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C A P A C I T I E S  I N  M E T R I C  S P A C E S  

VLADIMIR GOL'DSHTEIN and MARC TROYANOV 

We discuss the potent ial  theory related to the variat ional  capacity and the 
Sobolev capacity on metric measure spaces. We prove our results in the ax- 
iomatic framework of [17]. 

1 I n t r o d u c t i o n  

Various notions of Sobolev spaces on a metric measure spaces (X, d, #) have been introduced 
and studied in recent years (see e.g. [4], [18], [23] and [41]). Good sources of information are 
the books [20] and [21]. 
The basic idea of all these constructions is to associate to a given function u : X --+ R a 
collection D[u] of measurable functions g : X --+ N+ which control the variation of u. The 
Dirichlet p-energy of the function u is then defined as 

and the Sobolev space is WI'v(X):= {u C Lv(X) I gp(u) < oo}. 
We say that  g is a pseudo-gradient of u if g E D[u] and the correspondence u -+ D[u] (i.e. 
the way pseudo-gradients are defined) is called a D-structure. The theory of D - s t r u c t u r e s  
is axiomatical ly developped in [17]. 
In the present paper,  we introduce two notions of capacities on a metric measure space X 
equipped with a D-structure.  First  the Sobolev capacity of an arbi t rary  subset F C X is 
defined to be 

@(F) := inf{ IlUllwl.p I u E Bp(F) }, 

where Bp(F) := {u C Wt'P(X)I u _> 1 near F and u > 0 a.e.}. We also define the variational 
capacity of a bounded subset F C X as 

Capp(F)  : :  inf{ Ep(u) lu C ,,4p(F) }, 



Gol'dshtein, Troyanov 213 

where Ap(F) := {u] u _> 1 near F, and u vanishes at co) (see Definitions 2.9 and 2.10). 
In [7], G. Choquet presents an axiomatic theory of capacities, this theory encompasses 
capacities on Euclidean spaces associated to functionnals of the type r u, [Vul) of which 
the previously mentionned two capacities are special cases. 
Such capacities have been studied in the 1960's, mainly motivated by the theory of PDE's 
(see e.g. [36]) and the theory of quasi-conformal mappings in higher dimension (Reshetnyak 
[40], Gehring [14]). See also [38, 37, 39, 15, 22] for further development. 
The goal of this paper is to develop some basic topics in the potential theory related to these 
notions of capacity. Specifically, we discuss the following subjects: 

Polar sets. A set S C X is said to be p-polar if it has locally zero variational 
p-capacity; these are the negligible sets of the theory. We show that for good spaces, 
polar sets can be described from the Sobolev capacity (see Propositions 3.6 and3.7). 
We also prove that a set is p -po la r  if and only if it is the set of poles of a Sobolev 
function (Proposition 3.9). 

Quasi-continuity. A Lusin type theorem is given (Theorem 4.2): it says that every 
Sobolev function u has a p-quasi-continuous representative (i.e. a representative which 
is continuous except for a p -po la r  set). 

Embedding theorem. We discuss some embedding of the Sobolev spaces into the space 
of bounded measurable functions and into the space of bounded continuous functions 
(see w 

Choquet property. The Choquet property has been proved in [30] for the Sobolev 
capacity (in this paper, the proof is written for the Hajlasz Sobolev space, but it is 
in fact axiomatic). In section 8, we prove the Choquet property for the variational 
capacity. 

Extremal functions. Finally we prove the existence and uniqueness of an extremal 
function for the variational p-capacity of an arbitrary p - f a t  subset F E L: (for 1 < 
p < oc), see Theorem 10.1. (A subset F is called p-fat if it supports a probability 
measure which is absolutely continuous with respect to p-capacity.) This fact is also 
true for the Sobolev capacity. Such results are well-known for compact subsets of a 
bounded Euclidean domain. In our abstract setting, the proof is more delicate since 
the Sobolev space may not be a uniformly convex Banach space. 

We prove all our results in the axiomatic framework of [17]; they are thus not restricted to 
a particular construction of Sobolev space on metric space. 

2 A rev iew of  Ax iomat i c  Sobolev  Spaces  

In this section, we give a brief summary of the axiomatic theory of Sobolev spaces developed 
in [17], we refer to that paper for more details and for the proofs of all the results stated 
here. 
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2 . 1  T h e  b a s i c  s e t t i n g  

An MM-space is a metric space (X, d) equipped with a Borel regular outer measure # such 
that  0 < #(B)  < oc for any ball B C X of positive radius. 

In order to define the notion of local Lebesgue space L~oc(X), we introduce the following 
concept : 

D e f i n i t i o n  2.1 A local BoreI ring in the MM-space (X, d, #) is a Boolean ring )E of bounded 
Borel subsets of X satisfying the following three conditions: 

K1) U A = X; 
AE/C 

K2) if A E )E and A' C A is a Borel subset, then A' E )E; 

K3) for every A E )E there exists a finite sequence of open balls B1, B2, ...Bin E 
)E 
such tha t  A C UmlBi and #(Bi M Bi+l) > 0 for 1 _< i < m. 

A subset A C X is called a ](:-set if A E )E. 
A local Borel ring is always contained between the ring of all bounded Borel subsets of X 

and the ring of all relatively compact  subsets if X.  
In the sequel, X will always be an MM-space with metric d, measure p and a local Borel 
ring )E. 

D e f i n i t i o n  2.2 We say that  the space X is a a)E, or that  it is a ](:-countable space, if X is 
a countable union of open ](:-sets. 

D e f i n i t i o n  2.3 For 1 _< p < co, the space LPoc(X) = LToc(X,)E,#) is the space of 
measurable functions on X which are p-integrable on every )E-set. I t  is a Frechet space for 

the family of semi-norms [~ ItUIILP(K): g E )E~. 
J 

N o t a t i o n s  The notat ion A CC 12 (or A ~ g2) means tha t  there exists a closed )E-set K 
such that  A C K C ~ (in part icular  A ~ X if and only if A is contained in a closed ](:-set). 
I f ~  c X i s o p e n ,  we denote by )Eia the set of all Borel sets A such tha t  A ~ 12. It is a 
Boolean ring which we call the trace of )E on ~. This ring satisfies conditions (K1) and (K2) 
above. If condition (K3) also holds, then we say that  ~ is )E-connected. 
We denote by C(X) the space of all continuous functions u : X -+ ]R and by Co(X) C C(X) 
the subspace of continuous functions whose support  is contained in a ](:-set. If ~ C X is an 
open subset, then C0(~) is the set of continuous functions u : ~t -+ ~ such that  supp(u) @ g2. 
For any function u E C0(~), there exists an extension ~ E Co(X) which vanishes on X \ f t  
and such tha t  ~ = u  on ft. 
The space of bounded continuous functions on an open set ft C X is denoted by Cb(ft) = 
C(f~) N L~(f t ) .  It  is a Banach space for the sup norm. 
We conclude this section with a few more technical definitions: 
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D e f i n i t i o n  2.4 A subset F of an MM-space X is strongly bounded if there exists a pair of 
open sets f l  C f2  C X such that  f2  �9 /C, # ( X \ f i e )  > 0, d i s t ( f l , X \ f 2 )  > 0 a n d  
F C f l l .  

D e f i n i t i o n  2.5 An MM-space X is strongly/c-coverable if there exist two countable families 
of open/C-sets {Ui} and {V/} such that  Izi # X for all i and 

1) x = u u~; 

2) U~ c V~ for all i; 

3) dist(Ui, X \ V/) > 0 and 

4) #(Vi \ Ui) > 0. 

Observe that  if F C Ui for some i, then it is a strongly bounded set. 
It is clear that  every strongly/C-covetable metric space is also/(:-countable. 

2 . 2  D - s t r u c t u r e  o n  a n  M M  s p a c e  

Let X = (X, d,/C, #) be an MM space with a local Borel ring and fix 1 < p < oo. 

D e f i n i t i o n  2.6 a) A D-structure on X is structure which associate to each function u �9 
L~oc(X ) a collection D[u] of measurable functions g : X --+ ~ U {oo} (called the pseudo- 
gradient of u). The correspondence u --+ D[u] is supposed to satisfy Axioms A1-A5 below. 

b)  A measure metric space equipped with a D-structure is called an MMD-space. 

A x i o m  A1 ( N o n  t r i v i a l i t y )  I f  u : X -+ R is non negative and k-Lipschita, then the 
function 

k on supp(u) 
g : =  k )~supp(u) = 0 on X \ supp(u) 

belongs to D[u]. 

