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Abstract We develop an axiomatic approach to the theory of Sobolev spaces on 
metric measure spaces and we show that this axiomatic construction covers the main 
known examples (Hajtasz Sobolev spaces, weighted Sobolev spaces, Upper-gradients, 
etc). We then introduce the notion of variational p-capacity and discuss its relation 
with the geometric properties of the metric space. The notions of p-parabolic and 
p-hyperbolic spaces are then discussed. 

I n t r o d u c t i o n  
Recent years have seen important developments in geometric analysis on metric mea- 
sure spaces (MM-spaces). Motivating examples came from various subjects such as 
singular Riemannian manifolds, discrete groups and graphs, Carnot-Carath@odory 
geometries, hypoelliptic PDE's, ideal boundaries of Gromov-hyperbolic spaces, 
stochastic processes, fractal geometry etc. The recent books [22] and [19] are con- 
venient references on the subject. 

Suppose we are given a metric measure space (X,d,#) ;  how can we define in a 
natural way a first order Sobolev space WI,P(X) ? 
Here is a simple construction. Let ~" be the class of Lipschitz functions with 
compact support u : X --+ ~, and define for any u E 5 r and any point x C X the 
infinitesimal stretching constant 

lu (y)  - u ( z ) l  L~,(x) := lim sup 
r--tO d(y,x)<r r 

We can check that the formula 

Ilulll,p := IlullL (x)+ IIL IILp(x) 
defines a norm on 9% 
We then define WI'p(X) to be the completion of ~" for this norm. If X is the 
Euclidean space ~ ,  then this construction gives the usual Sobolev space WI,P(~n). 
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It is also a natural construction of the Sobolev space WI'p(x)  for a large class of 
metric measure spaces. 

However there are cases where this definition gives rise to a quite degenerate Sobolev 
space; here is an example based on an idea of S. Semmes : Let X = ~ with the 
Lebesgue measure # and the metric d~(x,y) := l Y -  xl ~ where 0 < a < 1 is a 
fixed number. In this case, it is not difficult to see that if the function u : R n -+ $~ 
is differentiable (in the classic sense) at a point x, then L~,(x) = 0. In particular if a 
function u : ]R n -+ ]R is differentiable almost everywhere, then we have ]lLu[[Lp(X) -: 
0 hence [[u[I1, p = I]U]]Lp(X); which is a rather degenerate behaviour. 

The Sobolev space is called non degenerate if [[Lu[[Lp(X) > 0 for any non constant 
function u. We just observed that this condition is not always satisfied; it must 
therefore be assumed axiomatically in order to develop a general theory. 

An alternative notion of Sobolev spaces on metric spaces has been developed in 
[4], [24] and [39] starting from the notion of upper gradient (see section 2.6 for a 
description of this Sobolev space). This approach is well adapted to the case of 
length spaces (these are metric spaces such that the distance is defined in terms of 
the length of curves) or more generally to quasi-convex spaces. 
A Poincar~ inequality (see §sec.poinc) is often assumed or proved. It follows from 
this inequality that the Sobolev space is non degenerate. 

Another approach is the Sobolev space on metric measure space defined by Piotr 
Hajiasz in [18]. The Hajtasz Sobolev space is in some sense a globally defined Sobolev 
space (unlike the constructions above), it is always non degenerate. 

Other concepts of Sobolev spaces where motivated by the study of first order differ- 
ential operators on homogeneous spaces (see for example the discussion in [11]) and 
by graph theory. 

Our goal in this paper, is to develop an axiomatic version of the theory of Sobolev 
spaces on metric measure spaces: This axiomatic description covers many examples 
such as the Hajtasz Sobolev spaces, the weighted Sobolev spaces, the Sobolev spaces 
based on HSrmander systems of vector fields and on more abstract upper gradients. 

The basic idea of this axiomatic description is the following: Given a metric space 
X with a measure #, we associate (by some unspecified mean) to each function 
u : X -+ ~ a set Din] of functions called the pseudo-gradient8 of u; intuitively a 
pseudo-gradient 9 C D[u] is a function which exerts some control on the variation 
of u (for instance in the classical case of ~n: D[u] = {g e L~oc(]~n): g >_ IVu[ a.e.}). 
A function u C LP(X) belongs then to WI,P(X) if it admits a pseudo-gradient 
g E D[u] N I / ( X ) .  Depending on the type of control required, the construction 
yields different versions of Sobolev spaces in metric spaces. 

Instead of specifying how the pseudo-gradients are actually defined, we require 
them to satisfy some axioms. Our axioms can be divided in two independent 
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groups: The first group (axioms A1-A4) is a formal description on the set D[u] 
of pseudo-gradients and the second group (axioms A5 and A6) gives a meaning to 
the p-integrabil i ty of the pseudo-gradients. 

A correspondence u --+ D[u] satisfying the axioms is called a D-structure on the 
metric measure space X. We look at such a structure as an ersatz for a theory of 
differentiation of the functions on the space (hence the name). A metric measure 
space (X, d, #) equipped with a D-structure is called a MMD-space. 

The p-Diriehlet energy Cp(U) of a function u is the greatest lower bound of the 
p ' th  power of the Lp-norms of all the pseudo-gradients of u and the p-Dirichlet 
space £t 'p(X) is the space of locally integrable functions with finite p-energy. The 
Sobolev space is then the space WI,p(X) := £),P(X) A Lv(X). We can prove from 
the axioms that WI,P(X) is a Banach space; however, due to the fact that the 
definition of pseudo-gradient is not based on a linear operation, we can't generally 
prove that it is a reflexive Banach space for 1 < p < oo. Using this theory, we obtain 
a classification of metric spaces into p-parabolic/p-hyperbolic types similar to the 
case of Riemannian manifolds. 

We now briefly describe the content of the paper: 

In section 1, we give the axiomatic construction of Sobolev spaces on metric measure 
spaces and the basic properties of these spaces. The setting is the following: we fix a 
metric measure space (X, d, #) and we choose a Boolean ring ](: of bounded subsets 
of X which plays the role of relatively compact subsets in the classical situation 
(the precise conditions that ~ must satisfy are specified in the next section). The 
space L~oc(X ) is defined to be the space of all measurable functions u such that 
UlA E LP(A) for all sets A C ]C. We then define the notion of D-structure by a set 
of axioms and we list some basic properties of the axiomatic Sobolev spaces. 

In section 2, we show that familiar examples of Sobolev spaces on metric spaces 
such as the classical Sobolev spaces on Riemannian manifolds, weighted Sobolev 
spaces, Sobolev spaces on graphs, Hajtasz Sobolev spaces and Sobolev spaces based 
on upper gradients are examples of axiomatic Sobolev spaces. 

In section 3, we develop the basics of non linear potential theory on metric spaces. 
We denote by £~'P(X) the closure of the set of continuous functions u E £1'P(X) 
with support in a ]C-set and we define the variational p-capacity of a set F C ~ by 

Capp(F) := inf{$p(u)tu C Ap(F)} ,  

where Ap(F) := {u E £~'P(X)I u >_ 0 and u > 1 on a neighbourhood of F } .  A met- 
ric space X is said to be p-hyperbolic if it contains a set Q c E of positive p-capacity 
and p-parabolic otherwise. One of our results (Theorem 3.1) says that the space X 
is p-parabol ic  if and only if 1 E £~'P(X). 

In the last section, we quote without proof a few recent results from the theory of 
Sobolev spaces on metric spaces. 
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Let us conclude this introduct ion by mentioning a few impor tan t ,  very active and 
related topics which are not discussed in this paper.  First  there is the theory of 
Sobolev mappings  between two metric  spaces which is a na tura l  extension of the 
present  work. Some papers  on this subject  are [32], [38] and [44]. Then there are 
papers  dealing with a generalized notion of (co)tangent  bundle on metric  spaces 
such as [4], [37], [45] and [46]. Finally, there is the theory of Dirichlet forms and 
analysis in Wiener spaces such as exposed in [2] and [35]. 

Finally, it is our pleasure to thank  Piot r  Hajtasz and Khaled Gafa'iti for their friendly 
and useful comments .  
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1 Axiomatic theory of Sobolev Spaces 

1.1 T h e  b a s i c  s e t t i n g  

An MM-spaee is a metric space (X, d) equipped with a Borel regular outer measure 
# such that 0 < #(B) < c~ for any ball B C X of positive radius (recall, that  an 
outer measure # is Borel regular if every Borel set is p-measurable and for every 
set E C X, there is a Borel subset A C E such that #(A) = #(E),  see [9, page 6]). 

Our first aim is to introduce a notion of local Lebesgue space L~oc(X). For this 
purpose we need the following concept : 

Definition 1.1 (a) A local Borel ring in the MM-space (X, d, #) is a Boolean ring 1 
K of bounded Borel subsets of X satisfying the following three conditions: 

K1) U A = X; 
AE/¢ 

K2) if A E K and B C A is a Borel subset, then B E K; 

K3) for every A C E there exists a finite sequence of open balls B1, B2, ...Bin E 
K such tha tAcUm=lB~ and #(Bi~Bi+l )>O f o r l _ < i < m .  

(b) A subset A C X is called a K-set if A E E. 

Basic examples of such rings are the ring of all bounded Borel subsets of X and the 
ring of all relatively compact subsets if X is locally compact and connected. 

In the rest of this subsection, we discuss some of the properties of such a structure 
(X, d, K, #). The reader may prefer to go directly to the next subsection and come 
back to this one only when it is needed. 

L e m m a  1.1 The properties (K1)-(K3) have the following consequences: 

i) X can be covered by open K-sets. 

ii) X has the following "connectivity" property: For any pair of points x, y E X,  
there exists a finite collection {B1, t32, ...B,~} C K of balls such that x E B1, 
y E Bn and # ( B z M B i + l ) > 0 f o r a l l i .  

iii) K contains all compact subsets of X.  

1A collection of subsets K: of X is a Boolean ring, if A1, A2 E K: ~ (A1 U A2) and (At \ A2) C K:. 
Boolean rings are also closed under finite intersections and symmetric differences. 
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P r o o f  (i) Follows directly from conditions (K1) and (K3) and (ii) follows from 
(K3) since A := {z, y} E ;E . To prove (iii), let C C X be a compact sub- 
set; by (i) it can be covered by open ;E-sets (in finite number, by compactness): 

m C C U -- Ui=lUi, where U~ E ;E; since ;E is a ring we have U E ;E, hence C E ;E 
by (K2). 

[] 

This lemma has the following consequences : 

1) A local Borel ring ;E is always contained between the ring of relatively compact 
Borel sets and the ring of all bounded Borel sets. 
In particular if X is a proper metric space (i.e. every closed bounded set is 
compact), then both of these rings coincide and ;E is always the ring of relatively 
compact Borel sets. 

2) If X C R ~ is an open subset and ;E is the ring of relatively compact Borel 
sets, then X must be connected. 

In the sequel, X will always be an MM-space with metric d, measure # and a local 
Borel ring ;E. 

Def in i t ion  1.2 We say that  the space X is a a;E, or that  it is a ;E-countable space, 
if X is a countable union of/(:-sets. 

Examples  (a) If ;E is the ring of all bounded Borel subsets of X, then X is always 
;E-countable. 

(b) If X is locally compact and separable, and ;E is the ring of all relatively compact 
Borel subsets, then X is/(:-countable. 

Def in i t ion  1.3 (a) For 1 _< p < oc, the space L~o~(X ) = L~o~(X ,;E,#) is the 
space of measurable functions on X which are p-integrable on every ;E-set. 
(b) Llo~(X ) is the space of measurable functions on X which are essentially bounded 
on every/(;-set. 

f 
The family of semi-norms ~ IIUIIL,(K): K E ;El defines 

J 

L~oc(X); and we have : 

L e m m a  1.2 If  X is a ;E-countable space, then L~oc(X ) is a Frechet space. 

The proof is obvious. 

a locally convex topology on 

[] 

Observe also that, trivially, if X E ;E, then L~oc(X ) = /2(X) is in fact a Banach 
space. 
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N o t a t i o n s  The notation A CC £t (or A ~ f~) means that there exists a closed 
E-set K such that A C K c f~ (in particular A ~ X if and only if A is contained 
in a closed/C-set). 

