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Abstract

We solve two stochastic control problems in which a player tries to minimize or maximize
the exit time from an interval of a Brownian particle, by controlling its drift. The player can
change from one drift to another but is subject to a switching cost. In each problem, the
value function is written as the solution of a free boundary problem involving second order
ordinary differential equations, in which the unknown boundaries are found by applying the
principle of smooth fit. For both problems, we compute the value function and we exhibit
the optimal strategy, whose form depends on the magnitude of the switching cost. We also
prove the generic uniqueness of the optimal strategy.

Abbreviated title: Expulsion and confinement of a Brownian particle

1 Description of the problem

Consider a game in which the player’s goal is to force a Brownian particle out of the interval [0, 1]
as quickly as possible. At each instant, the player selects one of two opposite constant forces,
either upwards or downwards, which adds or subtracts a constant drift ;1 to the Brownian motion.
The player is allowed to switch between the two forces at any time, but at each switch, he incurs
a penalty of ¢ units of time. The goal is to find a strategy that minimizes the expected penalized
time, that is, the sum of the time needed for the particle to exit the interval and the switching
penalties (“optimal expulsion problem”).

We also solve the “opposite” problem, in which the goal is to keep the particle inside [0, 1]
for as long as possible, subject to the same kind of switching penalty, which is now subtracted
from the time to exit the interval (“optimal confinement problem”).

Let (Bt)i=0 be a standard Brownian motion, defined on a probability space (2, F,P), such
that By = 0 a.s., let (F¢)¢>0 be its natural filtration and let A denote the set of all F;-adapted
processes that are right continuous, piecewise constant and take values in {—1,1}. The elements
of A are the strategies available to the player. We consider a control model in which the system’s
state is given by the stochastic differential equation

dX{ = A, pdt + dBy, (1.1)

where A = (A)i>0 € A and pu € Ry is a given positive constant. The random variable X/
denotes the position of the particle at time t if the player is using the strategy A, and A; gives
the direction in which the player is pushing at time t. The initial conditions are given by a family
of probability measures {P, o, = € [0,1], a € {£1}} defined by P, (X' = x, Ag— = a) = 1, with
associated expectations E, ,. Here, Ao_ is the drift that applies just before time 0, and which
can change at time 0 precisely, if desirable. Let ¢ > 0 be the switching cost and let

No(A) = #{s € [0,1] : A # AL} (1.2)

be the number of switches of drift of the process X up to time ¢. Notice that Ny(A4) > 0 is
possible. The cost function for the minimization (resp. maximization) problem is then given by

Jo(z,a,A) = By o (17 + ¢N,4(A)),
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respectively,
JX (1 a, A) = By o (19 — eN,a(A)),

where
A =inf{t >0: X ¢]0,1]} (1.3)

and the value functions are respectively given by

Ve(z,a) = inf J.(z,a, A), 14

(.0) = inf Ju(x,0, 4 (1.4

V¥ (x,a) = sup J"*(z,a, A). (1.5)
AeA

The goal is then to compute these value functions and to find optimal controls A* € A and
G* € Asuch that V(z,a) = J.(z,a, A*) and V" (x,a) = J**(z,a,G*¥), for all ¢ € Ry and for
all p e RY.

These two problems can be viewed in the context of various applications, such as maintaining
an inventory between certain bounds by controlling the production rate, or maintaining an
insurance company’s capital reserve between two bounds by controlling the insurance premium.
In certain asymptotic limits, these quantities may behave like a Brownian motion, and a change
of production rate or of premium may entail a switching cost. There is a well-developed literature
for such control problems, including [4, 5, 7, 19]. The most common types of costs are terminal
costs and running costs, whereas here, we deal with a switching cost. This falls into the theory
of impulse control, as described for instance in [10, Chapter 6].

In order to solve (1.4) or (1.5), we formulate a free boundary problem for the value function.
This approach has a long history, going back to [2, 6, 16, 17], and, more recently, [12]. These
references use the so-called principle of smooth fit (see for example [12, p.147] and [13, Section
5.3.4]) to determine a unique solution to the free boundary problem. This method has proven
to be quite successful, including for instance in the problem of optimal switching (without cost)
between two Brownian motions [8]. We also use this method here.

There are several papers which treat problems close to ours. For instance, Prokhorov [14]
solves a similar problem but without cost penalty, and Mandl [9] treats a control problem for a
Brownian motion under a constraint on the number of switchings. If there is no switching cost
(¢ =0), then the solution of (1.4) and (1.5) is well-known (see [5, p.167-168]).

This paper is organized as follows. In Section 2, we state the free boundary problems
and their solutions, and we identify the optimal controls. These solutions are explicit up to
the resolution of two transcendental equations. It turns out that the structure of the optimal
solution depends on whether or not c¢ is smaller than a critical value ¢*(u), which is given
explicitly in (2.2). In Section 3, we show how the free boundary problems are solved and we
prove that their solutions are indeed the value functions. Finally, in Section 4, we show that the
optimal solutions are generically unique (except in the critical case ¢ = ¢*(u), where there are
two distinct optimal solutions), and we study the limiting case ¢ | 0.

2 Solution of the problem

In this section, we present the solution of both problems (1.4) and (1.5). In order to formulate a
free boundary problem for the value function, we will assume that the solution will satisfy three
properties. The validity of these properties will be established in Section 3.

2.1 Properties of the solution

Property 1. The optimal strategy is symmetric with respect to the initial drift and the value
Junctions satisfy Ve(x,a) = Ve(1 — x,—a) and V***(z,a) = V(1 — x,—a), for all x € [0,1]
and a € {£1}.



Property 2. There exists a critical value ¢*(u) > 0 for which the optimal strategy is the con-
stant strategy if ¢ > c*(p).

Indeed, for a given pu, the expected exit time of a Brownian motion with constant drift £
is a bounded function of the starting point x € [0,1]. Thus, if the cost exceeds a certain value,
then a reasonable player will never pay this cost to change the initial drift. This value is given by
the maximal difference between the expected exit time from [0, 1] of a Brownian motion starting
at « with a constant drift g or —u. Namely, for v € R, set ¢” = inf{t > 0 : B + vt ¢]0,1[}
and f¥(x) = E;(0"”). Then, by taking the derivative at 0 of the moment-generating function of
a Brownian motion with drift (see [1, I1.2.3]), we find, after tedious calculations, that

T 1— 6—21/37

)y =-2

AT (21)

and that

z€[0,1] z€[0,1] W p(er —1)

-1 sinh(u) 2 / 2
= F {log ('u et <1 - 1 - smﬁ2(u)>> + 1 - sinﬁQ(u)} 9 (22)

for any p € Ry (note that lim,, o ¢*(p) = 0 and lim,, 4o ¢* (1) = 0). This maximum is attained

at
s_ 1 sinh(p) (1 _ _

The third property concerns the general shape of the optimal strategy. Indeed, consider
two scenarios in the minimization problem. Assume first that one starts near 1 with a positive
drift. The player will keep this favorable drift for a while. If the particle goes down, then when
it reaches %, both drifts are equivalent because of the symmetry property. Since the player is
subject to a switching penalty, he will keep the positive drift. If the particle keeps going down,
then it will become more advantageous to change to a negative drift so that the particle will
exit more quickly through 0.

Secondly, if one starts close to 0 with a positive drift, then the diffusive behavior of the par-
ticle makes it very likely that it will rapidly hit 0 even if the drift is in the unfavorable direction.
Thus, it is probably not worthwhile to pay the penalty to change the drift. These two facts are
summarized by the following property:

() = max (f(x) = /() = max (‘M T —<>>

Property 3. There exist two barriers a. and b, satisfying 0 < a, < b, < % and such that it
is optimal to keep a positive drift above b, or below a. and it is optimal to switch to a negative
drift within |ac, b.].

In the case of the maximization problem, this property becomes:

Property 3™#*. There exist two barriers al*** and bl** satisfying % < al™® L b < 1 and

C
such that it is optimal to keep a positive drift above b*** or below a***

T and it is optimal to switch
to a negative drift within [al**, bI*].

2.2 Solution of the minimization problem

The solution of the stochastic control problem (1.4) is found through the resolution of a free
boundary problem for the value function. In the region where it is optimal to keep the current
drift, the value function must satisfy a certain ordinary differential equation: see (2.4a). In the
region where it is optimal to switch to the other drift, we have another equation: see (2.4b).