A x i o m  A2 I f  gl E D[ul], g2 �9 D[u2] and g > l<g, + If~Ig~ a~most everywhere, then 
g c D[OzUl -/-/3U2]. 

A x i o m  A3 Let u E LVoe(X). I f  g E D[u], then for any bounded Lipschitz function 
~ : X --+ ]R the function h(x) = (sup l~olg(x) + Lip(~o)lu(x)l) belongs to D[~ou]. 

A x i o m  A4  Let u := max{ul ,u2} and v := min{ul,u2} where ul,u2 E L[oc(X ). I f  
gl E D[ul] and g2 E D[u2], then g := max{g1, g2} E D[u] N D[v]. 

A x i o m  A5 Let {ui} and {gi} be two sequences of functions su& that  gi E D[ui] for all 
i. Assume that ui --+ u in L~o c topology and (gi - g) -+ 0 in L v topology, then g E D[u]. 
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D e f i n i t i o n  2.7 The D-structure  is said to be non degenerate if it  also satisfies the following 
addit ional  axiom: 

A x i o m  A 6  Let {Ui} C •I'p(x) be a sequence of functions such that Ep(ui) + O. 
Then for any metric ball B �9 IC there exists a sequence of constants ai = ai(B) such that 

Ilu~ - aJIL, (B> --> O. 

The last Axiom is related to the existence of Poincar~ inequalities as shown by the next two 
propositions. 

P r o p o s i t i o n  2.1 A D structure on X is non degenerate if and only if for any pair of 
measurable subsets Q c A c X such that A �9 ~ and #(Q) > O, the inequality 

I lu- uell,:,,(A) _< c . e  Ilgll~,(x) 
holds for any u C s  and g �9 D[u]. 
Here the constant CA,Q depends on p, A and Q only, and UQ := ~ fQ u d# is the average 
value of u on Q. 

P r o p o s i t i o n  2.2 Assume that axiom A6 holds and let A C X be a measurable 1C-sets such 
that iL(A) > 0 and # ( X  \ A) > O. Then there exists a constant CA depending on p and A 
only for which the inequality 

II~II,~p(A) < cA IlgllL,,(x) 
holds for any u �9 s  such that supp(u) C A and g e D[u]. 

[] 

2 . 3  T h e  D i r i c h l e t  s p a c e  f_.I'P(X) 

D e f i n i t i o n  2.8 i) The p-Dirichlet energy of a function u is defined to be 

s = inf { fxgVdt t  : g E D[u] } 

ii) The p-Dirichlet space is the space s of functions u C L~oc(X) with finite p-energy. 

The Dirichlet space 121'P(X) is equipped with a locally convex topology defined as follow: 
one says tha t  a sequence {ui} converges to some function u E s if Ep(u - ui) --+ 0 
and I1~ - ~ilILp(A) --~ 0 for all A �9 tO. 
It is also convenient to introduce a norm on s to define this norm, we fix a set Q � 9  
such that  #(Q) > 0 and we set 

P .__(/Q )l/p 
IMl~,,(x,Q) - M ' d ,  + 6(u)  (1) 
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T h e o r e m  2.3 This norm turns •I 'p(x) into a Banach space. Furthermore the locally con- 
vex topology on s defined above and the topology defined by this norm coincide; in 
particular the Banach space structure is independent of the choice of Q E t:. 

[] 

The next definition will be our notion of Dirichlet functions vanishing at the boundary of an 
open subset ~ C X: 

Def in i t ion  2.9 s is the closure of C0(i2) n s in s for the norm (1). 

2 .4  T h e  v a r i a t i o n a l  c a p a c i t y  

Let D C X be an open subset. Recall that C0(~) is the set of continuous functions u : 12 -+ 
such that supp(u) @ ~, i.e. supp(u) is a closed K-subset of ~. 

Def in i t ion  2.10 The variatiodal p-capacity of a pair F C ~ C X (where 12 is open and F 
is arbitrary) is defined as 

Capp(F, ~) := inf { Ep(U) ] U e .Ap(F, ~~) },  

where the set of admissible functions is defined by 

Mp(F, ~) := {u e s u > 1 on a neighbourhood of F and u > 0 a.e.}. 

.A~(F,~) = 0, then we set Capp(F,~) = co. If ~ = X, we simply write Capp(F,X) = 
Capp(F). 

R e m a r k s  1. The space s may depend on the ambient space X D ~, however we will 
avoid any heavier notation such as s X). 

2. By definition capacity is decreasing with respect to the domain ~ : if ~1 C ~2, then 
Capp(F, ftl) _> Capp(F, f~2). 

P r o p o s i t i o n  2.4 The variational p-capacity Capp( ) satisfies the following properties: 

i) Capp( ) is an outer measure; 

ii) for any subset F C X we have Capp(F) = inf{Capp(U) : U D F open }; 

iii) If  X D K1 D 1(2 D K3... is a decreasing sequence of compact sets, then 

lim Capp(Ki) = Capp ( A i ~ l K i )  . 

[] 

Def ini t ion 2.11 The MMD space X is said to be p-parabolic if Capp(K, X) = 0 for all 
K-set Q E E and p-hyperbolic otherwise. 
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T h e o r e m  2.5 X is p-hyperbolic if and only if one of the following equivalent condition 
holds. 

1) 1 r g~'P(X); 

2) s is a Banach space for the norm Ilull : =  (Ep(U))I/P ; 

3) Capp(Q) > 0 where Q c X is an arbitrary K.-set such that #(Q) > O; 

4) there exists a constant C such that for any u C F~lo'P(X ) we have 

II~IIL~(Q) <-- C (6(u)) ~/~, 

[] 

3 S o b o l e v  p - c a p a c i t y  a n d  P o l a r  s e t s  

The Sobolev spaces associated to an MMD space X is defined as 

WI'P(X) := s  n Lv(X) ; 

it is a Banach space with norm 

(see [17, Th. 1.5]). 

D e f i n i t i o n  3.1 The Sobolev p-capacity of a pair F C f~ (where f~ C X is open and F is 
arbitrary) is defined by 

Cp(F, a)  = inf { Ilul[~,., [ u �9 Wl 'p(a) ,  u > 1 near f and u > 0 a.e.} . 

The Sobolev p-capacity C~(F, X) with respect to X is simply denoted by Cp(F), it satisfies 
the same basic properties as the variational p-capacity : 

P r o p o s i t i o n  3.1 i) The Sobolev p-capacity is an outer measure; 

ii) for any subset F C X we have C , (F)  = inf{Cp(U) : U D F open }; 

iii) I f  X D K1 D K2 D Ka... is a decreasing sequence of compact sets, then 

) tim Cp(Ki) = Cp Ki . 
~--4OO 

P r o o f  Use the same type of arguments as in the proof of Proposition 2.4 (see w in [17]). 
[] 
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P r o p o s i t i o n  3.2 For any function u �9 WI,P(X), let P~ := {x �9 X I l imu(y)  = co} be the 
y--+x 

set of poles of u. Then Cp(P~) = O. 

P r o o f  For any k > 1 the function uk(x) := ~min(k ,u(x))  is an admissible function for 
the Sobolev p -capac i ty  of the set P~. Using the axioms A1, A2 and A4, we can check 
that  []uk[[w~,,(x) <_ �88 [[U[[w~,p(x). Hence [[uk[[w~.p(x) -+ 0 as k -+ oo and thus the Sobolev 
p -capac i ty  of the set P~ is zero. 

[] 

P r o p o s i t i o n  3.3 For any set A C X ,  Cp(A) = 0 if and only if for any ~ > 0 there exists a 
nonnegative function u �9 WI 'p(x)  such that lim u(y) = co for any x �9 A and IlUllwl.,(z) < c. 

y-'~x 

P r o o f  Suppose that  Cp(A) = O. By definition of the Sobolev p-capacity there exists a 
sequence of nonnegative functions u~ such that  Ilunllw~.p(x) < 2-he and un -- 1 in some 

neighbourhood of A. Then u = ~--~,~ un belongs to WI'P(X) and lira u(y) = co. Furthermore, 
y--+x 

we clearly have Ilullw~.p(x) < e. 
The converse direction follows from the previous proposition. 

[] 

De f in i t i on  3.2 a) A set S C X is p-polar (or p-null) if for any pair of open K:-sets 
f~l c f~2 =fi X such that  dist(f~l,X \ ~2~) > 0, we have Capp(S A f~1,~2) = 0. 
b) A property is said to hold p-quasi-everywhere if it holds everywhere except on a p-polar 
set. 