If ~ C X is open, we denote by/CI~ the set of all Borel sets A such that A ~ Ft. It is 
a Boolean ring which we call the trace of/C on ft. This ring satisfies conditions (K1) 
and (K2) above. If condition (K3) also holds, then we say that f~ is ~C-connected. 

We denote by C(X) the space of all continuous functions u : X -+ R and by 
Co(X) C C(X) the subspaee of continuous functions whose support is contained in 
a/C-set. If ~t C X is an open subset, then C~(~) is the set of continuous functions 
u : [t --+ IR such that  supp(u) © fL 

It is clear that for any function u E C0(f~), there exists an extension ~ e Co(X) 
which vanishes on X \ ft and such that fi = u on ~. 

The space of bounded continuous functions on an open set ~ C X is denoted by 
Cb(Yt) = C(f~) n L°°(f~). It is a Banach space for the sup norm. 

We conclude this section with a few more technical definitions: 

Def in i t ion  1.4 A subset F of an MM-space X is strongly bounded if there exists a 
pair of open sets f~l C ~2 C X such that f~2 E/C, #(X\f~2) > 0, dist(~l,  X\~2)  > 
0 and F C f~l. 

Def in i t ion  1.5 An MM-space X is strongly/c-covetable if there exist two countable 
families of open/c-sets {U~} and {V~} such that V~ ¢ X for all i and 

1) X = U Ci; 

2) U~ C Vi for all i; 

3) dist(U~, X \ Vi) > 0 and 

4) #(Vi \ Ui) > 0. 

Observe that if F C U~ for some i, then it is a strongly bounded set. 

It is clear that every strongly/C-coverable metric space is also/c-countable. It is 
in general not difficult to check that a space is strongly/c-coverable. The next two 
lemmas give examples of such. 

L e m m a  1.3 Suppose that X E /C and contains four closed ~c-sets A1, At, A2, A~ 
such that A~ C A~, p(A~ \ Ai) > 0, dist(Ai, X \ A~) > 0 and A~ N X 2 = O. Then X 
is strongly/c-coverable. 
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P r o o f  Let us set U~ := X \ A~ and Vii : :  X \ A~. Then {0"1,/]2} and {Va, V2} 
are the required coverings. [] 

L e m m a  1.4 Let X be a separable metric space. Suppose that for each point 
z E X there existsr~ > 0 such thatB(z, 2rz) E ~ and#(B(z, 2r ) \B(z , r ) )  > 0 
for any 0 < r < r~, then X is strongly lC-coverable. 

P r o o f  Let Q c X be a dense countable subset. For each z E X,  we choose a 
point q = ¢ ( z )  E Q  such that d(z,¢(z))~_ ~min{1,rz} a n d ¢ ( z ) = z  if z E Q .  
We then define a function s : Q -+ R+ by 

and for each point 

1) ¢ ( z ) =  q and 

2) ½s(q) _< < s(q). 

s ( q ) :  sup min{1, r~} 
¢(~)=q 

q E Q ,  wechoose z = ¢ ( q )  E X  such that 

Observe that the map ¢ : Q --+ X is a left inverse of ¢ : X --+ Q (i.e. ¢ o ¢  = idIQ); 
we denote by a t h e m a p  c T : = ¢ o ¢ : X - + X .  
Observe also that for any point x E X we have q = ¢(x) =:=> d(x, q) < ~ mint1, rx} _< 
~s(q) and d(q,¢(q)) < I • _ [ m m { 1 ,  re(q)} _< ~s(q). 
Since s(q) <_ 2rv(¢ and ¢(q) : ~b(¢(x)) : a(x), we obtain the estimate 

2 4 
d(x, a(x) ) <_ d(x, q) + d(q, ¢(q) ) < -~s(q) ~ -~r~(~) . 

We have thus shown that for any point x E X we have x E B(a(x),r~(~)), i.e. 
{B(z, rz)}zeo(x) is a covering of X. 
This is clearly a countable covering since a(X) = a(Q) is countable; thus the 
families of open K-sets {Uz : :  B(z, rz)}zE~(x) and {V~ : :  B(z, 2rz)}~e~(x) satisfy 
all the conditions of Definition 1.5. 

The following are by now classic notions (see [22]): 

Def in i t ion  1.6 a) The measure # is called Ahlfors-David regular of dimension 
8 if there exists a constant c such that for any ball B(x, r) C X we have 

l r s  < #(B(x,  r)) < cr ~. 
C 

b) The measure # is locally s-regular if for every point x E X there exists two 
constants cx, R~ such that for 0 < r < R~ we have 

1--rS < #(B(x,  r)) < cxr s. 
Cx 
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c) The measure # has the doubling property if there exists a constant 
for all balls B C X we have 

#(2B) < 2k#(B) 

(where 2B means the ball with same center and double radius). 

k such that 

1.2 D - s t r u c t u r e  a n d  S o b o l e v  s p a c e s  

To define an axiomatic Sobolev space on (X,d,  IC, lz), we fix a number 1 _< p < cx~ 
and we associate to each function u • L~o~(X) a family D[u] of measurable functions 
g : X --+ •+ U {cx~}. An element g • D[u] is called a pseudo-gradient 2 of u. The 
correspondence u -+ D[u] is supposed to satisfy some or all of the following axioms: 

A x i o m  A1 ( Non  t r iv ia l i ty )  If u : X --+ R is non negative and k-Lipschitz, then 
the function 

0 

belongs to D[u]. 

It follows from this axiom that 0 • D[c] for any constant function c > 0. 

A x i o m  A2 ( U p p e r  l inear i ty )  If gl • D[ul], g2 • D[u2] and g >_ lalgl + Ifllg2 
almost everywhere, then g • D[aul +/3u2]. 

This axiom implies in particular that D[u] is always convex and D[au] = laiD[@ 

A x i o m  A3 (Leibniz  ru le)  Let u • L~o~(X ). I f  g E D[u], then for any bounded 
Lipschitz function ~ : X ~ R the function h(x) = (sup [~Ig(x) + Lip(~)lu(x)[) 
belongs to D[~u]. 

A x i o m  A4 ( La t t i c e  p r o p e r t y )  Let u := max{u1, u2} and v := rain{u1, u2} where 
ul,u2 • L~oc(X). I f  gl • D[ut] and g2 • D[u2], then g := max{gl,g2} • D[u]MD[v]. 

The previous axioms fixed general properties of the set D[u] of pseudo-gradients. 
The last two axioms concern the behavior of the p-integrable pseudo-gradients of 
locally p-integrable functions; they really are properties of Sobolev spaces rather 
than properties of individual functions. 

A x i o m  A5 ( C o m p l e t e n e s s )  Let {ui} and {gi} be two sequences of functions 
such that gi E D[ui] for all i. Assume that u~ --+ u in L~o c topology and (gi-g)  --+ 0 

2This notion should not be confused with the pseudo-gradients in the sense of Palais as defined 
e.g. in [27, page 299]. 
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in L2 topology, then g E D[u]. 

This axiom implies in particular that two functions which agree almost everywhere 
have the same set of pseudo-gradients. We henceforth always identify two functions 
which agree a.e. 

We define a notion of energy as follow : 

Def in i t ion  1.7 The p-Dirichlet energy of a function u E L~oc(X) is defined to be 

Ep(U) = inf { / x  f dl~t : g E D [u] } 

Our final axiom states that if the energy of a function is small, then this function is 
close to being constant. 

A x i o m  A6 ( E n e r g y  con t ro l s  va r ia t ion)  Let {u~} C £1'P(X) be a sequence 
of functions such that £p(Ui) ~ O. Then for any metric ball B E IC there exists a 
sequence of constants ai = ai(B) such that [[ui - a~ []LP(B) -'~ O. 

Definit ion 1.8 a) A D-structure on (X, d,)E, #) for the exponent p is an operation 
which associates to a function u E L~oc(X ) a set D[u] of measurable functions g : 
X -+ ~+ U {co} and which satisfies the Axioms A1-A5 above (for the corresponding 
p). 
b) The D-structure is non degenerate if it also satisfies axiom A6. 

c) A measure metric space equipped with a D-structure is called an MMD-space. 

We now define the notion of Dirichlet and Sobolev spaces associated to a D-structure. 

Def in i t ion  1.9 i) The p-Dirichlet space is the space £1,P(X) of functions u E 
Lfoc(X ) with finite p-energy. 
ii) The Sobolev space is then defined as 

w l , p ( x )  = w l ,p (x ,  d, D) : =  LI, (X) n L' (X)  . 

T h e o r e m  1.5 Given a D-structure on ( X, d, lC, #) (for the exponent p), the corre- 
sponding Sobolev space WI,P(X) is a Banach space with norm 

/ x  \ 1/v 
= lul d  + . 
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P r o o f  By axiom A1, we know that 0 E WI'p(X). It is then clear from axiom A2 
that WI,p(X)  is a vector space. Let us prove that  I]'Nwl,p(x) is indeed a norm. 

i) liUHw~,p(x) = 0 =~ [[UNLp(X) = 0 ~ u = 0 a.e. is obvious. 

ii) NAUiiw1 p(x) = [AI [[Uilw~ p(z) follows from axiom A2, since 9 e D[u] ¢~ ]Aig e 
D[Au] for all A e N \ {0}; hence £p(Au) = [AiP£p(u). 

iii) [[u + Viiw~.p(x ) < [[Uiiw,,p(x) + []Viiw~,()p x also follows from axiom A2, since 
gl e D[ul] and g2 e D[u2] implies (gl + g2) e D[Ul + u2]. 

We have to prove that WI,p(X) is complete for this norm. 

Let {ui} E WI 'P(X)  be an arbitrary Cauchy sequence: we may (and do) assume 
(taking a subsequence if necessary) that [](u~ - U~+l)Hw~,p(x) <- 2-i. 
Let us set vj := (uj - u j + l ) ;  by hypothesis we can find hj C D[vj] A I F ( X )  such that 

NhjNL,(x) _< 2-J. 
We then choose an arbitrary element gl E D[u,] and set gk :-- g l + E ~ - ~  h~ for k > 2. 

k - 1  It follows from the identity u~ := ul - ~ j = l  v3 and axiom A2 that gk E D[uk] for 
all k C N. 

Now {gk} and {uk} are both Cauchy sequences in /2 (X) ;  thus there exist limit 
functions u = limuk and g = limgk in the IF sense. It follows then from axiom A5 
that g E D[u]; and therefore u C WI'p(X). 

It only remains to show that u~ --~ u in W~m(X).  In fact, since II(uk-  u)liLp(X ) --+ O, 
we only need to prove the existence of a sequence fk E D[(uk - u)] such that 

II AIIL.(x) -+ 0 
Fix k, the sequence Vk,,~ := (Uk -- urn) (where m _> k) is a Cauchy sequence 
in WI'P(X)  because vk,m -- Vk,~ = U~ -- Urn. Furthermore, we have the following 
estimate : 

m - 1  m - 1  

-< Ilu: - _< 2-"  _< 2 
s=k s=k 

By construction we have lira vk,m = (uk -- u) in the IF sense and, by axiom A2, we 
m--~ co 

m - 1  

~-'~m-- 1 V have gk,m := E h~ C D[Vk,m] since Vk,m = Z.-,~=k ~" 
s = k  

Now {gk,m}m=l,2,.. is a Cauchy sequence i n / 2 ( X )  and 

r a - 1  m - 1  

119k....llL,(x) --< IIh ll ,(x) _< <- 2-(k-')" 
s:]¢ s=k 

By axiom A5 the function fm := lim gk,m belongs to D[(uk - u)] and 

ilfkNLP(X) = lira Ngk,mHL,(X) < 2-(k-1). 
m--~oo 
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This proves the completeness of WI,P(X).  
[] 

Observe that in this proof, we have only used Axioms A2 and A5. 

From the proof we obtain the following 

C o r o l l a r y  1.6 ~I'p(x) i8 a seminormed space with seminorm Ilull  , (x) = (~p(u)  ) l /p,  

[] 

If the D-structure is degenerate, then the p-energy may be trivial (i.e. $p(u) = 0 
for any u). In that case the Sobolev space WI,P(X) reduces to the usual Lebesgue 
spa c e /2 (X) .  For this reason, it is necessary to understand the meaning of axiom 
A6. 

