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Abstract. It is well-known that an Rd-valued isotropic α-stable Lévy process
is (neighborhood-) recurrent if and only if d ≤ α. Given an Rd-valued two-
parameter isotropic α-stable Lévy sheet {X(s, t)}s,t≥0, this is equivalent to
saying that for any fixed s ∈ [1, 2], P{t 7→ X(s, t) is recurrent} = 0 if d > α and
= 1 otherwise. We prove here that P{∃s ∈ [1, 2] : t 7→ X(s, t) is recurrent} = 0
if d > 2α and = 1 otherwise. Moreover, for d ∈ (α, 2α], the collection of all
times s at which t 7→ X(s, t) is recurrent is a random set of Hausdorff dimension
2−d/α that is dense in R+, a.s. When α = 2, X is the two-parameter Brownian
sheet, and our results extend those of M. Fukushima and N. Kôno.

1. Introduction

It is well-known that d-dimensional Brownian motion is (neighborhood-) re-
current if and only if d ≤ 2; cf. Kakutani [Kak44]. Now consider the process
s−1/2B(s, t), where B denotes a d-dimensional two-parameter Brownian sheet. It
is clear that for each fixed s > 0, t 7→ s−1/2B(s, t) is a Brownian motion in Rd, and
it has been shown that in contrast to the theorem of [Kak44]: (i) If d > 4, then
with probability one, t 7→ s−1/2B(s, t) is transient simultaneously for all s > 0; and
(ii) if d ≤ 4, then there a.s. exists s > 0 such that t 7→ s−1/2B(s, t) is recurrent; cf.
Fukushima [Fuk84] for the d 6= 4 case, and Kôno [Kôn84] for a proof in the critical
case d = 4. The goal of this article is to present quantitative estimates that, in
particular, imply these results in the more general setting of two-parameter stable
sheets.

Henceforth, X := {X(s, t)}s,t≥0 denotes a two-parameter isotropic α-stable Lévy
sheet in Rd with index α ∈ (0, 2]; cf. Proposition A.1 below. In particular, note
that t 7→ s−1/αX(s, t) is an ordinary (isotropic) α-stable Lévy process in Rd.

According to Theorem 16.2 of Port and Stone [PoS71, p. 181], an isotropic Lévy
process in Rd is recurrent if and only if d ≤ α. Motivated by this, we will be
concerned only with the following transience-type condition that we tacitly assume
from now on: Unless the contrary is stated explicitly,

(1.1) d > α.

Our goal is to find when, under the above condition, t 7→ s−1/αX(s, t) is recurrent
for some s > 0. That is we ask, “when are there recurrent lines in the sheet X”?
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Thus, the set of lines of interest is

(1.2) Ld,α :=
⋂

ε>0

⋂

n≥1

{

s > 0 : ∃t ≥ n such that X(s, t) ∈ (−ε, ε)d
}

.

One of our main results is the following.

Theorem 1.1. (a) If d > 2α, then Ld,α = ∅, a.s.
(b) If d ∈ (α, 2α], then with probability one, Ld,α is everywhere dense and

(1.3) dim
H

(Ld,α) = 2 − d

α
, almost surely,

where dim
H

denotes the Hausdorff dimension.

Remark 1.2. If X is not the Brownian sheet, then α ∈ (0, 2), and the condition
“d ∈ (α, 2α]” is nonvacuous if and only if d = 2 and α ∈ [1, 2) or d = 1 and
α ∈ [ 12 , 1).

Remark 1.3. If X denotes the Brownian sheet, then α = 2. In addition, Theorem 1.1
implies that dim

H
(L3,2) = 1

2 . When d = 2, since a.s., t 7→ X(s, t) is recurrent for
almost all s, and since one-dimensional Hausdorff measure is also one-dimensional
Lebesgue measure, dim

H
(L2,2) = 1. On the other hand, one-dimensional Brownian

motion hits all points, and this means that dim
H

(L1,2) = 1. In fact, Theorem 3.2 of
Khoshnevisan et al. [KRS03] shows that L1,2 = [0,∞). Is L2,2 = [0,∞)? Theorem
2.3 of Adelman et al. [ABP98] suggests a negative answer, although we do not have
a completely rigorous proof. In the case α ∈ (0, 2), things are more delicate still, and
we pose the following conjecture: If α > d = 1, then almost surely, L1,α = [0,∞),
whereas L1,1 6= [0,∞), a.s.

Remark 1.4. It would be nice to know more about the critical case d = 2α. There
are only three possibilities here: (i) α = 1

2 and d = 1; (ii) α = 1 and d = 2; and
(iii) the critical Gaussian case, α = 2 and d = 4. Theorem 1.1 states that in these
cases, Ld,α is everywhere dense but has zero Hausdorff dimension.

This paper is organized as follows. In Section 2, we establish first and second
moment estimates of certain functionals of the process X . We use these to estimate
the probability that the sample paths of the process hit a ball (see Section 3 for the
case d ≥ 2α and Section 4 for the case d ∈ (α, 2α)). With these results in hand, we
give the proof of Theorem 1.1 in Section 5. This proof also uses the Baire category
theorem. In Appendix A, we provide basic information regarding isotropic stable
sheets and stable noise, and in Appendix B, some simulations of these processes.

Acknowledgement. A portion of this work was done when D. Kh. was visiting
the Ecole Polytechnique Fédérale de Lausanne. We wish to thank EPFL for its
hospitality.

2. Moment estimates

Throughout, Bε := (−ε, ε)d, |x| := max1≤j≤d |xj |, ‖x‖ := (x2
1 + · · ·+ x2

d)
1/2, and

P(F ) denotes the collection of all probability measures on any given compact set
F in any Euclidean space.
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Fix 0 < a < b, ε > 0, and for all n ≥ 1 and all ν ∈ P([a, b]), define

Jn := Jn(a, b; ε; ν) :=

∫ b

a

ν(ds)

∫ ∞

n

dt1Bε
(X(s, t)),

J̄n := J̄n(a, b; ε; ν) :=

∫ b

a

ν(ds)

∫ 2n

n

dt1Bε
(X(s, t)).

(2.1)

The above notations also make sense for any finite measure ν on [a, b].

Lemma 2.1. Given η > 0 and η < a < b < η−1, there is a positive and finite
constant A2.1 = A2.1(η, d, α) such that for all s ∈ [a, b], all t > 0, and all ε ∈ (0, 1),

(2.2) A−1
2.1(ε(st)

−1/α ∧ 1)d ≤ P{|X(s, t)| ≤ ε} ≤ A2.1ε
dt−d/α.

Proof. Set

(2.3) φα(λ) := P{|X(1, 1)| ≤ λ}.
Recall that the standard symmetric stable density is bounded above thanks to the
inversion theorem for Fourier transforms; it is also bounded below on compacts
because of Bochner’s subordination ([Kho02, Th. 3.2.2, p. 379]). Thus, there exists
a constant C? := C?(d, α) such that for all λ > 0,

(2.4) C−1
? (λ ∧ 1)d ≤ φα(λ) ≤ C?(λ ∧ 1)d.

It follows that there is c < ∞ depending only on d such that

(2.5) P{|X(s, t)| ≤ ε} = φα(ε(st)−1/α) ≤ Cεd(st)−d/α ≤ Cη−d/αεdt−d/α,

and the lower bound follows in the same way. �

Lemma 2.2. If d > α, and if 0 < a < b are fixed, then there exists a finite constant
A2.2 := A2.2(a, b, d, α) > 1 such that for all ε ∈ (0, 1), all ν ∈ P([a, b]), and for all
n ≥ 1/a,

(2.6) A−1
2.2ε

dn−(d−α)/α ≤ E
[

J̄n

]

≤ E [Jn] ≤ A2.2ε
dn−(d−α)/α.

Proof. By scaling,

(2.7) E [Jn] =

∫ b

a

ν(ds)

∫ ∞

n

dt φα

(

ε(st)−1/α
)

,

where φα is defined in (2.3). The lemma follows readily from this, its analogue for
J̄n, and Lemma 2.1. �

Lemma 2.3. There exists a positive and finite constant A2.3 := A2.3(d, α) such
that for all 0 < s < s′, 0 < t < t′, and all ε ∈ (0, 1),

sup
z∈Rd

P
{

|X(s′, t′) + z| ≤ ε
∣

∣

∣
|X(s, t) + z| ≤ ε

}

≤ A2.3

[

εα

s|t′ − t| + t|s′ − s| ∧ 1

]d/α

.