In the rest of this section, we compare p-polar sets and sets of Sobolev p-capacity zero, we 
show in particular that  in good cases, the p - p o l a r  sets and the sets of Sobolev p-capacity 
zero are the same. 
We begin with a technical lemma which is used in some cut-off arguments. 

L e m m a 3 . 4  Let f~l C f~2 C X be a pair of open sets such that f~2 7 ~ X and ~ := 
dist(f~l,X \ f~2) > 0. Then for any subset S C f~l and every c > O, there exists a 
function qo -- qo~ C WI'P(X) with support in a closed subset of f~2, such that ~o >_ 1 in a 
neighbourhood of S and 

"~['wl.p(x) ~_2 ( 1 +  ~ )  (Cp(S) +c)  I/p . (2) 

P r o o f  Let us set a(x) := dis t (x ,X \ f~2) and 

1 if a(x) > g~, 

0 if  < 

Then r : X -~ R is a Lipschitz function with Lipschitz constant ~, with support in a closed 
subset of f~2 and such that  r _-- 1 in a neighbourhood of ill. 
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By definition, we can find for any c > 0 two nonnegative functions u, g : X -+ ]R such that 
P g e D[u], u > 1 in a neighbourhood of S and []u][Pp(x)+ [[gl]Lp(Z) ~- Cp(S)+~. Let us set 

:= Cu; it is clear that  supp(~) is a closed subset of ~_ and ~ > 1 in a neighbourhood 
of S. From axiom A3 we know that h := g + ~[u I ~ D[~], hence 

II~llwl,,,(x) II ~o 4- hllL,(X) ~ II~IIL,(X) 4- Ilhll~(x) 

3 3 (llull.,(x) + Ilgll.,(x)) < Ilull.,(x) + IIg + ~IIL'(~) < (1 + ~-) 
3 up  

<_ (1 + ~) 2 (II l l.(~> + tl gl lL(~)) ~/~ 

< (1 + ~)2(C,(S) + e) '/p . 

D 

C o r o l l a r y  3.5 Let ~t, ~ and S be as in the lemma. If C(X) N WI'v(X) is dense in 
WI'P(X) and ~2 is a ]~-set, then 

Capp(S, fl2) <__2v ( I  + ~)P Cp(S). 

In particular if Cp(S) = O, then S is p-polar. 

P r o o f  Because C(X) N WI'P(X) is dense in WI'P(X), the function ~ constructed in the 
previous lemma belongs to s The proof follows then from the inequality (2) as s is 
arbitrarily small. 

[] 

P r o p o s i t i o n  3.6 Suppose that C(X) A Wt,~(X) is dense in Wt'v(X).  Then a strongly 
bounded set S C X is p-polar if and only if Cp(S) = O. 

Recall that  S C X is strongly bounded if S C s C s C X where s and ft~ are open 
/(:-sets such that  #(X \ ~2) > 0 and dist(f~l, X \ ~2) > 0. 
P r o o f  By the previous Corollary, we already know that  if Cp(S) = 0 then S is p -po la r .  
Assume conversely that S is p-polar, we then have Capp(S n ~1, ~2) = 0. This means that 
for every c > 0 there exists a function u E s such that  u > 1 on a neighborhood of 
S a n d  s < s. 
Recall that  any function u C L:~'P(~) is globally defined on X and vanishes on X \ ~. Since 
# (X \ f~2) > 0, we have from Proposition 2.2 

Ix luFd# = Z= luFd# <~ CE~(u) 

where C=C(s Thus u 
and IlUlIw~.p(x) <_ ((1 + C)r 

is an admissible function for the Sobolev p-capacity C~(S) 
therefore Cp(S) = 0 since s is arbitrary. 

[] 
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Pr opos i t i on  3.7 Suppose that C(X)tq WI'P(X) is dense in WI,P(X) and that X is strongly 
]c-coverable. Then 

i) If a set S C X is p-polar then Capp(S, X) = 0; 

ii) A set S C X is p-polar if and only if Cp(S) = O. 

Recall that X is strongly K-coverable if there exist two countable families of open ]C-sets 
{Ui}, {Vi} such that: X = UUi, Ui C Vi for all i, dist(Ui, X \ Vi) > 0 and #(Vi \ Ui) > 0. 
P r o o f  ( i )Let  Sj : - -SAUj ,  then Capp(Sj, X) _< Capp(S3, Vj )=  0 since S is p-polar. 
Thus, by countable subadditivity of the variational p-capacity, we have Capp(S,X) = 
Capp(USj, X)  <_ E~ Capp(Sj, X) = 0. 
(ii) We already know from Corollary 3.5 that if Cp(S) = 0, then S is p-polar. Conversely, 
if S C X is an arbitrary p-polar set, then we consider the decomposition S - US a where 
S; --- S n Uj. We know by Proposition 3.6 that Cp(Sj) = 0 and thus, by countable subaddi- 
tivity of the Sobolev p-capacity, Cp(S) = Cp(USj) < ~ Cp(Sj) = O. 

[] 

L e m m a  3.8 Suppose that X is a strongly ]c-covetable metric space such that C(X)  f) 
WI'p(X) is dense in WI'P(X). Then any p-polar subset of X has #-measure zero. 

P r o o f  This follows from the trivial estimate #(F) < Cp(F). 
[] 

R e m a r k  The converse of assertion (i) in Proposition 3.7 is not true in general. Indeed, 
suppose that X is p-parabolic, then Capp(S, X) = 0 for any subset S, yet no set of positive 
measure is p-polar. However, one may ask the following 
Ques t ion  Suppose that X is strongly K:-coverable and p-hyperbolic. Do we have Capp(S, X) = 
0 r S p-polar ? 
Our final result explains the terminology: a set is p-polar  if it is the set of poles for some 
function u E WI'n(X). 

P ropos i t i on  3.9 Suppose that C ( X ) N W I'P( X ) is dense in WI'p(X) and that X is strongly 
]c-coverable. A set A E ]C is p-polar if and only if for any e > 0 there exists a nonnegative 
function u E WI'P(X) such that lim u(y) = c~ for any x E A and ]lUllw,.p(x) <_ r 

y-~x 

P r o o f  Follows from Propositions 3.3 and 3.7. 
[] 

4 Egorov type theorems and quasi-continuity 

In this section, we prove Egorov and Lusin type theorems for the Dirichlet space L:I'v(X) 
with the topology induced by the norm (1): 

. -  I l d# + E , ( u )  , 
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where Q is a fixed K-set such that #(Q) > 0. Recall that, by Theorem 2.3, this norm is 
complete and the corresponding Banach space structure is independent of the choice of Q. 
It will be important throughout this section to keep in mind that a Cauchy sequence in the 
Dirichlet space s converges in WI'P(fl) for any open/C-set fl C X; this follows from 
Theorem 2.3 and the floating Poincar~ inequality. 

T h e o r e m  4.1 Let {ui} C f_),P(X)AC(X) be a Cauchy sequence in Et,P(X). Then for any 
open set f~ e lC there exists a subsequence {ui,} of {ui} and a sequence of open subsets 
f~ D U1 D U2 D Us D ... such that lim @(Up,~) = 0 and {ui,} converges uniformly in f l \  

p --~ oo 

[Iv for all u. In particular {ui,} converges pointwise in the complement of the set of zero 
Sobolev p-capacity S := N~=IU j. 

P r o o f  We know that {ui} converges in WI'P(~) for any/(:-set fl c X, we can thus find 
a subsequence (which we still denote {ui}), such that 

oo 

- u i + ~ l l w l , , ( a )  < ~ .  (3 )  
i = 1  

For any i E N ,  we s e t E i : =  {xE  f~ : tui(x)-ui+l(x)l  > 2  -i} and Uj :=Ui~jEi.  Since 
the functions ui are continuous by hypothesis, the sets Ei and Uj are open; in particular 
2ilui - ui+li is admissible for the Sobolev p-capacity of E~ in D, hence 

Cp(Ei, f~) <_ 2iVllui P - u i+~ l lw , ,~ (n )  �9 

By countable subadditivity of the Sobolev p-capacity, we obtain 

Cp(Uj, fl) < Cp(Ei, a) <_ ~_, 2~'11u~ v - u ~ + l l l w ~ , , ( n ) ,  
i=j  i=j  

and from the convergence of the sum (3) we conclude that 

C,(S, n) < ) ~  C,o(U~,a) = 0 

(where S = N~=IUj) and {ui} converges pointwise in fi \ U. Moreover we have for any 
x E  f ~ \ U p a n d a l l k > j > _ u  

k- -1  k - 1  

[uj(x) - uk(x)l < E [ui(x) - u,+l(x)[ < E 2  -i < 2 i-j .  
i=j  i=j  

This implies that {uj} converges uniformly in ~ \ Up . 