These equations are obtained by the dynamic programming principle and the Hamilton-Jacobi-
Bellman equation (see e.g. [10, Section 3.1] or [19, Section 3]). Following this principle and the
three properties that we assumed, we expect that the value function should satisfy the following
problem, in which V.(z+,a) (resp. Ve(x—,a)) denotes limy|, V.(y,a) (resp. limyp, Ve(y, a)):

oV, 1 9%V,

5 (x,1) + 3 W(m, 1)=-1, z€][0,a[U]b,1] (2.4a)
Ve(z,1) = Vo(z,—1) + ¢, x € [ac, be] (2.4b)
Ve(0,1) = Vi(1,1) =0, (boundary conditions) (2.4c)

Ve(ac—, 1) = Ve(aet, 1), (continuous fit) (2.4d)
Ve(be—,1) = Ve(be+, 1), (continuous fit) (2.4e)
ov. _ o
%(ac—, 1) = %(ac‘f—, 1), (SmOOth ﬁt) (24f)
oV, oV
a—m(bc—, 1) e (be+,1), (smooth fit) (2.4¢g)
Ve(z,—1) = V(1 — z,1), x € [0,1] (symmetry) (2.4h)

DO

where a. and b, are two unknowns satisfying 0 < a. < b, <

Proposition 1. Let c¢*(u) be given by (2.2). There exists a unique solution {V,,ac,b.} to the
free boundary problem (2.4).

1. If ¢ = c*(p), then the solution is given by

_ _ 1 sinh(p) u?
Aex = bc* = ﬂ <10g (N’ 1-— 1-— m + 1% (25)

Ver(x,a0) = f™(2) = Je (2,0, A), x €[0,1], a € {£1}, (2.6)
where A = (A; = a)i>o is the constant strategy and f* is defined by (2.1). Moreover,

e = avgmax {f*(z) = @)} and Ploe) = fae) e ) 2D

and

2. If 0 < c< c*(u), then the solution is given by

—%—f—ﬂc (6_2“:8—1), x € 10,ac],

Vo(z,1) = Lt ac (e —1) +¢, x € [ac, bel, (2.8)
177“”3 + Qe (62“(1*9”) — 1) , T €lbe, 1],
Ve(z,—1) = V(1 —z,1), r € [0,1],

where b, € [O, %[ is the unique solution x of the transcendental equation
M2y — 4 ep® — 1)+ 2ux — p A cpt +1=0, (2.9)

e H
~ 2u2 cosh(2ube — 1)’

ac is the unique solution y €10,b.[ of the transcendental equation

Q¢

(2.10)

prace™ + (1 — 2pa)e®™ — 2uy + o —cp* —1=0 (2.11)
and ]
Be = —acet — =z ehae, (2.12)



We now use the value of the barriers a. and b, to define the following four subsets of [0, 1]:

C1 = [0, ac[U]be, 1], C_1=10,1-bJU]l— ae1],
D1 = [ac,bc], D,1 = [1 — bc, 1— CLC].

The subsets C, and D, are called respectively the continuation and the switching region for
the drift a. For 0 < ¢ < ¢*, we define the candidate optimal strategy A€ as follows. Let
(z,a) € [0,1] x {—1,1} be the initial conditions, define inductively an increasing sequence
(Tn)nen of stopping times by 79 = 0 and for n > 0,

o inf {t > 7, : X € D(_1yna}, if {--}#0,
T oo, otherwise,

where X '— 2, and for n > 0, X™ is the process defined as the solution of

dX}' = (—1)"apdt +dB;,  t € [r, 400,
X" :Xn—l.

Tn Tn

Set 7 =inf{t > 0:3n > 0 with X" ¢]0,1[ and ¢ € [7,, 7, 41[ }. Then define A§_ = a, A7 = a
for t € [10,m1[, and for n > 1,

A = —AT | for t € [T, Try1]- (2.13)
This construction implies that A€ satisfies for all ¢ > 0

A if X/ € Cae
AC — t—> ¢ =’ 2.14
¢ { —AG if X“€ Dy, (2.14)
and the controlled process X4 is the solution of dX/A° = A$udt + dB; and X{'° = x. Observe
that the sequence of the stopping times (7,,) corresponds to the jump times of the strategy A,
that X' = XJ* on [7,,, Ty 1[ and that 7 = 74°, the exit time from ]0, 1] of X4°. This candidate
strategy is pictured in Figure 1 and it satisfies the following properties.

Proposition 2. If 0 < ¢ < ¢*(u), then for all z € [0,1] and a € {—1,1}, we have
Esa (TAC) <400  and Ezq(Npac(A%)) < +o0.

Now that we have exhibited a candidate strategy and a candidate value function as the
solution of a free boundary problem, we can state the optimality theorem.

Theorem 3. Let c*(u) be given by (2.2). If A° is the control satisfying (2.15) (and (2.14)) and
if V. denotes the unique solution of the free boundary problem (2.4) given in Proposition 1, then:

1. for 0 < ¢ < c¢*(u), the value function is V. = V. and A° is an optimal control for the
problem (1.4);

2. for e > c*(u), the value function is V., = VC*(#) and A = (/Nlt = a)i>0 15 Py q-a.s. the unique
optimal control for the problem (1.4).

Remark 4. In the case where ¢ = ¢*(u), we see in Proposition 1 that the switching regions
consist of one single point, at which a change of drift can be considered as insignificant. Indeed
at this point, the price to pay for a change of drift is equal to the maximum expected profit
provided by this change itself. Moreover, the same Proposition together with Theorem 3 show
that the constant strategy and the candidate A¢" are both optimal in this case. The same
remark will apply to the maximization problem. For a uniqueness result when 0 < ¢ < ¢*(u),
see Proposition 17.



2.3 Solution of the maximization problem

As for the minimization problem, we formulate a free boundary problem for the value function
that is motivated by our assumptions on the solution and by the dynamic programming principle:

Vmax 1 82 VYCmaX max max
( ) 2 3x2 (.T, 1) - _1’ T e [07 Qc [U ]bc ) 1] (215&)
( 1) = VI (2, —1) — ¢, x € [ag™, b (2.15Db)
Vm8L (0,1) = V***(1,1) = 0, (boundary conditions)  (2.15c¢)
Vi (@™ =, 1) = V2" (ag ™+, 1), (continuous fit) (2.15d)
VI (b ™ =, 1) = V" (0 +, 1), (continuous fit) (2.15¢)
avm avmax
c max__ 1) _— c max 4 q h fi 9 15f
ox (ac ) ) o (ac +, )7 (SmOOt t) ( 5 )
max max
a‘gcx (0 =,1) = fﬂg (be™ 4, 1), (smooth fit) (2.15g)
Ve (g, —1) = V(1 — 2, 1), x € 0,1] (symmetry) (2.15h)
where ag™* and b™* are two unknowns satisfying 3 1< ap®™ < b < 1. Even though the

solution of the free boundary problem in the max1mlzat10n problem is similar to the one in
the minimization problem, the two problems are not symmetric as we shall see in the next
proposition.

max maxr
;al" ", b

Proposition 5. Let ¢*(i) be given by (2.2). There exists a unique solution {V,"% q
to the free boundary problem (2.15).

T=b1""=1—a. and

1. If ¢ = c*(p), then the solution is given by a*
VI (x,a) = Ve (z,a) = f*(2), x €10,1], a € {£1}, (2.16)
where a. and Ve are given by Proposition 1 and f% is defined by (2.1).

2. If 0 < c<c*(u), then the solution is given by

o (72— 1), z € [0, a7
e 1) = § 5 b (07 1) —e w e fape b, (2.17)
s 4§, (&MH) _ 1) , z €]bme, 1,
Ve (g, —1) = V(1 — 2, 1), z € [0,1],

where a*** = 1 — b, and v, = a.e?* with b, and o, given by Proposition 1, bl s the
unique solution x € |al** 1] of the transcendental equation

FepletHe Ay p2ur—2p (1 — 2fycu2) —2ux + 2 — 1+ yep + ep® =0 (2.18)

and
R ) 219

Moreover, b'** > 1 — a,.

We construct the candidate strategy for the maximization problem as we did to get to (2.14).
Let

O = [0, a™[U]B, 1], O = (0,1 - BP[U]L — a2, 1],
Dlmax — [amax bmax]’ D?%X — [ bmax 1 max]

c I



Figure 1: Illustration of the control A¢ on the left-hand side and of G¢ on the right-hand side
in the case where 0 < ¢ < ¢*(p). Here we assume that the initial drift is positive.

with a'** and given in Proposition 5. We denote by G° the strategy constructed using the

ideas that led to (2.13) and that satisfies

max
bC

G, it X&° e omax,
G = { ! y G (2.20)

tT) -Gy, ifo‘”eDg;X,

where X is the process controlled by G¢. This strategy is pictured in Figure 1 and it satisfies
the following properties.

Proposition 6. If 0 < ¢ < ¢*(u), then for all z € [0,1] and a € {—1,1}, we have
E;q (TGC) <+oo  and Egq(Nyee(G°)) < +oo.