(2.8)

Proof. Consider the decomposition X(s′, t′) = V1 + V2, where

(2.9) V1 = X(s′, t′) − X(s, t), V2 = X(s, t).



4 R. C. DALANG AND D. KHOSHNEVISAN

Equivalently, in terms of the isostable noise X introduced in the Appendix, we can
write V2 = X([0, s] × [0, t]) and V1 = X([0, s′] × [0, t′] \ [0, s] × [0, t]). From this, it
is clear that V1 and V2 are independent, and so we can write

P{|X(s, t) + z| ≤ ε, |X(s′, t′) + z| ≤ ε}
= P{|V2 + z| ≤ ε, |V1 + V2 + z| ≤ ε}
≤ P{|V2 + z| ≤ ε} sup

w∈Rd

P{|V1 + w| ≤ ε}.
(2.10)

Now V1 is a symmetric stable random vector in Rd. Thus, its distribution is uni-
modal: indeed, since the characteristic function of V1 is a non-negative function, fV1

is positive-definite, and therefore fV1
(0) ≥ fV1

(x), for all x ∈ Rd. In other words,
we have supw∈Rd P{|V1 + w| ≤ ε} ≤ CεdfV1

(0), where fV1
denotes the probability

density function of V1. Consequently,

(2.11) sup
z∈Rd

P
{

|X(s′, t′) + z| ≤ ε
∣

∣

∣
|X(s, t) + z| ≤ ε

}

≤ CεdfV1
(0).

Thanks to the Fourier inversion formula, the density function of V1 = X([s, s′] ×
[t, t′]) can be estimated as follows:

(2.12) fV1
(x) ≤ fV1

(0) ≤ (2π)−d

∫

Rd

e−
1
2
‖θ‖αλ dθ = Cλ−d/α, for all x ∈ Rd,

where λ is the area of the `∞-annulus ([0, s′]×[0, t′])\([0, s]×[0, t]), and C := C(d, α)
is some nontrivial constant that does not depend on (s, s′, t, t′, x). It is easy to see
that

λ = s(t′ − t) + t(s′ − s) + (s′ − s)(t′ − t)

≥ s(t′ − t) + t(s′ − s).
(2.13)

Thus, for all 0 < s < s′, 0 < t < t′, and all x ∈ Rd,

(2.14) fV1
(0) ≤ C

[

s(t′ − t) + t(s′ − s)
]−d/α

.

Consequently, the lemma follows from (2.11). �

Lemma 2.4. There exists a positive and finite constant A2.4 := A2.4(d, α) such
that for all 0 < s′ < s, 0 < t < t′, and all ε ∈ (0, 1),

sup
z∈Rd

P
{

|X(s′, t′) + z| ≤ ε
∣

∣

∣
|X(s, t) + z| ≤ ε

}

≤ A2.4

( s

s′

)d/α
[

εα

s′|t′ − t| + t|s′ − s| ∧ 1

]d/α

.

(2.15)

Proof. As in our proof of Lemma 2.3, we begin by a decomposition. Namely, write

(2.16) X(s′, t′) = V3 + V4, X(s, t) = V4 + V5,

where V4 = X([0, s′] × [0, t]), V3 = X([0, s′] × [t, t′]), V5 = X([s′, s] × [0, t]), and X

denotes the isotropic noise defined in the appendix. Note that V3, V4 and V5 are
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mutually independent, and

P{|X(s, t) + z| ≤ ε, |X(s′, t′) + z| ≤ ε}
= P{|V3 + V4 + z| ≤ ε, |V4 + V5 + z| ≤ ε}
≤ P{|V3 − V5| ≤ 2ε, |V3 + V4 + z| ≤ ε}
≤ P{|V3 − V5| ≤ 2ε} sup

w∈Rd

P{|w + V4| ≤ ε}

≤ P{|V3 − V5| ≤ 2ε} · (CεdfV4
(0) ∧ 1).

(2.17)

Now we proceed to estimate the probability densities of the stable random vectors
V4 and V3−V5, respectively. By Fourier inversion, and arguing as we did for (2.12),
we can find a nontrivial constant C := C(d, α) such that for all s′, t > 0,

(2.18) fV4
(0) ≤ C(s′t)−d/α.

Thus, there exists a nontrivial constant C := C(d, α) such that for all s′, t > 0 and
all ε ∈ (0, 1),

(2.19) CεdfV4
(0) ∧ 1 ≤ C

[

εα

s′t
∧ 1

]d/α

≤ C

C?

( s

s′

)d/α

P{|X(s, t)| ≤ ε}

[the second inequality uses the lower bound in Lemma 2.1].
Similarly,

(2.20) fV3−V5
(0) ≤ Cλ−d/α,

where λ denotes the area of ([s′, s] × [0, t]) ∪ ([0, s′] × [t, t′]), that is,

(2.21) λ = t(s − s′) + s′(t′ − t).

Using the last three displays in conjunction yields an upper bound on P{|V3−V5| ≤
2ε} which establishes (2.15). �

The next technical lemma will be used in Lemma 2.6 below and in the next
sections.

Lemma 2.5. Set

(2.22) Kt
ε(v) :=

∫ 1

0

(

ε

t1/α(u + v)1/α
∧ 1

)d

du.

(a) If d ∈ (α, 2α], then there a is A2.23 := A2.23(d, α) ∈ (0,∞) such that for all
ε > 0, t > 0 and v > 0,

(2.23) Kt
ε(v) ≤ A2.23

εd

td/α
v−(d−α)/α.

(b) If d ∈ (α, 2α] and M ≥ 1, then there is a constant A2.24 = A2.24(d, α, M) ∈
(0, 1] such that for all v ∈ (0, M ], ε ∈ (0, 1), and t ≥ 3,

(2.24) Kt
ε(v) ≥ A2.24

εd

td/α
v−(d−α)/α 1[εα/t,∞)(v).

(c) If d ≥ 2α and M ≥ 1, then there is a A2.25 := A2.25(d, α, M) ∈ (0,∞) such that
for all ε ∈ (0, 1), t ≥ 1 sufficiently large and b ≤ M ,

(2.25)

∫ b

0

dv Kt
ε(v) ≤ A2.25 ×

{

ε2αt−2, if d > 2α,

ε2αt−2 log (t/εα) , if d = 2α.



6 R. C. DALANG AND D. KHOSHNEVISAN

(d) If d > 2α, then there is a A2.26 := A2.26 ∈ (0,∞) such that for all ε ∈ (0, 1),
t ≥ 1 and a > εα/t,

(2.26)

∫ a

0

dv Kt
ε(v) ≥ A2.26ε

2αt−2.

Proof. Throughout this proof, we write C for a generic positive and finite constant.
Its dependence on the various parameters d, α, M, . . . is apparent from the context.
Otherwise, C may change from line to line.

(a) Observe that

Kt
ε(v) ≤

∫ 1

0

du
εd

td/α(u + v)d/α
= C

εd

td/α
(u + v)1−d/α

∣

∣

∣

∣

0

1

≤ C
εd

td/α
v−(d−α)/α.

(2.27)

(b) If v ≥ εα/t, then

Kt
ε(v) =

∫ v+1

v

(

ε

(tu)1/α
∧ 1

)d

du =
εd

td/α

∫ v+1

v

u−d/α du

=

(

d − α

α

)

εd

td/α
[v−(d−α)/α − (v + 1)−(d−α)/α]

=

(

d − α

α

)

εd

td/α
v−(d−α)/α

[

1 − (1 + 1/v)
−(d−α)/α

]

.

(2.28)

Since v ≤ M, the expression in brackets is at least [1 − (1 + 1/M)−(d−α)/α] > 0.

(c) Clearly, since b ≤ M and M ≥ 1,
∫ b

0

dv Kt
ε(v) ≤

∫

{x∈R2: ‖x‖≤M}

dx

(

ε

(ct‖x‖)1/α
∧ 1

)d

= C

∫ M

0

dr

(

ε

(ctr)1/α
∧ 1

)d

· r

≤ C

(

ε2α

c2t2
+

εd

td/α

∫ M

εα/(ct)

dr r1−d/α

)

.

(2.29)

If d/α > 2, then this is bounded above by

(2.30) C

(

ε2α

t2
+

εd

td/α

(

εα

ct

)2−(d/α)
)

= C
ε2α

t2
,

while if d/α = 2, then this is bounded above by

(2.31) C

(

ε2α

t2
+

εd

td/α
(log M + log

(

ct

εα

))

= C
ε2α

t2

(

1 + log

(

Mct

εα

))

.