We first observe that the sequence of constants ai(B) appearing in axiom A6 is in 
fact global, i.e. independent of the chosen ball B E E, as our next result shows: 

P r o p o s i t i o n  1.7 Assume that axiom A6 holds. Let {u~} C £),P(X) be a sequence of 
functions such that $p(ui) --+ O. Then there exists a sequence of constants {ci} C ]R 
such that for any A C )U. we have Ilui - ci NLP(A)--+ O. 

P r o o f  The proof follows easily from Lemma 1.1, axiom A6, and from the following 
lemma. 

[] 

L e m m a  1.8 Assume that D is a non degenerate D-structure. Let {ui} c £1'P(X) 
be a sequence of functions such that Sp(ui) --+ 0 and let B1, B2 C )U be open balls 
such that #(B1 n B2) > O. 
I f  tt u~ - cillL,(,1) ~ 0 for some sequence {ci} C ~ then Hui - c~l[L,(Bius2) ~ 0. 

P r o o f  By axiom A6, there are sequences {a~}, {a~} C li( such that Ilu~ - aillL~(Sl) 
! 

0 and Hui - ail]L,(B2 ) -+ O. It is clear that lim(ai - ci) = 0, on the other hand we 
i----) o c  

have lim (ai - a~) = 0 because #(B1 N B2) > 0 and 

I la~  - a'~IIL,(BI~B:) < [lu~ - a~llL,(~l) ÷ Ilu~ - a'iHLP(B,) -+ O. 

It follows that the three sequences {a~}, {a~} and {ci} are equivalent (i.e. l im(a i -  
c~) = lim(a~ - ci) = 0). 
Therefore 

< Ilui - c IFLp(B1) + Iru  - ci[IL (B ) 

--+ 0. 
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We conclude this section by stating some elementary properties of the spaces £1'P(X) 
and WI'p(X). 

P ropos i t ion  1.9 Suppose that axioms A1-A6  hold then 

1) I f  u e LI'p(X) has no energy, i.e. Ep(u) = 0, then u is a.e. constant 

2) Wl ' v (X)  is a lattice, i.e. i fu ,  v e WI'P(X),  then max{u,v} e WI'P(X) 
and min{u, v} E WI'P(X).  

3) WI'v(X) contains all Lipschitz functions with support in a E-set. 

4) I f  u C WI'v(X) and ~ is a Lipschitz function with support in a It-set, then 
~u e WI'P(X). 

5) Truncation does not increase energy, i.e. Ep(max(u, c)) < Ep(u). 

P r o o f  (1) is not difficult to prove from Proposition 1.7. It is also an obvious 
consequence of Proposition 1.11 below. (2) follows from axiom A4 and (3) follows 
from A1. Finally, (4) follows immediately from the axioms A1 and A3 and (5) is a 
direct consequence of axioms A1 and A4. [] 

1 .3  P o i n c a r 6  i n e q u a l i t i e s  

The next result gives us a practical way of checking axiom A6. 

Propos i t ion  1.10 Suppose that for each metric ball B ~ 1~ there exists a constant 
C = CB such that the following inequality 

~ lu - UBI p <_ CB gp(U) (1) 

1 holds for any function u e Lfoc(X) where uB := ~ fB u d, .  Then axiom A6 holds. 

An inequality such as (1) is classically called a Poincard type inequality or a pseudo 
Poincard inequality 

The proof of this proposition is obvious. What is interesting is that the converse 
also holds; in fact we have the following stronger result. 
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P r o p o s i t i o n  1.11 (F loa t ing  Po inca r~  inequa l i ty )  Assume that axiom A6 holds 
and let Q c A C X be two measurable sets such that A E 1C and #(Q) > O. Then 
the inequality 

Ib - ~QIIL,(A) -< c A  q Ilgll~,(x) 
holds for any u E £1'P(X) and g E D[u]; where the constant CA,Q depends on p, A 
and Q only, and UQ := ~ fQ u d#. 

We call this inequality the floating Poincard inequality, because the function u is 
averaged on the "floating vessel" Q c A. 

P r o o f  Suppose by contradiction that for some Q c A c X with #(Q) > 0 and 
A E K: no such constant exists. It means that there exists sequences {ui} C L~oc(X ) 
and gi E D [ui] such that 

l i r n \  ~ = o c .  

Using axiom A2 we can renormalize the sequence {u~} in such a way that 
Ilue - U~,~llL,(A) = 1 for an i and thus IlgdlL,(X) -~  0 as i -+  ~ .  

By Proposition 1.7 there exist a sequence of constants a~ such that [[u~ - a~llL,(a ) 
0. By HSlder's inequality we have 

Ilu~ - adlL,  cQ) -> # ( q ) - 5  Ilu~ - adlLl(Q) >_ #(q)~ I ~,o - ai I 

where 1/p + 1/q = 1. Therefore (U~,Q - ai) --+ 0 and we thus have 

1 = [lu~ - u~,QIIC,(A) --< Ilu~ - a~IIL,(A) + [lai - Ui,QIIL,(A) -+ O. 

This contradiction implies the desired result. 
[ ]  

We will sometimes use the following corollary. 

C o r o l l a r y  1.12 Assume that axiom A6 holds and let Q ,A  E ~ be two K.-sets 
such that #(Q) > O. Then there exists a constant CA,Q = C(A ,Q ,p )  such that the 
inequality 

I1~11~,(~) < CA,Q Ilgll~,(~) 
holds ior  any u e Z~'~(X) such that u - 0 on q and all 9 e Db].  

(Observe that we do not assume here that Q c A.) 

P r o o f  Apply Proposition 1.11 to the set A1 := A U Q. [] 

The next result is a variant of the Corollary 1.12 where the constant in the inequality 
depends on A and p only: 
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P r o p o s i t i o n  1.13 Assume that axiom A6 holds and let A C X be a measurable 
E-sets such that p(A) > 0 and p ( X  \ A) > O. Then there exists a constant CA 
depending on p and A only for which the inequality 

IlUlIL,<AI IIgllL <X) 
holds for any u E ~ I ' p ( X )  such that supp(u) C A and g E D[u]. 

P r o o f  We argue as in the proof of Proposition 1.11. If no such constant exists, 
then we can find two sequences {ui} C £1'P(X), gi E D [ui] such that supp(ui) C A, 
IlUitlLP(A) = 1 for a l l / a n d  IlgillLp(x) -+ 0 for i -+ oo. 
By Proposition 1.7 there exist a sequence of constants ai such that  Ilui - ailtLP(B) --+ 
0 for all B E K:. Choosing first a / C - s e t  B C X \ A of positive measure, we deduce 
that lim ai = 0; and choosing then B = A yields the contradiction 

1 = IlUdlL,(A) <-- IlU~ -- a~llL,(A) + IlaiIIL,(A) --+ 0. 

[] 

The various Poincarfi inequalities we have discussed above are rather weak in the 
sense that no control of the constant involved is specified. 
However the case where the constant depends linearly on the radius of the ball 
deserves special attention; following J. Heinonen and P. Koskela, we adopt the fol- 
lowing 

Def in i t i on  1.10 One says that a D-structure on an MM-spaee X supports a (q,p)- 
Poincard inequality if there exists two constants ~ > 1 and C > 0 such that 

\ 1/q \ 1/p 

for any ball B(x,  r) E K,, any u e L~oc(X ) and any g E D[u]. 

The explicit dependence on the radius of the ball expresses a scaling property of 
the Poincar~ inequality; therefore this inequality is sometimes also called a scaled 
Poincard inequality (in~galitfi de Poincar6 "~ l'~ehelle des boules" in the terminology 
of [1]). 

The inequality (2) is sometimes called a weak Poinear~ inequality when a > 1 and 
a strong one if cT = 1. 

R e m a r k  If the MMD-space X supports a (q,p)-Poincar~ inequality, then it also 
supports a (q, p~)-Poincar~ inequality for all p' >_ p (this follows directly from Jensen's 
-or  Hhlder's- inequality). 
Likewise, if X supports a (q,p)-Poincar~ inequality, then it also supports a (q',p)- 
Poincar~ inequality for all q~ _< q. 
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If the measure has the doubling property (Definition 1.6), then the Poincar~ inequal- 
ity has the following non trivial self-improving property (see Theorem 5.1 in [19] or 
[39, Theorem 5.2] in the particular case of Ahlfors regular spaces). 

T h e o r e m  1.14 Suppose that the MMD space X supports a (1,p)-Poincard in- 
equality. I f  p has the doubling property, then there exists (t > P such that X 
supports a (q,p)-Poincard inequality for all 1 ~_ q < (I. In particular it supports a 
(p, p ) -  Poincard inequality. 

[] 

Coro l l a ry  1.15 Suppose that the MMD space X is doubling and supports a 
(1,p)-Poineard inequality, then it is non degenerate. 

P r o o f  This follows from Proposition 1.10 and Theorem 1.14. [] 

Coro l l a ry  1.16 If  X is doubling and supports a (1, 1)-Poincard inequality, then 
it also supports a (q,p)-Poincard inequality for any 1 <_ q ~ p < ¢c. 

P r o o f  This is clear from the previous remark and Theorem 1.14. 
[] 

A quite complete investigation of the meaning of (q, p)-Poincar~ inequalities can 
be found in [19]. 

1 .4  L o c a l i t y  

The gradient of a smooth function in ]R ~ depends only on the local behaviour of 
this function. This is still the case for a (classical) Sobolev function; for instance if 
a function v • WI'P(](n) is constant on some set A C R ~, then its weak gradient 
vanishes on that set. 

This property is not always true in the context of axiomatic Sobolev spaces and 
there seems to be several natural ways to define a notion of locality for Sobolev 
spaces. We propose below three notions of local D-structures. 

Def in i t ion  1.11 a) We say that a D-structure is local if, in addition to the axioms 
A1-A5, the following property holds: I f  u is constant a.e. on a subset A E ]C, 
then Ep(ulA ) = 0 where 

£p(ulA) := inf { ~AgPd # g e D[u]} 

is the local p-DirichIet energy of u. 
b) The D-structure is strictly local if for any g • D[v], we have (gx{,>0}) • D[v+]. 
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(Here v + = max  {v, 0} and X{v>o} is the characterist ic function of the set {v > 0}.) 

L e m m a  1.17 If D is strictly local, then it is local. 

P r o o f  Suppose t h a t u = c = c o n s t ,  o n a s u b s e t  A c X  and set v := (u - c) ; so 
tha t  u = v + - v -  + c. We have gl := (gx{~>0}) e D[v+], g2 := (gx{~<0}) e D[v-] 
by hypothesis  and 0 C D[c] by axiom A1. We thus have from axiom A2, h := 
(gx{.#0}) = gl + g2 q- 0 E D[u], hence 

£P(ulA) -< fA had# = 0 

since h = 0  on A. 
[] 

The  difference between the two notions of locality can be il lustrated by the next  two 
lemmas.  

L e m m a  1.18 A D-3tructure on the MM-space X is local if and only if for any 
subset A E ~ and any pair of functions u,v E L~oc(X ) such that u = v on A we 
have 

21-%(viA)  << E,(ulA) <_ 2~-%(vJA). 

P r o o f  ~ is clear because constant  functions have zero energy. 
~ - [  It  is enough to prove the second inequality. Since the function w := (u - v) 
vanishes on A, we have Sp(wlA ) = 0. We can thus find for any c > 0 a pseudo- 

P gradient go E D[w] such tha t  fAgod# < c. 
Let g E D[v] be an a rb i t ra ry  pseudo-gradient  of v, since u = v + w, we have 
h := (g + go) E D[u] by Axiom A2. Thus 

Cp(ulA) < fAhPd#=fA(g+go)Pd# 
< 2P-l( dgPd#+fAg d# ) 

2P-1 ( AgPdpq-c) 
and therefore Ep(uIA ) <<_ 2p-l~:p(vlA). 

