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1. Introduction

Definition Let (M, g) be a connected Riemannian manifold, dnd- M
a compact set. Far < p < oo, thep-capacity ofD is defined by:

Cap,(D) ::inf{/ IVul|P :u € C3(M), uw>1 onD }
M

The manifold} is said to be-parabolic if Cap(D) = 0 for all compact
subsetd) C M andp-hyperbolic otherwise. We refer to [11], and [9] for a
discussion op-capacity and [14] for a discussion pfparabolicity.

Generalizing aresult of H.L. Royden for surfaces, Terry Lyons and Denis
Sullivan proposed the following criterion, which they called the Kelvin-
Nevanlinna-Royden criterion, to check the hyperbolicity of an oriented
manifold (see [10] and [13, th. 4] for the case of surfaces).

Theorem Let M be an oriented connected riemannian manifold without
boundary. Then is 2-hyperbolic if and only if there exists a vector field
X on M such that
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- XelL?
— div(X) € LY(M);
- [y div(X) > 0.

The main goal of the present paper is to give the following generalization
for p-hyperbolicity; along the way this will also give a new proof of the above
theorem.

Theorem A. The manifoldM is p-hyperbolic if and only if there exists a
vector fieldX on M such that

— X € L9 (wheres + £ = 1);

- div(X) € L} and(div(X))~ € LY(M);

loc

— 0< [, div(X) < oc.

Here(div(X)) ™ is the function(div(X))™ := min{(div(X)),0}.

If one looks at a vector field as an(n — 1)—form, then we are led to a
cohomological criterion. Let us define the cohomology spdgg,,, (M)
to be the space of-forms with compact support modulo the differentials
ofall (n—1)-formsinL9.

Theorem B. The manifoldV/ isp-hyperbolic if and only it mg, (M) = 0
(where% + % =1).

We conclude the paper with some geometric and analytic applications
of these criteria.

2. Some calculus on manifolds

Let (M, g) be anmn-dimensional oriented riemannian manifold. The Hodge
star operator is the isomorphism: A¥T*M — A=k T*) defined by
(o, B) w = (=1)*"=k)(xa) A g wherea € AFT*M andf € AFT*M.
Here,w is the volume form. The canonical isomorphisms between the tan-
gent and cotangent bundle are denoted by M — T*M andy : T*M —

TM. The gradient of a functiorf is the vector field Vf := (df)?. The
divergence of a vector field is the function di\ X ) := *d(xX").

We noteL}. (M, A¥) the space of locally integrable differential forms
of degreek.

Letg € L} (M, A*~1) and suppose that there extsE L], (M, AF)
with the following property: for eachy € C§°(M, A"~F),

/ ONY = (=1)F [ ondip,
M M
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Then we say that is theweak exterior differentiabf ¢ (and writed¢ = 0).

We can define by the same way a notion of weak divergence of a vector
field or weak gradient of a function. For instance a locally integrable vector
field £ on M is theweak gradienof the functionf : M — R if and only
if for any smooth vector fields with compact support one has

/M<§ﬂ7> = —/Mfdiv (n) -

In the sequel, differentiations are usually meant in the weak sense, how-
ever the following theorem allows us to regularize differential forms in a
way that preserves some of their properties:

Theorem 1. Let(M, g) be a Riemannian manifold. There exists a sequence
of operatorsikt : L} (M, A*) — C>(M, A¥) satisfying the following four
conditions:

1) dRFa = RFdaforall o € L} (M, A¥) such thatda € L, (M, AF1)

2) If o has compact support, then so dde&so;

3) RF : LP(M, A*) — LP(M, A¥) is a bounded operator for any < p
< ooand||Rf|,, ,,, <1+1/i;

4) For any forma € LP(M, A¥) and anyl < p < oo the sequenc&’a
converges te in LP topology.

These operatorde are constructed by De Rham. Properties (1) and (2)
are stated in [2, th. 12 page 68]; properties (3) and (4) are proven in[#].