A consequence of the previous result is the following Lusin type theorem for 
p-capacit ies in E-countable metric spaces. We first need the following 

Def ini t ion 4.1 A function v : X ~ I~ is 
find a subset S C X such that Cp(S) < r 

[] 

p-quasi-continuous if for every e > O, we can 
and v is continuous on X \ S, 
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R e m a r k  Without  loss of generality, we can suppose that  the set S is open. 

T h e o r e m  4.2 Suppose that X is E-countable. For each u ~ C ( X ) ~  s there is a 
function v ~ s such that 

i) u = v almost everywhere on X and 

ii) v is p-quasi-continuous. 

The function v is called a p-quasi-continuous representative of u. Note in particular that  
every function u E s has a p-quasi-cont inuous representative (since continuous func- 
tions are dense in f-.lo'P(X ) by definition). 
P r o o f  By hypothesis, there exists a sequence of open/(:-sets f~  C ~2 C f~3 C ... C X such 
that  X = Uftj. Choose e > 0 and a function u E C ( X )  N s there exists a sequence 
{ui} E LI'P(X) A C ( X )  which converges to u in EI'P(X). 
In particular {ui} converges in Wl'p(ftj) for any j ,  hence the previous theorem (applied to 
X = ftj) tells us tha t  for any j there exist a subsequence {u~,j} of {u~} which converges to a 
function vj = l imui , j  in Wl'P(ftj)-norm, and a subset Fj C f~j such that  Cp(Fj, f~j) < 2-Je 

and {ui,~} converges uniformly toward vj in ~ \ F~; in particular v~ is continuous in that  
set. 
Choose ij such that  ][ui~j -v~[[w1,,(a~) < 1/ j  and let us note to simplify wj := ui~,~. Because 
~ C ~tj+~, the sequence w~ converges in C~,~(X)-topology to a function v which coincides 
with vj in f~j for any j .  In particular, vj = u almost everywhere in ~ j ,  and thus v = u 
almost everywhere in X.  Since v = vj on gtj and is therefore continuous in ~j \ Fj for all j ,  
it is a p--quasi-continuous function. 

[] 

Theorem 4.1 has a version for sequences of quasi-continuous functions in the space s 
every Cauchy sequence of quasi-continuous functions in s contains a subsequence 
whici~ converges uniformly outside of set of arbitrary small p -capac i ty :  

P r o p o s i t i o n  4.3 Let {ui} 
Then for any open set f~ E 
converges uniformly in ft \ 

C s be a Cauchy sequence of p-quasi-continuous functions. 
IC and any ~ > O, there exists a subsequenee {ui,} of {ui} which 
F~, where Fr C ~ is a subset such that Cp(Fe, ~) _< 2c. 

P r o o f  We know that ,  given an arbi trary open ](:-set fl C X,  the sequence {ui} converges 
in WI'P(~) to a function u := lin~-~o ui. Since continuous functions are dense in s 
there exists for any i a sequence of continuous functions vi,j E f~'P(X) which converges in 
WI'P(~) to ui. By Theorem 4.1 there exists for each i a sequence of open subsets f~ D Ui,1 D 
Ui,~ D Ui,3 D ... such tha t  l ims_~ Cp(U~,8, ~t) = 0 and a subsequence of the sequence {vi,j} 
(which we still denote {vij}) which converges uniformly toward v~ = l im j_~  v~,j in ~ \ Ui,~ 
for any s. Given ~ and i, we can therefore find ji such that  Cp(Uij~, ft) < 2-i~ and 
sup~en\u,,r [vi - vi,j, [ < 2-ir 
Because ui and vi are both p-quasi-continuous and [iui -villwl.,(n) = 0 ,  there exists a subset 
Fi C ft such that  Cp(Fi, f~) = 0 and ui = vi in ft \ Fi. 
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By construction the sequence of continuous functions wi := vi,j~ converges in WI'P(~) to u. 
By Theorem 4.1 again, there exists a set U~ such that Cp(U~, ~) < ~ and a subsequence {wi,} 
that  converges uniformly on fl \ U~ to w := lim wi; clearly w = u almost everywhere on 

i-+oo 

a\u0.  
Set Fe := Ue tO ([.J Ui&) tO ([.J F/); by construction and countable subadditivity of Sobolev 

i i 
p-capacity we have 

C~(F,, ~) < C~(U~, a) + Z C~(V,j,, a) + ~ Ca(F,, ~) < 26. 
/=1 i=1 

Because ui, = vi, on ~ \ Fe we obtain finally 

sup lui , - w[<_  sup Ivi , -wi ,  l+ sup I w - w i , l < _ 2 - i ' e +  sup I w - w i , I .  
xEf~\Fe zEn\Fe zE~\Fe xef~\F, 

Thus {ui,} converges uniformly to w in ~ \ F~. 

If X is K-countable ,  then we can globalize the previous result: 

[] 

C o r o l l a r y  4.4 Assume that X is K-countable. Let {ui} C s be a Cauchy sequence 
of p-quasi-continuous functions. Then for any ~ > O, there exists a subsequence {ui,} of {ui} 
which converges uniformly in X \ F~, where Fe C X is a subset such that CB(Fe, X)  <_ ~. 

The proof follows from previous proposition and countable subadditivity of the Sobolev ca- 
pacity. 

[] 

R e m a r k  The proofs shows that  the last two results also hold for Cauchy sequences in 
C(x) a z.l,p(x). 
Recall that  a continuous function f : X --4 1R is said to be monotone (in the sense of 
Lebesgue) if its restriction to any compact set assumes its extremal values at the boundary 
of that  set. For p-quasi-continuous we have a corresponding notion: 

Def in i t i on  4.2 A function u : X --4 ]R is p-quasi-monotone if for every domain D C X 
and every subdomain D1 ~ D the inequalities 

inf u N i n f u N s u p u N  sup u. 
(D\D1) D1 D1 (D\DI) 

hold p-quasieverywhere (i.e. on the complement of a p-polar subset of D). 

5 T h e  S o b o l e v  capac i ty  of  a po int  

In this section, we study a metric relation between the Sobolev capacity of a point and the 
measure #. 
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Recall tha t  if B(x0, 2R) E K: and # ( X  \ B(x0, 2R)) > 0, then there exists a constant C~o,R 
such tha t  the inequality 

IlulIL,(B(~o,2R)~ --< C~o,R E,(u) 1/p (4) 

holds for any u E s such that  supp(u) C B(x0, 2R) (Proposition 2.2). 

T h e o r e m  5.1 Suppose that B(xo, 2R) E /E and # (X  \ B(xo, 2R)) > 0. Then we have for 
alI x E B(xo, R), all O < r < R and any l < p < oo. 

.(B(x,r)) >_ 2p(l+C;o,~)P C.({x}). 

P r o o f  Let us define the function ur by 

1 if z E B ( x , r / 2 )  
u r ( z ) ) =  ~ ( r - d ( x ,  xo)) if z E B ( x , r ) \ B ( x , r / 2 )  

0 if z ~ B(x ,r) ,  

it is clearly a Lipschitz function with Lip(ur) < 2 We have supp(ur) c B(x, r) C B(xo, 2R) - -  r '  
(because x E B(x0, R) and r < R). 
By Axiom A1, u~ E El" (X)  and a pseudo-gradient g E D[u~] is given by g(z) = 2/r if z E 
B(x, r) and g(z) = 0 for all other z. Therefore 

2, f. 2.~(B(x, r)) d/~ = 

u " CPo, R gv(u~) for some constant C~ o , ,  Using the inequality (4) above, we obtain II ~I[L~(X) --< 
thus 

[[~,/.[[Pl,p(X) ~_~ (1 + CPo,,)gv(u~) <_ (1 + CPo,r)2p#(Btr:" 
1")) 

Since the function u~ is an admissible function for the Sobolev p-capacity of the point {x}, 
we have  

Ilurllw~,,(x~_< ~ P "( ,r)  

[] 

6 O n  e m b e d d i n g s  o f  WI,p(X)  

In this section we discuss embedding theorems of Sobolev spaces into the space of bounded 
or continuous functions. 