[] 

L e m m a  1.19 Let X be a strictly local MMD-space. I f  u, v E L~oc(X ) 
functions such that u = v on A C IC , then 

Ep(vlA ) : Cp(ulA ). 

is a pair of 
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P r o o f  Let w := (u - v) and choose an arbitrary pseudo-gradient 9o E D[w]. 
Now set gl := 90X{~>0} and g2 := 90XI~<o); observe that gl = g2 ~- 0 on A. 
Because the D-structure is strictly local, we have gl C D[w +] and g2 e D[w-]. 
Fix ¢ > 0 and choose g e D[v] such that  fA gPd# < Ep(vld ) + c. 
Since u = v + w + + w-,  we have h := (g + gl + g2) e D[u] by Axiom A2. 
Thus 

G(ulA) <- fA hPd#= iA (g + gl + 92)Pd# 

= fA gPd, <_ E (vlA) + c .  

and therefore Ep(u[A) _ Ep(vlA). The converse inequality follows by symmetry. 
[] 

It is sometimes useful in some applications to have a notion of locality which is 
intermediate between the notions (a) and (b). 

Def in i t ion  1.12 A D-structure is absolutely local if it is local (i.e. condition (a) of 
the previous definition holds) and if for any g E D[v], we have (gx{~>0)) e D[v+]. 

Some Sobolev spaces are local and some are not. For example, classical Sobolev 
spaces on Euclidean domains or Riemannian manifolds are local, while trace spaces 
of Sobolev spaces on bad domains are not local Sobolev spaces. The version of 
Sobolev spaces on metric spaces introduced by P.Hajtasz (see section 2.3) is another 
example of global Sobolev space. 

A similar notion of locality appears in [19, page 9] under the name truncation prop- 
erty. A different, albeit related, notion of locality also appears in the theory of 
Dirichlet forms, see [2, page 28]. 

1 .5  T o p o l o g y  o n  t h e  D i r i c h l e t  s p a c e  

Recall that the Dirichlet space £I,P(X) is a semi-normed space with semi-norm 

Null ,,(z) = ($,(u))  lip = inf { llgHLp(X) g E D[u]}. 
The space £1,p(x) is also equipped with a locally convex topology defined as follow: 
one says that  a sequence {ui} converges to some function u E Elm(X) if Cp(u - 
ui) -+ 0 and Nu - UiNLP(A) --+ 0 for all A E t:. 

P r o p o s i t i o n  1.20 The quotient space ~I'P(X)/]~ i8 a Banach space for the norm 
I111 = 
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P r o o f  By Proposition 1.9 any function u E f-.I'P(X) such that  £p(u) = 0 is a 
constant, thus [1"1[ = £p(.)l/p is a norm in the space £)'P(X)/R. 
To show that  £.I,p(x)/]R is complete under this norm we consider a Cauchy sequence 
{ui} in f_.I,P(X)/R. By Proposition 1.7, there exists a sequence {ci} C R such that  
v~ := (ui - ci) converges in L~oc(X). 
Arguing as in the proof of Theorem 1.5, we see that  the function v := lim vi E 

i--4oo 

£1'P(X). Thus {ui} converges to v in L:I,P(X)/]R. 
[] 

It is also convenient to introduce a norm on £1'P(X): to define this norm, we fix a 
set Q E K: such that  #(Q) > 0 and we set 

[lull~,,(x,Q) := ( L  [u[Pd~ + Ep(u)) up (3) 

T h e o r e m  1.21 This norm turns £1'P(X) into a Banach space. Furthermore the 
locally convex topology on £1'P(X) defined above and the topology defined by this 
norm coincide; in particular the Banaeh space structure is independent of the choice 
of QEIC. 

P r o o f  The proof of the first assertion is the same as the proof of Theorem 1.5. 
We prove the second assertion. Let Q' be another ]C-set of positive measure and 
choose a/C-set A D Q u Q'. Since [UQI <_ ~ [[Ul[L,(Q), we have 

IluQIIL,(Q,) : ~(Q')V, luQI < {~(Q')'~ 1/p IlUl[LP(Q) 
- \ ~ (Q)  ] 

By the floating Poincar~ inequality (Proposition 1.11) we have fA [u-  UQ]Pd# ~_ 
CEp(u), thus 

IIUlIL~(Q,) = [lu - ~Q + ~QIIL~<Q,> ~ I[~ - UQ[IL~<A> + [[~QIIL~<Q,) 

{ ~(Q')'~ ~/' II~[IL,<Q) <_ (cE,(u))'/" + \ , (Q) ] 

---- const. IlullL~,,(x,Q) • 

The proposition follows 
[] 

1.6 M i n i m a l  p s e u d o - g r a d i e n t  

P r o p o s i t i o n  1.22 Assume that 1 < p < c)o. Then for any function u E f-.I'P(X), 

there exists a unique function g~ e D[u] such that / gPd# -- Sp(u). 
Jx 
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Def in i t ion  1.13 The function g~ is called the minimal pseudo-gradient and is 
denoted by Dpu (or simply Du if explicit reference to p is not needed). 

We have thus defined a map __D : WI,P(X) -+ IF(X);  this map is generally non 
linear. 

The proposition is an immediate consequence of the next two lemmas: 

L e m m a  1.23 For any function u, the set D[u] A IF(X)  is convex and closed in 
IF(X).  

P r o o f  Convexity follows from axiom A2 and closedness follows from axiom AS. 
[] 

L e m m a  1.24 In any nonempty closed convex subset A C E of a uniformly convex 
Banach space E, there exists a unique element x* ~ A with minimal norm: IIx*ll : 
infxcA Ilxll. 

Recall that a Banach space E is said to be uniformly convex if for any pair of 
sequences {xn}, {y~} C E satisfying 

1 
lim IIx~l] = lira [[y~[] = lira ~[Ixn + y~[[ = 1, 

we have lira []xn - YT~II = 0. 
n - - + o o  

This definition is due to Clarkson. A basic example of uniformly convex Banach 
space is iF(X,  d#) (see e.g. [7], [25] or [26]). 

Lemma 1.24 can be found in [26, Satz 16.4]. We repeat the proof for the convenience 
of the reader : 

P r o o f  If 0 E A, then there is nothing to prove, we thus assume that a := 
infxeA Ilxll > 0. 

Ex is tence :  Set A1 = ±A and choose a minimizing sequence {xn} C A1 such that 
IIx~H -+ 1 for n -+ ~c. Because A1 is a convex set, we have l(x~ + x,~) E A1, hence 
1 1 IIx~ + xmII ~ 1. On the other hand ½ Ilx~ + xmll <_ ~ (ltx~ll + IIxmll) -~ 1 for 
n, m -~ ~ ,  hence ½ IIx~ + xmlt ~ 1 for n, m --+ c~. Thus, by definition of uniform 
convexity IIx~ - x ~ l l  ~ 0, i.e. {x~} is a Cauchy sequence. Since E is complete, 
there exists a limit z* = lira x~. Since A~ is closed, we have x* ~ Ai and the 

existence of a minimal element is proved. 

Uniqueness :  Suppose x*,y* are minimal elements of A. Then IIx*ll = lly*ll = 
1 * * a :-- infxsA ]]Xll. By convexity of the norm we have II~(x + y )ll < a. By convexity 

of A, we have ½(x* + y*) e A, thus (by definition of a) ½ II(x* ~-Y*)I[ >- a. There- 
fore [Ix*+ Y*II = 2a -- ]lx*ll + IlY*II- By uniform convexity, this equality implies 
]l x* - y*ll = 0, hence x* = y*. [] 

R e m a r k  In the case where the pseudo-gradient is local (definition 1.11), then the 
minimal pseudo-gradient _Du of a function u E £1'P(X) vanishes a.e. on any/C-set 
where u is constant. 
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1.7 D e f i n i n g  a D - s t r u c t u r e  by  c o m p l e t i o n  

The classical Sobolev space on R ~ can either be defined through the notion of weak 
gradient or by completion of smooth functions for the Sobolev norm. A similar 
completion is sometimes useful in the context of axiomatic Sobolev spaces on metric 
spaces. 

Let us first choose a class ~ of functions u : X -+ R such that 

F1) ~ is a vector space and a lattice; 

F2) $" contains all Lipschitz functions; 

F3) if u G ~ and ~ is a bounded Lipschitz function, then pu E $'. 

In particular, ~ is a module over the algebra of bounded Lipschitz functions. As an 
example, .T may be the class of all locally Lipschitz functions. 

We then assume that a family D[u] of pseudo-gradients has been defined for all 
functions u E $" in such a way that axioms A1-A4 hold for the correspondence 

~ u -~  D[u]. 

We finally define D[u] for all functions u E L~o~(X ) by the following completion 
procedure: 

Def in i t ion  1.14 Let u E L~o~(X ) and g : X -+ R+U{cx~} be a measurable function. 

Then g E D[u] if and only if either 9 - oc or there exist two sequences {u~} and 
{gi} of measurable functions such that ui E ~ ,  g~ E D[u~], u~ --+ u in L~o c 
topology and (g - gi) --+ 0 in I_2 topology. 

(If no such sequence exists, then D[u] contains only the function g -- c~.) 

An element of /?[u] is called a generalized pseudo-gradient. Observe that D[u] 
depends on the choice of 9 v and of p. 

Proposition 1.25 The correspondence u --+ D[u] satisfies axioms A1-A5 for 
u E L7o~(X). 

P r o o f  Axiom A1 is obvious because Lipschitz functions belong to ~'. 
To prove axiom A2, we consider two functions u, v E L~oc(X ), pseudo-gradients 
g E D[u] , h E D[v] and a function f _> lalg + 113]h. By definition, we can find 
sequences {ui},{vl} C ~" and {gi},{hi} such that gi E D[ui], h~ E D[vi] ,  
ui --+ u, vi -~ v in L~oc(X ) and (g - gi), (h - hi) -+ 0 in LP(X). 
Let f~ := laigi + ]/3Ihi + ( f  - l a i g  - Iflih); since axiom A2 holds on $- and fi _> 
I~lg~ + IZlhi, we have f~ e D[~ui + Zv~]. 
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Because ( f - f i )  -- ( la l (g-g~)+lZl (h-h~))  -+ o, we conclude that f e/9[au+/~v}. 
To verify axioms A3 and A4 we only need to observe that these properties are stable 
under LTo c convergence. 

To prove axiom Ah, we consider two sequences of functions {u~} and {g~} such that 
g~ e D[ui] for all i and ui -+ u in L~o ~ and (g - gi) -+ 0 i n / 2 .  If, for some sub- 
sequence, we have g~j = c~ a.e. for all i, then g = c~ almost everywhere and thus 

g e / J  [u]. Otherwise there exists for each i two sequences {uij} C J:, and {g~j} 
of measurable functions such that gij C D[u~j], u~j -+ ui in L~o~ and (g -g i j )  -+ 0 
i n / 2  as j -+ cx~. Using a diagonal type process, we can find a sequence {vk} C 
and a sequence {fk} such that  fk C D [vk] for all k and vk -~ u in L~o ~ topology and 
( g  - fk) "+ 0 in /2.  Therefore g e D [u] by definition. 

[] 

P ropos i t i on  1.26 I f  axiom A6 holds for the correspondence u --+ D[u] where u E 
~ ,  then it also holds for u --+/)[u] for any u e LTo¢(X ). 

P r o o f  Suppose that ui e LPo~(X), gi e 5[nil • LP(X) such that IlgiNnp(x) = 

(Ep(u~)) 1/p --+ O. Fix a ball B C K:. Using the definition of generalized pseudo- 
gradient and a diagonal argument as in the previous proof, we can find sequences 
vi E $- and f~ e D[ui], such that Hgi- fiNLP(X) "-'} 0 and ]lui-  ViHLv(B ) ~ 0 

iri /2 (B) .  Hence Hf~Hnp(x) ~ O. Since axiom A6 holds for sequences {v~} C 5 ~ 
there exists a sequence ai such that ]lvi- ai]iLp(B) -+ O. We thus conclude that 

Ilu  - a llL.(,) _< - v llL.(,) + IIv  - --> o.  [ ]  

Since generalized pseudo-gradients behave like pseudo-gradients we usually drop the 
tilde and write simply D[u] instead of /9[u]. 

1 .8  R e l a x e d  t o p o l o g y ~  m - t o p o l o g y  a n d  d e n s i t y  

Def in i t ion  1.15 Fix 1 _< p _< c~. A sequence {uj} c WI'P(X) is said to converge 
to the function u e WI 'p (x )  in the relaxed topology of WI,P(X) if uj -+ u in 
/2(X) and Ep(uh) ~ Ep(u). 