3. Thep-Laplacian

Thep-Laplacian of a0 function f is the functiond, f = div(|V f|P2V f),
it can equivalently be defined by

Apfw=d («|df[P2df) ;
itis the Euler-Lagrange operator associated with the functigpatif|?.

The p-Laplacian has also a generalized interpretation: we say that a
function f € L},.(M) is a weak solution to the equation

L) Ayf+h=0
if f has aweak gradiet f € L], such that

/M (19712 v 7, V) = /th

forall ¢ € C§°(M).
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Equations such als = — A, f are usually meant in the weak sense; the
same holds for inequalities; For instaneel,, f > 0 means that

IRCIZAZORY

forally € C§°(M)suchthat) > 0. Such functions are calledipersolution
to the equation-A4, f = 0, and they are calleg-superharmonidf they are
furthermore lower-semicontinuous.

Example The functionf(z) = a — b||z||? onRR"™ (whereb > 0 andq =
p/(p — 1)) satisfies—A, f = n(bg)?~! > 0 and is thugp-superharmonic.

Onp-hyperbolic manifolds, one can solve thé.aplace equation in the
Dirichlet spaceC!?(M):

Theorem 2. Suppose thafl/ is a p-hyperbolic manifold { < p < o)
and thath € L*°(M) has compact support. Then (1) has a weak solution
f € L£YP(M). Moreover f is of classC'“ on each compact set (where
a € (0,1) may depend on the compact set).

This theorem is proven in [15].O

RemarkBy contrast, the above result is false op-parabolic manifold, see
Sect. 6.4 below.

4. A divergence criterion

In this section, we will prove Theorem A. We begin with a result about
vector fields om-hyperbolic manifolds.

Proposition 1. If M is p-hyperbolic then there exists a vector fietdon
M such that

~ X € L9 (where; + . = 1) and di(X) € Lj,;
— div(X) > 0 and di\ X) # 0;
— div(X) has compact support.

Proof. Choose a non negative smooth function M — R with compact
support such thak > 0 somewhere. Lef € £?(M) be a solution of
(1) (known to exist by Theorem 2) and s&t := — \Vf|p_2 Vf. Then
div(X) = —A,f = h has the desired properties ade L? since

X7 = [Vf7P) = |V fP

is integrable. O
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Proof of Theorem A
It follows from Proposition 1 that if\/ is p-hyperbolic then there exists
a vector fieldX € L(M) (where} + ¢ = 1) such that diyX)#0 and

div(X) > 0 (in particular(div(X))™ = 0).

To prove the converse direction, let= div(X). By hypothesis, there
exists a bounded subsBtC M of positive measure such that

~v:=infh >0 and /h>‘/ h_'
D D M

Choose a numbér < ¢ < 1 be such that

M D

and a functiony € C (M) such that

i) 0<v <1,
i) v=1onD.

i) / VolP < Cap(D) + <,
M
wheree > 0 is an arbitrary fixed number.

We then have)z/ vh™ Z—C-/ v h and thus

M D
(1—c)~/vh §/vh+/ vh™
D D M
S/fuh—i—/ Uh+/ vh+—/vh.
D M (M\D) M

But [,vh > ~Vol(D), hence an integration by parts withbider
inequality gives

y(1—¢)-Vol(D) < /Mvdiv(X) - —/M (Y, X)
< 1 X[y Vvl

Since||Vul|, < (Cap,(D) + ¢)'/? ande is arbitrary, we conclude that

0 < Vol(D) < X1, (Cap,(D))'/?
“ (1l -¢) '

hencel is p-hyperbolic. O

Remark IThe divergence of the vector fiel in the statement of Theorem
A is meant in the weak sense. However, using the identification between
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vector fields andn — 1)-forms onM, we can apply Theorem 1 t&. In
other words, we may assume that the vector ficlof Theorem A is smooth.

Remark 2By a theorem of Gaffney, we know thatX is a vector field on

a completeriemannian manifold/ such thatX € L' and di(X) € L!,
thenfM div(X) = 0 (see [3]). In some sense one can say that a complete
manifold is always-parabolic forp = co.

