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APPROXIMATELY LIPSCHITZ MAPPINGS
AND SOBOLEV MAPPINGS
BETWEEN METRIC SPACES

MARC TROYANOV

ABSTRACT. We introduce a notion of Sobolev spaces between metric spaces which
extends the Hajlasz’ notion of Sobolev functions. We then compare this concept
to Reshetnyack’s definition.

1. INTRODUCTION

In recent years, there has been a number of works devoted to the notion of
Sobolev functions and mappings on metric spaces. Let us in particular mention
the definitions proposed by Piotr Hajlasz in [3] and by Yuri Reshetnyak in [7].

Definition. Let X be a metric space equipped with a measure . We say
that a function u: X — R:=RU{oo} belongs to MY (X, R) if u € LP(X)
and there ezists a function w: X — R such that w € LP(X) and

(1) |u(z) —u(z')] < (w(z) +w(z))d(z,2)
for all x,2' € X.

Remark. The usual definition states that the inequality (1) holds almost ev-
erywhere only; i.e. there exists a set £ C X of measure 0 such that (1) holds
for all z,2’ ¢ E. However, one may always modify the function w on the set
E so that the inequality holds everywhere (just set w = oo on E). This will
be our point of view in this paper; it implies in particular that w is defined
everywhere and we can no longer modify this function on a set of measure
Zero.
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The space M'P(X,R) is called the Sobolev space in the sense of Hajlasz; it is
a Banach space for the norm ||ul|;;1, = ||u||;, +inf [|w]|;, where the infimum
is taken over all functions w € LP(X,R) satisfying (1).

Given a bounded domain  C R” and a metric space Y, Yuri Reshetnyak
proposes the following definition of the class WP(Q,Y") of Sobolev mappings.

Definition. A function f :Q — Y belongs to W'P(Q,Y) if there exists a
function w € LP(Q) such that for ally € Y the function 6, :Q — R defined
by 0,(x) =d(y, f(x)) satisfies

a) 0, € WHP(Q,R),

b) |VO,(z)| < w(x) for a.e. x €.

A different approach to Sobolev spaces of maps with metric space targets has
been proposed by N. Korevaar and R. Schoen, see [5]. We will not discuss
here this approach.

My goal in this lecture is to extend Hajlasz definition to the case of mappings
between two metric spaces and to show how this definition is compatible with
Reshetnyak’s definition under suitable hypothesis.

This work owes much to some discussions I had with P. Hajlasz, P. Koskela
and S. Vodop’yanov.

2. APPROXIMATELY LIPSCHITZ MAPPINGS

Throughout the paper, X and Y are arbitrary metric spaces and p is a fixed
Borel measure on X.

Definitions. i) The difference quotient of a mapping f : X — Y is the
function @ : X x X — R defined by

d(f(z1),f(z2))
Qy(z1,z2) := { Od(;Tz)z if 1 # 2o

if 1 = T2
ii) We denote by D[f] the set of all y—measurable functions w : X — R
such that
Qr(z1,22) < w(z1) + w(w2)
for all zi,z9 € X.

ii1) The map f is approzimately Lipschitz if there exists a function w € D[f]
such that w < oo p-a.e.

Remarks. 1) If a function w € D[f] is bounded on a subset A C X, then f
is Lipschitz on the set A.

2) If f:X —Y isapproximately Lipschitz and ¢:Y — Z is k-Lipschitz,
then go f: X — Z is also approximately Lipschitz. In fact

we D[f] = FkweDgof].
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Theorem 1. Let f : X — Y be a mapping between two metric spaces.
Suppose that X is locally compact and separable and that p is o Radon
measure on X. Then the following conditions are equivalent
a) f is approzimately Lipschitz.
b) There exists a monotone sequence of compact subsets Xo C X1 C ... C
X such that
b.l)  flx, is Lipschitz and
o0

b2) X\ U X0 =0,
k=1
Proof. (a) = (b) By Lusin’s theorem (see e.g. [8]), there exists a sequence
oo
of compact subsets Xy C X C ... C X such that u(X \ |J Xx) =0and w is
k=1

continuous on each Xj. In particular w is bounded on X} and hence f| X
is Lipschitz.