P ropos i t i on  1.27 Suppose that WI,P(X) is uniformly convex. Then any sequence 
{uj} C WI'P(X) which converges in the relaxed topology contains a subsequenee 
which converges in the usual topology (i. e. for the Sobolev norm). 

The proof will be based on the following: 

L e m m a  1.28 Let {uj} C E be a sequence in a uniformly convex Banach space E. 
Assume that {uj} converges weakly to an element u E E and that lira tlujH = Ilu[l. 

j--~ cc 
Then {uj} converges strongly to u. 



Axiomatic Theory of Sobolev Spaces 3 l 1 

P r o o f  We have to show that  limj-~oo []uj - u[] = 0. If u = 0 then there is nothing 
to prove; we may thus assume u # 0 and we normalize it to []u[] = 1. 
Set xj : = u j  and yj : = u ,  we have limj~o[]xj[] = HuN = 1 and limj_~[[yj[[ = 
[[u]l = 1, on the other hand l (x j  +yj)  converges weakly to u, thus, from the lower 
semicontinuity of the norm in the weak topology in any Banach space, we have 

1 = [[u[[ < lira inf I 1 _ ~ - ~  ~ Ilxj + yjll _< J~lim sup ~ (1t~?1 + lly~ll) = 1, 

which implies lim ][xj + yJll = 2. 
j -~'oo 

By the uniform convexity of E, we conclude that  lira Iluj - ull = lira llxj - y~ll = 
j-~oo j~oo 

0. 
[] 

P r o o f  of  P r o p o s i t i o n  1.27 If {uj} C WI'p(X) converges in the relaxed topol- 
ogy, then it is bounded in WI'P(X), hence it contains a subsequence which converges 
weakly. We conclude from Lemma 1.28. 

[] 

Until the end of this section, we assume that  the Sobolev space WI,P(X) is defined 
by the completion procedure described in definition t.14 starting from some class of 
functions 9 r.  

L e m m a  1.29 Assume that X is )~-countable and let 1 < p < oo. Then for any 
u e w l , p ( x ) ,  the~ ~xi~t sequences {u~} c J= n W~of(x) ana {9~} c L~(X) such 
that gk E D[Uk] and 

1) ~ -~ ~ in Lfoc(X) ~n~ 

2) gk ~ D_~ in L~(X). 

In particular lim £p(ui) = £p(u). 
k --~ cx~ 

Recall that  D u  is the minimal pseudo-gradient of u. 

P r o o f  By definition, for any k • N , there exists sequences {Wk,i} C ~ and 
{gk,i} C / 2 ( X )  such that  gk,i • D[wk,i], wk,~ --+ u in Lfo~(X) and (hk--gk,i) -~ 0 

in L2(X) where hk •/9[U] is a generalized pseudo-gradient for n and f .  hPkd# < 
~ J k  

1 
E~(u) + ~.  

Because X is assumed to be/C-countable, the space Lfoc(X ) is a Frechet space; 
in particular it is metrizable. An example of metric on Lfo~(X) is given by 

oo 

p(u, v) := ~ 2 - j  rain{l, I1~ - ~11~(~)} 
j=l 
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where U1 C U2 C . . . X  is an exhaustion of X by ~-sets. 
For each k E N, we can find i(k) such that  p(wk,i(k), u) <_ 1/k. Let us set 
vk := Wk,i(k) and g~ := g~,i(k), then gk E D[vk] and vk -+ u in L~o~(X ). Furthermore 

lira sup [ g~d# < 3p(u). 
k -+ co J X 

In particular {gk} is a bounded sequence in the reflexive Banach s p a c e / 2 ( X ) .  

Passing to a subsequence if necessary, we may assume that  {gk} converges weakly 
in LP(X). By Masur's lemma there exists a sequence of finite convex combinations 

~-~m(k) __ X"~m(k) 1) which converges in /_2(X) to a Gk := z.~=k ak,,g~ (ak,~ > 0, z.~=k ak,~ = 
function h E / 2 ( X ) .  Let us set uk := E~(~  )=  ak,~v~ E jz, then uk -+ u in L~o~(X ) 
and Gk E D[uk] by axiom A2. It  follows by definition that  h C D[u] and thus 

<_ f hPd, < l imsup f G~d# <_ Sp(u), 
J x  k--+co J X 

Hence h := lira Gk is the minimal pseudo-gradient of u. [] 

For 1 < p < cx~, we introduce an intermediate topology between the relaxed topology 
and the Sobolev topology : 

Def in i t i on  1.16 Fix 1 < p < c~. A sequence {uj} C WI'p(X) is said to converge 
to u in the m-topology of WI'P(X) if u j - ~  u in LP(X) and Duk ~ Du in 
LP(X). 

This topology is metrizable; a compatible distance can be defined by 

v)  : =  - v l l L , ( x )  + II_Du - D v l l L , ( x )  

Observe that  the m-topology is finer than the relaxed topology. The terminology 
comes from the fact that  this topology is based on the notion of minimal pseudo- 
gradient. 

It  is clear that  a sequence {uj} C WI'p(X) converges to u in the m-topology if and 
only if ui -+ u in LP(X) and, for each i, there exists gi e D[u~] N LP(X), such that  
gi --+ Du.  

Let us denote by $'0 = Y N Co(X) the set of those functions in $" having their 
support in a/(:-set. 

T h e o r e m  1.30 Assume that 1C is the ring of all Borel bounded subsets of X and 
that the D-structure is absolutely local. If 1 < p < c% then ~o A WI'P(X) is dense 
in WI'P(X) for the m-topology (in particular, it is dense for the relaxed topology). 
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P r o o f  Let u E WI'P(X) be an arbitrary Sobolev function; since every ball in X is 
a/(:-set by hypothesis, the metric space X is clearly K-countable and we can thus 
apply the previous Lemma. We then know that there exist two sequences {ui} and 
{gi} of functions such that  ui E jr Cl Wllo'Pc (X), gi E D[ui] fl LP(X), u i -'+ U in 
n~o~(X ) and gi --+ __Du i n / 2 ( X ) .  
Fix x0 E X and define 

dist(x, (X \ B(xo, 2k)))} , 
1 / 

~Vk(X) := min 1, 
J 

this is a ~-Lipschitz function such that ~k = 1 in B(xo, k), and supp(~k) = 

B(zo, 2k). 
Let us set Vk,i := ~kUi and hk,i := XS(xo,2k) (gk + }]Uil). 
Using axiom A3 and the fact that the D-structure is absolutely local together with 
supp(vk,i) = B(x0, 2k) E K; we conclude that hk,i E D [Vk,i]. It follows that vk,i E 
w~,~'(x) n .,%. 

Since lim I]ui - Ul]LP(B(xo,2k))  = 0 for all k, we can find ik E N such that 
i-+oo 

Ilvk,i~ - UilLp(B(~o,2k)) < 2 :k. Hence the function wk := Vk,ik satisfies 

1 

Since u C / 2 ( X )  we have lira []UIILP(X\B(~o,2k)) = 0 and thus lim [[wk--UI]LP(X) = O. 
k--+c~ k-~cc 

The function fk := hk,~ E D [wk] and it is clear that k-.~olim fk = l im (gkxB(~o,2k)) = 

Du in LP(X). This implies that w~ --+ u in m-topology. 
- -  [ ]  

C o r o l l a r y  1.31 Assume that ~ is the ring of all Borel bounded subsets of X and 
that the Sobolev space is local. I f  WI'P(X) is uniformly convex, then JZo A WI'P(X) 
is dense in WI'p(X) for the usual topology. 

P r o o f  Follows directly from the previous Theorem and Lemma 1.28. [] 

In the special case that j r  is the class of all locally Lipschitz functions, we have, still 
assuming that the Sobolev space WI'P(X) is defined by the completion procedure 
described in definition 1.14: 

C o r o l l a r y  1.32 Let X be a proper metric space and assume that the Sobolev space 
is local. I f  WI'p(X) is uniformly convex, then the space of Lipschitz functions with 
compact support is dense in WI'P(X) (for the usual topology). 
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P r o o f  Since X is proper, )~ is the ring of all Borel bounded subsets of X. As jr0 
is the set of Lipschitz functions with compact support, we have jr0 C WI'p(X) and 
the result follows from the previous corollary. 

[] 

R e m a r k  The notion of relaxed energy has its origin in the theory of non-convex 
integrands in the calculus of variation (see e.g. section 5.2 in [8]). 

1.9 Linear  D-s t ruc tures  

Let X be a MM space, and let us choose a class j r  of functions X --+ ~ satisfying 
the conditions (F1)-(F3) of section 1.7. 

Def in i t ion .  A linear D-structure X is given by the following data : 

a) A Banach space E~ associated to each point x C X is given and 

b) for any function u E j r  and any point x C X ,  an element du(x) E E~ is given. 

It is furthermore assumed that x -~ [du(x)l is a measurable function on X for all 
u, E j r  and that 

i) If k-Lipshitz,  then [du I < k a.e. 

ii) d is linear. 

iii) d(uv) = udv + vdu. 

iv) If u = m i n { u l , u 2 } , t h e n  d u = d u l  a.e. on the set {ul <u2}  a n d d u = d u 2  
a e on {ul  > u2}. 

L e m m a  1.33 I f  two functions u, v E jr coincide on a set A, then du = dv a.e. 
on A .  

P r o o f  It is a direct consequence of condition (iv). 

P r o p o s i t i o n  1.34 The correspondence 

jr  ~ ~ --~ D N  := { g :  x --+ R W g is measurabte and g >_ Id~J a.e.} 

satisfies the axioms A1-A4.  

[] 
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P r o o f  Axiom A1 follows from the previous lemma and condition (i). Axiom A2 
follows from the condition (ii) and A3 follows from (iii). 
It is clear from (iv) that if gl • D[ul] and gs • D[us], then max{gl,g2} • 
D[min{ul, u2}]. Now using (ii), (iv) and the relation max{ub us} = Ul + Us - 
min{ul, u2}, we conclude that max{g1, g2} • D[max{ul, u2}]. 

[] 

The completion procedure of section 1.7 gives us an extension of the D-structure on 
all functions u C L~oc(X) and we obtain a corresponding Sobolev space WI,p(X). 

P r o p o s i t i o n  1.35 This D-structure is a strictly local. 

P r o o f  Just observe that the previous Lemma implies that d(v +) = 0 a.e. on the 
set {~+ = 0) = x \ {v > 0). 

[] 

A slightly different notion of linear D-structure appears in [11] (see in particular 
Theorem 9 and 10), in [4] and in [45]. 

2 E x a m p l e s  o f  a x i o m a t i c  S o b o l e v  S p a c e s  

2 .1  C l a s s i c a l  S o b o l e v  Space 

Let M be a Riemannian manifold and/C be the class of relatively compact Borel 
subsets of M. We say that a measurable function g : M --+ ]R is a classic pseudo- 
gradient of a function u E L~o~(M ) if and only if either g - c~ or for any smooth 
vector field ( with compact support we have 

We denote by D[u] the set of all pseudo-gradients of u. 

Lemma 2.1 If u has a distributional gradient Vu E L~o~(M), then g e D[u] if and 
only if g(x) >_ Iw(x)l a.e. 

P r o o f  The lemma is obvious for smooth functions because of the inequality 

/M (Vu, ~ ) d V o l =  /M u div ~dVol _< fM ,Vu(x)[ ,~[ dVol. 

For general functions, it then follows from the density of smooth functions in the 
1,1 space Wto ~ (M). [] 
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P r o p o s i t i o n  2.2 This definition of pseudo-gradient satisfies all Axioms A1-A6. 

P r o o f  Axioms A1-A4 are basic properties of weak gradients (see e.g. [23], [36] or 
[48]). Axiom A5 follows from the fact that inequality (4) is stable under L~oc con- 
vergence. Finally Axiom A6 is a consequence of Proposition 1.10 and the following 
classical lemma. 

[] 

L e m m a  2.3 For any closed compact ball B C M, there exists a constant C = 
C(B) such that the Poincard inequality 

L lu - UB[Pdvol ~_ C L IVulPdv°l 

hol& for any u c WI'P(B). 

