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1. Introduction

Definition Let (M, g) be a connected Riemannian manifold, andD ⊂ M
a compact set. For1 < p < ∞, thep-capacity ofD is defined by:

Capp(D) := inf
{∫

M
|∇u|p : u ∈ C1

0 (M), u ≥ 1 onD

}

The manifoldM is said to bep-parabolic if Capp(D) = 0 for all compact
subsetsD ⊂ M andp-hyperbolic otherwise. We refer to [11], and [9] for a
discussion ofp-capacity and [14] for a discussion ofp-parabolicity.

Generalizing a result of H.L. Royden for surfaces, Terry Lyons and Denis
Sullivan proposed the following criterion, which they called the Kelvin-
Nevanlinna-Royden criterion, to check the2−hyperbolicity of an oriented
manifold (see [10] and [13, th. 4] for the case of surfaces).

Theorem Let M be an oriented connected riemannian manifold without
boundary. ThenM is 2-hyperbolic if and only if there exists a vector field
X onM such that

The first author was supported by U.S.-Israeli Binational Science Foundation, grant No.
94-00732
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– X ∈ L2;
– div(X) ∈ L1(M);
–

∫
M div(X) > 0.

The main goal of the present paper is to give the following generalization
for p-hyperbolicity; along the way this will also give a new proof of the above
theorem.

Theorem A. The manifoldM is p-hyperbolic if and only if there exists a
vector fieldX onM such that

– X ∈ Lq (where1
p + 1

q = 1);

– div(X) ∈ L1
loc and(div(X))− ∈ L1(M);

– 0 <
∫
M div(X) ≤ ∞.

Here(div(X))− is the function(div(X))− := min{(div(X)) , 0}.
If one looks at a vector fieldX as an(n− 1)−form, then we are led to a

cohomological criterion. Let us define the cohomology spaceHn
comp,q(M)

to be the space ofn-forms with compact support modulo the differentials
of all (n− 1)-forms inLq.

Theorem B. The manifoldM isp-hyperbolic if and only ifHn
comp,q(M) = 0

(where1
p + 1

q = 1).

We conclude the paper with some geometric and analytic applications
of these criteria.

2. Some calculus on manifolds

Let (M, g) be ann-dimensional oriented riemannian manifold. The Hodge
star operator is the isomorphism∗ : ΛkT ∗M → Λ(n−k)T ∗M defined by
〈α, β〉 ω = (−1)k(n−k)(∗α) ∧ β whereα ∈ ΛkT ∗M andβ ∈ ΛkT ∗M.
Here,ω is the volume form. The canonical isomorphisms between the tan-
gent and cotangent bundle are denoted by[ : TM → T ∗M and\ : T ∗M →
TM. The gradient of a functionf is the vector field ∇f := (df)\. The
divergence of a vector fieldX is the function div(X) := ∗d(∗X[).

We noteL1
loc(M,Λk) the space of locally integrable differential forms

of degreek.
Let φ ∈ L1

loc(M,Λk−1) and suppose that there existθ ∈ L1
loc(M,Λk)

with the following property: for eachψ ∈ C∞
0 (M,Λn−k),∫

M
θ ∧ ψ = (−1)k

∫
M
φ ∧ dψ ,
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Then we say thatθ is theweak exterior differentialof φ (and writedφ = θ).

We can define by the same way a notion of weak divergence of a vector
field or weak gradient of a function. For instance a locally integrable vector
field ξ onM is theweak gradientof the functionf : M → R if and only
if for any smooth vector fieldsη with compact support one has∫

M
〈ξ, η〉 = −

∫
M
f div (η) .

In the sequel, differentiations are usually meant in the weak sense, how-
ever the following theorem allows us to regularize differential forms in a
way that preserves some of their properties:

Theorem 1. Let(M, g) be a Riemannian manifold. There exists a sequence
of operatorsRk

i : L1
loc(M,Λk) → C∞(M,Λk) satisfying the following four

conditions:

1) dRk
i α = Rk

i dα for all α ∈ L1
loc(M,Λk) such thatdα ∈ L1

loc(M,Λk+1)
2) If α has compact support, then so doesRk

i α;
3) Rk

i : Lp(M,Λk) → Lp(M,Λk) is a bounded operator for any1 ≤ p
< ∞ and

∥∥Rk
i

∥∥
Lp→Lp ≤ 1 + 1/i;

4) For any formα ∈ Lp(M,Λk) and any1 ≤ p < ∞ the sequenceRk
i α

converges toα in Lp topology.