(b) = (a) Let Ly :=Lip(f|y,) be the Lipschitz constant of f[y, . Observe
that {Lx} is a monotone sequence since Xy C Xj,1. Define the function
w:X = R by

. mln{Lk S Xk} if reUpXy,
w(z) = { 00 else.

It is clear that w < oo a.e. and Qf(z1,22) < max{w(zi), w(z2)}
w(zy) + w(ze).

LI IA

Corollary 1. Assume that X s locally compact and separable and p is
Radon. Then f: X —'Y s approzimately Lipschitz if and only if f|y s
approzimately Lipschitz for all compact subsets K C X.

0

Corollary 2. Let Q C R” be a domain. Then f: Q — R™ is approzimately
Lipschitz if and only if it is approzimately differentiable almost everywhere.

Proof. Let X C © be as in Theorem 1. By Kirzbaum’s Theorem,
there exists a global Lipschitz map fr : R* — R™ such that [ and
fr coincide on Xj. From Rademacher’s theorem, we can find measurable
subsets Ap C X \ Xx—1 such that Vol(Xj \ (Ax U Xk—1)) =0 and f; is
differentiable at each point of A;; we can also assume without lost of generality
that Ap C R™ has density 1 at each of its point.

We now define (df), := dfy(z) if = € Ag. It is not difficult to verify that
(df ), is the approximate differential of f at z. This concludes the proof since

Vol( \ (UA)) = 0.
O

Remarks 3) As a consequence of this corollary, the change of variable formula
holds for any approximately Lipschitz mapping between Riemannian manifolds
satisfying Lusin’s property. The same is true for the area and coarea formulas.
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4) This discussion generalizes to other spaces such as rectifiable sets or sub-
riemannian manifolds.

3. A REVIEW OF HAJL.ASZ SOBOLEV SPACE M'P(X  R)

In [3], P. Hajlasz has introduced and studied the following notion of Sobolev
space

MYP(X,R) := {u € LP(X,R)| D[u] N LP(X,R) # 0} .
He has shown in particular that if X = Q C R" is an extension domain, then

MUYP(Q,R) coincides with the classical Sobolev space WP(2, R). He has also
proved both the following Poincaré inequality (see [3]):

Lemma 1. If u € M"P(X,R) and A C X s a bounded set with finite
measure, then

/ lu —ualPdp < (2diamA)p/ wPdp
A A

for all w € D[u], where uyg = ﬁ [qudp.

and the following embedding theorem:

Theorem 2. Suppose that p is a locally s-reqular measure (meaning that for
all point = € X there exists a radius Ry > 0 such that p(B(z,r)) > cr® for
all 0 <r < R.). Then, if p> s, each function u € M'P(X,R) is continuous
after modification on a subset of measure zero.

See [3, Theorem 6] and [6, Theorem 9.4].

We will need some definitions.

Definitions. i) A measure u on a metric space X is doubling if there exists a
constant Cgoup such that for every ball B(z,r) C X we have

N(B(:L‘72T)) < Cdoub N(B(:L‘,’I“)) .

ii) A pair of functions u,w : M — R satisfies a (1,q)-Poincaré inequality with
constants C and A if

1 1 Va
—_— U — U |dp < Cr 7/ wld
ST Sy el <M<B<x,xr>> -~ “)

for every ball B(z,r) C M.

(2)

ii1) The Riemannian manifold M supports a (1,q)-Poincaré inequality if
there are constants C and A such that for every locally Lipschitz functions
u: M — R, the pair (u,|Vul) satisfies the inequality (2) with constants C
and .
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Theorem 3. Suppose that the measure p is doubling and assume that the pair
of functions u € LT (X) and w € LP(X) satisfies a (1, q)-Poincaré inequality
for some constants C, A and some 1 < q < p. Let us define a function w by

1 1/q
w(x) := C sup 7/ wid ,
( ) r>0 (M(B($7T)) B(z,r) M)

then w € D[u]NLP(X,R). In particular, if u € LP(X), then u € M*?(X,R).

Proof. See Theorem 3.1 and 3.2 in [4].
g

In the case where X = M is a Riemannian manifold (with its canonical
volume measure), the work of P. Hajlasz, P. Koskela, Mac Manus and B.
Franchi has lead to the following criterion for the coincidence of M“P(M,R)
with the usual Sobolev space W1P (M, R).

