ε

∫ A+ε

A

−2

ρ2

(
ay + b

y − A
ε

)
1

y2(1− y)2ψε(y)
(y − A)λ0ε−1 dy

∼ 1

f(A)

−2

ρ2

1

A2(1− A)2ψε(A)
ε1−λ0ε

∫ A+ε

A

[
aA(y − A)λ0ε−1 +

b

ε
(y − A)λ0ε

]
dy,

and the integral is equal to

aA
ελ0ε

λ0ε
+
b

ε

ελ0ε+1

λ0ε+ 1
,

therefore,

lim
ε↓0

Kε
2 =

1

f(A)

−2

ρ2

1

A2(1− A)2

aA

λ0

= −a
λ

A

1− A
1

f(A)
= K1,

as claimed.
This implies that for y > A+ε, h̄3(y)→ f2(y), where h̄3 and f2 are respectively defined in

(5.20) and (4.24). By Dominated Convergence, we deduce that Kε
3 → K2, and for x ∈ ]A,B[

and for ε ↓ 0 with 0 < ε < x− A,

gε(x) = ḡ3(x)→ g2(x) = g(x),

where g2 is defined in (4.30).

Case 2: x ∈ [0, A]. From (5.33), we see that Kε
3−Kε

4 → 0, therefore Kε
4 → K2 by the above,

and from (5.35), we see that

Kε
1 → K2 −

a

λ
(A+ ln(1− A)).

We conclude from (5.17) and (4.34) that for x ∈ [0, A], as ε ↓ 0,

gε(x) = ḡ1(x)→ g1(x) = g(x).

This completes the proof of Proposition 5.7.
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The next lemma checks the condition (5.14).

Lemma 5.8. Fix ε > 0 and let τ ε be defined in (5.9). Then for all x ∈ [0, 1], Ex(τ
ε) <∞.

Proof. We first seek a bounded function γε defined on [0, B] such that

Lγε = −1, (5.36)

where L is the operator defined in (5.12).
For 0 < x < A, (5.36) becomes

λ(1− x)γ′ε(x) = −1, (5.37)

so

γε(x) =
1

λ
ln(1− x) +D1, 0 ≤ x ≤ A. (5.38)

For A < x < A+ ε, (5.36) becomes

λ(1− x)γ′ε(x) +
1

2
ρ2x2(1− x)2x− A

ε
γ′′ε (x) = −1, (5.39)

and as in (5.22) and (5.25), the solution to this equation is

γε(x) =

∫ x

A

h4(y) dy +D3, A < x < A+ ε, (5.40)

where

h4(x) = D2f̄
ε
2 (x) + f̄ ε2 (x)

∫ x

A

−2ε

ρ2

1

y2(1− y)2(y − A)

1

f̄ ε2 (y)
dy, (5.41)

and f̄ ε2 is defined in (5.24). Since we want h4 and γε to be bounded (as x ↓ A), we set D2 = 0.
For A+ ε < x < B, (5.36) becomes

λ(1− x)γ′ε(x) +
1

2
ρ2x2(1− x)2γ′′ε (x) = −1, (5.42)

and as in (5.19), the solution of this equation is

γε(x) =

∫ x

A+ε

h5(y) dy +D4, (5.43)

where

h5(x) = D5f(x) + f(x)

∫ x

A+ε

−2

ρ2y2(1− y)2

1

f(y)
dy, (5.44)

and f(x) is defined in (5.21).
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We must determine the constants D1, . . . , D5. For this, we impose the following condi-
tions:

(a) γε(B) = 0,
(b) γε((A+ ε)+) = γε((A+ ε)−),
(c) γ′ε((A+ ε)+) = γ′ε((A+ ε)−),
(d) γε(A+) = γε(A−).