These operatorsdRk
i are constructed by De Rham. Properties (1) and (2)

are stated in [2, th. 12 page 68]; properties (3) and (4) are proven in [4].ut

3. Thep-Laplacian

Thep-Laplacian of aC2 functionf is the function∆pf = div(|∇f |p−2∇f),
it can equivalently be defined by

∆pf ω = d
(∗|df |p−2df

)
;

it is the Euler-Lagrange operator associated with the functional
∫
M |df |p.

The p-Laplacian has also a generalized interpretation: we say that a
functionf ∈ L1

loc(M) is a weak solution to the equation

∆pf + h = 0(1)

if f has a weak gradient∇f ∈ L1
loc such that∫

M

〈
|∇f |p−2 ∇f,∇ψ

〉
=

∫
M
hψ

for all ψ ∈ C∞
0 (M).
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Equations such ash = −∆pf are usually meant in the weak sense; the
same holds for inequalities; For instance−∆pf ≥ 0 means that∫

M

〈
|∇f |p−2 ∇f,∇ψ

〉
≥ 0

for allψ ∈ C∞
0 (M)such thatψ ≥ 0. Such functions are calledsupersolution

to the equation−∆pf = 0, and they are calledp-superharmonicif they are
furthermore lower-semicontinuous.

Example The functionf(x) = a − b ‖x‖q on R
n (whereb > 0 andq =

p/(p− 1)) satisfies−∆pf = n(bq)p−1 > 0 and is thusp-superharmonic.

Onp-hyperbolic manifolds, one can solve thep-Laplace equation in the
Dirichlet spaceL1,p(M):

Theorem 2. Suppose thatM is a p-hyperbolic manifold (1 < p < ∞)
and thath ∈ L∞(M) has compact support. Then (1) has a weak solution
f ∈ L1,p(M). Moreoverf is of classC1,α on each compact set (where
α ∈ (0, 1) may depend on the compact set).

This theorem is proven in [15].ut
RemarkBy contrast, the above result is false on ap-parabolic manifold, see
Sect. 6.4 below.

4. A divergence criterion

In this section, we will prove Theorem A. We begin with a result about
vector fields onp-hyperbolic manifolds.

Proposition 1. If M is p-hyperbolic then there exists a vector fieldX on
M such that

– X ∈ Lq (where1
p + 1

q = 1) and div(X) ∈ L1
loc;

– div(X) ≥ 0 and div(X) 6≡ 0;
– div(X) has compact support.

Proof. Choose a non negative smooth functionh : M → R with compact
support such thath > 0 somewhere. Letf ∈ L1,p(M) be a solution of
(1) (known to exist by Theorem 2) and setX := − |∇f |p−2 ∇f. Then
div(X) = −∆pf = h has the desired properties andX ∈ Lq since

|X|q = |∇f |q(p−1) = |∇f |p

is integrable. ut
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Proof of Theorem A
It follows from Proposition 1 that ifM is p-hyperbolic then there exists

a vector fieldX ∈ Lq(M) (where 1
p + 1

q = 1) such that div(X)6≡0 and
div(X) ≥ 0 (in particular(div(X))− ≡ 0).

To prove the converse direction, leth = div(X). By hypothesis, there
exists a bounded subsetD ⊂ M of positive measure such that

γ := inf
D
h > 0 and

∫
D
h >

∣∣∣∣
∫

M
h−

∣∣∣∣
Choose a number0 < c < 1 be such that

0 ≤ −
∫

M
h− ≤ c ·

∫
D
h ,

and a functionv ∈ C1
0 (M) such that

i) 0 ≤ v ≤ 1;
ii) v ≡ 1 onD.

iii)
∫

M
|∇v|p ≤ Capp(D) + ε,

whereε > 0 is an arbitrary fixed number.