P r o p o s i t i o n  6.1 Suppose that we have a bounded embedding Wt,P(X) C L~(X) .  Then we 
have Cp( {X} ) > ~ for all x E X where,  is the norm of the embedding Wl,P(X) C L~176 
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P r o o f  If u c WI,p(x) is an admissible function for the Sobolev p-capacity of the point {x}, 
then the truncated function Tu(x) := max{0; rain{l; u}} is also admissible for the Sobolev p- 
capacity of {x}. The claim follows then from the inequality 1 = ]]TU[[Loo(x) <_ u][Tu[]wl.,(x) 
and the definition of the Sobolev p-capacity. 

[] 

C o r o l l a r y  6.2 Suppose that we have a bounded embedding WI,P(X) C Lee(X). If B(xo, 2R) C 
IC and #(X \ B(x0, 2R)) > 0, then there exists a constant n such that #(B(x,r))  > ~r; 
for any x E B(xo, R) and any O < r < R. 

P r o o f  Define ~c by 1/n = (2u)P(1 +C~o,R ) where u is the norm of the embedding WI'p(x) C 
L~~ and Cxo,n is the constant in inequality (4). The result follows then from Proposition 
6.1 and Theorem 5.1. 

[] 

We have the following result in the converse direction: 

P r o p o s i t i o n  6.3 Assume that @({x})  _> 7 > 0 for all x E X,  then every continuous 
function in WI'v(X) is bounded. 

P r o o f  We need to prove that  for any function u C C(X)  A WI,P(X) we have 

Ilullwl,,(x) ~ 1 = = ~  IlullL~(x) ~ <~/~. (5) 

This can be proved by contradiction, indeed assume that  [[Ullwl,,(x ) _< 1 and [[UllLoo(X ) > 
0, -a/v, then there exists A > 1 and x0 such that  lu(x0)l _> A27 -a/p. We may assume w.l.o.g. 

u(xo) > 0. By continuity v := ( : ~ u )  > l i n a  neighbourhood of x0, hence it is an that  

admissible function for the capacity Cp({x0}). We thus have 

_< cp({x0})_< ' ~ Ilvllw,.,(x) = - I lu l l~l ,p(x)  < ~ .  

This contradiction implies (5) and the Proposition follows. [] 

C o r o l l a r y  6.4 Assume that @({x}) > 7 > 0 for all x C X,  then 

a) c ( x )  n w ' , , ( x )  is comptete for the norm II lIw,,p(x)," 

b) If continuous functions are dense in WI'v(X), then WI'P(X) C Cb(X). 

P r o o f  (a) By condition (5), we know that  if {ui} C C(X) N WI'p(X) is a Cauchy sequence 
(for the Wl 'v(X)-norm) then it converges uniformly. The limit is thus a continuous function. 
(b) Follows from (a) and the previous Proposition. [] 

For the Hajtasz-Sobolev space HWx,p(x) (see [18] or [17] for the definition) , we also have 
the following result based on a volume estimate rather than a capacity estimate: 
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T h e o r e m  6.5 Suppose that there exists a constant ~ > 0 such that 
for any x E X and any 0 < r <_ D for some D > O. If  p > s, 
u c HWI'P(X) is locally HSlder continuous. 

,(B(x,r)) > ~ , '  

then any function 

P r o o f  P. Hajtasz has proved in [18] that  i fp  > s, then for any ~ E HWI'P(X) and almost 
all x, y E B(xo, 3R) (where R is small enough) the following (Morrey type) inequality holds: 

I~(x) - ~(y) l ~ Ctdiam(B(xo, 3R)) #(B(xo, 3R)) -1/' II~ll~w,,,(x) 

combining this fact with the inequality 

we obtain 

#( B(xo, 3R) ) -1/p <_ 22/p1"; -lIp diam(B(x0, 3R) ) -s/p, 

t~o(~) - ~(y)l  _< C2diam(B(xo, 3R))1-s/p II~oll~w,,,(~) 

from which the local HSlder continuity of qo follows: 

I~(~) - ~(y)l  -< (c~ II~ll,,w~,~(~)) ly - xll-,/p 

(Here the constants C~ and 6'3 depends on the constants in the previous 
inequalities.) 

(6) 

[] 

7 A d m i s s i b l e  f u n c t i o n s  f o r  c a p a c i t i e s  

Recall that  the set of admissible functions for the variational p -capac i ty  of a set F C X 
was defined as 

.@(F, f~) := {u E i:~'P(f~)l u k 1 on a neighbourhood o f F  and u k 0}. 

Let us denote by A'p(F, X)  the closure of Ap(F, X))  in s it is a closed convex subset 
of s ). 

Proposition 7.1 Suppose that X is E-countable. Then for any function u E r X)  there 
exists a p-quasi-continuous representative v such that v = u almost everywhere and v > 1 
p-quasi-everywhere on F. 

P r o o f  By definition any function u E A'p(F, X)  is the limit of a sequence of non negative 

functions ui E s such that  us(x) > 1 for any x in some neighborhood of F.  By Theo- 
rem 4.2 any function ui admits a non negative p-quasi-continous representative vi such that  
us = vi almost everywhere. We may assume that  vi(x) > 1 in some neighbourhood of F. 
By Corollary 4.4, we can find a subsequence (which we still denote {vi}) which converges 
pointwise in the complement of a set S of zero Sobolev p -capac i ty  to a p-quasi-continuous 
function v such that v = u almost everywhere. Therefore v(x) > 1 on F \ S and v is the 
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desired p-quasi-continuous representative of u. 
[] 

The previous proposition motivates the following definition of a more "natural" admissible 
set for the variational p -capac i ty  : 

it .Ap(F,X) = { u  E ~ ' P ( X ) ]  0 _~ u(x) ~ 1 for all x and 

u = 1 p-quasi-everywhere on F} . 

(Given a subset F C X, the notation {u e s u = 1 p-quasi-everywhere on F} means 

the set of those functions u E/:~'P(X) which have a p-quasi-continuous representative v such 
that v = 1 p-quasi-everywhere on F.) 

P r o p o s i t i o n  7.2 Suppose that X is lC-countable, then .A~(F,X) is convex and closed in 

P r o o f  Convexity is clear. To prove closedness, consider a sequence vi E r X) which 

converges to some function v E s By Corollary 4.4, we can find a subsequence (which 
we still denote {vi}) which converges pointwise in the complement of a set S of zero Sobolev 
p -capac i ty  to a p-quasi-continuous function w such that  w = v almost everywhere. There- 
fore w(x) = 1 on F \ S and thus v e A'~(F,X). [] 

We define the truncation operator T :  s ~ s by 

0 i f u ( x ) < O ,  
Tu(x) = u(x) i f 0 < u ( x ) <  1, 

1 if u(x) > 1. 

By Axiom A4, the operator T does not increase the Dirichlet energy, therefore 

P r o p o s i t i o n  7.3 We have Capp(F, X) = inf { Ep(u)[ u e T(A'p(F, X))}.  

[] 

Recall that  a subset F C X is strongly bounded if there exists a pair of open K-sets F C 
~21 C ~ 2 C X  such that  # ( f ~ 2 \ X ) > 0 a n d  d i s t ( ~ 2 1 , X \ ~ 2 ) > 0 .  

P r o p o s i t i o n  7.4 Suppose that X is p-hyperbolic and lC-countable and that C(X) is dense 
in WI'p(X).  If  F C X is strongly bounded then 

T(A'p(F,X)) C A; (F ,X)  C A'p(F,X). 

P r o o f  The inclusion T(A'p(F, X)) C .A~(F, X) follows from Proposition 7.1. 

To prove the inclusion .A~(F,X) C A'p(F,X), we have to show that  for any function u e 
.Av(F," X) and for any 77 > 0, we can find a function ~ e .Ap(F, X) such that  ][u - u[]~,,p(x,Q ) "  p < 
~/. Since X is p-hyperbol ic ,  we know that  (Ep())l/v is equivalent to the norm [] p lic,,,(X,Q) 
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in the space EI'P(X) (see Theorem 2.5). It  is therefore enough to construct a function 
e Av(F, X)  such that  (gp(u - ~i)) is arbitrarily small. 

Because F is strongly bounded there exists a pair of open )U- sets F C f~l C f~2 C X such 
that  f~2 r X and 5 := dist(f~l, X \ gt:) > 0. Applying Theorem 4.1 and using the density 
of continuous functions in E~'P(X), we know that  for any e > 0 there exists a continuous 
functions v and an open sets U C ~2 with the following properties: 

i) < E,; 

ii) (gp(u - v)) 1/p < e; 

iii) I v ( x ) - u ( x ) ] < e / 2  for a l l z e a 2 \ U .  