5. A cohomological criterion

Let M be a connected orienteddimensional non compact manifold. Then
H"(M) = 0 whereasH gomg(M) = R whereHgym (M), the cohomology
with compact support, is the space of smaoetforms with compact support
modulo the differentials of smootm — 1)-forms with compact support.

Proposition 2. Let M be an oriented connected manifold.
Then Hymd M) is of dimensionl and integration defines an isomor-
phism

Heomd M) — R

a— [y

A good reference for this and other results on cohomology with compact
support is the book of Bott and Tu [1].0

We can define other cohomologies to capture some intermediate be-
haviour between the De Rham cohomology (which considers all forms) and
the cohomology with compact support. The first space of this kind i5 the
cohomology spacél,’, (M), this is the space of-formsa € L" modulo
the differentials ofin — 1)-forms 5 € L%. We refer to [12] and [6] for a
discussion of this notion.

Another cohomology is the spa¢gy,,, (M), of smoothn-forms with
compact support modulo the differentials(af— 1)-forms in L9 N C*°.

Let us recall the statement of our second theorem.
Theorem B. The manifold\/ is p-hyperbolic if and only it ,mg, (M) = 0
(Where% + % =1).

We have the immediate
Corollary 1. Suppose thal! is p-parabolic. ThenH;! (M) # 0 for all

1 <r<oo.
This is obvious sincélom, (M) C H',(M). O

The proof of the theorem will be based on the following capacity esti-
mate.
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Lemma 1. Let M be a connected oriented riemannian manifold (perhaps
with boundary) and suppose that there exist a smooth 1)-form s € L4
suchthatds > 0andf3|,,, = 0. Thenfor allcompactsubsét C M\oM

we have

Vol(D) - min(xdf5) < || . (Cap,(D))"/7.

(Recall thath := xd( is the function defined by = \w wherew is
the volume form).

Proof. Choose a smooth functianas in the proof of Theorem A (i.e.has
compact suppory =10onD,0 < v <1land[ |dv|P <Cap,(M)+e¢)and
lety = infp A. Then

~Vol(D /vw</vdﬁ</ vdp
sm:kes/ang_/Mdv/\ﬁz/MﬁAdv
<

181 a ldv]l o -
The lemma follows. O

Proof of Theorem B

Suppos&ymp, (M) = 0 for someg. Choose a functiop € C§°(M)
such thaty > 0 andy # 0; then[pw] = 0 € Hlgmp,(M) Wherew is
the volume form ofM. Hence there exists am — 1)-form 5 € L? such
thatdg = pw. Lemma 1 implies that thg-capacity of some domaib is
positive hencé\/ is p-hyperbolic.

In the converse direction we need to show thatifis p-hyperbolic,
then for anyn-forms with compact support, there exists afn — 1)-form
~ € L% such thatly = a.

SinceM isp-hyperbolic, Proposition 1 (together with Remark 1) implies
the existence of a smooth vector fiefde L9 such thatliv(X') has compact
support and/ div(X) # 0. Let us set3 = «X" thenp € L9, df =
sdiv(X andfdﬁ fdw ) # 0. Thus we can find a numbere R
such that

/(a—cdﬂ)zo.

By Proposition 2, we can find afrn — 1)-form 6 with compact support
such thatdd = o — cdp. Clearly the(n — 1)-form ~ := 6 + ¢S is in L4
and satisfyly = . We conclude thajn] = 0 € H,,,, (M), and hence
HY  (M)=0. O

comp,q

The previous theorem can be made more precise:
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Theorem 3. Let M bep-parabolic. Then{,,,, (M) is of dimensiort and
the integration — [, o defines an isomorphisimp, (M) = R.

Another way to express this is by saying thadifis p-parabolic. Then
there exists aiin — 1)-form g € L7 such that/3 has compact support and
Jas @B # 0; and[df] is a basis 0y, (M) for any such form.

Proof. By Proposition 2 H{,,(M) is 1-dimensional. Since the canonical
map Heomp(M ) — Homp, (M) is an epimorphism, and

compgq
Hompq (M) # 0by Theorem BH (M) — Hiomp, Must be anisomor-

compg
phism and the result follows from Proposition Z

Corollary 2. Suppose that there exists a smopth- 1)-form 3 € L? such
thatd$ has compact support anfl, d # 0. ThenM is p-hyperbolic.