We then have0 ≥
∫

M
v h− ≥ −c ·

∫
D
v h and thus

(1 − c) ·
∫

D
v h ≤

∫
D
v h+

∫
M
v h−

≤
∫

D
v h+

∫
M
v h− +

∫
(M\D)

v h+ =
∫

M
v h .

But
∫
D v h ≥ γ·Vol(D), hence an integration by parts with Hölder

inequality gives

γ(1 − c) · Vol(D) ≤
∫

M
v div(X) = −

∫
M

〈∇v,X〉
≤ ‖X‖q ‖∇v‖p .

Since‖∇v‖p ≤ (Capp(D) + ε)1/p andε is arbitrary, we conclude that

0 < Vol(D) ≤ ‖X‖q

γ(1 − c)
· (Capp(D))1/p ,

henceM is p-hyperbolic. ut
Remark 1The divergence of the vector fieldX in the statement of Theorem
A is meant in the weak sense. However, using the identification between



612 V. Gol’dshtein, M. Troyanov

vector fields and(n − 1)-forms onM , we can apply Theorem 1 toX. In
other words, we may assume that the vector fieldX of Theorem A is smooth.

Remark 2By a theorem of Gaffney, we know that ifX is a vector field on
a completeriemannian manifoldM such thatX ∈ L1 and div(X) ∈ L1,
then

∫
M div(X) = 0 (see [3]). In some sense one can say that a complete

manifold is alwaysp-parabolic forp = ∞.

5. A cohomological criterion

LetM be a connected orientedn-dimensional non compact manifold. Then
Hn(M) = 0 whereasHn

comp(M) = R whereHn
comp(M), the cohomology

with compact support, is the space of smoothn-forms with compact support
modulo the differentials of smooth(n− 1)-forms with compact support.

Proposition 2. LetM be an oriented connected manifold.
ThenHn

comp(M) is of dimension1 and integration defines an isomor-
phism

Hn
comp(M) → R

α → ∫
M α

A good reference for this and other results on cohomology with compact
support is the book of Bott and Tu [1].ut

We can define other cohomologies to capture some intermediate be-
haviour between the De Rham cohomology (which considers all forms) and
the cohomology with compact support. The first space of this kind is theLr,q

cohomology spaceHn
r,q(M), this is the space ofn-formsα ∈ Lr modulo

the differentials of(n − 1)-formsβ ∈ Lq. We refer to [12] and [6] for a
discussion of this notion.

Another cohomology is the spaceHn
comp,q(M), of smoothn-forms with

compact support modulo the differentials of(n− 1)-forms inLq ∩ C∞.

Let us recall the statement of our second theorem.

Theorem B. The manifoldM isp-hyperbolic if and only ifHn
comp,q(M) = 0

(where1
p + 1

q = 1).

We have the immediate

Corollary 1. Suppose thatM is p-parabolic. ThenHn
r,q(M) 6= 0 for all

1 ≤ r ≤ ∞.

This is obvious sinceHn
comp,q(M) ⊂ Hn

r,q(M). ut
The proof of the theorem will be based on the following capacity esti-

mate.



The Kelvin–Nevanlinna–Royden criterion 613

Lemma 1. LetM be a connected oriented riemannian manifold (perhaps
with boundary) and suppose that there exist a smooth(n− 1)-formβ ∈ Lq

such that∗dβ ≥ 0 andβ|∂M = 0.Then for all compact subsetD ⊂ M\∂M
we have

Vol(D) · min
D

(∗dβ) ≤ ‖β‖Lq (Capp(D))1/p .

(Recall thatλ := ∗dβ is the function defined bydβ = λω whereω is
the volume form).

Proof. Choose a smooth functionv as in the proof of Theorem A (i.e.v has
compact support,v ≡ 1 onD, 0 ≤ v ≤ 1 and

∫ |dv|p ≤ Capp(M) + ε) and
let γ = infD λ. Then

γ Vol(D) = γ

∫
D
v ω ≤

∫
D
v dβ ≤

∫
M
v dβ

Stokes=
∫

∂M
v β −

∫
M
dv ∧ β =

∫
M
β ∧ dv

≤ ‖β‖Lq ‖dv‖Lp .