From these conditions and the continuity of v, we deduce tha t  v > (1 - e / 2 )  on ( F \  U). Let 
us set w := v/(1 - e), then w(x) _> 1 in some neighbourhood of (F  \ U) and 

 ip= ( E p ( v ) ) l / ' _  < 

where fl is some constant depending on u. 
By Corollary 3.5 we have 

Capp(F N U, X) < o~ p Cp(E A U, f/2) < a v e p 

wl~ere ~ := 2 (1 + 3); and thus, by definition of ~he variational p-capacity, there exists 
~o e A~(F, X)  such tha t  ~o(x) _> 1 in some neighbourhood of F N U and ~'p(~o) < ape v. 
Since w and ~ are nonnegative the function g := (w + ~) > 1 on a aeighbourhood of F,  
hence ~ �9 A~(F, X).  On the other hand we have 

[] 

C o r o l l a r y  7.5 Under the conditions of the previous Proposition, we have 

:= inf {$p (u ) lu  E A p ( F , X )  } .  Capp(F, X)  

P r o o f  This follows from the two previous Propositions. [] 

The situation for the Sobolev capacity is similar; recall that  Cp(F, f~) is the infimum of the 
Sobolev norm I]ul]P~,p of all functions u E Bp(F, X)  where 

Bp(F,X) := {u �9 WI'P(X)] u_> 0 and u > 1 on a neighborhood o f F } .  

If we define B'p(F,X) to be the closure of Bp(F,X) in WI 'p(X) and B'~(F,X) to be the set 
of those functions u �9 WI'P(X) such that  0 < u < 1 and u = 1 p-quasi-everywhere on F.  
Then all results of this section hold for the sets 13p, 13'p and B~. 
The equivalent result to Proposition 7.4 is more generally true for any subset F C X, i.e. 
without assumptions that  F is strongly bounded, because the Corollary 3.5 used in the proof 
to compare the variational and the Sobolev capacity is not needed. 
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8 The Choquet Property 

The abst ract  notion of capacity was introduced by Gustave Choquet (see [8] or [9]): 

D e f i n i t i o n  8.1 We say tha t  a set function Ch : 2 z --~ II~ defined in X is a Choquet capacity 
if it satisfies the following conditions: 

i) Ch is mono tone :  A C B = ~ C h ( A ) _ < C h ( B ) ;  

ii) If X D K1 D / ( 2  D .... is a decreasing sequence of compact  sets, then 

OO lim Ch(Ki)  = Ch(Ai=,Ki  ), 
i - -+r  

iii) If A1 C A2 C .... C X is an arbi t rary  increasing sequence of non empty sets, then 

lira Ch(Ai) = Ch(U~IAi  ) . 
i - -+oo 

T h e o r e m  8.1 I l l  < p < 0% then the Sobolev capacity F ~ Cp(F, X)  is a Choquet capacity. 

P r o o f  Because of Proposi t ion 3.1, we only need to prove tha t  condition (iii) holds. The 
proof is given in [30] in the case of capacity relative to Hajtasz Sobolev space; however, the 

same proof works for all capacities relative to any axiomatic Sobolev space. 
[] 

For variat ional  capacities,  the si tuat ion is more complex; we first define a local version of 
the Choquet condition : 

D e f i n i t i o n  8.2 We say that  a set function Ch : 2 x -+ R defined in X is a Choquet capacity 
relatively to strongly bounded subsets if it satisfies the conditions (i) and (ii) above as well as 

oo  . iii ') If A1 C A2 C .... C X is an increasing sequence of non empty sets such that  A := Ui=iA, 
is strongly bounded, then 

lira Ch(di )  = Ch(U~=lAi ) . 
i - -~c~ 

T h e o r e m  8.2 Suppose that X is lC-countable and C(X)  is dense in WI'P(X). I l l  < p < oo, 
then the variational p-capacity F --+ Capp(F,  X)  is a Choquet capacity relatively to strongly 
bounded subsets. 

For an a rb i t ra ry  subset F C X,  we define 

P(F)  := D[Ap(F,X)] = {g e LP(X) :  g e D[ul for some u �9 A ~ ( F , X ) } .  

Under the hypothesis of the theorem, we have 

Capp(F ,X)  = inf P gEP(F) I l g l l . ( ~ )  �9 

for any strongly bounded subset F C X. This identi ty is proved in Corollary 7.5 for p- 
hyperbolic metric spaces X and for p-parabolic spaces it is trivial. 
We will need the following two lemmas. 
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L e m m a  8.3 For any increasing sequence of arbitrary sets A1 C A2 C ... C X we have 

NP(A ) c P(UAm). 
m m 

t! 
We will use the lighter nota t ion A" (F)  for A n (F, X). 
P r o o f  Let g E ~P(A,~). By definition of P(Am), there exists a function um E A"(Am) 

m 

such tha t  g E  D[um]. Let us set vm := sup Uk. T h e n g  E D[vm] for a l l m b y a x i o m A 4 .  
l _ < k _ < m  

Set v := sup u m =  lira vm. Then 0 ~ v(x) < 1 for all x and v(x) = 1 p-quasi-everywhere 
l < : m < o o  r n - - ~ c c  

on U Am, hence by definition v E A"(UAm). 
m 

Since v is bounded,  it belongs to LTo~(X ). Furthermore,  v is the monotone l imit  of the se- 
quence of non-negative functions vm; hence, by Fatou lemma, vm converges to v in LToc(X ). 
Applying axiom Ah, we conclude that  g E D[u] and hence g E P(UmAm). 

[] 

L e m m a  8.4 If X is K-countable and p-hyperbolic for some 1 < p < co, then for any subset 
F C X, the set P(F) is convex and closed in LP(X). 

P r o o f  Let f , g  E P(F). I f h  = A f + ( 1 - A ) g  for s o m e 0 _ <  A < 1, then, by definition 
u 

of P(F) there exist u,v E A~(F,X) such that  f E D[u] and g E D[v]. By convexity, of 
II U 

Ap(F, X) we have Au + (1 - A)v E A~(F, X), thus h E D[Au + (1 - A)v] C P(F) by Axiom 
A2; this shows tha t  P(F) is convex. 
To show tha t  P(F) is closed i n / 2 ( X ) ,  we need to prove tha t  for any sequence {gn} C P(F) 
such tha t  g~ --+ go E LP(X), we have go E P ( F ) .  
Since X is K-countable  we can find an exhaustion of X by open sets {Urn}meN C K. 

u 

For each n, we have gn E D[u~] for some Un E Ap(F,  X)  and by Theorem 2.5 (assertion 1), 
we know that ,  for each m, there exists a constant Cm such tha t  

Ilu lli,(  ) C. llg ll= (x). (7) 

As I]g,~iiL,(Z) is bounded,  this inequality implies tha t  the sequence {Un} is bounded in Lv(Um) 
for all m; thus the pairs of functions (un, g~) is a bounded sequence in the direct product  
Sm : :  L~(U~) x L~(X). 
Since Sm is a reflexive Banach space, we may assume (passing to a subsequence if necessary) 
that  the sequence of restrictions {(u,~lu m ,g~)} has a weak l imit  (Vm, go) E Sm. 
Using Mazur 's  lemma we can find for each n > m a collection of numbers a~.l " a,~,2,.. . m  a~,,m > 

n 0 such tha t  ~ m 1 and the sequence of convex combinations w,,~,n := ~--~-8=1 m ES=I Ozr* ,8  = OLn,sUS 
converges strongly to vm in LP(Um) and the sequence fm,n : -  )--~=1 a~sg8 converges strongly 
to go E LP(X) as n --+ oc (m being fixed). Let us observe that ,  since gs E D[u~] for all s, 
axiom A2 implies tha t  f,~,~ E D[wm,~] for all m, n. 
Let us choose for each m a number nm E N such that  ]l w . . . .  --Vmi]np(u~) < l / m ,  and consider 
the diagonal subsequence ~,~ := u . . . .  ; it is clear tha t  Wm converges in L~oc(X)-topology 
to a function v0 E L~oc(X ) such that  volum : vm for all m. Since fm : :  f,~,~,~ -+ go (in 
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LP(X)), we conclude from axiom A5 that  go E D[v0]. By convexity we have ~m �9 r 

.... F X ~ for all m and thus, by Proposition 7.2 v0 = limwm �9 Ap[ , j. We have proved that  
go �9 D[vo] C P(F).  [] 