Theorem 7. Let c*(u) be given by (2.2). If G° is the control satisfying (2.20) and if V™%
denotes the unique solution of the free boundary problem (2.15) given in Proposition 5, then:

1. for 0 < c < c*(u), the value function is V"% = V" qnd G is an optimal control for the
problem (1.5);

2. for ¢ > c*(u), the value function is V"** = VCT(%, and A = (A; = a)>0 is Prga-a.s. the
unique optimal control for the problem (1.5).

3 Proofs

3.1 Free boundary problem for the minimization problem

The general solution to the o.d.e. (2.4a) is v(x) = —% + cre2HT 4 ¢y where ¢; and ¢y are
arbitrary constants. Since (2.4a) is satisfied on the two disjoint intervals [0, a.| and ]b., 1], this
yields four arbitrary constants to determine. The boundary conditions (2.4c) reduce this to two
unknown constants (see [18, Ch.2] for details). The value of V.(z,1) for = € [a, b is obtained
by using (2.4b) together with (2.4h). We then find that V. must satisfy

a1, aelal
Vo(z,1) =4 5t ac (e —1) +c, x € [ac, bel, (3.1)
I_Tx + Qe (eQM(l_x) - 1) , X G]bc7 1]’



where ag, ¢, a. and b, are four unknowns that we have to determine using the equations (2.4d)—
(2.4g). They give us after some simplifications, in the same order:

=20e 4 B (€7 — 1) = a (e — 1) +c, (3.2)

Qe (telbc - 1) +c= 1_T2bc + (073 (62/‘(171)6) - 1) ) (3 3)

Qpucr e 4 2[, e e 4 % =0, (3.4)
2pcr (€20 4 20-0)) 4 2 =, (3.5)

Multiply (3.2) by e?#%, (3.3) by e?tc, (3.4) by i e?ta and (3.5) by i e?#be to obtain, after
simplifications, respectively the four equations

ettt 4 (@: —ae+ M 4 c) e — . =0, (3.6)
agetbe 4 <M + c) e2hbe _ o e?t = 0, (3.7)
aeethae 4 e 43— 0, (3-8)

pettbe 4 e ”bc + aee? = 0. (3.9)

Subtract (3.7) from (3.9), and solve this equation for a., then insert this expression into the sum
of (3.7) and (3.9), to get a new equation (3.10) for b.. Solve (3.8) for (., and plug this value
into (3.6) to get a new equation (3.11) for a.. These equations are
2= (1(2b, — 1) + ep® — 1) + pu(2be — 1) + e +1 =0, (3.10)
plage e (1 —2p2a.)e? % — 2ua, + pae. — cp? —1 =0, (3.11)

and the formulas for o, and 3. are

_ 2ube [ 2be—1 1\ 1, —2u _ dpa.  eHac
a.=¢€ (7N +ec z) 2, Be = —ace Rt

Equations (3.10) for b. and (3.11) for a. are transcendental. We define
he(t)

he(s) = p2ace

et +cpu® —1) +t+cp®+1, (3.12)
23+(

1 —2p2ac)e’ — s + plae —cp® — 1, (3.13)

so that b. and a. are respectively solution of he(pu(2b. — 1)) = 0 and he(2ua.) = 0. Setting
= p1(2b. — 1) and s, = 2pua,, we find that solving the system (3.2)-(3.5) with 0 < a. < b, < &
is equivalent to solving

he(te) =0, (3.14)
he(se) = 0, (3.15)
ac= (e +ep’ = 1) gz e, (3.16)
e = —ace®™ — ™, (3.17)

with —pu <t. <0 and 0 < s, < te+ p.

Remark 8. By computing two derivatives, we see that A (t) > 0, for all ¢ € R, limy|_o, A/ (t) =
1, therefore hL(t) > 0, for all t € R, therefore h, is strictly increasing with he(—cu? — 1) =
—2e 2’ < 0 and ho(—cp?) = —e 2’ +1>0, SO that (3.14) admits a unique solution
te €] —cp?® — 1, —cp?[. On the other hand, h «(0) = —cp? < 0 and we see by direct calculation

that h.(s) = 0 if and only if s € {O log ( >} We set

e =108 (50 ) (3.18)

8




and depending on the sign of this value and of ke (), (3.15) has up to three solutions. This
will be discussed later on a case by case basis.

Proof of Proposition 1. Let us start with the case where ¢ = ¢* := ¢*(u). In this case, the unique
solution of (3.14) is given by

2
tc* = —C*,LL2 — 1— smﬁ% (319)

Indeed, by (2.2), (3.19) and direct computations,

e (tc*) = el (tc* + C*MQ - 1) + e + C*,U? +1

2
_ [ sinh(u) _ __w N S _ e
- ( M (1 1 sinh? () > > < 1 sinh? (1) 1> 1 sinh? () +1

=0.

Using the formula for ¢* in (2.2), we can write

ter = log (S””;(’” (1 —J1- Jgj@)) . (3.20)

Moreover, 0 > t.« > —pu. Indeed, the first inequality follows from the fact that sinh u > p and
the second one is equivalent to w (1 —4/1— %) > e #, which, in turn, is equivalent

to e?#(u — 1) 4+ p+ 1 > 0; this last inequality is satisfied for all 4 > 0. Plugging into (3.16) the
value of t.+ given by (3.19), or by (3.20) when it appears in an exponential, we obtain

_e_u

= Db (3.21)

O o*

We now observe that the unique solution s¢+ of (3.15) such that 0 < se» < tex + p is given by
Sex = tes + p. (3.22)
Indeed, by definition of ¢« (see (3.19) or (3.20)) and of ae+ in (3.21), we have

her(ter + p) = pPoier e T 4 (1 = 2 el T — (tee + p) + pP0ree — ¢ — 1
— ,Uf2ac* (etc*+y, o 1)2 + etc*+u _ (tc* + C*MQ) — - 1

2
. _—pe* sinh(u) (1 _ _ )
— 2sinh(p) |:€H < " (1 1 sinhz(u)>) 1:|

sinh() (1 g p2 S
+ef [ Iz <1 1 sinh2(u)>:| +4/1 sinh?(p) p—1

=0.

The uniqueness on the interval 10, te« + p] is obtained by considering the position of the extrema
of he+. Indeed, setting

and since sinh(p)/p > 1 for all u > 0, we have that me > p > te= + p > 0. Thus, the function
he(s) vanishes three times: the first time on the interval | — oo, [, then it reaches at 0 a local
minimum A (0) = —c*u?, then it increases, vanishes at t.« + u < M.+ and keeps increasing until
e where it reaches a local maximum. Therefore A% (1) > 0. Finally, he(s) vanishes a third
time on the interval |/m«, +00.



It remains to determine the parameter .« which, by (3.17), (3.22), (3.20) and (3.21), is given
by

_eh
66* = 2usinh(p) (323)

We have therefore solved the system (3.14)—(3.17) and we have found that

1 tc* 1 SC* tC*+/’L

with ¢« given by (3.19). This establishes the existence and uniqueness of the solution V.« of the
free boundary problem (2.4). This solution is given by

1% B (=), weban],
c* 71 = — -z
ED =Y L e (#0079 21), ae fae 1]
—z 1_6—2;1,1
S AR nE e (329
T T ey @ € lac, 1],
= fi(z) = E, (oM), z € [0,1],

and Ves (z, —1) = Ver (1 — =,

1) = f7#(z). By definition of A, we have f% = J.(x,a,A) where
A is the constant strategy (A i

= a). Finally, we find using (3.24) and (3.20) that

1 sinh (4) u?

which, according to (2.3), is the location of the global maximum of f#(x)— f~#(x) on the interval
[0,1]. Therefore, by definition of ¢*(u), we have fH(ac) = f~H(ac) + ¢*(n), and this completes
the proof of the first part of Proposition 1.

Let us now consider 0 < ¢ < ¢*(u). The form of the solution V, of the free boundary
problem (2.4) given in (2.8) has already been discussed starting with (3.1) and reduced to the
resolution of the equivalent system (3.14)—(3.17) with —pu < t. < 0 and 0 < s, < t. + p.

We start by showing that the unique solution ¢, of (3.14) mentioned in Remark 8 is such that
—p1 < te < to < —cp?. The first inequality is mentioned just after (3.20) and the last inequality,
as well as the uniqueness of the solution, has been discussed in Remark 8. Observe that by
definition, ¢ — h.(t) and ¢ — h.(t) are both strictly increasing. Thus, h¢(te+) < hex(ter) = 0 and
since, by definition, h.(t.) = 0, we obtain the last inequality ¢, < ¢, and this establishes (2.9)
of Proposition 1.