The lemma follows. ut
Proof of Theorem B

SupposeHn
comp,q(M) = 0 for someq. Choose a functionϕ ∈ C∞

0 (M)
such thatϕ ≥ 0 andϕ 6≡ 0; then [ϕω] = 0 ∈ Hn

comp,q(M) whereω is
the volume form ofM. Hence there exists an(n − 1)-form β ∈ Lq such
thatdβ = ϕω. Lemma 1 implies that thep-capacity of some domainD is
positive henceM is p-hyperbolic.

In the converse direction we need to show that ifM is p-hyperbolic,
then for anyn-forms with compact supportα, there exists an(n− 1)-form
γ ∈ Lq such thatdγ = α.

SinceM isp-hyperbolic, Proposition 1 (together with Remark 1) implies
the existence of a smooth vector fieldX ∈ Lq such thatdiv(X) has compact
support and

∫
div(X) 6= 0. Let us setβ = ∗X[, thenβ ∈ Lq, dβ =

∗div(X) and
∫
dβ =

∫
div(X) 6= 0. Thus we can find a numberc ∈ R

such that ∫
(α− c dβ) = 0.

By Proposition 2, we can find an(n − 1)-form θ with compact support
such thatdθ = α − c dβ. Clearly the(n − 1)-form γ := θ + cβ is in Lq

and satisfydγ = α. We conclude that[α] = 0 ∈ Hn
comp,q(M), and hence

Hn
comp,q(M) = 0. ut

The previous theorem can be made more precise:
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Theorem 3. LetM bep-parabolic. ThenHn
comp,q(M) is of dimension1 and

the integrationα → ∫
M α defines an isomorphismHn

comp,q(M) ∼= R.

Another way to express this is by saying that ifM is p-parabolic. Then
there exists an(n− 1)-form β ∈ Lq such thatdβ has compact support and∫
M dβ 6= 0; and[dβ] is a basis ofHn

comp,q(M) for any such form.

Proof. By Proposition 2,Hn
comp(M) is 1-dimensional. Since the canonical

mapHn
comp(M) → Hn

comp,q(M) is an epimorphism, and
Hn

comp,q(M) 6= 0 by Theorem B,Hn
comp(M) → Hn

comp,q must be an isomor-
phism and the result follows from Proposition 2ut
Corollary 2. Suppose that there exists a smooth(n− 1)-formβ ∈ Lq such
thatdβ has compact support and

∫
M dβ 6= 0. ThenM is p-hyperbolic.

Remark 3By Lemma 1, we already know this corollary in the special case
dβ ≥ 0.

Proof. Since,β ∈ Lq we have[dβ] = 0 ∈ Hn
comp,q(M). If M where

p-parabolic the previous theorem would imply that
∫
M dβ = 0. ut

Remark 4Throughout this section, we have only considered smooth forms.
In applications however it is sometimes usefull to consider non smooth
forms. For instance, using Theorem 1 one sees that Corollary 2 still holds
without any smoothness assumtion.

6. Applications

6.1. Area growth

Let M be a complete oriented riemanniann−manifold andD ⊂⊂ M be
some compact subset. Let

Dt := {x ∈ M | dist(x,D) ≤ t}
and denote bya(t) = |∂Dt| the(n− 1)-dimensional Hausdorff measure of
∂Dt.

Proposition 3. Suppose that∫ ∞ dt

a(t)1/(p−1) = ∞(2)

thenM is p-parabolic.

RemarkThis result is known (see e.g.§4.4 in [14]) and essentially goes back
to the work of Ahlfors in the thirties. However, the proof below is new.
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Proof. We will show that ifM is p-hyperbolic, then the integral (2) con-
verges. Indeed, assume thatM isp-hyperbolic, then by Theorem B, we have
Hn

comp,q(M) = 0. Now leth ≥ 0 be a smooth function with support inD1

and such that
∫
M hω = 1.