P r o o f  A general (functional analysis) inequality of this type is proven in [48, 
Lemma 4.1.3]. In our case we need to set X = WI,P(B), X0 = LP(B), Y = 
(= constant functions) and the projection L : X --+ Y is given by averaging: 
L(u) := UB. Observe that a ball in a Riemannian manifold has a Lipschitz boundary; 
hence we can apply, Rellich-Kondrachov's theorem which says that the embedding 
X C X0 is compact, thus all hypothesis of [48, Lemma 4.1.3] are satisfied. 

[] 

R e m a r k  From Lemma 2.1, we conclude that the Sobolev space associated to these 
pseudo-gradients is the classical Sobolev space WI,P(M). It is a local Sobolev space 
in the sense of definition 1.11. If the manifold M is complete, it is a proper metric 
space and hence Lipschitz functions with compact support form a dense subset 
(Corollary 1.32). 

2.2 Weighted Sobolev space 

Let M be a Riemannian manifold and w E L~oc(M ) be a weight (i.e. a non 
negative function). We then define the measure to be d# = w dvol. The ring/C and 
the pseudo-gradients are defined as in the previous example. 

T h e o r e m  2.4 Suppose that the weight w belongs to the Miickenhaupt class Ap, 
1 < p < oc. Then all Axioms A1-A6 hold. Furthermore smooth functions are dense 
in the corresponding Sobolev space WI'P(M, w). 

Recall that w belongs to Miickenhaupt class Ap if there exists a constant Cw,p such 
that for all balls B C M we have 
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The proof of this Theorem can be found in the paper of T. Kilpelginen, [29], see 
also [30]. [] 

The theory of Weighted Sobolev space has been also extended to the case of domains 
in Carnot groups (see [5] and [19, section 13.1]). 

2 . 3  H a j t a s z - S o b o l e v  s p a c e  

The following concept was introduced by P. Hajtasz in [18], see also [31]. In this 
example X is an arbitrary measure metric space and/C is the ring of all bounded 
Borel subsets of X. A measurable function g : X -+ St+ is said to be a Haflasz 

pseudo-gradient of the function u : X -+ St, if 

lu(x) - u(y)l -< d(x, y)(g(x) + g(y)) 

for all x, y E X \ F where F C X is some set (called the exceptional set) with 
~(F) = 0. 

We denote by HD[u] the set of all Haflasz pseudo-gradients of u. 

L e m m a  2.5 Assume that 1 <_ p < oo. Let u E L~oc(X) and g C HD[u], then the 
floating Poincard inequality 

I lu -  uqll.(A) < 2diam(A) (#(A)'~ IlgllL.(~) 
- t , v ( Q ) )  

holds for any bounded measurable subsets Q c A c X with l~(Q) > O. 

P r o o f  Observe that 

lu(~) -~QI = 

< v(A) 1 £ 
#(Q) is(A ) lu(~) - u(y)ld#(Y) 

#(A) 

by Jensen's inequality. Thus 

< ( , ( A ) ~  1 i~d~(y)) ' 
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integrating this inequality gives us 

(#(A) ~ p 1 _ u(y)lP d#(y)d#(x) ) 

_ diam(A)p \~--~]("(A) ~P (p__~l /A/A (9(x)+ g(y))P d#(y)d#(x)) 

_< 2 p-~diam(AF (~(A) ~ p 1 d#(y)d#(x)) 

< 2'diam(A) p ('(A)'~Pf 
- \ ~ - ~ ]  JA gpd#" 

The proof is complete. 
[] 

R e m a r k  The proof of this Poincar6 inequality is only a simple generalization of 
the argument given in [18] and [31]. 

P r o p o s i t i o n  2.6 The correspondence u --> HD[u] satisfies Axioms A1-A6. 

P r o o f  For Axiom A1 we consider an arbitrary non negative K-Lipschi tz  function 
u. We have to check that for all x, y E X, we have 

]u(x) - u(y)l <_ d(x, y)(Ksgn(u(x)) + Ksgn(u(y))) .  

If u(x) = u(y) = 0 this inequality is trivial, otherwise either sgn(u(x)) = 1, or 
sgn(u(y)) = 1 and thus, from the definition of K. we have 

lu(x) - u(y)l < I( d(x,y) < d(x,y)(Ksgn(u(x)) + Ksgn(u(y))). 

We leave the verification of Axiom A2 to the reader. 

To prove Axiom A3, we let F c X be the exceptional subset for (u, g) and set 
91(x) = (sup J~lg(x) + L i p ( ~ ) l ~ ( x ) l )  We then have for all ~ ,y  ¢ F 

IV(x)~(x)  - ~(Y)~(V)I = Iv(x)~(x)  - v(x)u(y) + ~(x)u(y) - ~(v)~(y)l 
< sup 3~1 I~(x) - ~(v)l  + I~(y)l I~(x) - ~(y)l  

< (d(x, y) sup kal(g(x) + g(y))  + Lip(sa)lu(y)l ) 
< d(x ,y )  (gl(x)+gl(V)) .  

Axiom A4 is proved in [31, Lemma 2.4]. 

We now prove Axiom AS: Consider two sequences {ui} and {gi} converging a.e. to 
some functions u and g and such that gi E HD[ui] for all i. 
We may assume (passing to a subsequence if necessary) that u~ -+ u and (gi-g) ---> 0 
pointwise on X \ G where G c X is some set of measure zero. 
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Let Fi C X be the exceptional set for gi and set F := G U (U~IFi), then it 
is clear that F has measure zero and lu(x) - u(y)] <_ (9(x)+ g(y))d(x,y) for all 
x, y E X \ F. We thus conclude that g E HD[u], and Axiom 5 (and in fact a more 
general statement since only a.e. convergence is needed) is thus proven. 

Finally Axiom A6 is a consequence of Lemma 2.5 and Proposition 1.10. 
[] 

R e m a r k s  1) The associated Sobolev space is called the Hajlasz-Sobolev space 
and denoted by HWI'p(X) (or MI'P(X) in the literature). It contains Lipschitz 
functions as a dense subset (see [18]). 

2) HD is not a local D-structure. Indeed, consider a Lipschitz function u such 
that u - 0 on a bounded open set A C X and u ~ 1 on a bounded open set 

1 (where A ~ C X .  I f g E H D [ u ] , a n d x E A ,  y C A ' , t h e n w e h a v e  (g(x)+g(y))~-K 
A := sup{d(x, y) : x C A, y E A'}). Integrating this inequality over A × A' yields. 

which gives a positive lower bound for the local energy Ep(ulA ) + Ep(uIA'), in 
contradiction to the definition of locality. 

Let us finally mention that, if the measure is locally doubling, then there is a kind 
of converse to Lemma 2.5. Namely Hajtasz pseudo-gradients can be characterized 
by a Poincard inequality. More precisely : 

T h e o r e m  2.7 Assume that the measure # is locally doubling and atomffee. If 
u e LToc(X ) and g e I_2(X); then K9 belongs to HD[u] for some constant K > 0 
if and only if there exists a constant C such that for any bounded measurable subset 
A C X of positive measure we have 

~A [U- UA[d# <_ C diam(A)( fA gPd#) . (5) 

The proof is given in [14]. 
[] 

2 . 4  G r a p h s  ( c o m b i n a t o r i a l  S o b o l e v  s p a c e s )  

Let F = (V, E) be a locally finite connected graph. We define the combinatorial 
distance between two vertices to be the length of the shortest combinatorial path 
joining them. 
The ring ~ is the class of all finite subsets of V and the measure # is the counting 
measure given by #(A) = IA[ = cardinal of A. See e.g. [41] for more information on 
the geometry of graphs. 
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For any function u : V -+ R, we define CD[u] to be the set of all functions g : V -+ R 
such that 

If y ~ x  then [u(y ) -u(x ) l  <_ (9(x)+g(y))  (6) 

where y ~ x means that y is a neighbour of x (i.e. there is an edge joining x to y). 

Axioms A1-A5 for the correspondence u --+ CD[u] are not difficult to prove using 
standard arguments, Axiom A6 is a direct consequence of the lemma below. 

This construction gives us a combinatorial Sobolev spaces CWI,P(F). This is a 
local theory (in the sense of definition 1.11). Observe that all functions are trivially 
locally Lipschitz functions. 

Observe also that it follows clearly from the definition that for any function u on V, 
we have HD[u] C CD[u], hence HWI,P(F) C CWI'P(F). 

L e m m a  2.8 For all finite subsets A C X and all non empty subsets Q c A we 
have the floating Poincard inequality : 

-  QI' s c g(Y) 0 
yE 

(7) 

for any g E CD[u], where uq := ~ ExeQ u(x) and the constant C depends on A 
only. 

P r o o f  Let us denote by A1 the set of all vertices in X whose combinatorial 
distance to Q is < diam(A). 
For any x E A1 and z E Q, we can find a combinatorial path x = x0, xl, ..., xn = z 
where xj ,,, xj+l, the xj c A1 are pairwise distinct points and n < diam(A). We 
thus have 

n - 1  n - 1  

In(x) -- U(Z)I ~-~ E ] ~ t ( X j + l )  - -  U(XJ)I ~ E (g(xj) -[-g(xj+I)) ~ 2 E B(Y)" 
j = 0  j.~.O ycA1 

Hence the following inequality holds for any x E A1 

lu( x ) - u Q I  = u ( x ) - ~ l  IX:~eqU(Z) _<~1  z~O ~ t~ (~ ) -  ~(z)l 

< 2 X: g(y), 
yEA1 

and therefore 
[u(x) - UQI ~ 2 ]At ~ g(Y). 

xEA yEA1 
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Combining the previous inequalities with Hhlder's inequality, we obtain 

lu(z)-UQl' <_ lu(z)-UQI < 21AI ~ g ( y )  
xEA yEAI 

< (21AIFIA~I (,-~) ~g(Y)P 
yEA1 

[] 

From Proposition 1.10 we now have the 

C o r o l l a r y  2.9 CD[. ] satisfies also axiom A6. 

[] 

R e m a r k .  The condition (6) used in the definition of the combinatorial pseudo- 
gradients is often replaced by the following, simpler one: 

If y ,.~ x then lu(y) - u(x)l < g(x). (8) 

This would lead to an equivalent topology on the Sobolev space, however the axiom 
A1 would fail to be true. 

2.5 Infinitesimal Stretch 

The Hajtasz Sobolev space is in some sense a universal non local Sobolev space; it is 
universal because it is defined on any measure metric spaces (no additional structure 
on the space is beeing needed). We now give an example of universal local Sobolev 
space. In this example, X is a priori an arbitrary metric space and/(: is any ring of 
bounded sets satisfying the conditions (K1)-(K3) given in section 1.1. 

Let us first introduce some notations. For a locally Lipschitz function u : X -~ 
and a ball B(x, r) C X the local stretching constant is defined by 

J (x) - u 0 ) l  L~,r(x):= sup 
d(y,x)<r r 

and the "infinitesimal stretch" is the Borel measurable function 

n,(x) := limsup Lu,r(x). 
r -~0 

(The infinitesimal stretch L,(x) is denoted Lip u(x) in [4].) 
For a locally Lipschitz function u : X -+ R, we define SD[u] to be the set of all 
Borel measurable functions g such that 

g(x) > Lu(x) 
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for a lmost  all x C X.  We then define SD[u] for any function u E L~o ~ using the 
complet ion procedure of section 1.7. In other words, for a function u E LPo~, we 
have g e SO[u] if and only if there exists two sequences of functions {ui} and {gi} 
such tha t  ui -+ u in L~o c topology and (g - 9~) --+ 0 in / 2  topology such tha t  ui 
is locally Lipschitz and 9i E SD[ui]. 

I t  is not difficult to check tha t  Axioms A1-A5 hold for all locally Lipschitz functions. 
By the discussion in section 1.7 we know tha t  Axioms A1-A5 hold for all functions 

u e L~o~(X). 

The associated Sobolev space is denoted by SWI'P(X). It  is a local Sobolev space. 

R e m a r k  1 Axiom A6 is a special p roper ty  of the space (X, d, #) which somet imes  
fail and must  therefore be assumed or proved (usually it is in fact a Poincar~ type 
inequali ty which is assumed or proved). 