(d) Observe that εt−1/α(u+ v)−1/α ≥ 1 if and only if u+ v ≤ εα/t, so for a > εα/t,

(2.32)

∫ a

0

dv Kt
ε(v) ≥

∫ εα/t

0

dv

∫ (εα/t)−v

0

du · 1 =
1

2

(

εα

t

)2

.
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This proves the lemma. �

For β > 0, define the energy Eβ(ν) of a finite measure ν by

(2.33) Eβ(ν) =

∫∫

|x − y|−β ν(dx) ν(dy).

Lemma 2.6. If α < d, then for any η > 0, and all η < a < b < η−1, there exists
a constant A2.6 := A2.6(η, d, α) such that for any ε ∈ (0, 1), all n ≥ 1, and for all
ν ∈ P([a, b]),

(2.34) E[J̄2
n] ≤ E[J2

n] ≤ A2.6ε
2dn−2(d−α)/α

E d−α
α

(ν),

where J̄n and Jn are defined in (2.1).

Proof. Owing to Taylor’s theorem [Kho02, Cor. 2.3.1, p. 525], the conclusion of this
lemma is nontrivial if and only if (d − α)/α < 1, for otherwise, E(d−α)/α(ν) = +∞
for all ν ∈ P([a, b]). So we assume that d ∈ (α, 2α).

Since J̄n ≤ Jn, we only have to prove one inequality. Write

(2.35) E[J2
n] = 2T1 + 2T2,

where

T1 =

∫ b

a

ν(ds)

∫ ∞

n

dt

∫ b

a

ν(ds′)

∫ 2t

t

dt′ P
{

|X(s, t)| ≤ ε, |X(s′, t′)| ≤ ε
}

,

T2 =

∫ b

a

ν(ds)

∫ ∞

n

dt

∫ b

a

ν(ds′)

∫ ∞

2t

dt′ P
{

|X(s, t)| ≤ ε, |X(s′, t′)| ≤ ε
}

.

(2.36)

One might guess that T1 dominates T2, since most self-interactions, along the sheet,
are local. We shall see that this is indeed so. We begin by first estimating T2.

Thanks to Lemmas 2.1, 2.3 and 2.4, there exists a positive and finite constant
C := C(η, d, α) such that for all ε ∈ (0, 1), for all n > a, for any s, s′ ∈ [a, b], and
for all n < t < t′,

P{|X(s, t)| ≤ ε, |X(s′, t′)| ≤ ε} ≤ Cεdt−d/α ·
[

εα

a|t′ − t| + t|s′ − s| ∧ 1

]d/α

≤ Ca−d/αt−d/αε2d · (t′ − t)−d/α.

(2.37)

Consequently, there exists a positive and finite C := C(η, d, α) such that for all
ε ∈ (0, 1), n ≥ 1, and all ν ∈ P(a, b]),

T2 ≤ Cε2d

∫ b

a

ν(ds)

∫ ∞

n

dt

∫ b

a

ν(ds′)

∫ ∞

2t

dt′ t−d/α · (t′ − t)−d/α

= Cε2d

∫ ∞

n

dt

∫ ∞

t

dv t−d/αv−d/α .

(2.38)

In this way, we obtain the existence of a positive and finite constant C := C(η, d, α)
such that for all ε ∈ (0, 1), and all ν ∈ P([a, b]),

(2.39) T2 ≤ Cε2dn−2(d−α)/α.

In order to estimate T1, we still use (2.37), but this time things are slightly more
delicate. Indeed, equation (2.37) yields a constant C := C(η, d, α) such that for all
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ε ∈ (0, 1) and all ν ∈ P([a, b]),

T1 ≤ Cεd

∫ b

a

ν(ds)

∫ ∞

n

dt

∫ b

a

ν(ds′)

∫ 2t

t

dt′

× t−d/α

[

εα

a|t′ − t| + t|s′ − s| ∧ 1

]d/α

.

(2.40)

Do the change of variables t′ − t = tu (t fixed) to see that the right-hand side is
equal to

(2.41) Cεd

∫ b

a

ν(ds)

∫ b

a

ν(ds′)

∫ ∞

n

dt t1−(d/α)Kat
ε (|s′ − s|).

Use Lemma 2.5(a) and evaluate the dt-integral to get the inequality

(2.42) T1 ≤ Cε2dn−2(d−α)/α
E d−α

α
(ν).

In light of (2.39), it remains to get a universal lower bound on E d−α
α

(ν). But this

is easy to do: For any β > 0 and for all ν ∈ P([a, b]),

(2.43) Eβ(ν) =

∫∫

|x − y|−β ν(dx) ν(dy) ≥ b−β ≥ ηβ .

We have used the inequality |x − y|β ≤ bβ ≤ η−β, valid for all x, y ∈ [a, b] ⊆
[η, η−1]. �

We now address the analogous problem when d ≥ 2α in the special case where ν
is uniform measure on [a, b].

Lemma 2.7. (Case d ≥ 2α). Fix any η > 0, let η < a < b < η−1 and define Jn

as in (2.1) where ν denotes the uniform probability measure on [a, b]. Then there
exists a constant A2.7 := A2.7(η, d, α, a, b) such that for any ε ∈ (0, 1) and for all
n ≥ 2,

(2.44) E[J2
n] ≤ A2.7 ×







εd+2αn−d/α, if d > 2α,
ε4α

n2
log
( n

εα

)

, if d = 2α.

Proof. Recall (2.36), and notice that (2.39) holds for all d > α. Thus, it suffices to
show that the lemma holds with E[J2

n] replaced by T1. By appealing to (2.40)—with
ν(dx) being the restriction to [a, b] of (b− a)−1dx—we can deduce the following for
a sequence of positive constants C := C(η, d, α, a, b) and C′ := C′(η, d, α, a, b) that
may change from line to line, but never depend on ε ∈ (0, 1) nor on n ≥ 2:

(2.45) T1 ≤ Cεd

∫ b

a

ds

∫ ∞

n

dt

∫ b

a

ds′
∫ 2t

t

dt′ t−d/α

[

εα

a|t′ − t| + t|s′ − s| ∧ 1

]d/α

.

Use the change of variables v = s′ − s (s fixed) and t′ − t = tu (t fixed) to see that
the right-hand side is bounded above by

(2.46) Cεd

∫ ∞

n

dt

∫ b−a

0

dv t1−(d/α)Kat
ε (v/a).

Apply Lemma 2.5(c) to see that when d > 2α, this is not greater than

(2.47) Cεd+2α

∫ ∞

n

dt t−(d/α)−1 = Cεd+2αn−d/α,

while when d = 2α, this bound becomes Cε4αn−2 log(n/εα). �
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3. The probability of hitting a ball (case d ≥ 2α)

The following two are the main results of this section. The first treats the case
d > 2α.

Theorem 3.1 (Case d > 2α). If η > 0 and η < a < b < η−1 are held fixed, then
there exists a constant A3.1 := A3.1(η, d, α, a, b) > 1 such that for all n ≥ 2 and all
ε ∈ (0, 1),

(3.1)
εd−2α

A3.1
n2−(d/α) ≤ P

{

X ([a, b] × [n, 2n]) ∩ Bε 6= ∅

}

≤ A3.1ε
d−2αn2−(d/α).

The case d = 2α is “critical,” and the hitting probability of the previous theorem
now has logarithmic decay.

Theorem 3.2 (Case d = 2α). If η > 0 and η < a < b < η−1 are held fixed, then
there exists a constant A3.2 := A3.2(η, α, a, b) > 1 such that for all n ≥ 2 and all
ε ∈ (0, 1),

(3.2)
A−1

3.2

log (n/εα)
≤ P

{

X ([a, b] × [n, 2n]) ∩ Bε 6= ∅

}

≤ A3.2

log (n/εα)
.

The case d = 2α looks different in form from the case d > 2α, but is proved
by similar means; so we omit the details of the proof of Theorem 3.2, and content
ourselves with providing the following.

Proof of Theorem 3.1. We begin by deriving the (easier) lower bound. Note that

(3.3) P
{

X ([a, b] × [n, 2n]) ∩ Bε 6= ∅

}

≥ P
{

J̄n > 0
}

,

where J̄n := J̄n(a, a + b; ε, ν), and ν is normalized Lebesgue measure on [a, a + b].
By the Paley–Zygmund inequality ([Kho02, Lemma 1.4.1, p. 72]), and Lemmas 2.2
and 2.7,

(3.4) P
{

J̄n > 0
}

≥
(

E
[

J̄n

])2

E
[

J̄2
n

] ≥ ε2dn−2(d−α)/α

A2
2.2A2.7εd+2αn−d/α

,

whence the asserted lower bound. Next we proceed with deriving the corresponding
upper bound.