Remark By Lemma 1, we already know this corollary in the special case
dg > 0.

Proof. Since,3 € L? we have[d3] = 0 € Hgomp,(M). If M where
p-parabolic the previous theorem would imply ttf@; dg=0. O

Remark 4Throughout this section, we have only considered smooth forms.
In applications however it is sometimes usefull to consider non smooth
forms. For instance, using Theorem 1 one sees that Corollary 2 still holds
without any smoothness assumtion.

6. Applications
6.1. Area growth

Let M be a complete oriented riemanniar-manifold andD cc M be
some compact subset. Let

Dy :={x € M| dist(z,D) <t}

and denote by(t) = |0D;| the(n — 1)-dimensional Hausdorff measure of
0D;.

Proposition 3.  Suppose that

o0 dt
@ | e =
thenM is p-parabolic.

RemarKThis result is known (see e.¢4.4 in [14]) and essentially goes back
to the work of Ahlfors in the thirties. However, the proof below is new.
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Proof. We will show that if M is p-hyperbolic, then the integral (2) con-
verges. Indeed, assume thdtis p-hyperbolic, then by Theorem B, we have
Hiompq(M) = 0. Now leth > 0 be a smooth function with support i,
and such thaf, , hw = 1.

Since[hw] = 0in Heomp, (M), there exists arin — 1)-form g € L4
such thatl = hw. By Stokes formuquaDt 3 =1foranyt > 1.
Using Holder inequality one obtains

1= / B < 18l | 2D: [V,
0Dy

Le. 1817, op, =1 9D |1/(1=P)_ From this estimates follows

o dt
- @@ < Q< .
/1 \8Dt ‘1/(19_1) — /M‘ﬁ‘ o0

6.2. Manifold with warped cylindrical end

A Riemannian manifold/ will be said to have a warped cylindrical end if
there exists a compact Riemannian manifad\ g, ) and a compact subset
D cc M suchthatV/ \ D = N x¢ [1,00) is the warped product a¥ and
[1,00) (i.e the direct product with the Riemannian mettié + f2(t)gn).

Proposition 4. M is p-parabolic if and only if

o dt B
L fOED/e-n ~ %
(In particular, the euclidean spaReé is p-parabolic if and only ip > n.)

Proof. Suppose first tha)flOo f*%(t)dt = oo. We havedD; = N x {t}
and its(n — 1)-measure is(t) = |0D;| = constf"~1(¢). Hence we have

At
L a0 T

and Proposition 3 implies thatl is p-parabolic.

Assume now thaf;™ f_z%%(t)dt < 0. Let~ be the volume form of
(N, gn), and choose a smooth functign: [0, c0) — R such that

) 0<(t) <1,
i) y=0fort <1,
i) Yv=1fort > 2.
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Let us define arin — 1)-form g by 8 = 0 on D and3 = ¢ (t)~ on
M\ D (=N xy[1,00) ). Thendfs has compact support arfd, d3 # 0.
Furthermore, sincg = ¢ (t)v, we have|| = ¥ (t) f(t)~ "~ and thus

[ase=[ w0y na
M Nx[1,00)
< const/ F(t)A—Dm=D gy
[1,00)
< const/ F)~ =D/t < o0
1

Hences € LY and we conclude by Corollary 2 thaf is p-hyperbolic. O

For ap-parabolic manifold\/, we know by Theorem Athaf, , divX =
0 for any vector fieldX € L7 (¢ = p/(p — 1)) provided(divX)~ € L!
(the latter condition is necessary to give a meaning to the int¢gyaliv X
and may of course be replaced @vX)* € L').

Klauss Steffen has observed that for parabolic manifolds with warped
cylindrical ends, one can prove thatliv X is small on large balls without
assuminddivX )~ to be integrable. We owe him the following Proposition:

Proposition 5. Let M be a Riemannian manifold with warped cylindrical
end. ThenV! is p-parabolic if and only if

(3) liminf/ div(X) = 0.
t—o0 Dt
for all C* vector fieldX on M suchthat X| € LY(M), q=p/(p — 1).