We now establish (2.10). Notice that by definition of t., we have e?'(t. + cu® — 1) + t. +
cp® + 1 = 0, which is equivalent to

)

a/C* = bC* =

—1+e%e  sinh(t.)
t ? = = 3.26
et op 1+ e2te cosh(t.) (3:26)

and which yields (2.10). Indeed, by (3.16),

1 P | ek
e = (te+ cp® —1)=——ele™H = c ¢

= . 3.27
2u? 2u? cosh(t.)  2u?cosh(2ub. — ) (3:27)

In order to prove (2.11) or, equivalently, to show that there exists a unique solution s,
of (3.15) such that 0 < s. < t. + u, we need to study the function h. and more particularly the
position of its local maximum h.(m.) (see Remark 8). Observe that by (3.18) and (3.27),

m. = log ( > = p + log (cosh(tc)) > p.

212
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As t. < 0, we have
0 < 2ub. =t.+ p < Me. (3.28)

Plugging s = 2ub, = t. + p into (3.13), we see that

iLc(tc +pu) = p2o (etﬁ'“ - 1)2 + eletr — (tc + c,u2) —pu—1.

Since pa. = —#:_tc by (2.10), and expressing t. + cu? using (3.26), we obtain
il (t —+ ) — i (etc+N _ 1)2 _ etc+2ﬂ (etc + eftc) + etc+/‘« _ e*tc‘i’u
c\"c /’L - th + e_tc

+ (p+1) (et°+“ + e_tc+“) ],

and this simplifies to
- sinh(p)

he(te +p) = —p+ cosh(t,) (3.29)
Define h(p)
__, sinh(u
R(t) = =i+ cosh(t)

Clearly, this function has two zeros £ < 0 and —t > 0. From (3.29), k(t.+) =
by (3.22). Therefore, t = t.+ and, since t.« < t. < 0, we conclude that k(t.) >
that

hee(tes + 1) =0
0, which implies

Bc(2,ubc) = ﬁc(tc + ,u) = k(tc) > 0. (330)

Since h, is monotone on [0,m] and BC(O) = —cpu? < 0, we conclude that 0 < s. < t. + p, which
establishes (2.11). Finally, (2.12) is simply a rewriting of (3.17). O

3.2 Proof of optimality for the minimization problem

We now aim to prove that the solution V. of (2.4) given in Proposition 1 is indeed the value
function. For this, we could apply the Verification Theorem 6.2 of [10]. However, we prefer
to give a direct proof, in which the main steps correspond to checking assumptions of the
Verification Theorem. Indeed, Lemma 9 below corresponds to verifying hypotheses (vi) and (x)
of [10, Theorem 6.2], and Corollary 11 below corresponds to hypothesis (ii) there. However,
by detailing the proof, we can identify where any deviation from the strategy A¢ leads to a
suboptimal cost function, and this will be useful in our result on uniqueness (Proposition 17 in
Section 4).

Before proving Proposition 2, we introduce some notations. Let (7,) be the sequence of
switching times of A¢ and let 74 be the exit time of X4° from [0, 1]. For a Brownian motion B
starting a.s. at « and for a < x < b, let

pE(a,b) = P, {B; & ut hits a before b} . (3.31)

These quantities satisfy the translation invariance property p(a,b) = pirh(a + h,b+ h) for all
h € R and the symmetry property p; (a,b) = p*_(—a, —b). We also define

aib =inf{t > 0: By + ut ¢]a,b[},
E.(y,a,b) =E (O'Ib ) Ba+b + /W:,b =y,By = x) , y € {a,b}. (3.32)

These expectations and probabilities can all be explicitly computed (see e.g. [1, 11.2.3]). In
particular, the expectations are finite and 0 < p(a,b) < 1.

11



Proof of Proposition 2. Using the above notations, we find that for all £ € N,

Py (Noac(AS) = k) =Py, (1p < 74° < 711)
=Psa (TAC < Tyt | 6 < TAC) Py.a (Tk <74 | Th—1 < TAC)
X oo X Ppg (7'2 < 74 | 71 < TAC) Py (7'1 < TAC)
since {r; < 74} D {rj41 <747} for all j > 1.
If z € {0,1}, then E; o (747) = Eg 4 (N, a¢(A°)) = 0. Consider now the case where z € Jb, 1
and A5_ = a = 1. Notice that for all k > 1, on {7, < 4, X;?: =b.if kis odd and Xﬁ}; =1-b,

if k£ is even. Clearly, P; 1 (7‘1 < TAC) = p}(be, 1) and since the process X4 is strong Markov by
construction, for k even (but also, by symmetry, for £ odd),

Py (Tk+1 < 74 | e < TAE) =P1p.1 (7'1 < TAC) = pf_bc(bc, 1).
Therefore,

1— pF(be, 1), if k =0,

k—1 . 3.33
P00 1) (0 (b D) (L=t (1)), k1, )

PxJ (NTAC (AC) = k:) = {

that is, given N_ac(A°) > 1, N_ac(A€) is a geometric r.v. with parameter 1 —pf_bc(bc, 1) €]0,1].
Therefore, E; 1 (N, ac(A°)) < 400, and this establishes the second statement in Proposition 2.
Turning to the other statement, by the law of total probability,

+oo
Eoq (7)) = Eon (7% | 7o < 7% < 11) Pat (Wyac(A9) = k). (3.34)
k=0
For k =0,

E.1 (740 <74 < 1) = E,(1,bc, 1).

For k> 1, on {7, < 4 < Tht1 )

AC

T :Tl—t—(Tg—71)+---+(Tk—7k,1)—|—(7’4 — T)-

By the strong Markov property,
Ezn (7’1 ‘ < 174 < Tk+1) =E;1 (7’1 ‘ T = 0;;’1> = Ey(be, be, 1),
and for 2 < ¢ < k,
Eop (7o — 7e—1 |76 < < Tht1) = E1-p, (be, be, 1)

and
E; 1 (TA — Tk | T < 7-A < Tk+1) = El—bc(l,bc, 1)‘

)

Therefore, for k > 1,
Eox (7% |76 < 7% < 7ig1) = Ealbe, be, 1) + (K — 1) By, (be, be, 1) + E1_p, (1, be, 1),

and we conclude from (3.33) and (3.34) that E, 1 (717) < 4oc.
The cases = € [0,a.], = € [ac, b.] and a = —1 are treated similarly. This completes the proof
of Proposition 2. I
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Lemma 9. Let L, denote the infinitesimal generator of a Brownian motion with drift au,
a € {&1}; that is, for f € C*([0,1],R)

Lof(@) = anL @)+ 12 () (3.35)

Then, for all 0 < ¢ < c*(p),
1+ LoVe(z,a) =0, for all x € C,, (3.36)
1+ LoVe(z,a) >0, for allx € D, \ 0D,. (3.37)

Moreover, if ¢ = ¢*(u), then
1+ LoVes(2,a) = 0, for all x € [0,1]. (3.38)

Proof. In the case where ¢ = ¢*(u), (3.38) is a standard property of Vo« (x,a) = f%(x) (see (2.6)),
but it is also easily obtained from the explicit expression that we have for f* (see (2.1)).

Assume 0 < ¢ < ¢* and consider the case where a = 1, since the other case is similar. The

function V.(z,1) is C? in both C; and D; \ dD;. The first equality (3.36) follows from the

construction of V, (see (2.4a)). It remains to prove (3.37). By construction (see (2.4b)), for all

x € D1\ 0D; =)ac, b.|, we have V,(z,1) = ¢+ V.(z,—1) and thus,
_ .
L+ Ly Ve(r, 1) =14+ Li(c+ Ve(z, -1)) = 1+ p %‘f(m, -1)+ % 88;/;

Moreover, since ]ac, b.[ belongs to C_; in which (3.36) is satisfied, we have

(x,-1).

oy 12 o
oz 2

ox

14+ Ly Ve(z, 1) = 14 p (z,—1)—(1+L_1V(x, 1)) = 2 ——(x, —1). (3.39)

Thus, we have to prove that ,u%zc (x,—1) > 0 for all x € Dy \ 0Dy. If = €]ac,b[, then
1—x €]l —be1—a.[Clbe, 1] and according to (2.8),

‘7c($, —1) = ‘7(:(1 —x, 1) = % + a, (er,z . 1) ‘

Therefore, 1 %ZC (z,—1) = 1+ 242 for all x €ac,be[. As z €]ac,b[C]0, 5[ and o < 0,
we get according to (3.27) that

1

1+ 2020 > 1+ 2p et =1 — ——————
+ 2uaee™™ > 1+ 2pu°ace cosh(2be — 1)

>0,

which establishes the lemma. O
Lemma 10. For all 0 < ¢ < ¢*(p) and any a € {—1,1}, if v € C,, then
Ve(w,a) < ¢+ Vo(x, —a).