Let Fu,v denote the σ-algebra generated by X(s, t) for all s ∈ [0, u] and t ∈ [0, v],
and consider the two-parameter martingale,

(3.5) M(u, v) := E
[

J̄n

∣

∣Fu,v

]

, for all u ∈ [a, b], v ∈
[

n,
3n

2

]

.

Clearly,

(3.6) M(u, v) ≥
∫ b+a

u

ds

∫ 2n

v

dt P
{

|X(s, t)| ≤ ε
∣

∣Fu,v

}

· 1Gε(u,v),

where

(3.7) Gε(u, v) := {ω ∈ Ω : |X(u, v)|(ω) < ε/2} .
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Whenever s ≥ u and t ≥ v, X(s, t)−X(u, v) is independent of Fu,v. Therefore, by
this and the triangle inequality, almost surely on Gε(u, v),

M(u, v) ≥
∫ b+a

u

ds

∫ 2n

v

dt P {|X(s, t) − X(u, v)| ≤ ε/2}

=

∫ b+a

u

ds

∫ 2n

v

dt φα

(

ε/2

[s(t − v) + v(s − u)]1/α

)

,

(3.8)

where φα is defined in (2.3). By (2.4), on Gε(u, v), for all u ∈ [a, b] and v ∈ [n, 3
2n],

M(u, v) ≥ 1

C?

∫ b+a

u

ds

∫ 2n

v

dt

(

ε/2

[s(t − v) + v(s − u)]
1/α

∧ 1

)d

≥ 1

C

∫ b+a

u

ds

∫ 2n

v

dt

(

ε/2

[(t − v) + n(s − u)]
1/α

∧ 1

)d

.

(3.9)

Do the changes of variables s−u = s′ and t− v = n
2 w to see, noting that v ≤ 3n/2,

that this is bounded below by

(3.10)

∫ a

0

ds′ CnK
n/2
ε/2 (s′).

By Lemma 2.5(d), this is ≥ Cε2α/n. Therefore, with probability one,

(3.11) sup
u∈[a,b]∩Q

sup
v∈[n, 3

2
n]∩Q

1Gε(u,v) ≤
n2C2

+

ε4α
sup

u∈[a,b]∩Q

sup
v∈[n, 3

2
n]∩Q

M2(u, v).

Note that the left-hand side is a.s. equal to the indicator of the event {inf |X(u, v)| ≤
ε/2}, where the infimum is taken over all u ∈ [a, b] and v ∈ [n, 3

2n]. In particular,

P

{

X

(

[a, b] ×
[

n,
3n

2

])

∩ Bε/2 6= ∅

}

≤ n2C2
+

ε4α
E

{

sup
u∈[a,b]∩Q

sup
v∈[n, 3

2
n]∩Q

M2(u, v)

}

≤ 16n2C2
+

ε4α
E
{

J̄2
n

}

.

(3.12)

We have used the maximal L2-inequality of Cairoli [Kho02, Theorem 1.3.1(ii),
p. 222] to derive the last inequality; Cairoli’s inequality applies since the two-
parameter filtration (Fu,v) is commuting; for a definition, see [Kho02, p. 233]. The
proof of this statement, in the Gaussian α = 2 case, appears in [Kho02, Theorem
2.4.1, p. 237], and the general case is proved by similar considerations. Thus,

(3.13) P
{

X ([a, b] × [n, 3n/2]) ∩ Bε/2 6= ∅

}

≤ 32C2
+n2

ε4α
E
{

J̄2
n

}

.

Together with Lemma 2.7, this proves the asserted upper bound of the theorem. �

4. The probability of hitting a ball (case d ∈ (α, 2α])

Recall that for any fixed r > 0, the r-dimensional Bessel–Riesz capacity of a
compact set S ⊆ R+ is defined as

(4.1) Cr(S) := sup
ν∈P(S)

[Er(ν)]
−1

with the convention 1/∞ := 0.

The first result of this section is the following.
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Theorem 4.1. Case d ∈ (α, 2α]. If 0 < a < b are held fixed, then there exists a
constant A4.1 := A4.1(a, b, d, α) > 1 such that for all compact sets S ⊆ [a, b], all
n ≥ 3, and ε ∈ (0, 1),

P
{

X(S × [n, 2n]) ∩ Bε 6= ∅

}

≥ A−1
4.1C d−α

α
(S).(4.2)

Proof of Theorem 4.1. For any ν ∈ P(S), 0 < a < b, for all compact S ⊆ [a, b],
and ε > 0, consider J̄n := J̄n(a, b; ε, ν) as defined in (2.1). By the Paley–Zygmund
inequality [Kho02, Lemma 1.4.1, p. 72], and Lemmas 2.2 and 2.6

(4.3) P
{

X(S × [n, 2n]) ∩ Bε 6= ∅

}

≥
(

E{J̄n}
)2

E
{

J̄2
n

} ≥
[

C2
2.2A2.6E d−α

α
(ν)
]−1

,

and this makes sense whether or not E(d−α)/α(ν) is finite. Optimize over ν ∈ P(S)
to deduce (4.2). �

As for an analogous upper bound, we shall prove the following:

Theorem 4.2. Case d ∈ (α, 2α]. If M ≥ 1 is fixed, then there exists a constant
A4.2 := A4.2(d, α, M) such that for all ε ∈ (0, 1), n ≥ 3, and all [a, b] ⊆ [M−1, M ]
that satisfies b − a ≥ Mεαn−1,

(4.4) P
{

X([a, b] × [n, 2n]) ∩ Bε 6= ∅

}

≤ A4.2(b − a)(d−α)/α.

It is not difficult to show that C(d−α)/α([a, b]) = c(b−a)(d−α)/α for some constant
c := c(d, α). Therefore, Theorem 4.2 shows that Theorem 4.1 is best possible. On
the other hand, Theorem 4.1 does not have a corresponding capacity upper bound
as can be seen by considering S = {1}. In fact, this shows that even the condition
b − a ≥ 2εαn−1 of Theorem 4.2 cannot, in a sense, be improved.

Proof of Theorem 4.2. Throughout, let J̄n := J̄n(a, 2b − a; ε, λ), where λ denotes
the Lebesgue measure on [0, 2b− a]. Although λ is not a probability measure, it is
easy to see as in Lemma 2.6 that

E
{

J̄2
n

}

≤ 4dA2.6ε
2dn−2(d−α)/α

E d−α
α

(λ)

= Cε2dn−2(d−α)/α(b − a)3−(d/α),
(4.5)

where C := 21+2dA2.6α
2(3α − d)−1(2α − d)−1.

Next define the two-parameter martingale

(4.6) M(u, v) := E
[

J̄n

∣

∣Fu,v

}

, for all u ∈ [a, b], v ∈
[

n,
3

2
n

]

.

By Cairoli’s L2-maximal inequality and (4.5),

(4.7) E

{

sup
u,v∈Q+

M2(u, v)

}

≤ 16Cε2dn−2(d−α)/α(b − a)3−(d/α).

Evidently,

(4.8) M(u, v) ≥
∫ 2b−a

u

∫ 2n

v

P
{

|X(s, t)| ≤ ε
∣

∣Fu,v

}

dt ds · 1Gε(u,v),

where Gε(u, v) is defined in (3.7). Whenever s ≥ u and t ≥ v, the random vari-
able X(s, t) − X(u, v) is independent of Fu,v, and has the same distribution as
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ρ1/αX(1, 1), where ρ denotes the area of ([0, s] × [0, t]) \ ([0, u] × [0, v]). Hence,
almost surely on Gε(u, v),

M(u, v) ≥
∫ 2b−a

u

ds

∫ 2n

v

dt P {|X(s, t) − X(u, v)| ≤ ε/2}

=

∫ 2b−a

u

ds

∫ 2n

v

dt φα

(

ε/2

ρ1/α

)

.

(4.9)

But for any s ∈ [u, 2b − a] and t ∈ [v, 2n], ρ ≤ 2b(t − v) + 2n(s − u), and so from
(2.4), we have the following a.s. on Gε(u, v):

(4.10) M(u, v) ≥
∫ 2b−a

u

ds

∫ 2n

v

dt

(

ε/2

[2b(t − v) + 2n(s − u)]
1/α

∧ 1

)d

.

Do the changes of variables s − u = s′ and t − v = n
2 t′ to see that this is bounded

below by

n

2

∫ b−a

0

ds′
∫ 1

0

dt′
(

ε/2

(bn)1/α(t′ + 2s′/b)1/α
∧ 1

)d

=
n

2

∫ b−a

0

ds′ K2bn
ε/2 (2s′/b).