Proof. If M is p-hyperbolic, then from Proposition 1, Sect. 4 follows that
there exists a vector field on M violating the condition (3).

Now let us assume@/ p-parabolic and ley = | X |, theng € Li(M) N
Co%(M).OnM \ D = N x [0,00), one may write g(z) = g(y,t). From
Holder’s inequality we have

/100 [/N 9(y,t) f(t)"‘lv]q ) dt
q

<[ [( / gq<y,t>v)l/q (/. f(t)p(””v)l/p] SRl

N
/ > n—1
< (Vol N)2/” / /N g1y, t) F(&)" 1y A dt

< (Vvol N)Q/p/ 94 (z)dr < oo.
M
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Where p = ¢/(q — 1), and ~ is the volume form of( N, gx7). Since M

is p-parabolic, we have by the previous propositiyﬁlf’lo f(t)_%dt = 0.
Hence the inequality above implies

lim inf/ 9(y, )y =0
0Dy

t—o00

where v; = f(t)" !y is the volume form of the hypersurfaceD;. We
conclude the proof from the divergence formuldl

Question: For what kind of (more general) manifolds is this proposition
true?

6.3. Graphs ifR™*! with non-negative mean curvature

Let S ¢ R™! be a hypersurface which is an entire graph, $.és of the
form

S :={(z,2) e R" " : 2 = f(z)}
wheref : R® — R is a function of clasg’?.

We will denote byH the mean curvature of. We also introduce the
angley(x) between the vertical direction and the normal directioty @it
the point(x, f(z)) € S. This is a measure of horizontality of the surface.

Theorem 4. Suppose thafl > 0 and thaty € L(R™) for some
q <n/(n—1). ThenS is a minimal surface.
Inthe casen < 7or Vf € L, thenS is a horizontal hyperplane.

The assumption opis satisfiedife.gp(x) < C'|z|~* outside acompact
set for some > n — 1.

Proof. Letp := ¢/(¢ — 1), observe thap > n henceR" is p-parabolic.
Now let
i

VIHVAP?
then|| X || = L|sin(p(z))| € LY(R™) andH = div(X) > 0.

By Theorem A, we must havE = 0; indeed ifH # 0, then the vector
field X satisfies (1) X € L4,(2) divX = H >0 and (3) divX >0
somewhere.

In particular(div X)~ = 0 € L' and from (2) and (3) follows that
fRn divX > 0. Thus Theorem A implies th&" is p-hyperbolic, but this
contradictg > n.

SRS

ThusS is a minimal surface and by Bernstein theorem (see theorem 17.5
and 17.8in [8]), we conclude thatis constantifr < 7orVf € L. This
constantmustbe zero singe= L4(R™), henceS is a horizontal hyperplane.

0
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6.4. The non Solvability af\,,

We now show that theorem 2 is false for parabolic manifolds.

Theorem 5. Suppose thaf\/ is p-parabolic, and leth ¢ L'(M) be a
function such thaff,, & # 0. Then the equation

(4) Apu+h=0
has no weak solution € £1P(M).

Proof. Assume that a solutiorf exists and defineX := —|Vf[P~2Vf.
ThenX satisfies the conditions of Theorem A ahflis thusp-hyperbolic.
0

In particular, (4) has no weak solution &+?(R") if p > n (this result
was anounced in [7]). When the manifold is the euclidean space, we may
state more generally

Theorem 6. Letn > 2,p > 1and 1 < pfl < -%5. If h is a function

of classL' onR” such that[,, h # 0, then (4) has no weak solution in
El,s(Rn).

Proof. Sett = %7 andt’ = . Observe firstthat > n, (in particular
R" is ¢'-parabolic) and also thgt+ % = 1.

Assume that a solutioff € £1*(R") to (4) exists and defin&l :=
—|Vf[P~2Vf. Thendi(X) = h andX € L!(R"). But this is impossible
by Theorem A sinc®” is ¢'-parabolic. O
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