Since[hω] = 0 in Hn
comp,q(M), there exists an(n − 1)-form β ∈ Lq

such thatdβ = hω. By Stokes formula
∫
∂Dt

β = 1 for anyt ≥ 1.
Using Hölder inequality one obtains

1 =
∫

∂Dt

β ≤ ‖β‖Lq(∂Dt) | ∂Dt |1/p ,

i.e. ‖β‖q
Lq(∂Dt)

≥ | ∂Dt |1/(1−p). From this estimates follows∫ ∞

1

dt

| ∂Dt |1/(p−1) ≤
∫

M
|β|q < ∞ .

ut

6.2. Manifold with warped cylindrical end

A Riemannian manifoldM will be said to have a warped cylindrical end if
there exists a compact Riemannian manifold(N, gN ) and a compact subset
D ⊂⊂ M such thatM \D = N ×f [1,∞) is the warped product ofN and
[1,∞) (i.e the direct product with the Riemannian metricdt2 + f2(t)gN ).

Proposition 4. M is p-parabolic if and only if∫ ∞

1

dt

f(t)(n−1)/(p−1) = ∞ .

(In particular, the euclidean spaceR
n isp-parabolic if and only ifp ≥ n.)

Proof. Suppose first that
∫ ∞
1 f

− n−1
p−1 (t)dt = ∞. We have∂Dt = N × {t}

and its(n− 1)-measure isa(t) = |∂Dt| = constfn−1(t). Hence we have∫ ∞

1

dt

a(t)1/(p−1) dt = ∞ ,

and Proposition 3 implies thatM is p-parabolic.

Assume now that
∫ ∞
1 f

− n−1
p−1 (t)dt < ∞. Let γ be the volume form of

(N, gN ), and choose a smooth functionψ : [0,∞) → R such that

i) 0 ≤ ψ(t) ≤ 1;
ii) ψ ≡ 0 for t ≤ 1;

iii) ψ ≡ 1 for t ≥ 2.
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Let us define an(n − 1)-form β by β ≡ 0 onD andβ = ψ(t) γ on
M \D ( = N ×f [1,∞) ). Thendβ has compact support and

∫
M dβ 6= 0.

Furthermore, sinceβ = ψ(t)γ, we have|β| = ψ(t) f(t)−(n−1) and thus∫
M

|β|q =
∫

N×[1,∞)
ψ(t)qf(t)(1−q)(n−1)γ ∧ dt

≤ const
∫

[1,∞)
f(t)(1−q)(n−1)dt

≤ const
∫ ∞

1
f(t)−(n−1)/(p−1)dt < ∞ .

Henceβ ∈ Lq and we conclude by Corollary 2 thatM is p-hyperbolic. ut
For ap-parabolic manifoldM , we know by Theorem A that

∫
M divX =

0 for any vector fieldX ∈ Lq (q = p/(p − 1)) provided(divX)− ∈ L1

(the latter condition is necessary to give a meaning to the integral
∫
M divX

and may of course be replaced by(divX)+ ∈ L1).
Klauss Steffen has observed that for parabolic manifolds with warped

cylindrical ends, one can prove that
∫
divX is small on large balls without

assuming(divX)− to be integrable. We owe him the following Proposition:

Proposition 5. LetM be a Riemannian manifold with warped cylindrical
end. ThenM is p-parabolic if and only if

lim inf
t→∞

∫
Dt

div(X) = 0.(3)

for all C1 vector fieldX onM such that|X| ∈ Lq(M), q = p/(p− 1).

Proof. If M is p-hyperbolic, then from Proposition 1, Sect. 4 follows that
there exists a vector fieldX onM violating the condition (3).