Example  Recall the example in the introduction. Let X -- lI~ ~ with the metric d(x, y) = Iz-yl 1/2 
and choose any measure on X. Let u : X ~ R be any linear function; it is then easy to check 
that 0 E SD[u] hence axiom A6 is not satisfied. 

R e m a r k  2 It  is also possible to use an al ternat ive definition; namely  for a locally 
Lipschitz function u : X ~ S~, we define SD[u] to be the set of all Borel measurable  
functions g such tha t  

g(x) > l imsup  Lip(uls(~,r)) 
- r - ~ 0  

for a lmost  all x C X,  where Lip(ulA ) is the Lipschitz function of u on the set A. 

2 . 6  U p p e r  G r a d i e n t s  

This Sobolev space is studied in [4], [24] and [39]. In this section, we assume X 
to be a rectifiably connected metr ic  space, i.e. any pair of points can be joined 
by a rectifiable curve. We fix is a ring ]C of subsets of X satisfying the conditions 
(K1)-(K3) .  

D e f i n i t i o n  Let u : X --+ R be a locally Lipschitz function. A Borel measurable  
function g : X -+ ~ is an upper gradient (also called very weak gradient) for u if 
for all Lipschitz paths 7 : [0, 1] -+ X we have 

lu(~/(1)) - u(~'(O))l < g(~:(t))dt. 

We denote by UD[u] the set of all upper  gradients for a locally Lipschitz function 
u; and we extend this definition by the procedure described in section 1.7. In other 
words, for a function u C L~oc(X ), we have g E UD[u] if and only if there exists two 
sequences of functions ui ~ u in L~oc topology and 9i ~ g in I 2  topology such 
tha t  ui is locally Lipsehitz and gi is an upper  gradient for ui. (In the terminology 
of [4], we can say tha t  g is a generalized upper gradient for u). 
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P r o p o s i t i o n  2.10 The correspondence u ~ UD[u] satisfies Axioms A1-A5.  

P r o o f  Axioms A1-A4 can be checked by routine argumentation. Axiom A5 is a 
consequence of Proposition 1.25. 

[] 

The associated Sobolev space is denoted by UWI'p(X).  It is a local Sobolev space 
(see [40, Lemma C.19] or [19, Lemma 10.4]). 

R e m a r k  In general Axiom A6 is not satisfied. Here is an example taken from [17]: Let X = 1~ ~ C 
1R ~ be the  unit  ball in euclidean space with lebesgue measure  A and with the metric: 

d(xl,  x~) := [rl - r 2 [+  min{r l ,  r~} [[al - o'2[[~ 

where 0 <: a < 1, and (r, a)  are polar coordinates on ~[n. This distance gives rise to  the  usual 
topology on ~ ;  the MM-space X also enjoys the  following properties: 

1. 0 < A(B(x ,p) )  < oc for any ball of positive radius p; 

2. X is compact;  

3. X is rectifiably connected and the only rectifiable curves are contained in a union of  radii 
from 0. 

Let w : S n-1 --+ ~ be an arbi trary non constant  function on the sphere which is Lipschitz for 
the  metric ]]al - o2][ a and set uk(x) = Ztk(r,o') :--~ Ck(r)w(cr) where ¢k(r)  = min{kr,  1}; the 
function uk is then  Lipschitz on (X, d). 

We now define gk : X --+ R by 

k if O < r < l / k  
gk(r,~r) := ¢ ' ( r )  = 0 if r > 1/k. 

Because any rectifiable curve is contained in a union of radii, gk 6 UD[uk]. We thus  have 

UEp(u,) < I x  gPdA = wn_lk  p-~ . 

Hence lim UCp(uk) -= 0 if p < n. But  lira uk(r ,a)  = u(r ,a)  = w(a) is not  constant ,  it follows 
k--~oo k---~oo 

tha t  Axiom A6 fails. 

By Proposition 1.10, this problem is avoided if the space X supports a Poincar~ 
inequality. 

There are many spaces on which upper gradients are known to support a Poincar~ 
inequality (see the discussion in §10.2 in [19]). Let us mention in particular the 
following recent result of Laakso [34] showing that there are examples in any (fractal) 
dimension : 

T h e o r e m  2.11 For any real number s > 0 there exists an unbounded proper geodesic 
metric space Xs with an Ahlfors regular measure # in dimension s and on which up- 
per gradients support a weak (1, 1)-Poincard inequality (see Definition 1.10). 
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[] 

R e m a r k  On the space Xs described above, UD is a non degenerate D-structure. 

Indeed, by Jensen's inequality, if UD supports a (1, 1)-Poincar~ inequality, then it 
also supports (1, p)-Poincar~ inequality for all p _> 1. On the other hand, since # is 
Ahlfors regular, it is doubling. It thus follows from Corollary 1.15 that  UD is non 
degenerate. 

[] 

Thus Laakso's construction provides us with an example of non degenerate Sobolev 
space UWI,P(Xs) on a metric space of Hausdorff dimension s for any s > 0 and any 
p > l .  

R e m a r k  In [4], J. Cheeger constructs a Sobolev space based on upper gradients 
in a slightly different way. Namely let ~" be the set of all measurable functions u 
admitting an upper-gradient (i.e. such that there exists a Borel measurable function 

g such that lu(7(1))-u(7(0))  I < f l  g(~(t))dt for all Lipschitz path 7 :  [0, 1] --+ X). 

We then denote by (fD[u] the set of all upper gradients for a function u C U; and 
we extend this definition by the same approximation procedure as above. If X 
supports a weak p-Poicard inequality, then we can define a corresponding Sobolev 
space UWt'P(X). 

We have the following 

P r o p o s i t i o n  2.12 Suppose that locally Lipschitz functions are dense in both UWI,P(2 
and (]WI,P(X). Then (JWI,P(X) = UWI,P(X). 

P r o o f  If u : X -+ ]R is locally Lipschitz, then UD[u] = (fD[u] and hence 
I[UHuwl,p(x) = ]lullowl,p(x). It follows that the closure of locally Lipschitz functions 

in the spaces UWI,p(X) and (JWI'P(X) coincides. 
[] 

In fact we always have UWI,p(x) c UWI'p(x). We don't know if there are cases 
where UWI,p(X) ¢ (JWI,p(X). 

Cheeger has also proved that if the measure # satisfies the doubling condition and 
if UD supports a (1, p)-Poincar~ inequality, then the Sobolev norm in UWI,P(X) is 
equivalent to a uniformly convex norm, see [4, Proposition 4.48]. 

Let us finally mention that in [39], Nageswari Shanmugalingam develop another con- 
struction of a Sobolev space based on upper-gradients. Her approach is to consider 
the class of p-integrable functions u : X --+ N which admits a function g E D°(X) 
which is an upper-gradient of u for p-modulus almost all curves; two such func- 
tions are then identified if the norm of their difference vanishes. The resulting space 
is a Banach space denoted by NI,P(X) and is called the Newtonian space. For 
1 < p < oc, NI'P(X) coincides with/_TWI,p(X) (see [39, Theorem 4.10]). 
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2.7 Comparing different D-s t ruc tu res  

Let A D  and B D  be two D-structures on a fix MM-space (X, d, K:, #). Let us 
denote by AEp(u) and BCp(u) the corresponding energies and by AWI,p(X)  and 
BWI,P(X)  the corresponding Sobolev spaces. 
We will write AD -< B D  if AD[u] C BD[u] for all functions u E L~o~(Z); we then 
have the following simple observation : 

P r o p o s i t i o n  2.13 Assume A D  -~ BD,  then 

i) AE~,(u) >_ BEp(u); 

ii) AW*'P(X) C BWI 'P(X)  (closed subspace); 

iii) if A D  is local, then so is BD;  

iv) if B D  is non degenerate, then so is AD.  

The proof is not difficult and left to the reader. [] 

P r o p o s i t i o n  2.14 Suppose that I < p < co, then AD -< B D  if and only if for any 
function u E LTo~(X) we have BD.pu < ADpu a.e. (wh~re ADpu and BD_pu are the 
corresponding minimal pseudo-gradients). 

The proof is obvious. 
[] 

P r o p o s i t i o n  2.15 Consider a (finite or infinite) collection 7) = {Dt}teT of 
D-structures on X ,  then D = nteTDt is again a D-structure. 
I f  one of the Dt is a non degenerate D-structure, then D is also non degenerate. 

P r o o f  It is just a routine to check that D = NteTDt satisfy the axioms A1-Ah. 
The last assertion follows from last Proposition 2.13 (iv). 

[] 

Let us end this section with some examples : 

P r o p o s i t i o n  2.16 a) I f  X is a graph, then H D  "4 CD; 

b) for any M M  spaces we have S D  ~ UD; 

e) if D is any D-structure on X ,  then D ~_ )~D for any 0 < ,~ < 1, where 
,~D[u] := {A9 : g ¢ D[u]} .; 

d) for any M M  spaces we have 4HD -~ UD 
UD[u]). 

(i.e. if g E HD[u] then 4 9 E 
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P r o o f  (a) is clear from the definitions. 
To prove (b), we observe that it is not difficult to check that SO[v] C UD[v] if 
v : X -+ ]R is a locally Lipschitz function (see e.g. [4, Proposition 1.11]). The 
inclusion SD[u] C UD[u] follows then for all functions u e L~o~(X ) by construction. 
To prove (c), observe that  by Axiom A2 we have AD[u] = {sg : g e D[u] and s _> A}, 
hence D[u] C AD[u] for all u, 
The proof of (d) is given in [39, Lemma 4.7]. [] 

Coro l la ry  2.17 SWI,P(X) and HWI'P(X) are closed subspace of UWI,P(X). 

[] 

A recent theorem of J. Cheeger says that if the measure # satisfies the doubling 
condition and if UD supports a (1,p)-Poinca% inequality, then SD = UD, see 
section 4.4. 

3 Capacities and Hyperbolicity 

In this part we introduce a concept of variational p-capacity, and we study its relation 
with the geometry of X. The corresponding theory for Riemannian manifolds can 
be found in [16], [42] and [49]. 

3 .1  Definit ion of  the  variational capacity 

Let D C X be an open subset. Recall that C0(fl) is the set of continuous functions 
u : f~ -+ R such that supp(u) ~ fl, i.e. supp(u) is a closed/(:-subset of ~. 

Definition 3.1 a) We define /:01'P(~) to be the closure of C0(~) N/:I,P(X) 
in £1'P(X) for the norm defined in section 1.5 (recall that this norm is given by 

]]uH n~,~(~,Q) := lu]Pd# + £p(Ul~ ) where Q ~ ~ is a fixed/(:-subset of posi- 

tive measure). 

b) The variational p-capacity of a pair F C t2 C X (where t2 is open and F is 
arbitrary) is defined as 

Capp (F, ~ ) : =  inf { £p(u) lu e tip(F, a)  } ,  

where the set of admissible functions is defined by 

Ap(Y, a ) : =  {u ~ £~'P(a)l u > 1 on a neighbourhood o f f  and u > 0 a.e.} 

If .Ap(F, •) = 0, then we set Capp(F,a) = c~. If fi = X, we simply write 
Capp(r, X) = Capp(F). 
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R e m a r k s  1. The space £~'P(~t) may depend on the ambient space X 9 ~t, however 
we will avoid any heavier notation such as £~'P(f~, X). 

2. By definition capacity is decreasing with respect to the domain f~ : if f~l C f~2, 
then Capp(F, ~tl) > Capp(F, f~2). 

T h e o r e m  3.1 Let Q c X be a ~c-set such that #(Q) > O. Then the following 
conditions are equivalent : 

1) there exists a constant C such that for any u E £01'P(X) we have 

IMG(Q) < c (G(~)) "~ ; 

2) Capp(Q) > 0; 

~) 1 ¢ £~,~(x); 

4) L~'P(x) is a Banach spa~e for the norm ]M] := (G(~)) 1/p. 

A similar result in the case of Riemannian manifolds was obtained in [43]. See also 
[47] for the case of graphs. 