Proof. In the case where ¢ = ¢* (), the result follows immediately from (2.7) together with (2.6).
Assume 0 < ¢ < ¢*(u) and consider the case where a = 1, since the other case is similar. We
distinguish four cases.

Case 1. If z € [0,a,[, then 1 — z €]1 — a., 1] C]b., 1] and, according to (2.4h) and (2.8),
e+ Velw, =1) = Ve(z,1) = ¢+ 22 4 a, (7 — 1) = B (e = 1) =: du(2).

We will show that dy(z) > 0 for = € [0, a.[. Indeed, d(x) vanishes at most twice on R, because
the equation d}(x) = 0 is a quadratic equation in e?**. The roots of d}(z) are given by

1 1
= —log (- + \/A1> : (3.40)

2 2ula
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with A = — % By (2.12) and (2.10), we have

1
4pta?
2puae—p 2
1—4u* = (1+ 2Paee®e) = (1- —S 1 >0
Macﬁc ( +aptace ) COSh(2Mbc_M)

and thus A; > 0. Using (2.12), (2.10) and the fact that a. < b., we see that 5. < 0, and so
(—2pa) ™' — /A7 > 0. Therefore, 27 € R. From the formula for dj(z) and (2.12), we see that

2uac

di(ac) = § + 2p10e€™ 4 2uBoe% = £ 4 2pu0ce™ — 2 <ace4ﬂ% + eu?) e~ 2Hae — ),

Therefore, a. € {z7,z]}. By (3.28),

-1
0 < 2ua. < 2ub. < m. = log (2M204 > .
&

Since 2ux] < M. < 2px, we find that 27 = a. < z. This implies that the function d; is
monotone decreasing on | — 00, a.| with d1(0) = ¢ > 0 and d;i(a.) = 0 by (2.4b). The function
d; is thus strictly positive on [0, a.[, which proves the desired inequality.

Case 2. If x €]be, 1 — b.[, then 1 —x €]b., 1 — b.[ and according to (2.4h) and (2.8), we have

c+ Velx,—1) = Vo(z,1) = c+ % + a (e — e ) = dy(). (3.41)
We will show that da(x) > 0 for x €]b.,1 — b.[. Indeed, its derivative dj, vanishes at most twice
on R, at
:Uzi = 21Hlog <—2Niac + \/E) )
where Ay = m —e2#. By (2.10), we find that —2pu’a, = m < e " since b, < 3.

Hence, Ay > 0, and according to (2.4b) and condition (2.4g), we have that d5(b.) = 0. Moreover,
we notice that dy(1 — b.) = dj(b.) = 0. Thus, z;, = b, < 3 = 1 — b. and the function dy is
monotone increasing on ]b., 1 — b.[. From (2.4b), we have that da(b.) = 0, thus, the function ds
is strictly positive on ]b., 1 — b.[, which proves the desired inequality.

Case 3. If v € [1 — b., 1 — ac|, then 1 — z € [a, b;] = D1 and by (2.4h) and (2.4Db),
c+Vi(r,—1) = Ve(z,1) =c+ V(1 —2,—-1) +c— Ve(x,1) = 2¢ > 0, (3.42)
which proves the desired inequality.

Case 4. If x €]1 — a,, 1], then 1 — z € [0, a.] and we have, according to (2.4h) and (2.8),

7 1) T _._olz® —2u(i—a) _ 1) _ 2u(l-z) _ 1) _.
c+Ve(x,—1) = Ve(z,1) =c—2 . —i—ﬂc<e 1) ac<e 1) =: d3(z).

We see that d3(z) = 2¢ — di(1 — z). Thus, ds is monotone on |1 — a, 1] and since d3(1 — a.) =
2¢ —dj(ac) = 2c and d3(1) = 2¢ — d1(0) = ¢, the function dj is strictly positive on this interval.
This proves the desired inequality in this last case. O

Let us define H¢ : Ry x [0,1] x {—1,1} x N — Ry by
(t,z,a,n) — H(t,z,a,n) ==t +cn + V.(z,a). (3.43)

For A € A, we consider the process Hf’A = H¢(t, X/, A, Ni(A)), where N;(A) is given by (1.2),

and we write AHS = HSA — HSC_A Observe that Hg’_A Ve(z,a), Py o-almost surely.

14



Corollary 11. Let 0 < ¢ < ¢*(u), let A° denote the control satisfying (2.14) and let A € A be
any admissible control. Then, for all x € [0,1] and a € {—1,1}, Py 4-a.s., for all s € Ry: (1)

AH§’AC =0; (2) AHSC’A >0; and (3) AH;:”A > 0 if and only ifo € Ca, and As # As—.

Proof. Let A € A and let s € Ry. If s is a time of continuity of the strategy A, then clearly
AHSC’A = 0. Assume s is such that As_ # As. Then AN (A) =1 and

AHSC’A =c+ ‘7C(X;4> —As-) - VC(X‘?’AS*)'

If XA € Dga,_, then AHS? = 0 by construction of V, (see (2.4b)). If X2 € Ca,_, then

AHS? > 0 by Lemma 10. For the control A° satisfying (2.14), AS_ # AS if and only if
X;“E € Dye_, and this completes the proof. ]

We can now prove the following proposition.

Proposition 12. Let A° denote the candidate strategy satisfying (2.14), let H® be defined
by (3.43) and let c* () be given by (2.2). If0 < ¢ < ¢*(u), then for allx € [0,1] and a € {—1,1}:

1. the process (Hf/’\‘?_Ac )e=0 s a martingale under Py 4;

2. for any A € A, the process (H; A

t/’\TA)t>0 is a submartingale under Py ,.
In order to prove this, we first define an extension of V.. Since this function is defined from
[0,1] x {—1,1} into R, we let
_ Vo(x,1) = Vi(z, -1 Vo(z, 1) + Vi(z, -1
Vo(z,y) = c(z,1) o(z, )y+ c(@,1) + Ve(x )7
2 2
denote its linear interpolation on [0, 1] x [—1,1], so that V.(x,y) becomes a C*°-function in the
variable y € [—1,1]. Furthermore, we let D = {ac, be, 1 — ac, 1 — b.} be the set of discontinuities

y € [-1,1], (3.44)

of %(% y) in the variable x when 0 < ¢ < ¢*.

Proof of Proposition 12. Using the extension of V., we see that H°(t,x,y,n) is C* in the vari-
ables ¢,y and n, in the variable z, it is C! on [0,1] and C* on [0, 1]\ D. Applying Itd’s Formula
for processes with jumps (see e.g. [15, p.81]) and a local time-space formula for the variable x
(see [11, Theorem 3.2]), we get for all ¢t > 0,

IATA tATA > tATA [/
HC’A :HS’A-F/ 1- d8+/ a‘/c(XfaAs) dX;4+/ a‘/c(X;A’AS_)dAS
0 0 ox 0 dy

tATA 1 ptntt P2V, 4
+/0 Cst(A) + 2/0 61‘2 (XS 7AS)1{X§4¢’D}(S) ds

1 tATA 8‘70 8‘/5
i1 /O ( (XA, A, ) - <X;“—,As_>) 1 xaepy(s) dEP(X)

2 ox ox
A%

c, A c

+ (AHS — ¢AN,(A) — B

0<s<tATA

(X;AvAS)AAs> , (3.45)

where P(X4) is the local time in D of the process X 4. By the smooth fit conditions, we have
%‘;ﬂ (x+,a) — %‘;ﬂ (x—,a) = 0 for all x € [0,1] and for all a € {—1,1}. Thus, the integral with
respect to the local time vanishes. If A stands for the Lebesgue measure, then with probability
L

lixagpy =1, for A —almost all s € Ry,
because X4 is a diffusion and D is a finite set. Moreover, the semimartingales (N;(A)) and (A;)
are piecewise constant, so (3.45) reduces to
tATA 8‘70
Ox

tATA
HA, _HS’A—i—/O (1+LASVC(X;4,AS))ds+/O (X} Ag)dBo+ > AHSA

0<s<tATA
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where L, is the operator defined in (3.35) (if we need a value for %2;6 (z,a) for x € D, we

arbitrarily take the second right derivative).
On one hand, if A = A¢ then by Corollary 11, AHSC’A = ( for all s > 0. Moreover,
(XA € Cy,AS =1} = {AS =1} and {X2° € O_1, AS = —1} = {AS = —1}. Therefore,

IATAS T

t/\TAC
HOA —HS’A +/0 (1 +L1VC(X;“C,1))11{X;40e01,Ag=1} ds

7&/\7"4C _ . t/\‘rAC 8V .
T / (14 L Va(XA, —1) L xacce ey ds + / ©(X2° A%) dB,
0 s s 0 8113

. t/\7’AC 6‘7 .
—Hpt s [ T g a,
0 X

by Lemma 9. Finally, z — %ZC (z,+£1) is bounded on [0, 1], so the stochastic integral above is a
martingale, which establishes the first statement.
On the other hand, for an arbitrary control A € A, we have by the above that for all u < t,

tATA
A JA 7
Htc/\TA B H;/\TA = /u/\TA (1 + LAS‘/C(XS7 AS)) R{X?ECAS}U{Xg‘lGDAS} ds (346)
tATA 8‘7
+/ 5 (X} A)dBo+ Y AHSA
uAT4 * UNTALsENTA
tATA 8‘7
> / ) a; (X2 Ag)dBo+ > AHSA (3.47)
unt UNTA<LsENTA
Tt gy
> [ e A s,
uATA Ox
where we used Lemma 9 and Corollary 11. This shows that H%* is a submartingale. O

We are now ready to prove the optimality of our candidate strategy.