P r o o f  of  T h e o r e m  8.2 If the space X is p-parabolic, then we know by Theorem 2.5 that  
1 C s therefore Capp(A, X) = 0 for any set A a X and the Theorem is trivial. 
We thus assume X to be p-hyperbolic. By Theorem 2.4 it is enough to prove the property 
(iii'), i.e. that  lira Capp(Am, X) = Capp(U,~__:Am, X) for any sequence of non empty sets 

i - - 4 ~  

A1 C A2 C ... such tha t  A := UmAm is strongly bounded. 
The inequality lim Capp(Am,X) _< Capp(A, X)  immediately follows from the monotonic- 

m-+oo  

ity of the variational p-capacity; it thus only remains to prove the converse inequality : 
Capp(A, X)  _< lim Capp(Am, X).  If lim Capp(A,~, X)  = co there is nothing to prove and 

rn--+c~ m--4oo 

we may therefore assume lim Capp(Am, X) < exp. Set 3' := Capp(A, X) ,  fix some e > 0 and 

define the set of functions 

P _ ? + ~ } C  Pm :-- {g E P(Am) : I[giiLp(X) < L~(X) �9 

This set is clearly non empty since infgep m Hg[iPp(x) = Capp(Am, X) _< 3' + c. By the 
previous lemma, Pm is a non empty closed convex subset of the reflexive Banach space 
LP(X). Therefore Pm D Pm+l D "'" is a nested sequence of non empty weakly compact  
subsets of L2(X) and P :-- MPm is thus non empty by Cantor 's  theorem. 
By Lemma 8.3 we have AmPm C P(A). Because A is strongly bounded, we have by Corollary 
7.5 

Capp(A,X)  = inf IIgli~p(x) < inf Ilgll~,(x) < 3' + e .  
9 E P ( A )  - -  g E M P m  - -  

Since c is arbitrary, this inequality implies Capp(A, X) < 3' = lim Capp(Am, X).  
- -  / n - - ~ o o  [ ]  

C o r o l l a r y  8.5 Suppose that F c X is a strongly bounded Borel set which is contained in a 
countable union of compact sets, then 

Capp(F)  = sup{Capp(K)[  K c F a compact subset}. 

P r o o f  This result follows from Theorem 8.2 and Choquet 's  capacitability theorem (see [8] 
or [9, theorem 9.3]). [] 

R e m a r k .  The proof of the Choquet property for classical Sobolev spaces on Riemannian 
manifolds is much simpler (see e.g. the proof of Theorem 2(viii) in [11, chapter2] where the 
argument is given for Rn). The classical proof uses the fact tha t  if w := max(u, v), then 
Vw = Vu a.e. on the set {u _> v}. This fact is not guaranteed by our axioms and this is 
the main source of complication in the proof. 
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9 F a t  s e t s  

Def in i t i on  9.1 A Borel measure ~- on X is said to be absolutely continuous with respect 
to p-capacity if r (S )  = 0 for all p-polar subsets S C X .  

For any Borel subset F C X we denote by 2~4p(F) the set of all probability measures T on X 
which are absolutely continuous with respect to p-capacities and whose support is contained 
in F. 

De f in i t i on  9.2 A subset F is said to be p - f a t  if it is a Borel subset and A/Ip(F) ~ 0. 

For instance any measurable subset F C R n such that  # (F)  > 0 is p - f a t .  On the other 
hand, a p - p o l a r  set is never p - f a t .  
In a Riemannian manifold M, any Borel subset F C M is either p - p o l a r  or p - f a t  (we will 
give a proof of this fact in w 
The next result gives us a geometric criterion to check if a set is p - p o l a r  or p - f a t  in the 
context of Hajtasz theory. 
Let us recall first that  a metric space X is said to be locally s-regular if for each x E X, 
there exists c, R > 0 such that  

r 8 

- _< ~(B(z, r) _< cr s 
C 

for all 0 < r < R. 

T h e o r e m  9.1 Suppose that the space X is locally s-regular and consider capacities with 
respect to Haflasz-Sobolev space. If  I < p < s, then 

i) If  T-ls-P(F) = O, then F is p-polar; 

ii) I f  F contains a subset A such that 0 < 7"lt(A) < oc for some t > (s - p), then F is 
p - f a t  and ~ :=  n~A) 7-ltt_A belongs to .A4p(F). 

The proof of this theorem is given in [29, Theorems 4.13, 4.15]. 
[] 

1 0  T h e  e x t r e m a l  f u n c t i o n  

We now prove the existence and uniqueness of an extremal function for the variational p- 
capacity of an arbitrary p - f a t  subset F E ~.  

T h e o r e m  10.1 Let (X, d) be a ]~-countable measure metric space and F C X be a p - f a t  
subset (1 < p < oc). Then there exists a unique function u* E s such that u* = 1 
p-quasi-everywhere on F and Ep(u*) = Capp(F,X).  Furthermore u* is p-quasi-monotone 
on X \ F and O ~ u*(x) ~ l for aIl x E X .  
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This extremal function u* is called the capacitary function or the equilibrium potential of 
the condenser F C X. 
Recall that  the notion of p-quasi-monotone function was defined in 4.2. 
For the proof of this Theorem, we need the following Lemma. Recall that  a Banach space 
E is uniformly convex if for every c > o there exists a (~ > 0 such that  if x, y C E with 

IIxll--Ilxll = 1 

I l y -  xll II (x + y)rl < (1 - 

L e m m a  10.2 In any nonempty closed convex subset A C E of a uniformly convex Banach 
space E, there exists a unique element x* E m with minimal norm: Iix*II = infxeA I]xll. 

The proof can be found in [17] or [25]. 
[] 

Proof of Theorem 10.1 Let us choose a measure ~- E .h, tp(F) and set E := LP(X, dr) @ 
LP(X, d#). Then E is a uniformly convex Banach space for the norm 

I I (u ,g) l ls  :-- (Ix 'ulPd~ + f,: IglPd#) l/p 
Let us set A :=  {(u,g) e Elu E T(A'~(F,X)) and g e Din]}. Then g is a convex closed 
subset of E, and thus, by Lemma 10.2, we know that there exists a unique element (u*, g*) �9 
A which minimizes the norm. It is clear that  g* is the minimal pseudo-gradient of u*, i.e. 

that  Ep(U*) = fx  Ig*l pal#" 
We assert that  Ep(u*) = Capp(F). Indeed, if Ep(U*) > Capp(F),  then, by Proposition 7.3, 
one can find (u,g) �9 A such that fx [gl pd# < fz  Ig*l pd#' Since u,u* �9 T(A~(F,X)), we 
may assume that  u = u* = 1 p-quasi everywhere on F (see Proposition 7.1) and thus 
u = u* = 1 ~--almost everywhere on F because ~- is absolutely continuous with respect to 
p-capacity. Therefore 

,l(u, 9)llE : ( 1 +  Ix  Ig"d#) 1/p < ( 1 +  Ix  [g*lPd#) 1/p = 'l(u*,g*)llE 

which contradicts the minimality of (u*, g*). The quasi-monotonicity of u can be proved by 
a simple truncation argument. 

T h e  case  o f  c o n d e n s e r s  
We define a condenser in X to be a pair of disjoint non empty sets 
variational p-capacity of such a condenser is defined by 

[] 

F1,/72 E ~. The 

Capp(F1, F2, X) :-- inf {~p(U)I u E Ap(FI, F2, X)} 

where Ap(FI,F2,X) is the set of all functions u C Z]I'P(X) such that u _> 1 
neighbourhood of FI and u _< 0 on a neighbourhood of F2. 

on a 
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T h e o r e m  10.3 Let F1, F2 C X be any condenser in a E-countable metric space X such that 
either F1 or F2 is p - fa t .  Then there exists a unique function u* E s ) such that u* = 1 
p-quasi-everywhere on F1, u* = 0 p-quasi-everywhere on F2 and Ep(u*) = Capp(F1, F2,X) .  
Furthermore u is monotone and 0 < u < 1. 

The proof is similar to that  of Theorem 10.1 and we omit it. 

1 1  T h e  c a s e  o f  R i e m a n n i a n  M a n i f o l d s  

1 1 . 1  P o l a r  s e t s  i n  R i e m a n n i a n  m a n i f o l d s  

From Proposition 3.7, we immediately have : 

P r o p o s i t i o n  11.1 A compact subset S of a Riemannian manifold M is p-polar if and only 

if G A S  ) = O. 

[] 

In this section we give a proof of the following 

T h e o r e m  11.2 A Borel subset F C M of a Riemannian manifold is either p -po lar  or 

p - fa t .  