P r o o f  Observe that (1) ==~ (2) and (2) ~ (3) are trivial. The proof of (3) ~ (4) 
follows from the fact that £1,P(X)/R is a Banach space for the norm IluN = Ep(U) 1/p 
(Proposition 1.20) and that the canonical mapping £1'p(X) --+ £1,P(X)/R is injec- 
tive if and only if 1 ~ £~'P(X). Finally, the proof of (4) ~ (1) is a consequence of the 
open mapping theorem applied to the identity map I d :  (£~'P(X), H.HL~.p(x,Q)) -+ 
(~I,P(x), ~p(.)l/p). 

[] 

Defin i t ion  3.2 The MMD space X is said to be p-hyperbolic if one of the above 
conditions holds and p-parabolic otherwise. 

For instance if X E/C, then X is p-parabolic for all p. 

R e m a r k .  By Theorem 1.21, the space £1o'P(X ) does not depend on the choice of 
the /C-set Q c X. It thus follows : 
a) That condition (3) (or (4)) does not depend on the choice of Q. In particular 
the notion of p-hyperbolicity of a MMD space is well defined. 
b) X is p-parabolic .: '.. Capp(A) = 0 for any A C/C -' > there exists at least 
one K-set Q E/C of positive measure such that Capp(Q) = 0. 

For more information on the parabolic/hyperbolic dichotomy in the case of Rieman- 
nian manifolds, see [16], [49] and [42]. 
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P r o p o s i t i o n  3.2 The variational p-capacity Capp( ) satisfies the following proper- 
ties: 

i) Capp( ) is an outer measure; 

ii) for any subset F C X we have Capp(F) = inf{Capp(U) : U D F open }; 

iii) I f  X D K1 D 1(2 D K3... is a decreasing sequence of compact sets, then 

lim Capp(Ki) = Capp (ni°°__~Ki) . 
i - + o o  

P r o o f  If X is p-parabolic, then the p-capac i ty  is trivial, we thus assume X to be 
p-hyperbolic.  

i) Clearly Capp(~) = 0 and Capp() is monotone : A C B => Capp(A) <_ Capp(B). 
To prove countable subadditivity suppose that {F~ C X} is a sequence of subsets 
of X such that ~ - - 1  Capp(Fn) < oc. Let F := U~=IFn and fix some ¢ > 0. By 
definition of the variational p-capacity, for each n we can find a function u~ E 
A(F, ,  X )  and g~ E D[u~] such that 

P Capp(F~) + 2 ~ 

By axiom A4 the function vn := max(uh ..., u~) is admissible for Us~=lFs; observe 
that by Fatou's lemma, the sequence {v~} converges to v0 = supieN(ui) in L~oc(X ). 
If m > n, then max(ul, ..., urn) _< max(u1, ..., u~) + max(un+l, ..., urn). Using this 
inequality and Axiom A4, we have for any m > n : 

p 
- - - I]~,.p(x) II vm v ,  II~,,,(x) - II m a x ( u l , . . . , u m )  max(u l ,  ..., u , )  p 

<_ I lmax(un+l, . . . ,um) p 
p 

--- II m a x ( g , + l ,  . . . ,  gin)ItL~(x) 

i---n+1 i = n + l  

oo 

< ~ + ~ Cap, (Y~) .  
i = n + l  

Because the series E l C a p . ( F , )  converges, the sequence {~.} is a Cauchy sequence 
in the Banach space £1,P(X). Therefore vn ~ Vo and v0 E EI'P(X). Since we clearly 

have v0 >_ 1 on a neighbourhood of F := U~=IFn, we have thus established that 
Vo c Ap(F, X) ,  therefore 

= -- ,- ,oo II~,.,(x) Cap,(F) < Ilvoll~,.,ix) ~imllv, ll~,.~Cx) lira Ilmax(u,,...,~,) ~ 

P < . < II g, II~,(x)-  e + ~ Capp(F/) 
i----1 i = l  
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We have proved that the variational p-capacity is an outer measure. 

ii) This assertion is clear from the definition of p-capacity. 

iii) First we observe that the monotonicity of p-capacity implies .lim Capp(Ki) > 

Capp(K), where K := Ai~lKi. To prove the converse inequality, choose an arbitrary 
open set U c X containing K. By compactness of the Ki's, the open set U contains 
Ki for all sufficiently large i. Therefore lim Capp(Ki) < Capp(U). By (ii), we now 

i ~ o o  

obtain the inequality tim Capp(Ki) __ Capp(K). 
Z"~O0 [ ]  

3 . 2  G r o w t h  o f  b a l l s  a n d  p a r a b o l i c i t y  

T h e o r e m  3.3 Let f~ C X be an open set and suppose that B(x0, r) ~ B(x0, R) @ [2. 
Then 

#(S(xo,  R)) 
Capp(B(x0, r), D)) _~ (R - r)P 

P r o o f  Let us set A(x) := dist(x, x0) and define the function u = ut : X ~ R 
(where t > 1) by 

t if x E B ( x o , r )  

u(x) = t ( R -  if z e B( 0, R) \ B( 0, r) 
R - r  

0 if x ~ B(xo, R) . 

It is clearly a Lipschitz function with Lip(u) <_ ~-r" By axiom A1 we thus have 
u E £1'P(X). Observe also that u is continuous and suppu C B(xo, R) @ f2; in 
particular u e /:10'P(f~). A pseudo-gradient 9 e D[u] is given by g(x) = ~ for 
x E B(x0, R) and g(x) = 0 for all other x. I f t  > 1, then the function u i s  an 
admissible function for Capp(B(x0, r), f~). Therefore 

Capp(B(x0, r), [2)) _~ - -  
t p f tp#(B(xo, R)) #(B(x0, R)) 
- -  d #  = -+ 

(R r)P J,(~o,R) (R - r)p (n  - r)P 

as t--+ 1. [] 

We immediately deduce the following sufficient condition for p-parabolicity. 

C o r o l l a r y  3.4 Suppose that the metric space X is complete and unbounded and 
that IC is the Boolean ring of all bounded Borel subsets of X .  I f  there exists a point 
Xo E X such that 

liminf R-P#(B(xo, R)) = 0, 
R--¢~ 

then X is p-parabolic. 
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[] 

We also have the following consequence on the capacity of points : 

Corollary 3.5 Suppose that lim R-P#(B(xoR))  = O. 
R--+0 

for every open set ~ containing Xo. 

Then Capp({x0},~t) = 0 

Proof  For R > 0 small enough, we have B(xoR/2)  ~ B(xoR)  ~ ~. 
previous Theorem implies then 

Capp(B(xon/2) ,~)  < p(B(xo,n)) 
- ~ " 

Letting R -+ 0 gives us the result. 

The 

[] 

4 A s u r v e y  o f  s o m e  r e c e n t  r e s u l t s  

In this section we describe without proof some other recent results from the theory 
of MMD spaces. 

4 .1 A g l o b a l  S o b o l e v  i n e q u a l i t y  

The following Sobolev inequality has been proved by K. Gafgiti in his thesis [12] 
using techniques of the paper [1]. 

Theorem 4.1 Let X be a complete MMD space such that 

i) D is absolutely local; 

ii) # has the doubling property; 

iii) there exists constants s > 1 and c > 0 such that for all x E X we have 

, ( B ( x ,  r)) > crs. 

iv) the p-Poincarg type inequality 

~ lu(x) - uBIPd#(x) <_ CrP ~2BgPd# 

holds for any locally Lipschitz function u : X -+ JR, any ball B C X and any 
g E D[u]. 
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Then the following global Sobolev inequality 

. ~ 1/p. 

( Jx ,U ,  p d# )  <_C ($,(u)) Up 

holds for any u E WI'P(X) where p* = ~P . 
8--p 

[] 

4.2 S o m e  re su l t s  on  p - c a p a c i t y  

We first mention that p-capac i ty  satisfies the Choquet property : 

P r o p o s i t i o n  4.2 Suppose that F C X is a strongly bounded Borel set which is 
contained in a countable union of compact sets, then 

Capp(F) = sup{Capp(K)l K C F a compact subset}. 

The proof is given in [15]. 
[] 

Recall that a set F C X is strongly bounded if there exists a pair of open sets 
f~l C t22 C X such that ft2 e K:, #(X\f~2) > 0, d i s t ( f t l ,X \~2)  > 0 and F C ~1. 

We now state a result about the existence and uniqueness of extremat functions for 
p-capacities.  We first need a definition : 

Def in i t ion  A subset F is said to be p - f a t  if it is a Borel subset and there exists 
a probability measures ~- on X which is absolutely continuous with respect to p- 
capacities (i.e. such that ~-(S) = 0 for all subsets S c X of local p -capac i ty  zero) 
and whose support is contained in F.  

T h e o r e m  4.3 Let (X,d) be a a-compact measure metric 8pace and F C X be a 
p - f a t  subset (1 < p < oc). Then there exists a unique function u* E L~'P(X) 
such that u* = 1 p-quasi-everywhere on F and Ep(U*) = Capp(F). Furthermore 
O < u*(x) < l for all x E X .  

The proof is also given in [15]. 
[] 
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4 . 3  B i l i p s c h i t z  c h a r a c t e r i z a t i o n  o f  m e t r i c  s p a c e s  

On a MMD space X we define A~(X) := Co(X) N/:I,p(X) where Co(X) is the set 
of continuous functions converging to zero at infinity. 

L e m m a  4.4 Suppose that the MMD space satisfies the condition 

(8,(uv)) 1/' < IlvllL  (E,(u)) 1/p + II IIL  (E,(v)) lz" (9) 

for  atl v e 

Then AS(X ) is a Banach algebra for the norm Ilu]lA~(x) := HUHL~ + (gp(u)) 1/p. 

This algebra is called the Royden algebra of the MMD space X. 

All examples of D-structures we have previously given do satisfy the hypothesis of 
this Lemma. 

We now consider two MMD spaces X and Y satisfying the following four condi- 
tions: 

1) X and Y are proper and quasi-convex, i.e. there exists Q > 1 such that any pair 
of points a, b in X (or in Y) can be joined by a curve of length at most Q. d(a, b) 
2) X and Y are uniformly locally s-regular, i.e. for every point x e X there exists 
two constants c, r] > 0 such that for any ball B of radius r < r/in X or Y we have 

lrS <_ #(B) <_ cr*. 
e 

3.) The (1, p)-Poincar4 inequality holds on any ball of radius r < r/, i.e. there exists 
two constants a _> 1 and C > 0 such that 

\ 1/~ \ l/p 
( £  ,U-UB[qd#) <_Cr (j£BgPd# ) (10) 

for any ball B of radius r < r~ in X or Y, for any continuous function u : X --+ IR 
and any g E D[u]. 
4.) X and Y satisfy the condition (9) above. 

T h e o r e m  4.5 Let X and Y be as above. Suppose that .A~(X) and .APo(Y) are 
isomorphic Banach algebras for some p > s. Then X and Y are bilipsehitz equiva- 
lent. 

This result has been obtained by Gafgiti in his thesis [12]. Note that in the special 
case of Riemannian manifolds, this is a Theorem of J. Ferrand (see [10]). 
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4.4 A theorem of J. Cheeger 

The Sobolev space UWI'P(X) has a very rich structure on doubling metric spaces 
supporting a Poincar~ inequality : 

T h e o r e m  4.6 I f  the M M  space X satisfies the doubling condition and if UD sup- 
ports a (1,p)-Poincard inequality, then 

i) UD = SD,  in particular UWI'P(X) = SWI,P(X);  

ii) UD can be defined from a linear D-structure,  i.e. there exists a linear D- 
structure {E~, d} such that for any locally Lipschitz function v on X we 
have a.e. 

Idv(x)l = n , (x )  = UDv(x)  

(where UDv is the minimal upper-gradient of v). 

iii) I l l  < p < oo, then the Sobolev norm on UWI'p(X)  is equivalent to a uniformly 
convex norm (in particular UWI'P(X) is reflexive). 

This is a deep result of J. Cheeger proved in Theorems 4.38, 4.48 and 6.1 of [4], see 
also [45]. N. Weaver has developed an alternative construction in [46]. 

[] 

From this result and Corollary 1.32, we now have: 

Coro l la ry  4.7 Let X be a proper MM space X satisfying the doubling condition. I f  
UD supports a (1, p)-Poincard inequality for some p > 1, then the space of Lipschitz 
functions with compact support is dense in UWI,p(X)  for the usual topology. 
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