Theorem 4. If the Riemannian manifold M supports a (1,q)-Poincaré
inequality for some 1 < q < p, and the volume measure is doubling, then
M'Y?(M,R) = WY (M, R). Furthermore if the pair of functions u € LT (X, R)

and w € LP(X,R) satisfies a (1,p)-Poincaré inequality with constants C and
A, then u € WiP(M,R) and |Vu| < Cw a.e.

loc

Proof.  This follows from Corollary 3 and Theorems 10 in [1].

4. THE cLASs LP(X,Y)

To define the notion of a p—integrable mapping f : X — Y, we need to choose
a base point yy € Y. Let us denote by 60,, = 950 : X — R the function
Oy, (x) = d(yo, f(x)) . We now define :

LE(X,Y)={f:X = Y| f is measurable and 0,, € L"(X,R)} .

Proposition 1. The space L} (X,Y) is independent from the choice of the
base point yo if and only if p(X) < oo.
The proof is easy.

O

In general, the base point o has been fixed and we denote the space L}, (X,Y)
simply by LP(X,Y) .

If two mappings which coincide p—almost everywhere are identified, then
LP(X,Y) becomes a metric space for the distance

() = ([ @) gta) P "
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5. SOBOLEV MAPPINGS ALONG HAJLASZ’S DEFINITION

It is straightforward to extend Hajlasz’s definition to the case of mappings. It
is useful to define first the Dirichlet space of mappings with finite p-energy:
LYP(X,Y)={f:X = Y| D[f]nL"(X,R) # 0} .

In other words, a map f € £"(X,Y) if and only if there exists a function
w € LP(X,R) and a subset F' C X with u(F) = 0 such that

Qr(z1,22) <w(z) + w(zz)

for all z,z9 € X \ F. The Sobolev space of mappings X — Y is then
defined as
MY (X,Y):=LP(X,Y)nLYP(X,Y).

When Y is a separable metric space, an alternative description of the space
LYP(X,Y) can be given. First, for any map f : X — Y and any point
y € Y we denote by 6, : X — R the function 0,(z) := d(y, f(z)). It
is the composition of f with the Lipschitz function p, : ¥ — R given by
py(z) :=d(y,z). In particular, by Remark 2 above, we know that

we D[f] = we Db forally e Y
since py has Lipschitz constant 1.

Conversely, if Y is separable, then D[f] = () D[f,]. In fact we have more

yey
precisely :
Lemma 2. If T CY is a dense countable subset, then D|[f] = ﬂ DI6,].
teT
Proof The discussion above imply D[f] C [\ DI[#]. Conversely, let w €
teT
m D[Ot], then
teT

10:(z) — 0x(2")| < (w(2) + w(a'))d(z,2)

for all 2,2’ € X \ E; where E; C X is a subset of measure zero. Let us set

E := |J E; then p(E) =0 and we have
teT

|d(f(z),t) — d(f(2),8)] < (w(z) + w(z"))d(z, ")
forall z,2' € X\ E andall t € T. Since T CY is dense, we can choose
t arbitrarily close to f(z); hence d(f(x), f(z")) < (w(z)+w(z"))d(x,z') for
all z,2’ € X \ E. This implies w € D[f].
O
Theorem 5. Let T CY be a countable dense subset. Then the following
conditions are equivalent for a mapping f: X = Y
a) feLVWP(X)Y);
b) There exists a function w € LP(X,R) such that for any Lipschitz
function
h:Y — R we have
b.1) ho f € LYP(X,R) and
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b.2) (kw) € Dlho f] (where k is the Lipschitz constant of h);
) | (Pl ] NIP(X,R) # 0.

te’T

Proof. (a)=(b) follows immediately from Remark 2.
(b)=(c) is obvious and (c)=-(a) follows from the previous lemma.

We finally have the following embedding theorem :

Theorem 6. Assume that Y is a proper metric space and that 1 is a locally
s-regular measure on X. Then, if p > s, each mapping f € M"P(M,Y) has
a continuous representative.

The proof will use the result of the appendix.

Proof. Let ¢ : Y — /£y be the mapping defined in Theorem 9, and let
F=¢pof:X — ly. For each v € N, the function F,, = p, o f : X - R
belongs to M'"P(M,R). Thus, by Theorem 2, we can find a subset E, C X
of measure zero and a function F,, : X — R such that F,, is continuous on X
and coincides with F, on X \ E,,.