P r o o f  Observe first that  if p > n (= dimension of M), then the only p-polar set is the 
empty set (see [37] or [22]), thus every measure on M is absolutely continuous with respect 
to p-capacity and, therefore, any probability measure supported on a Borel set F belongs 
to A4p(F). Thus every non empty Borel set is p-fat. 
We may thus assume p < n. By Choquet 's  theorem, we know tha t  if F c M is a non 
p-polar subset, then it contains a compact subset K such that  Cp(K) > O. 
Since being p - f a t  is clearly a local property which is stable under diffeomorphisms, it is 
enough to prove this theorem for subset of Euclidean space. 
For a compact  subset K C 1~, the Bessel capacitary measure ap,K, suitably renormalized, 
belongs to .h4v(F ). Let us be more specific. 
We first recall some facts about Bessel potentials, basic references are [1], [38] and [46]. The 
Bessel kernel is defined by G~ := ~-1( (1  + 1~2] -~/2) where ~ is the Fourier transform. The 
Bessel kernel has two important  basic properties: first we have the convolution rule 

G~ * G~ = Go+~ 

and secondly, the Bessel potential inverts the operator ( I - A )  ~/2 (where A is the Laplacian), 
i.e. 

v = ( I  - A)~/2u r u = G~ * v .  

The Bessel potential  space B ~'p = B~'P(~ m) is defined by 

'') := u = �9 v, v e 
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and the norm in B ~'p is given by Ilu[I..,. = IIG~ * v l l .~ , .  := [IvJl. (so that the operator 
~o:  LP(R m) -+ B~'P(R m) defined by G~(v) = G~ * v is an isometry). 
The following important theorem of Calderon allows us to use Bessel spaces instead of 
Sobolev spaces in the study of p -po la r  subsets of ]R n. 

T h e o r e m  11.3 For ce E N and 1 < p < oo, we have Wa'P(]R TM) _~ Ba,P(R m) with equivalent 
n o r m s .  

The Bessel p-capaci ty  of a compact subset K C R~ is defined as: 

BO,p)(K ) := inf{ lluil~l,p I u �9 Ak} �9 

where AK := {u �9 C0~(R n) : u > 1 onK} .  This is a Choquet capacity and there are 
constants c~, c2 > 0 depending only on p and n such that 

c tBo , , ) (K  ) < Cp(K) <_ c2B(1,p)(K) (8) 

for all compact subset K C R '~, where Cp(K) is the Sobolev p-capacity.  
Using uniform convexity arguments, we obtain the following theorem (see [38] or [1, Theorems 
2.2,7 and Proposition 6.a.13]) : 

T h e o r e m  11.4 Assume 1 < p < oo. Given a non polar compact subset K C ]R '~, there is a 
unique measure r with the following properties: 

1) r is a probability measure supported on K;  

1 (G~*r)  1/(p-1) - 2) uK . -  BO,~)(K)G~ * �9 AK; 

3) Ilu,dl  ,,) = 

4) r is absolutely continuous with respect to Bessel capacity. 

(AK denotes the closure of AK in BI'P(~m)). 
The function UK is the extremal function for the Bessel capacity of K; the measure ap,K = 
B(1,p)(K) r is called the Bessel capacitary measure of K. 
In view of this theorem and the inequalities (8), the proof of Theorem 11.2 is complete. 

[] 

1 1 . 2  E x i s t e n c e  o f  e x t r e m a l  f u n c t i o n  

Let (M, g) be a Riemannian manifold, recall that a function u E Wllo'~(M) is called weakly 
p-harmonic  if Apu = 0 where Ap is the p-Laplacian defined by Apu := div(IVulP-2Vu); 
the function u is thus weakly p-harmonic  if and only if 

/M <twl -2 w ,  r e )  = 0 

for any r E WI'V(M) (where Vu is the weak gradient of f) .  
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T h e o r e m  11.5 Let F be a compact non p-polar subset of the Riemannian manifold M. 
Then there exists a unique function u* E 4 'B(M) such that 

a) u* = 1 p-quasi-everywhere on F; 

b} 0 < u*(x) < 1 for all x E M and u* is monotone; 

c) fM [Vu*l p = Capp(F); 

d) u* is weakly p-harmonic in the exterior domain M \ F. 

Furthermore, u* = 1 p-quasi  everywhere on M if M is p-parabolic and 0 < u*(x) < 1, 
p-quasi  everywhere in M \ F if M is p-hyperbolic. 

P r o o f  Since every non p -po la r  set is p - f a t  in a Riemannian manifold, the existence of a 
function satisfying (a), (b) and (c) is a consequence of Theorem 10.1. Property (d) is clear 
since Ap is the Euler-Lagrange operator associated to the Dirichlet energy. 

[] 

R e m a r k  A generalization of condition (d) also holds in the case of subriemannian mani- 
folds, see e.g. [6, Proposition 6.1]. 

1 1 , 3  R e g u l a r i t y  i n  M \ F  

The previous existence theorem is completed by the following regularity result: 

T h e o r e m  11.6 Let u* E F~I'P(M) be the p-capacitary function of F C M. Then for each 
relatively compact domain fl C M \ F, there exists 0 < c~ < 1 such that u E C~ 

The famous theorem of De Giorgi, Nash and Moser gives conditions under which weak 
solutions to elliptic partial differential equations are Hhlder continuous. We present here 
an alternative argument, due to De Giorgi's, which is well adapted to our situation. The 
argument is based on the following lemma (which is a Caccioppoli type inequality): 

L e m m a  11.7 Let ~ C M be an open subset and u E •1'P(ft) be a bounded weak solution to 
Apu = O. Then for any pair of concentric balls B(xo, p) C B(xo, R) C fl and any constant 
k E ]~ one has 

P r o o f  By assumption we have 

~ [Vu] p-2 (Vu, V~) dx = 0 (9) 

for any test function ~ E W01'P(f~). Let us choose a function r/ E C](B(xo, R)) such that 
r] ~ 1 on B(xo, p) and IV~] < ~ and set 

~(x) := max{u(x) - k, 0}- ~?(x)L 
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Observe that  

I ~pVu+p(u- k)~p-lV~ on B(Zo, R) n{u(x) > k} 
V ~  

t 0 elsewhere. 

Using T as test function in (9) one obtains 

fE~ rp,Vul" = --p fER(U- k)~-llVulp-2 (Vu, V~) , 

where we have conveniently set En := B(x0, R) N {u(x) > k}. 
Using H61der's inequality we then get 

< p ,ZlWl' I~ - kl'lVvl ' 
R R 

Raising this inequality to the power p gives 

<p~ s176 f lu-kl'IV l =. 
Finally, it follows from our assumptions on z~ that  

fB(xo,p)C{u(x)>_k} ]Vu[P ~-- ( ~P-- p) P /En [U -- k[P' 

this proves the lemma. [] 

P r o o f  o f  T h e o r e m  11.6 It is known that  any bounded function u C/:I 'P(ft)  satisfying the 
conclusion of Lemma 11.7 is locally Hhlder continuous (see chapter 2, w in [33] or w in 
[35]). The proof of the Theorem follows. [] 

R e m a r k s  (1) Observe that  for p > n, the above statement is a direct consequence of Sobolev 
embedding's  theorem. 

(2) For the special case (n - 1) < p _< n, a different proof is given in [32]. 

(3) In fact, it is known that  u* is locally C 1'~ in the exterior domain M \ F,  see [34] or [42]. 

(4) The continuity of extremal functions is also known for the case of weighted Sobolev 
spaces in subriemannian geometry (see Theorem 4.4 in [5]). There are also proofs of Hhlder 
continuity for some Carnot groups, see e.g. [2, 3]. 

(5) Using the results and techniques of [31], it should be possible to prove continuity of 
extremal functions for a wide class of axiomatic Sobolev space (perhaps assuming that  D is 
local and # is doubling) 
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11.4 Boundary  Regularity 

Apoint  x c O F  i sa  Wiener point of F if 

fo~ ( Capp([~,t n F; Bx,~) ) l/('-l) dt 
\ t n -P t 

for some 5. One also says that the set F is p-thin at x if x is not a Wiener point. We 
easily verify that a point x E OF satisfying an interior cone condition is a Wiener point. 
One says that F C M is Wiener regular if all points of OF are Wiener points; examples 
of Wiener regular subsets are polyhedral and Cldomains. 

T h e o r e m  11.8 Let u* be the p-capacitary function of F C M. I/ Xo E OF is a Wiener 
point then lim u*(x) = 1. In particular, if F is Wiener regular, then u* is everywhere 

X -'~ X O 

continuous. 

See [26] or [35, Corollary 4.181 . 
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