(4.11)

By Lemma 2.5(b), for b − a ≥ Mεα/(2n), this is not less than

C
n

2

εd

nd/α

∫ b−a

Mεα

2n

ds s−(d−α)/α

≥ Cεdn−(d−α)/α(b − a)−(d−α)/α

(

b − a − Mεα

2n

)

.

(4.12)

For b − a ≥ Mεα/n, this is not less than

(4.13)
C

2
εdn−(d−α)/α(b − a)2−(d/α).

This shows that a.s.,

(4.14) M(u, v) ≥ Aεdn−(d−α)/α(b − a)2−(d/α) · 1Gε(u,v).

In particular, with probability one,

(4.15) supM2(u, v) ≥ A2ε2dn−2(d−α)/α(b − a)4−2(d/α) · sup1Gε(u,v),

where both suprema are taken over {(u, v) ∈ ([a, b] × [n, 3
2n]) ∩ Q}. The path-

regularity of the random field X (Proposition A.2) ensures that E{sup1Gε(u,v)} is

the probability that X([a, b]× [n, 3
2n])∩Bε/2 is nonempty. Therefore, the preceding

display together with (4.7) readily prove the theorem. �

5. Proof of Theorem 1.1

(a) We shall show that when d > 2α, Ld,α = ∅, a.s. Thanks to Theorem 3.1, for
any [a, b] ⊂ (0,∞) with b > a, we can find a constant A := A(a, b, d, α) > 1 such
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that for all ε ∈ (0, 1) and n ≥ 2,

∞
∑

n=5

P
{

X ([a, b] × [2n,∞)) ∩ Bε 6= ∅

}

≤
∞
∑

n=5

∞
∑

j=n

P
{

X ([a, b] × [2j, 2j+1)) ∩ Bε 6= ∅

}

≤ Aεd−2α
∞
∑

n=5

∞
∑

j=n

(2j)2−(d/α) < +∞.

(5.1)

Thus, the Borel–Cantelli lemma guarantees that a.s., for all but a finite number of
n’s, X([a, b] × [n,∞)) ∩ Bε = ∅. This yields Ld,α = ∅, a.s., as asserted.

(b) We divide the proof of (1.3) into two cases: d ∈ (α, 2α) and d = 2α.

5.1. The case d ∈ (α, 2α). We begin our analysis of this case with a weak codimen-
sion argument. To do so, we will need the notion of a upper Minkowski dimension
([Mat95, p. 76–77]), which is described as follows: Given any bounded set S ⊂ R

and k ≥ 1, define

(5.2) NS(k) := #

{

j ∈ Z :

[

j

k
,
j + 1

k

]

∩ S 6= ∅

}

.

[As usual, # denotes cardinality.] Note that the boundedness of S ensures that
NS(k) < +∞. The upper Minkowski dimension of S is then defined as

(5.3) dim
M

(S) := lim sup
k→∞

logNS(k)

log k
.

It is not hard to see that we always have dim
H

(S) ≤ dim
M

(S), and the inequality
can be strict; cf. Mattila [Mat95, p. 77].

The following refines half of what is known as the codimension argument. Part
(b) is within Taylor [Tay66, Theorem 4], but we provide a brief self-contained proof
for the sake of completeness.

Proposition 5.1. If X is a random analytic subset of R, then:
(a) Suppose that there exists a nonrandom number a ∈ (0, 1) such that for all

nonrandom bounded sets T ⊂ R with dim
M

(T ) < a we have P{X ∩ T = ∅} = 1.
Then dim

H
(X) ≤ 1 − a, a.s.

(b) Suppose that there exists a nonrandom number a ∈ (0, 1) such that for all
nonrandom bounded sets T ⊂ R such that dim

H
(T ) > a we have P{X∩T 6= ∅} = 1.

Then dim
H

(X) ≥ 1 − a, a.s.

Proof. (a) Without loss of generality, we can assume that X ⊆ [1, 2] a.s.
For any r ∈ (0, 1), let us consider a one-dimensional symmetric stable Lévy

process Zr := {Zr(t); t ≥ 0} with Zr(0) = 0 and index r ∈ (0, 1). If Zr := Zr([1, 2]),
then it is well-known that:

(i) Zr is a.s. a compact set;
(ii) for all analytic sets F ⊂ R with dim

H
(F ) > 1 − r, P{Zr ∩ F 6= ∅} > 0;

(iii) for all analytic sets F ⊂ R with dim
H

(F ) < 1 − r, Zr ∩ F = ∅, a.s.; and
(iv) with probability one, dim

H
(Zr) = dim

M
(Zr) = r.
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An explanation is in order: Part (i) follows from the cádlág properties of Zr; parts
(ii) and (iii) follows from the connections between probabilistic potential theory and
Frostman’s lemma [Kho02, Th. 3.5.1, p. 385]; and part (iv) is a direct computation
that is essentially contained in McKean [McK55].

Now to prove the proposition, suppose to the contrary that with positive prob-
ability, dim

H
(X) > 1 − a. This and (ii) together prove that for any r ∈ (0, a),

X ∩ Zr 6= ∅ with positive probability. On the other hand, by (iv), the upper
Minkowski dimension of Zr is r < a, a.s. Therefore, the property of X mentioned
in the statement of the proposition implies that a.s., X ∩ Zr = ∅, which is the
desired contradiction, and (a) is proved.

(b) Choose r ∈ (a, 1), and recall Zr from (a) above. By item (iv) of the proof
of (a), dim(Zr) = r > a, a.s. The assumed hitting property of X implies that
P{X ∩ Zr 6= ∅} = 1. On the other hand, if dim

H
(X) < 1 − r with positive

probability, then (iii) of the proof of part (a) would imply that P{X∩Zr = ∅} > 0,
which is a contradiction. Thus, we have shown that almost surely, dim

H
(X) ≥ 1−r.

Let r ↓ a to finish. �

The property of not hitting sets of small upper Minkowski dimension is shared
by Ld,α—defined in (1.2)—as we shall see next. Note that Proposition 5.2 and
Corollary 5.3 below include the case d = 2α.

Proposition 5.2. (Case d ∈ (α, 2α]). If S ⊂ (0,∞) is compact, and if its upper
Minkowski dimension is strictly below (d−α)/α, then almost surely, Ld,α ∩S = ∅.

Proof. Without loss of generality, we assume that S ⊂ [1, 2). Now by Theorem 4.2,
for all ` ≥ 3, ε ∈ (0, 1), and all closed intervals I ⊂ [1, 2) with |I| ≥ 2εα/`,

(5.4) P
{

X (I × [`, 2`]) ∩ Bε 6= ∅

}

≤ A4.2|I|(d−α)/α,

where |I| denotes the length of I. Next we define

(5.5) γn,ε :=

⌊

2n−1

εα

⌋

,

and cover S with NS(γn,ε)-many of the intervals I1, . . . , Iγn,ε
with Il := [lγ−1

n,ε, (l +

1)γ−1
n,ε] (l = γn,ε, . . . , 2γn,ε − 1). We then apply the preceding inequality to deduce

the following: Since γ−1
n,ε ≥ 2εα/2n,

(5.6) P
{

X (S × [2n, 2n+1]) ∩ Bε 6= ∅

}

≤ A4.2γ
−(d−α)/α
n,ε NS(γn,ε).

But as n → ∞, γn,ε = (1 + o(1))ε−α2n−1 and NS(γn,ε) = O(γ
−q+(d−α)/α
n,ε ), as long

as −q + (d − α)/α > dim
M

(S). This yields the following: as n → ∞,

P
{

X (S × [2n,∞)) ∩ Bε 6= ∅

}

≤ A4.2

∞
∑

k=n

γ
−(d−α)/α
k,ε γ

−q+(d−α)/α
k,ε ,(5.7)

and this is O(2−nq). Owing to the Borel–Cantelli lemma, with probability one,

(5.8) X (S × [2n,∞)) ∩ Bε = ∅,

for all but a finite number of n’s. In addition, by monotonicity, this statement’s null
set can be chosen to be independent of ε ∈ (0, 1). This shows that Ld,α ∩ S = ∅,
a.s., as desired. �
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An immediate consequence of Propositions 5.1(a) and (5.2) is the following,
which proves half of the dimension formula (1.3) in Theorem 1.1.

Corollary 5.3. (Case d ∈ (α, 2α]). With probability one,

(5.9) dim
H

(Ld,α) ≤ 2 − d

α
.