Now let us assumeM p-parabolic and letg = |X|, theng ∈ Lq(M) ∩
C0(M). OnM \D = N × [0,∞), one may write g(x) = g(y, t). From
Hölder’s inequality we have∫ ∞

1

[∫
N
g(y, t) f(t)n−1γ

]q

· f(t)− n−1
p−1 dt

≤
∫ ∞

1

[(∫
N
gq(y, t)γ

)1/q (∫
N
f(t)p(n−1)γ

)1/p
]q

· f(t)− n−1
p−1 dt

≤ (Vol N)q/p

∫ ∞

1

∫
N
gq(y, t) f(t)n−1γ ∧ dt

≤ (Vol N)q/p

∫
M
gq(x)dx < ∞.
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Where p = q/(q− 1), and γ is the volume form of(N, gN ). SinceM

is p-parabolic, we have by the previous proposition
∫ ∞
1 f(t)− n−1

p−1 dt = ∞.
Hence the inequality above implies

lim inf
t→∞

∫
∂Dt

g(y, t)γt = 0

where γt = f(t)n−1γ is the volume form of the hypersurface∂Dt. We
conclude the proof from the divergence formula.ut
Question: For what kind of (more general) manifolds is this proposition
true?

6.3. Graphs inRn+1 with non-negative mean curvature

Let S ⊂ R
n+1 be a hypersurface which is an entire graph, i.e.S is of the

form
S := {(x, z) ∈ R

n+1 : z = f(x)}
wheref : R

n → R is a function of classC2.

We will denote byH the mean curvature ofS. We also introduce the
angleϕ(x) between the vertical direction and the normal direction ofS at
the point(x, f(x)) ∈ S. This is a measure of horizontality of the surface.

Theorem 4. Suppose thatH ≥ 0 and thatϕ ∈ Lq(Rn) for some
q ≤ n/(n− 1). ThenS is a minimal surface.

In the casen ≤ 7 or ∇f ∈ L∞, thenS is a horizontal hyperplane.

The assumption onϕ is satisfied if e.g.ϕ(x) ≤ C |x|−s outside a compact
set for somes > n− 1.

Proof. Let p := q/(q − 1), observe thatp ≥ n henceR
n is p-parabolic.

Now let

X :=
1
n

∇f√
1 + ‖∇f‖2

,

then‖X‖ = 1
n | sin(ϕ(x))| ∈ Lq(Rn) andH = div(X) ≥ 0.

By Theorem A, we must haveH ≡ 0; indeed ifH 6≡ 0, then the vector
fieldX satisfies (1)X ∈ Lq, (2) divX = H ≥ 0 and (3) divX > 0
somewhere.

In particular(div X)− ≡ 0 ∈ L1 and from (2) and (3) follows that∫
Rn divX > 0. Thus Theorem A implies thatRn is p-hyperbolic, but this

contradictsp ≥ n.

ThusS is a minimal surface and by Bernstein theorem (see theorem 17.5
and 17.8 in [8]), we conclude thatϕ is constant ifn ≤ 7 or ∇f ∈ L∞. This
constant must be zero sinceϕ ∈ Lq(Rn), henceS is a horizontal hyperplane.

ut
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6.4. The non Solvability of∆p

We now show that theorem 2 is false for parabolic manifolds.

Theorem 5. Suppose thatM is p-parabolic, and leth ∈ L1(M) be a
function such that

∫
M h 6= 0. Then the equation

∆pu+ h = 0(4)

has no weak solutionu ∈ L1,p(M).

Proof. Assume that a solutionf exists and defineX := −|∇f |p−2∇f .
ThenX satisfies the conditions of Theorem A andM is thusp-hyperbolic.
ut

In particular, (4) has no weak solution inL1,p(Rn) if p ≥ n (this result
was anounced in [7]). When the manifold is the euclidean space, we may
state more generally

Theorem 6. Let n ≥ 2, p > 1 and 1 ≤ s
p−1 ≤ n

n−1 . If h is a function

of classL1 on R
n such that

∫
Rn h 6= 0, then (4) has no weak solution in

L1,s(Rn).

Proof. Sett = s
p−1 andt′ = s

s+1−p . Observe first thatt′ ≥ n, (in particular

R
n is t′-parabolic) and also that1t + 1

t′ = 1.

Assume that a solutionf ∈ L1,s(Rn) to (4) exists and defineX :=
−|∇f |p−2∇f . Then div(X) = h andX ∈ Lt(Rn). But this is impossible
by Theorem A sinceRn is t′-parabolic. ut
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