Proof of Theorem 3. Let 0 < ¢ < ¢*(u). On one hand, by Corollary 11 and by the first statement
of Proposition 12, we have that under P, ,,

Vaz,a) = HSA = HOY = E,, (HA )

tATAC

=By (t AT+ eNpppae (A9) + Ve (X0 ac, A, ac)),

tATAC

for all t > 0. Since V, is a continuous and bounded function, since N (A€) is an increasing process
and since by Proposition 2, E; , (74°) < 400 and E; 4 (N,ac(A)) < +00, we get by dominated
and monotone convergence that

Ve(z,a) = lim Egq (A T4 4 eNyppae (A% + Ve (X{0ae, A7 ac)

= ]Ex,a (TAC + CNTAC (AC)) ) (348)

as Xf:c € {0,1} and V.(0,£1) = V.(1,£1) = 0. On the other hand, let A € A be such that
Je(z,a, A) < 400. Then, by Corollary 11 and by the second statement of Proposition 12,

V(@) = HE < B < Bpo (HELL),

tATA

for all t > 0. As just above, we get by dominated and monotone convergence that

tATA

Ve(w,0) < lim By, (HC’A ) = o (T + N a(A)) . (3.49)
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If J.(z,a,A) = +oo, it is then clear that V.(x,a) < J.(x,a, A). Combining (3.48) and (3.49),
we obtain
Ve(z,a) = AD&E%Q(TA +¢eN a(A)) = Ve(z,a),
€

where the infimum is attained by the control A¢. This proves the optimality of the strategy A€
in the case where 0 < ¢ < ¢*(u).
Let ¢*(pn) < c¢. Then

. A * : A
Ver(z,0) = fllrelfétEx’a (7% + ¢*N,a(4)) < fllIelilEx’a (7% + cNya(A4)) = Ve(z, a),

by definition of the value function. Moreover, if A denotes the constant strategy, then
Jer(2,a, A) = Ju(2,a, A) = By o(77),

and, again by definition of the value function, V.(z,a) < J.(x,a, A). Finally, by (2.6) and by
the first part of the proof, we know that V,-(z,a) = V- (2, a) = Jo(2,a, A). Hence, Vo (2, a) =
Ve(z,a) and the strategy A is optimal for all ¢ > ¢*(p).

Suppose now that ¢ > ¢*(i) and that there exists another optimal strategy A € A such that

there exists (z,a) € [0,1] x {—1,1} with Py 4(N,_1(A) > 0) > 0. Then
By (774 eNa(A)) > By (744 N a(A)) > Ve (2,0) = Vil a),

which contradicts the optimality hypothesis. This shows that if ¢ > ¢*(u), then A is the unique
optimal strategy. O

3.3 Free boundary problem for the maximization problem

The resolution of the free boundary problem (2.15), as well as the proof of the optimality of the
candidate control, are similar to what we have already done in the minimization problem; we
will however highlight the places where the computations differ.

Proof of Proposition 5. Let 0 < ¢ < ¢*(u). The general the solution to (2.15a) is the same as
for (2.4a), and since (2.15a) is satisfied in the two intervals [0,a2***[ and |b2***, 1], there are
four constants to determine, which are reduced to two by the boundary conditions (2.15c).
Then, (2.15b) and (2.15h) give the form of V™a(x, 1) given in (2.17). The four unknowns
des Ve, ™ and b have to be determined using (2.15d)—(2.15g). Using (2.17), these equations
give us, after some simplifications, in the same the order:

1—2gmax F e (6_2ua21ax _ 1) =7 <€_2u(1_a2]ax) _ 1) —e

I
o (€720 1) = T g (au1—b) _p)),

max

20 <€_2'LL(1_% ) + 6—2#arcnax> +

Qe 2=V | g5 2n(1-b2%) |

=0,
=0.

TN TN

Observe that setting y.e™2* = a, and 1 — a™® = b, the equations (3.50) and (3.52) become
identical to (3.3) and (3.5), respectively. In the proof of Proposition 1, we have already estab-
lished that (3.3) and (3.5) have a unique solution o, and 0 < b, < 3. Thus, it remains only to
prove the existence of d. and b** solution of (3.51) and (3.53) such that d,. satisfies (2.19) and
1—a. < b < 1.

Equation (2.19) follows directly from (3.53). Substituting (2.19) into (3.51), multiplying by
p? and rearranging terms, we get (2.18). Now set

R (g) = ryople™ 2 478 (1= 27ep®) 4+ s — 1+ yep® + cp?, (3.54)
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so that (2.18) is equivalent to AP®*(2u(1 — ™)) = 0. Observe that h™(0) = cu? and,
by (2.10), that

;Lmax(zub )= — e e 4be 4 o=2pbe (1 4 —e# + 2ub. — 1
¢ ¢ 2 cosh(2ub. — 1) cosh(2ub, — p) ¢
et 4o
— c
2 cosh(2ub. — ) a
inh(2ub. — inh
s s
cosh(2ub. — p)  cosh(2ub. — )
sinh(p)

 cosh(2ube — p)’

where we used (3.26) with t. = 2ub. — 1 to get the last equality. Looking back to (3.29) and
(3.30), we see that

sinh(u) -

AR (2b,) = p = —h¢(2ub.) < 0.

~ cosh(2pbe — 1)

Furthermore, from (3.54), we see that the derivative of AF* vanishes twice: at 0 and at
log(—27.1%) (compare also with (3.18)). By (2.10), we have that

eM

log (—2fycu2) = log (—204562’%2) = log ( ) = p — log(cosh(2ub, — p)).

cosh(2ub, — p)

Since 2ub. — p < 0 because b. € [0, 3| by Proposition 1, we have that — log(cosh(2ub. — p)) >
241b. — p which is equivalent by the preceding to 2ub. < log(—27.u?). Therefore, the function
ﬁznax is monotone decreasing on |0, 2ub.[ and vanishes only once on this interval, at a value which
we denote 2u(1 — b**). We have thus established the existence of a number 7** €]1 — b, 1]
which is the unique solution of (2.18).

Finally, we check that b*** > 1—a,.. This is clearly equivalent to showing that 2u(1—b*) <
2puac, where 2ua, = s. is the unique solution of he(s) = 0 on ]0,%, + u[ (see (3.15)). We
have just shown that ;chnax is strictly decreasing on [0,¢. + p]. The function he is strictly
increasing on [0, ¢, + u] (see the end of the proof of Proposition 1). Thus, in order to prove that

2u(1 — b™) < s, it suffices to show that h.(s) < —h™¥(s) for all s €]0,t. + p[. We have

he(s) + A2 (s) = p2a. (628 — 2% + 14 e 4 e — 262“6_5) +ef+e -2
= plac(e* +ef —2)(effe ST pef fet —2
= plae (4 sinh? (2)) (2¢* cosh(s — p)) + 4 sinh? (3).

which is strictly negative on |0, t. + p[ since by (2.10) and the fact that —p < t. < 0,

_ cosh(s — p)

2p% et cosh(s — 1=1
p-aet cosh(s — p) + cosh(L.)

<0, for all s €]0,t. + pf.