The remainder of this subsection is devoted to deriving the converse inequality.
We need a lemma which is contained in Joyce and Preiss [JoP95].

Lemma 5.4. Given a number a ∈ (0, 1) and a compact set F ⊂ R with dim
H

(F ) >
a, there is a single non-empty compact set F? ⊆ F with the following property: For
any rational open interval I ⊂ R, if I ∩ F? 6= ∅, then dim

H
(I ∩ F?) > a.

We provide a proof of this simple result for the sake of completeness.

Proof. Define

R := {rational open intervals I : I ∩ F 6= ∅, but dim
H

(I ∩ F ) ≤ a} ,

F? := F \
⋃

I∈R

I, G :=
⋃

I∈R

(I ∩ F ).(5.10)

The second equation above defines the set F? of our lemma, as we shall see next.
Note that F? 6= ∅ since dim

H
(F ) > a.

Because R is denumerable, dim
H

(G) = supI∈R dim
H

(I ∩ F ) ≤ a. On the other
hand, F? ∪G = F ; thus, for any rational interval I, (F? ∩ I) ∪ (G ∩ I) = F ∩ I. By
monotonicity, dim

H
(F? ∩ I) ≤ dim

H
(F ∩ I) ≤ a.

Now suppose, to the contrary, that there exists a rational interval I such that
dim

H
(I ∩ F?) ≤ a, although I ∩ F? 6= ∅. This shows that dim

H
(I ∩ F ) ≤

max(dim
H

(F? ∩ I), dim
H

(G ∩ I)) ≤ a and I ∩ F 6= ∅. In other words, such an
I is necessarily in R. In light of our definition of F?, we have I ∩ F? = ∅, which is
the desired contradiction. �

Proof of Theorem 1.1 in the case d ∈ (α, 2α). Theorem 4.1 and Frostman’s theo-
rem ([Kho02, Th. 2.2.1, p. 521]), used in conjunction, tell us that whenever S ⊆ [1, 2]
is compact and satisfies dim

H
(S) ∈ ((d−α)/α, 1] (note that the case d = 2α is not

included here),

(5.11) inf
ε∈(0,1)

inf
n≥3

P
{

X (S × [n,∞)) ∩ Bε 6= ∅

}

> 0.

Consequently, by monotonicity and the Hewitt–Savage 0-1 law,

(5.12) P
{

X (S × [n,∞)) ∩ Bε 6= ∅ infinitely often for each ε ∈ (0, 1)
}

= 1.

By path regularity (Proposition A.2), and since ε ∈ (0, 1) can be adjusted up a
little, we have

(5.13) P {X (S × [n,∞)) ∩ Bε 6= ∅ infinitely often for each ε ∈ (0, 1)} = 1.

Now for each ε ∈ (0, 1) and n ≥ 3 consider the sets

Γ̃n
ε := {s ∈ [1, 2] : ∃t ≥ n such that X(s, t) ∈ Bε} ,

Γn
ε := {s ∈ [1, 2] : ∃t ≥ n such that X(s, t) ∈ Bε and X(s−, t) ∈ Bε} .

(5.14)

By the path-regularity of X (Proposition A.2), Γn
ε is (a.s.) an open subset of [1, 2]

no matter the value of α, whereas Γ̃n
ε is an open set only in the case α = 2 (and in
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this case, Γ̃n
ε = Γn

ε ). On the other hand, by (5.13), as long as dim
H

(S) > (d−α)/α,
we have

(5.15) P
{

∀n ≥ 3, ∀ε ∈ Q+ : S ∩ Γ̃n
ε 6= ∅

}

= 1.

Now we appeal to Lemma 5.4 to extract a compact set S? ⊆ S such that if I ⊆ [1, 2]
is any rational open interval such that I ∩S? 6= ∅, then dim

H
(S? ∩ I) > (d−α)/α.

In particular, by (5.15), for all such rational open intervals I,

(5.16) P
{

∀n ≥ 3, ∀ε ∈ Q+ : S? ∩ Ī ∩ Γ̃n
ε 6= ∅

}

= 1.

We would like to have the same statement with Γ̃n
ε replaced by Γn

ε . If α = 2, this
is clear; thus, one can go directly to (5.18). Assuming that α ∈ (0, 2), observe that
the set Sq of elements s of S? ∩ Ī which are isolated on the right (i.e., there is η > 0
such that S? ∩ Ī ∩ [s, s + η) = {s}) is countable. By Dalang and Walsh [DW92b,
Corollary 2.8], with probability one, there is no point (sn, tn) with the properties
that �X(sn, tn) 6= 0 and sn ∈ Sq; see also (A.10) below.

Now set

F :=
{

ω ∈ Ω : ∀n ≥ 3, ∀ε ∈ Q+, S? ∩ Ī ∩ Γ̃n
ε 6= ∅

}

,

G :=
{

ω ∈ Ω : ∀n ≥ 3, ∀ε ∈ Q+, S? ∩ Ī ∩ Γn
ε 6= ∅

}

.
(5.17)

Fix ω ∈ F , and suppose that �X(s, t)(ω) 6= 0 for all s ∈ Sq and t ≥ 0. We shall

show that ω ∈ G. Indeed, fix n ≥ 3 and ε ∈ Q+. If there is some s ∈ Sq∩Ī∩Γ̃n
ε , then

there is a t ≥ n such that X(s, t)(ω) ∈ Bε. Because X(s−, t)(ω) = X(s, t)(ω) ∈ Bε,

we see that ω ∈ G. If Sq ∩ Ī ∩ Γ̃n
ε = ∅, then there is an s ∈ (S? \ Sq) ∩ Ī ∩ Γ̃n

ε and
a t ≥ n such that X(s, t)(ω) ∈ Bε. Since s 6∈ Sq, by the path regularity of X , there
is an r ∈ S such that r > s, X(r, t)(ω) ∈ Bε and X(r−, t)(ω) ∈ Bε, so ω ∈ G.

We have shown that F ⊂ G a.s., and therefore,

(5.18) P
{

∀n ≥ 3, ∀ε ∈ Q+ : S? ∩ Ī ∩ Γn
ε 6= ∅

}

= 1.

It follows that S? ∩Γn
ε is a relatively open subset of S? that is everywhere dense

(in S?). By the Baire category theorem, with probability one, S?∩∩ε∈Q+
∩n≥3Γn

ε is
an uncountable dense subset of S?. In particular, with probability one, we can find
uncountably-many s ∈ S such that for all ε > 0 and for infinitely-many integers
n ≥ 1, there exists t ≥ n such that X(s, t) ∈ Bε.

In other words, we have shown that whenever S ⊂ [1, 2] is compact (and hence
analytic) with dim

H
(S) > (d − α)/α, then almost surely, Ld,α ∩ S 6= ∅. In partic-

ular, Ld,α is dense in R+ and Proposition 5.1(b) shows that with probability one,
dim

H
(Ld,α) ≥ 1 − (d − α)/α = 2 − (d/α). In conjunction with Corollary 5.3, this

proves Theorem 1.1(b) in the case d ∈ (α, 2α). �

5.2. The Case d = 2α. According to Corollary 5.3, dim
H

(L2α,α) = 0, so it remains
to prove that L2α,α is a.s. everywhere-dense. We do this in successive steps.

The first step is the classical reflection principle (the discrete-time analogue is
for instance in [CaD96, Lemma p. 34]).

Lemma 5.5 (The Maximal Inequality). If {L(t)}t≥0 denotes a symmetric Lévy
process with values in a separable Banach space (B, ‖ · ‖), then for all t, λ > 0,

(5.19) P

{

sup
s∈[0,t]

‖L(s)‖ ≥ λ

}

≤ 2P {‖L(t)‖ ≥ λ} .
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Proof. Consider the stopping time,

(5.20) T := inf{s > 0 : ‖L(s)‖ ≥ λ},
with the convention inf ∅ := +∞. Clearly,

P

{

sup
s∈[0,t]

‖L(s)‖ ≥ λ

}

= P{T < t, ‖L(t)‖ ≥ λ} + P{T < t, ‖L(t)‖ < λ}
≤ P{‖L(t)‖ ≥ λ} + P{T < t, ‖L(t) − L(T ) + L(T )‖ < λ}.