We define F : X — £y by F(z) := (F,),; then F and F coincide on X \ E

where E :=JE, C X, is a set of measure zero. Since each component F), of
v

F is continuous, assertion (e) of Theorem 9 implies that F itself is continuous.
Since ¢(Y) C /o is closed by Theorem 9b), the image of F' is contained in
o(Y), i.e. F(X) C (Y) C ls. But ¢ is injective, so there exists a mapping
f:X — Y such that F = po f. It follows that f is continuous and coincides
with f on X \ E.

O

6. ON Y. RESHETNYAK’S SOBOLEV SPACES

Following Y. Reshetnyak [7], we define another Sobolev space of mappings
from a Riemannian manifold M to a metric space Y:

Definition. Let M be a Riemannian manifold and Y be a metric space.
Amap f: M — Y belongs to R"?(M,Y) if and only if the following 3
conditions are satisfied:
1) fell(M)Y);
2) for ally € Y we have 6, € WIIO’E(M, R) (= classic local Sobolev space);
3) there exists w € LP(M,R) such that |V8,(z)| < w(z) for ally € Y
and almost all z € M.

Theorem 7. Assume that M supports a (1,q)-Poincaré inequality for some
1 < g < p, that the volume measure is doubling, and that Y 1is separable then

MY(M,Y) = R"(M,Y).
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Proof. If fe& MY (M,Y), then f € LP(M,Y) and there exists a function
w € LP(M,R) such that w € D[f]. By Remark 2, w € D[§,] for all y €Y
and by Lemma 2, the pair (6,,w) satisfies a (1,p)-Poincaré inequality. By
Theorem 4 we know that 6, € W P(M,R) and |V6,| < Cw a.e., thus
f € RYW(M,Y).

Conversely, if f € RY(M,Y), then f € LP(M,Y) and 6, € WIIC;E(M, R) for
all ¢t € T where T' C Y is some fixed dense subset. Furthermore there exists
a function w € LP(M,R) such that |V6;] < w a.e. for all t. Because the
manifold M supports a (1, g)-Poincaré inequality, the pair (6;,w) satisfies a

Poincaré inequality and therefore the function @ defined in Theorem 3 belongs
to (ﬂ D[Ht]> N LP(M,R). Applying Theorem 5c, we conclude that f €
t

LYP(M,Y).
0

We finally have the following embedding theorem.

Theorem 8. Assume that Y is a proper metric spaces. If p >n = dim(M),
then every mapping f € RY"P(M,Y) has a continuous representative.

Proof. We argue as in the proof of Theorem 6 using the classical Sobolev’s
embedding theorem WP(M,R) C C°(M,R) instead of Theorem 2.

loc

O
This result was also obtained by Y. Reshetnyak in [7, Theorem 6.2].

APPENDIX A. EMBEDDING A METRIC SPACE INTO /

Recall that /. is the space of bounded infinite sequences u = (uy,us,...)

(uy, € R). It is a Banach space for the norm |[ju||, := sup |u,|.
1<v<oo

Theorem 9. If Y s a proper metric space, then there exists a map ¢ : Y —
Lo, © = (p1,p2,...) with the following properties:

a) ¢ 1is an isometric embedding;

b) p(Y) C Ly is closed;

c) a subset A CY s bounded if and only if ¢, (A) CR is bounded for
some v;

d) a sequence (y;) CY converges if and only if for each v the sequence
(Lp,,(gjz)) C R converges (and y; >y €Y < ¢,(yi) = ¢u(y) € R for
all v);

e) for any metric space X, a map f : X — Y is continuous if and
only if for all v € N, the “coordinate function” ¢,of : X — R is
continuous.

Recall that a metric space is proper if every closed bounded subset is compact.

Remark. The meaning of (d) and (e) is that the strong and weak topologies
on {4 coincide on locally compact subsets. This is false for general subsets:
the Kronecker sequence {0;} C o (defined by 6;, =1 if j = v and 0 else)
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is an example of non converging sequence all of whose coordinate converge to

0.