We note that (b) and (c), together with (5.39) and (5.42), imply that

γ′′ε ((A+ ε)+) = γ′′ε ((A+ ε)−) (5.45)

so γε will be C2 at A+ ε. Also, (d) together with (5.37) and (5.39) implies that

γ′ε(A+) = γ′ε(A−), (5.46)

so γε will be C1 at A.
From property (c), (5.44) and (5.41), we see that

D5f(A+ ε) = f̄ ε2 (A+ ε)

∫ A+ε

A

−2ε

ρ2

1

y2(1− y)2(y − A)

1

f̄ ε2 (y)
dy,

and this determines D5 (and therefore h5).
From (a) and (5.43), we find that

D4 =

∫ A+ε

B

h5(y) dy,

so that

γε(x) =

∫ x

B

h5(y) dy, for A+ ε < x < B. (5.47)

From (b), (5.47) and (5.40), we see that∫ A+ε

B

h5(y) dy =

∫ A+ε

A

h4(y) dy +D3,

and this determines D3.
Finally, from (d), (5.38) and (5.40), we see that

1

λ
ln(1− A) +D1 = D3,

and this now determines D1.
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With the choice of constants D1, . . . , D5 above,we have determined a function γε : [0, B]→
R which is C1 on [0, B] and C2 on [0, A] and [A,B].

We now turn to the study of Ex(τ
ε). For x ∈ [A,B], we note that while pεt belongs

to [A,A + ε[, the s.d.e. (5.15) is essentially that of the Cox-Ingersoll-Ross model [9, Theo-
rem 6.2.3, Prop. 6.2.4], and in fact, pεt −A behaves like a BESQ-process [14, Chapter XI]. In
particular, pεt ≥ A since x ≥ A, so (pεt) never goes strictly below A (though it may hit A and
A is instantaneously reflecting), and A+ ε is hit in finite time because pεt is either recurrent
or transient, depending on the values of λ and ρ.

We now apply Itô’s formula to γε(p
ε
t∧τε), since γε is C2 on [A,B]:

γε(p
ε
t∧τε) = γε(p

ε
0) +

∫ t∧τε

0

γ′ε(p
ε
s) dp

ε
s +

1

2

∫ t∧τε

0

γ′′ε (pεs) d〈pε〉s

= γε(p
ε
0) +

∫ t∧τε

0

γ′ε(p
ε
s)ρp

ε
s(1− pεs)

√
h(ε)(pεs) dB̄

ε
s

+

∫ t∧τε

0

Lγε(p
ε
s) ds.

According to (5.36), Lγε(p
ε
s) = −1 for s < τ ε, so, taking expectations, we find that

Ex(γε(p
ε
t∧τε)) = γε(x)− Ex(t ∧ τ ε),

so
Ex(t ∧ τ ε) = −Ex(γε(pεt∧τε)) + γε(x).

The right-hand side is bounded, so supt∈REx(t∧ τ ε) < +∞. By the Monotone Convergence
Theorem, Ex(τ

ε) < +∞ as claimed (and in fact, Ex(τ
ε) = γε(x)), x ∈ [A,B].

For x ∈ [0, A[, we observe from (5.15) that pεt is deterministic and increases at speed
≥ λ(1− A) until reaching A. Thus A is hit in less than some τ0 units of time, and so

Ex(τ
ε) ≤ τ0 + EA(τ ε) < +∞.

Finally, for x ∈ [B, 1], τε = 0 Px-a.s., so Ex(τε) = 0. This proves Lemma 5.8.

Lemma 5.9. The function gε defined in Proposition 5.7 is the cost associated with the
strategy (hε, τ ε), that is, for all x ∈ [0, 1], gε(x) = g̃ε(x) = E(C(hε, τ ε)) (g̃ε is defined in
(5.10)).

Proof. According to Proposition 5.7, gε satisfies the assumptions of Lemma 5.6, and ac-
cording to Lemma 5.8, (5.14) holds. Therefore, by Lemma 5.6, gε = g̃ε, and this proves
Lemma 5.9.
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Proof of Theorem 5.2. In Case (a) of Theorem 5.1, in view of the considerations that follow
the proof of Theorem 5.1, it remains only to prove that g̃ ≤ g. By definition of g̃ and
Lemma 5.9, the inequality g̃ ≤ gε holds. Since g = limε↓0 gε by Proposition 5.7, we conclude
that g̃ ≤ g. This completes the proof of Theorem 5.2 in Case (a) of Theorem 5.1.

The statement of Theorem 5.2 in Case (b) of Theorem 5.1 follows from the fact that the
optimal control system exhibited in the proof of Theorem 5.1 is (trivially) a strategy, which
then is necessarily optimal. �
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