(5.21)

By symmetry and the strong Markov property, the conditional distributions of
L(t) − L(T ) and L(T ) − L(t) given L(T ) are identical on {T < t}. Therefore, the
preceding becomes

(5.22) P{‖L(t)‖ ≥ λ} + P{T < t, ‖ − L(t) + 2L(T )‖ < λ}.
Because Lévy processes are right-continuous, on the set {T < t}, we have

‖L(T )‖ ≥ λ. Therefore, the triangle inequality implies that, on the set {T < t}, we
always have ‖ − L(t) + 2L(T )‖ ≥ 2λ − ‖L(t)‖. This proves the result. �

We return to the proof of the fact that L2α,α is everywhere-dense. Fix 0 < a < b,
θ > 0, ε ∈ (0, 1), and define

χχχN :=

N
∑

j=1

1Gj∩Hj
, where

Gj :=
{

ω ∈ Ω : X([a, b] × [2j , 2j+1])(ω) ∩ Bε 6= ∅

}

, and

Hj :=

{

ω ∈ Ω : sup
s∈[a,b]

∣

∣X
(

s, 2j+1
)

(ω)
∣

∣

α ≤ θj2j

}

.

(5.23)

Thanks to Theorem 3.2, there exists a constant A5.24 := A5.24(d, α, a, b, ε) ∈ (0, 1)
such that for all j ≥ 3,

(5.24)
A5.24

j
≤ P(Gj) ≤

A−1
5.24

j
.

We now improve this slightly by proving the following:

Lemma 5.6. There exists a constant θ0 = θ0(α, d) ∈ (0, 1) such that whenever
θ ≥ θ0,

(5.25) P (Gj ∩Hj) ≥
A5.24

2j
, for all j ≥ 1.

Proof. Thanks to (5.24), Lemma 5.5, and scaling,

P
(

G{
j ∪ H{

j

)

≤ 1 − A5.24

j
+ P

(

H{
j

)

≤ 1 − A5.24

j
+ 2P

(

∣

∣X
(

b, 2j+1
)∣

∣

α ≥ θj2j
)

= 1 − A5.24

j
+ 2P

(

|Sα| ≥
1

2b
(θj)1/α

)

,

(5.26)

where Sα is an isotropic stable random variable in Rd; see (A.1). Now, we recall
that there exists a constant C := C(d, α) > 1 such that for all x ≥ 1, P{|Sα| ≥
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x} ≤ Cx−α; see, for instance, [Kho02, Prop. 3.3.1, p. 380]. In particular, whenever
θ > (2b)α, we have, for all j ≥ 1,

(5.27) P
(

G{
j ∪ H{

j

)

≤ 1 − A5.24

j
+ 2C

(2b)α

θj
.

Because A5.24 ∈ (0, 1) and C > 1, we can choose θ0 := 4C(2b)αA−1
5.24 to finish. �

Henceforth, we fix θ > θ0 so that, by Lemma 5.6, there exists a constant A5.28 :=
A5.28(d, α, a, b, ε) > 0 with the property that

(5.28) E [χχχN ] ≥ A5.28 log N, for all N ≥ 3.

Next we show that

(5.29) E
[

χχχ2
N

]

= O
(

log2 N
)

, (N → ∞).

To prove this, note that whenever k ≥ j + 2,

P
(

Gk ∩Hk

∣

∣Gj ∩ Hj

)

≤ P

{

inf
s∈[a,b]

inf
t∈[2k,2k+1]

∣

∣X(s, t) − X(s, 2j+1)
∣

∣ ≤ ε +
(

θj2j
)

1
α

∣

∣

∣

∣

Gj ∩ Hj

}

.
(5.30)

Because X has stationary and independent increments, this is equal to

P

{

inf
s∈[a,b]

inf
t∈[2k,2k+1]

∣

∣X(s, t) − X(s, 2j+1)
∣

∣ ≤ ε +
(

θj2j
)1/α

}

≤ P

{

inf
s∈[a,b]

inf
t∈[2k−2j+1,2k+1−2j+1]

|X(s, t)| ≤ (1 + θ)1/α
(

j2j
)1/α

}

= P

{

inf
s∈[a,b]

inf
t∈[2,5]

|X(s, t)| ≤ (1 + θ)1/α

(

j

2k−j−1 − 1

)1/α
}

(5.31)

For the last equality, we have used the scaling property of X . For k ≥ j + 2, the
ratio on the right-hand side is ≤ 4j2j−k, and there are c > 0, γ > 0 and C < ∞
such that for k > c+ j +γ log(j), 4(1+θ)j2j−k ≤ C(2/3)k−j ≤ 1. By (5.30), (5.31)
and Theorem 3.2, we conclude that there is A5.32 < ∞ not depending on N such
that for such j and k,

(5.32) P
(

Gk ∩ Hk

∣

∣Gj ∩ Hj

)

≤ A5.32

k − j
.

Next we use (5.24) to estimate E[χχχ2
N ] as follows:

E
[

χχχ2
N

]

≤ 2
∑∑

1≤j≤k≤N

P (Gj) P (Gk ∩ Hk | Gj ∩ Hj)

≤ 2A−1
5.24

∑∑

1≤j≤k≤N

P (Gk ∩ Hk | Gj ∩ Hj)

j
.

(5.33)

We split this double-sum into two parts according to the value of the variable k:
Where j ≤ k ≤ c + j + γ log(j) and where c + j + γ log(j) ≤ k ≤ N . For the first
part, we estimate the conditional probability by one, and for the second part by
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(5.32). This yields

E
[

χχχ2
N

]

≤ 2A−1
5.24

∑

1≤j≤N

c + j + γ log(j)

j

+ 2A−1
5.24A5.32

∑

1≤j≤N

∑

c+j+γ log(j)≤k≤N

1

j(k − j)

= O
(

log2 N
)

(N → ∞).

(5.34)

This establishes (5.29).
Now by the Paley–Zygmund inequality [Kho02, Lemma 1.4.1, p. 72], (5.28) and

(5.29),

(5.35) P

{

χχχN ≥ A−1
5.24

2
log N

}

≥ P

{

χχχN ≥ 1

2
E [χχχN ]

}

≥ 1

4

(E [χχχN ])2

E(χχχ2
N )

,

and this is bounded away from zero, uniformly for all large N . Therefore, P{χχχ∞ =
+∞} is positive, and hence is one by the Hewitt–Savage zero-one law. That is, for
each fixed ε ∈ (0, 1) and 0 < a < b, with probability one there are infinitely many
n’s such that

(5.36) X([a, b] × [n,∞)) ∩ Bε 6= ∅.

Let Γ̃n
ε and Γn

ε be as in (5.14). By (5.36),

(5.37) P
{

∀n ≥ 1, ∀ε ∈ Q+, [a, b] ∩ Γ̃n
ε 6= ∅

}

= 1,

which is analogous to (5.15). We now use the Baire Category argument that follows
(5.15) to conclude that with probability one, there are uncountably many s ∈ [a, b]
such that for all ε ∈ (0, 1) and for infinitely-many n’s, there exists t ≥ n such that
X(s, t) ∈ Bε. Because with probability one this holds simultaneously for all rational
intervals [a, b] ⊂ (0,∞), L2α,α is everywhere-dense and Theorem 1.1 is proved.

Appendix A. Isotropic Stable Sheets and the Stable Noise

Throughout this appendix, α ∈ (0, 2] is held fixed, and Sα denotes an isotropic
stable random variable in Rd; i.e., Sα is infinitely-divisible, and

(A.1) E
[

eit·Sα
]

= e−
1
2
‖t‖α

, for all t ∈ Rd,

where ‖t‖2 := t21 + · · · + t2d.
Here, we collect (and outline the proofs of) some of the basic facts about sta-

ble sheets of index α ∈ (0, 2). More details can be found within Adler and Fei-
gin [AdF84], Bass and Pyke [BaP84, BaP87], Dalang and Walsh [DW92b, Sections
2.2–2.4], Dalang and Hou [DaH97, §2]. Related facts can be found in Bertoin [Ber96,
pp. 11–16], Dalang and Walsh [DW92a], and Dudley [Dud69].

Let us parametrize x ∈ Rd as x := rϕ where r := ‖x‖ > 0 and ϕ ∈ Sd−1 := {y ∈
Rd : ‖y‖ = 1}. Then given any α ∈ (0, 2), let να(dx) be the measure on Rd such
that

(A.2)

∫

f(x) να(dx) :=

∫ ∞

0

dr

∫

Sd−1

σd(dϕ) cr−α−1 f(r, ϕ),
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where σd denotes the uniform probability measure on Sd−1, and c := c(d, α) > 0 is
the following normalizing constant:

(A.3) c :=

[

2

∫ ∞

0

∫

Sd−1

(

1 − eirϕ1

r1+α

)

σd(dϕ) dr

]−1

.