Lemma 3. If (Y,d) is a proper metric space, then it is separable
Proof. Fix yg €Y. For all k € N, the closed ball E(yo,k
hence totally bounded. Let T C F(yo,k) be a finite subset with codiameter

< % (i.e. Tyisa %—net). Then T := |J T} is a countable dense subset in Y.
keN
Il

y CY is compact,

Proof of the Theorem. Let us fix a base point yy € Y and choose a dense
countable subset T = {t,},en C Y. Then define

eu(y) = d(y,t,) — d(yo, tv) -
We will check that the map y — ¢(y) = (¥1(y), p2(y),...) has the desired
properties.

(a) We have |u(y) — 0o (s")] = ld(y ) — d(e/, )] < d(y,5/) for all v, hence
lo(y) — )|l < d(y,y'). Conversely if {t,,} isa sequence converging to 3/,
then ¢, (4) — u(y')] = d(u, 1) — d(y/.1,)] > d(y. o), hence p(y) — o) >
d(y,y').

We have proven that ¢ is an isometric embedding.

(b) ©(Y) C 4o is closed because it is a proper metric space, hence each closed
ball in /. intersects ¢(Y') along a compact set.

(c) Let A CY be asubset such that ¢, (A) C R is bounded for some v, then
there exists a constant C' > 0 such that |p,(y)| = |d(y,t,) — d(yo,tv)| < C
for all y € A, hence A is contained in the ball of center y; and radius
r=C+d(yo,t).

(d) Suppose that the sequence {¢,(y;)}ien C R converges for all v. We will

show that {y;} convergesin Y.

By hypothesis, {¢1(y;)}ien € R is bounded, hence, by (c), we know that

{y;} CY isabounded sequence. Since Y is proper, {y;} admits an accumu-

lation point y. For each € > 0 there exists v. such that d(y,t,.) < . Because

@y, is continuous and {¢,_(yi)}ien C R converges, we have l_i)m oo (yi) =
11— 00

. (), thus, fori >k large enough, we have [py, (yi) — v, ()| = |d(ys, t.) —
d(@’ tVs)| < €, hence d(yl’ tVE) S d(ﬂ’ tVs)+|d(yl’ tVE)_d(gﬁ tlls)| S 2e a’nd ﬁna’lly
d(yi,9) < d(g,t,.) + d(yi, t,.) < 3¢ for all 4 > k. This implies y; — 7.

(e) Assume that f, := ¢, 0 f : X — R is continuous for all v and let

{z;} C X be any sequence. If z; — x, then {p,(y;)} C R converges for all

v where y; = f(z;). By (d), the limit y:= lim y; = lim f(z;) € Y exists;
1— 00 1— 00

furthermore  (f(x)) = (v (f(2))) = lim (0u (f(2:))) = lim o(f(z:)) € foo
and, since ¢ is an isometric embedding, we have f(z) = lim f(z;). This
11— 00

proves that f is continuous.

0



594

(1]
2]

[3
(4]

(5]
(6]
(7]

(8]

MARC TROYANOV

REFERENCES

B. Franchi, P. Hajtasz and P. Koskela Definitions of sobolev classes on metric spaces Ann.
Inst. Fourier 49 (1999) 1903-1924.

P. Hajtasz Change of Variables Formula under Minimal Assumptions. Colloquium Mathe-
maticum 64 (1993), 93-101.

P. Hajtasz Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), no. 4, 403-415.
P. Hajlasz and P. Koskela

Sobolev met Poincaré.

Mem. Amer. Math. Soc., to appear.

N. Korevaar and R. Schoen Sobolev spaces and harmonic maps for metric space targets. Comm.
Anal. Geom. 1 (1993), no. 3-4, 561-659.

V. Gol’dshtein and M. Troyanov Aziomatic Theory of Sobolev Space and p-capacity on Metric
spaces. preprint 2000.

Yu. G. Reshetnyak Sobolev-Type classes of Functions with Values in a Metric Space. (Russian)
Sibirsk. Mat. Zh. 38 (1997), no. 3,657-675, iii-iv; translation in Sib. Math. J. 38 (1997), no. 3,
567-583.

M. Simonnet Measures and Probabilities. Universitext, Springer-Verlag, New York, (1996).

DEPARTEMENT DE MATHEMATIQUES, E.P.F.L., CH-1015 LAUSANNE (SWITZERLAND)
E-mail address: marc.troyanov@epfl.ch