The proof of part 2 of Proposition 5 is complete. We note for future reference that
2u(1 = b2%) < t. + p. (3.55)

Let us now consider the case ¢ = ¢*(u). By the preceding, we have immediately that
ag™ =1 — bex and that e« = ae-€2". Tt remains to see that b = ag®* or, equivalently, that
2p(1—a®) is a solution of h2**(s) = 0. Using the formula for ¢* in (2.2) and for h2** in (3.54),

the expression of ae+ in (3.21) and the formula for a2 = 1 — b~ in (3.24) via either (3.19)
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or (3.20), we find that
R (2u(1 — a)) = BBt + pr)
:%*M2672(tc*+u) 4 e~ (tex+n) (1 _ 2%*M2) et p—1+ %*H2 + C*Mz

2
= Yo 1 (6‘“0"*“) —~ 1) e et 4t b — 14 i

2
o pet —H__p 1 _ —H__ P 1
- 2sinh(p) € sinh(u) i 1 t+e sinh(u) i
=yt sinh? () =y sinh?(p)
2
S —
1 sinh? (p) tu—1
2 2 2
p p p
1424 [ 1—= 1—— 1 1——
_ pen 2 + \/ sinh? (1) + sinh2 (1) n u2 +\/ sinh? (1)
- 2sinh(u) sinh? () 12 2 sinh? () p?
sinh? () sinh2 (1)

2
14 /1-—E
_ pet + peH +\/ sinh? (1) .1 u? tu—1

2sinh(u) sinh(p) 12 "~ sinh2(p)
sinh? (u)
. el ek
- 2 sinh(p) + 2 sinh(u) +p

Therefore, as®™ = b5 and by (2.19), the last parameter .- is given by

_ 1 —2p(1-bm2x —4p(1-"2*) _ 1 —(tex+
(50* _—Fe /‘L( c* _f}/ce lu‘( c* )__Pe (c lu‘)

(tc* +,u) _ e H

_9 B
= Yer€ T 2pusinh(p) T Qe

(for the third equality, use (3.20)). Replacing the value of 7.~ and e~ in the general expression
for V¥ given in (2.17), we finally obtain as in (3.25) that, for all z € [0, 1],

— —x 1—e2n —
max(p )= 4 = O V.(z1 .
(1) = o = V(1) (3.56)
and VX (g, —1) = V(1 — 2, 1) from (2.15h). This completes the proof. O

3.4 Proof of optimality for the maximization problem

Now that we have the solution of the free boundary problem (2.15), we shall prove that Vmax
is equal to the value function V"** and that G is an optimal control. This will be similar to
the proof of optimality in the minimization problem.

Proof of Proposition 6. The proof is the same as for Proposition 2. O

Lemma 13. Let L, denote the operator defined in (3.35). Then, for all 0 < ¢ < ¢*(u),

1+ L,V (x,a) =0, for all x € C "%,
1+ L,V (x,a) <0, for all x € D"\ 0D]"*.

Moreover, if ¢ = ¢*(u), then

1+ L,V %(x,a) = 0, for all x € [0,1].

c*
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Proof. The proof follows the same steps as for Lemma 9. In particular, for z € Ja®*, b%*[, as
a

in (3.39), 1+ L,V (2,1) = 2 e (2, —1) and 1 — 2 €]1 — b, 1 — am[ C [0, ™, and so

c

VmaxX(p —1) = V(1 —1,1) = —1_7"” + Ve (e’Z“(l’I) — 1) )
Therefore,

a‘zjrnax
ox

(2, =1) = 14 2Ppee 2070 < 14 2020 =1 — Zqmse™" ™ = tanh(t) <0,

where we have used the equalities v, = a.e?t <0, a?® =1 — b, (3.27) and 2pub. = t. + p, and
the fact that t. < 0. This proves Lemma, 13. ]

Lemma 14. For all 0 < ¢ < ¢*(p) and any a € {—1,1}, if x € C"*, then
VI (x,a) > V2, —a) — c.

Proof. We compare the left- and right-hand sides of this inequality on a case by case basis as in
the proof of Lemma 10. In the case where ¢ = ¢*(u), the result follows immediately from (2.16)
together with (2.7). Assume 0 < ¢ < ¢*(p) and, without loss of generality, that a = 1.

Case 1. If x € [0,1 — b**[, then 1 — x €]b** 1] and according to (2.15h) and (2.17),
Vot (@, —1) = Vo' (@, 1) — e = e (@),

where
e1(x) == 2733 + 0¢ (62’“ -1) =7 (6_2‘”” -1)—c (3.57)

The sign of the derivative €} (x) = 2ue™ 2" (5. 4 1 =2e24% 1 ~.) is determined by a quadratic
function of e?#* which vanishes at most twice on R, at yli, which are given by the formula (3.40)
for x{c, but with a. replaced by . and 5. replaced by 7.. When . # 0, the discriminant

— | e e .
Ay = 1452 T 3. 1S positive since

max 2
A >0 & 147,20 < (1 + 2%y e 210 )> >0,

by (2.19). Using again (2.19), we see that e} (1 — b2*) = 0 and so 1 — b2 € {yF}. If 6. > 0,
then /A1 > T%JC (recall that 7. < 0) and y;’ is the only root of €}. The point 1 — @ = yf
is thus the global minimum of the function e; and since e;(0) = —¢ < 0, we have e;(x) < 0
for all z € [0,1 — b™*[. If §. < 0, then €} has two distinct real roots y; < y; such that

2uy; < log (—ﬁ) < 2uy;. Using (2.19) and (3.27), we see that

1— b;nax —yy o 6*2,“(1*1)2“&") > —2#2(50 PN COSh(tC) < 6“,2#(17brgnax)'

The last inequality is satisfied since cosh(t.) < e~% because t. < 0, and 2u(1 — b2*¥) €0, pu+ t¢[
by (3.55). Thus, e; is strictly decreasing on [0,1 — b7**[ with e1(0) = —c < 0 and so e;(z) <0
for all z € [0,1 — b2¥[. Finally, if 6, = 0, then y;” = y; = 1 — b3 and € (z) < 0 if and only if
x €]0,1 — [, and so e1(z) < 0 for all x € [0,1 — b***[. Therefore, for all possible values of
¢, we have shown that e;(z) < 0 for all z € [0, bT**(.

Case 2. If x € [1 — b2, 1 — a?], then 1 — 2 € [al®, 0] = D" and by (2.15h)
and (2.15b),

Ve (p —1) — V*(x, 1) — ¢ = V™™ (1 — 2,1) — V™ (2,1) —c = —2¢ < 0.

20



Case 3. If © €1 — a*, a2, then 1 — x €]1 — a2, a2 and by (2.17),

C )’ e c
chax(‘r7 _1) _ chax(x, 1) —c=—c+ 723&;1 + Ve (62M($_1) — 6_2/”6) = —2c+ d2($)7

where dy(z) is given by (3.41). Since a*®* = 1 — b, and since we have seen that da(-) is
strictly increasing on |b., 1 — b.[ with da(b.) = 0, and da(1 — b.) = 2¢ by (3.42), we have that

—2c+ da(z) < 0 for all z €]1 — a®* o[

(& Cc

Case 4. If © € ]b**,1], then 1 —z € [0,1 — b"**[ and by (2.17),
T (g, 1) — Tm%(z,1) — ¢ = —ex (1 — 2) — 2,
where e; is defined in (3.57). Notice that
—e1(1 = b2 ) — 2¢ = — (V2¥X(0™, 1) — V(1 — b, 1) — ¢) —2¢ =0,

by (2.15b). It follows from the properties of e; that we already discussed in part 1 that —e; (1 —
x) —2¢ < 0 for all x € |62**, 1]. This proves the desired inequality in this last case and completes
the proof. O

Let us define K¢ : Ry x [0,1] x {—1,1} x N — Ry by
(t,z,a,n) — K°(t,z,a,n) :=t — cn + V"™ (x, a). (3.58)

For A € A, we consider the process KtC’A = K°(t, X/*, As, N¢y(A)). The next corollary follows
immediately from Lemma 14.

Corollary 15. Let 0 < ¢ < ¢*(u), let G¢ denote the control satisfying (2.20) and let A € A be
any admissible control. Then, for all x € [0,1] and a € {—1,1}, Py 4-a.s., for all s € Ry: (1)
AKSY =0; (2) AKS < 0; (3) AKS™ <0 if and only if X2 € CJ° and A, # A,_.

This leads to the following property of the process K¢ 4.

Proposition 16. Let G° denote the candidate strategy satisfying (2.20), let K¢ be defined
by (3.58) and let c*(u) be given by (2.2). If 0 < ¢ < ¢*(u), then:

c . .
1. the process (Ktcﬁcc)@o is a martingale under Py o;

2. for any A € A, the process (Kf/’éA)@o is a supermartingale under Py ,.
Proof. This is established by using [t6’s formula together with a local time-space formula, as

well as Lemma 13 and Corollary 15, in the same way as in the proof of Proposition 12. O

Proof of Theorem 7. The proof is exactly the same as the one of Theorem 3, using in this case
the supermartingale property given in Proposition 16. ]

4 Further results

In this last section, we present a result on generic uniqueness of the optimal strategy, as well as
a scaling property. We also consider the limiting case where ¢ | 0 and verify that it is consistent
with the classical result of [5]. These statements are given only for the minimization problem
but it is not difficult to see that they are also valid for the maximization problem. At the end
of this section, we provide illustrations of the value functions of both problems.