It is easy to see that c ∈ R, and hence,

c :=

[

2

∫

Sd−1

∫ ∞

0

(

1 − cos (r |ϕ1|)
r1+α

)

dr σd(dϕ)

]−1

= − 1

π
Γ(1 + α) cos

(

π(1 + α)

2

)[
∫

Sd−1

|ϕ1|1+α
σd(dϕ)

]−1

.

(A.4)

This choice of c makes να out to be the Lévy measure of Sα with normalization
given by (A.1); cf. also [Ber96, p. 11–16].

Next consider the Poisson point process Π := {(s, t, e(s, t)); s, t ≥ 0} whose
characteristic measure is defined as ds × dt × να(dx) (s, t ≥ 0, x ∈ Rd). Since this
characteristic measure is locally finite on R+ ×R+ × (Rd \ {0}), Π can be identified
with a purely atomic Poisson random measure,

(A.5) Πs,t(G) := #
{

(u, v) ∈ R2
+ : u ≤ s, v ≤ t, e(u, v) ∈ G

}

,

where (s, t) ∈ R2
+ and G ⊂ Rd is a Borel set. We note that Πs,t(G) is finite for all

G such that να(G) < +∞, which is equivalent to the condition that the distance
between G and 0 ∈ Rd is strictly positive.

Next define

Y (s, t) :=
∑∑

(u,v)∈[0,s]×[0,t]

e(u, v)1{‖e(u,v)‖≥1},

Zδ(s, t) :=
∑∑

(u,v)∈[0,s]×[0,t]

e(u, v)1{δ≤‖e(u,v)‖<1},

W δ(s, t) := Zδ(s, t) − E
{

Zδ(s, t)
}

,

(A.6)

for all s, t ≥ 0 and δ ∈ (0, 1). Since s 7→ Πs,•(•) is an ordinary one-parameter Pois-
son process, and because the (infinite-dimensional) compound Poisson processes
s 7→ Y (s, •) and s 7→ W δ(s, •) do not jump simultaneously, they are independent;
cf. [Ber96, Proposition 1, p. 5].

For any η ∈ (0, δ), consider

E

{

sup
(u,v)∈[0,s]×[0,t]

∥

∥W δ(u, v) − W η(u, v)
∥

∥

2

}

≤ 16E
{

∥

∥W δ(s, t) − W η(s, t)
∥

∥

2
}

= 16st

∫

η≤‖x‖<δ

‖x‖2 να(dx).

(A.7)

The inequality follows from Cairoli’s maximal L2-inequality [Kho02, Th. 1.3.1(ii),
p. 222], and the readily-checkable fact that (s, t) 7→ W δ(s, t) is a two-parameter
martingale with respect to the commuting filtration generated by the process e.
The equality is a straight-forward about the variance of the sum of mean-zero
L2(P)-random variables. Since

∫

(1 ∧ ‖x‖2) να(dx) < +∞, we have shown that
η 7→ W η(s, t) is a Cauchy sequence in L2(P), uniformly over (s, t) in a compact set.
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(a) (d, α) = (1, 0.8) (b) (d, α) = (1, 0.6)

Figure 1. The d > α Case

Now we compute characteristic functions directly to deduce the following [DW92b,
Th. 2.3]:

Proposition A.1. If α ∈ (0, 2), then the process X := {X(s, t); s, t ≥ 0} defined
by

(A.8) X(s, t) = Y (s, t) + lim
δ↓0

W δ(s, t)

is well-defined. Here, the limit exists uniformly over (s, t) in compact subsets of
R2

+, a.s., and:

(1) For all s, t, r, h ≥ 0, ∆r,h(s, t) is independent of {X(u, v); (u, v) ∈ [0, s] ×
[0, t]}, where

(A.9) ∆r,h(s, t) := X(s + r, t + h) − X(s + r, t) − X(s, t + h) + X(s, t).

(2) For all s, t, r, h,≥ 0, ∆r,h(s, t) has the same distribution as (rh)1/αSα.

The process X is termed a two-parameter isotropic α-stable Lévy sheet. Note
that the case α = 2 is substantially different: The process X is continuous and is
the classical Brownian sheet [DW92b, Prop. 2.4]. For various α, a simulation of the
sample paths of X is shown in Figures 1 and 2. These simulations are explained in
Appendix B.

Many of the regularity features of the samples of Y and W δ automatically get
passed onto the sample functions of X , as can be seen from the construction of X .
In particular, we have the following [DW92b, §2.4]:

Proposition A.2. The process X a.s. has the following regularity properties:

(1) X is right-continuous with limits in the other three quadrants.
(2) �X(s, t) = 0 except for a countable set of (random) points (sn, tn) ∈ R2

+,
where

(A.10) �X(s, t) = X(s, t) − X(s−, t) − X(s, t−) + X(s−, t−).

(3) If �X(sn, tn) = x, then X(sn, t) − x(sn−, t) = x for all t ≥ tn, and
X(s, tn) − x(s, tn−) = x for all s ≥ sn.

(4) The sample paths of X have no other discontinuities than those in 2. and
3. In particular:
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(a) (d, α) = (1, 1.6) (b) (d, α) = (1, 1.8)

Figure 2. The d ≤ α Case

(5) the set {s ≥ 0 : ∃t ≥ 0 : X(s, t) 6= X(s−, t)} is countable;
(6) the set {t ≥ 0 : ∃s ≥ 0 : X(s, t) 6= X(s, t−)} is countable.

Finally, we mention a few facts about the isotropic stable noise. Fix α ∈ (0, 2]
fixed (with α = 2 allowed), and define

(A.11) X ([s, s + r] × [t, t + h]) := ∆r,h(s, t), for all s, t, r, h ≥ 0.

This can easily be extended, by linearity, to construct a finitely-additive random
measure on the algebra generated by rectangles of the form [s, s+r]× [t, t+h]. The
extension to Borel subsets of R2

+—that we continue to write as X—is the socalled

isotropic stable noise of index α (in Rd). It is a.s. a genuine random measure on
the Borel subsets of Rd if and only if α ∈ (0, 1).

Appendix B. Simulating Stable Processes

B.1. Some Distribution Theory. One simulates one-dimensional symmetric sta-
ble sheets of Figures 1 and 2 by first simulating positive stable random variables;
these generate the law of stable subordinators. The basic idea is to use a rep-
resentation of Kanter [Kan75], which relies on the so-called Ibragimov–Chernin
function [IbC59],

(B.1) ICα(v) :=
sin(π(1 − α)v)(sin(παv))α/(1−α)

(sin(πv))1/(1−α)
, for all α, v ∈ (0, 1).

We then have:

Proposition B.1 (Kanter [Kan75]). If α ∈ (0, 1) and U and V are independent,
and uniformly distributed on [0, 1], then W := |ICα(U)/ ln(V )|(1−α)/α has a positive
α-stable distribution with characteristic function

(B.2) φW (t) = exp
(

−|t|αe−
1
2
iπαsign(t)

)

, for all α ∈ (0, 1).

One then uses Bochner’s subordination [Kho02, Th. 3.2.2, p. 379] to simulate
symmetric α-stable random variables for any α ∈ (0, 2]. Formally, this is:
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Proposition B.2 (Bochner’s subordination). Suppose X and Y are independent,
Y is a positive α-stable variable whose characteristic function is in (B.2), and X
is a centered normal variate with variance 2. Then the characteristic function of
Z := X

√
e−πY is φZ(t) = exp(−|t|α), and Z is symmetric. That is, Z is symmetric

α-stable.

Note that the simulations here generate variates with characteristic function
φ(t) = exp(−|t|α) instead of exp(− 1

2 |t|α). The adjustment is simple, though un-
necessary for us, and we will not bother with this issue.

B.2. Simulating Symmetric Stable Sheets. In order to simulate the sheet, we
run a two-parameter random walk with symmetric α-stable increments. That is,
let {ξi,j}i,j≥1 denote i.i.d. symmetric α-stable random variables, and approximate

the symmetric α-stable sheet X(s, t), in law, by n−2/αSn
bnsc,bntc, where

Sn
k,` :=

∑

1≤i≤k

∑

1≤j≤`

ξi,j

is a two-parameter random walk. It is easy to see that as n → ∞,

(B.3) n−2/αSn
bnsc,bntc

(d)−→ X(s, t)

in the sense of finite-dimensional distributions. By this weak approximation result,
for large n, the two-parameter random walk yields a good approximation of the
stable sheet. A simulation of the random walk produces the pictures in Figures 1
and 2.
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