In the minimization problem, strictly speaking, we do not have uniqueness of the optimal
control in general, since for ¢ = ¢*(u), the strategy A" is equivalent to the constant strategy
A and both are optimal. It turns out, however, that this is the only case where there are two
distinct optimal strategies. The case where ¢ > ¢*(u) has already been discussed in Theorem 3,
so we now consider the case ¢ < ¢*(u).
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Proposition 17 (Generic uniqueness). Let 0 < ¢ < ¢*(u) and let A € A be a strategy such that
for some (z,a) € [0,1] x {—1,1}, either p1 >0 or 0 < ¢ < c*(u) and p2 > 0, where

p1:=Prq (Ht € [O,TA] : X{q € Cy, and Ay # At,) ,
p2 =P, (3t € (0,74 X* € Da,).
Then A is Py o-sub-optimal, in the sense that Ve(z,a) < Egq (TA +¢cN,a (A)) .

Remark 18. The condition p; > 0 means that with positive probability, the strategy A pre-
scribes at least once to switch drifts in the continuation area of the control A¢. The condition
p2 > 0 means that with positive probability, the strategy A prescribes at least once to continue
without switching in a switching region of A°.

Proof. If E; o (71) = +o00, then it is clear that E, 4 (74 4+ ¢N,a(A)) > Vi+(x,a). Thus, we can
assume that B, ,(74) < +o00. Suppose first that p; > 0. Then by Corollary 11,

Eua Z AHSA | > 0.

O<s§TA

Setting v = 0 in (3.47), we find that

(X3 A dBo+ Y AHSA,

0<s<tATA

tATA
c,A c,A aVc
Ht/\TA > HO +/0 8JE

and taking the expectations, applying the monotone convergence and the dominated convergence
theorems (recall that V' is bounded), we get

Eoo (HEY) 2 Ho* 4B |2 AHE | > Hy = Vi(w,a).

O<S<TA

Since the left-hand side is equal to E; , (TA + cN_ a (A)), this proves the statement when p; > 0.
Suppose now that po > 0. Let A denote Lebesgue measure. Notice that the interior int(D 4, )

of D 4, is not empty for 0 < ¢ < ¢*(u). By right-continuity of s — Ay and because of the irregular

behavior of sample paths of diffusion processes, on the event {3t € [0, 74[: X! € Dy, },

Ms € [0, 7 X2 € int(Dg4,)} > 0. (4.1)

Setting u = 0 in (3.46) and then applying successively Lemma 9 and Corollary 11, we get

A oA tATA 8‘/0 N tATA N
HSA, > HYY + 5o (X[ As) dB, + (1+La, Ve(X2, A0) Tyxacp, ) ds.
0 0

Again by Lemma 9, the integrand of the last integral is strictly positive if X ;4 belongs to the
interior of D4,. Taking expectations in the previous inequality and applying successively the
dominated and monotone convergence theorems and the hypothesis po > 0 with(4.1), we find
that

Epa (7 + cN,a(A)) = Epq (Hj;;“) > HoA = V,(z,a),

which concludes the proof. ]

If we consider a diffusion coefficient o # 1 for the particle, we can deduce from Theorem 3
the corresponding value function and optimal control. Let o > 0 and let (B;) be a standard
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Brownian motion, (F;) be its natural filtration and A be the associated set of strategies. For
A € A, consider the s.d.e.

dX,;A = Aypudt + odB, X64 =z, (4.2)

and the corresponding stochastic control problem whose value function is given by

~

V(z,a,c,1,0) = inf By o(74 + N i (A)), (4.3)
AeA

where 74 is the exit time of X4 from [0,1] and N (fl) is the process that counts the discontinuities
of A.

Proposition 19 (Scaling property). The optimal control of problem (4.3) is obtained by the
construction that leads to (2.14), but replacing ¢ by o*c and p by p/o®. The value function
satisfies

~

1 -~
V(ZL‘,CL,C,,U,O') = EV (CB,(I,CO'2, %a 1) )

where V (m,a, co?, p)o?, 1) coincides with the value function of problem (1.4) with ¢ replaced by
co? and p replaced by pi/o?.

Proof. Define B, = aét/gz, so that (By) is a standard Brownian motion. Setting
dZ; = +pdt +odBy,  dZ; = +1 dt + B,
o

and Zy = Zy, we see that Z, = Z 524 R

Let (F) be the natural filtration of (By), that is, F; = F/,2, and let A be the set of strategies
associated with (F;). Given A € A, define A = (4;) by 4; = A, Jo2- This defines a one-to-one
correspondence between A and A.

Let dX/ = Ao dt + dB;, with Xg' = 2. Then, X4, = X and we see that 74 = o274
and N,2;(A) = N¢(A). Therefore,

o? (7“4 + CNM (/l)) =74 4 co®N,4(A).

Minimizing the right-hand side is precisely the problem (1.4), with ¢ replaced by co? and u
replaced by ju/o?. This proves the proposition. ]

As mentioned in the introduction, in the case where there is no switching cost (¢ = 0), the
solution of the control problem corresponding to (1.4) is now classical (see [5, IV.5]). The value
function does not depend on the initial drift and is given by
—la=2l 1 au(i—|i=a))

V(z) = =—— — e “(e“2 2 —1), x € [0,1]. (4.4)

% 2p

N[ =

The optimal control, which would not be admissible in our setting, is given by
Ay =sgn (3 — X{q) , with dX{ = Aypdt +dB;  on {t <7}, (4.5)

where sgnx = 1 if x > 0 and sgnx = —1 if x < 0. We observe that this control A is not piecewise
constant, since it corresponds to switching regions given by Dy = [0, %] and D_; = [%, 0]. Thus,
there exists only a weak solution of (4.5) which is given by Tanaka’s formula (see e.g. [3, Sections
7.3 and 10.4]). In the next proposition, we show that (4.4) can be obtained as a limit of V,(x, a)

as c | 0.

Proposition 20. Let V(x) denote the function defined in (4.4). The solution {Ve, ac,b.} of (2.4)
satisfies lif(r)l a. =0, hff)l be =3 and 11&)1 Ve(x,a) = V(x), for all x € [0,1] and a € {£1}.
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Proof. Observe first that when ¢ | 0, equations (2.9) and (2.11) become respectively

e 20— — 1) + 2ux — p+1 =0,
prage™ 4 (1 — 2p2ap)e®™ + p?ag — 2uy — 1 =0,

where oy = —ﬁe‘“. The unique solution of the first equation is by = %, so lim.jgb. = %
The second equation has exactly two solutions, one of which is > % and the other is ag = 0.
Since 0 < a, < %, we deduce that lim.joa. = 0. Putting these values into (2.10) and (2.12),
respectively, we find that when ¢ | 0, a. — —ﬁe‘“ and [, — % — % . Therefore, according
to (2.8), we find that
% — #e_“ (62‘“” — 1) ) x € [0, %] )

liﬁ)ch(:c,a) Y 1mx 1 2u(1-2) 1

¢ T—ﬁe (6 —1), .TE]§,1}
These formulas coincide with (4.4) and the proof is complete. O

In Figure 2, we give the graph of the value function of both problems (1.4) and (1.5) for two
possible values of the switching cost (¢ = 0.01 and ¢ = 0.04) when the intensity of the drift is
@ = 1. In this case, the critical value of the cost is ¢*(1) ~ 0.058. The numerical value of the
switching boundaries in the case where ¢ = 0.01 are given by:

a. ~ 0.0882, be ~ 0.3426, ag®™ =1—be, b ~ 0.9387,

Cc

and in the case where ¢ = 0.04, they are given by:

ac ~ 0.1737, b~ 02451, o™ =1—b, b ~0.8494.

c

Because of the symmetry, Figure 2 shows only the value function corresponding to a positive
initial drift.

wsol ¢=0.01 - sl ¢ =0.04
w= ) Ve (z,1) =
025 (=) 025 f Sz
T o Ve (2,1)

020F 020f

e ’ Ve (I 1) % Ve (IL 1)
015} 0.1sF
orf [ 0.10F
00t £, X 00sF 4

D, = . D, b .

0 Qe be ! ac' be ™ 1 0 ac b, 1 dc- b !

Figure 2: Graphs of V™ (z,1) and V,(x,1) for two different values of the cost. The dotted
line is the graph of the function f#(x) defined in (2.1), which coincides with the payoff of the
constant strategy.
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