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METRICS OF CONSTANT CURVATURE ON A SPHERE
WITH TWO CONICAL SINGULARITIES.

MARC TROYANOV

Section de Mathématiques Université de Genéve C.P. 240 CH-1211 Genéve 24

§1 INTRODUCTION

DEFINITION : A (conformal) metric ds? on a Riemann surface S has a conical

singularity of order § (8 a real number > —1) at a point p € § if in some neighbourhood
of p: ‘

(1.1) ds® = e?*|dz|?,
where z is a coordinate of § defined in this neighbourhood and u is a function such that

(1.2) u(z) — B - log|z — z(p)|

is continuous at p.

Observe that |z[? - |dz|? is the metric of an Euclidian cone of total angle 6 = 2x(8+1),
thus, if a surface has at some point a conical singularity of order 8, then this surface
admits at this point a “ tangent cone ” of angle 8 = 27(8 + 1).

For instance, if one whishes to consider a polyhedron, an orbifold or a branched covering
of dimension two from a Riemannian viewpoint, then, what is seen is a Riemannian
surface with conical singularities.

If (S,ds?) has at py,ps,...,p, conical singularities of order fy,f,,...0,, then ds? is
said to represent the divisor B := 3" B;p; . (The divisors we shall consider are real
linear combinations of points of § with coefficients > —-1).

The general problem of the theory of surfaces with conical singularities can be for-
mulated in the following way : given (5,8) a Riemann surface with a divisor, try to
understand the set of conformal metrics representing g on S!

A first information is given by the Gauss-Bonnet formula :

(1.3) -2-1; //3 KdA = x(S) + ;ﬁi

where x(S) is the Euler characteristic of 3, the area element dA is defined from the
local expression (1.1) by dA = £e?“dz A dz, and the curvature K is given by

8%y

— _Ap—2u
(1.4) K = —4e 355
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We will only consider the case where the curvature is constant. So we state the following
problem : Given (S5,8), describe the set M(S,f) of conformal metrics with constant
curvature representing § on S. In particular, are there obstructions for M(S,8) # @ ?

We have two goals in this paper : First we describe the relationships between metrics
in M(S,8) and another structure on S (projective connections). Then we classify the
metrics of constant curvature with two conical singularities on a sphere. '

Note that a metric in M(S,B) is analytic outside the singularities (since it has constant .

curvature).

§2 EXPLICIT EXAMPLES

Example 1 A bigon of angle ¢ is the region on a standard sphere bounded by two

geodesics joining the Northpole (NP) to the Southpole (SP) and forming an angle .

If one removes from the sphere S? a bigon of angle ¢ and glue isometrically together

the two sides of the remaining bigon, one obtains a sphere with a metric of curvature

K = 41 and two conical singularities of order § = —-22“: €] — 1,0] (the divisor is
=-2%-NP—-£.SP).

This is the standard recipe to make an american football out of a european one.
WP

, SP
Example 1’ If one cuts a sphere along a geodesic joining NP to SP and glue to the
boundary of this cutted sphere a bigon of angle ¢, one obtains a sphere with a metric of
curvature K = +1 representing the divisor = - NP+ - SP , where f = £ €]0,1].

Example 1” By glueing n bigons of angle ¢;,¢3,...¢, using the same method as
in the example 1’ | one may construct a sphere with a metric of curvature K = +1
representing the divisor = - NP +§-SP ,where =3 | £ can take any positive
value.
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Observe that in the above examples, the two singularities are antipodal.

Example 2 Take a branched covering f : $? — 52 of degree d with two branching points
p,q € S of order B = d —1 . Then the pullback by f of the standard metric on 52 is a
metric with curvature K = 41 representing the ‘ramification divisor’ B=8-p' + 8 ¢'

(where p' = f~1(p),¢' = f'(q)).

In this example, the two singularities are not necesseraly antipodal. The distance
d(p,q) = d(p',¢') €]0, 27] is, with 8, the only isometry invariant of the surface. (Observe
however that 8 has io be an integer.)

Our purpose is to prove that these are the only examples of metric on a sphere with
constant curvature and two conical singularities, more precisely, we have :

THEOREM I. Let (S, ds?) be a Riemannian surface with two conical singularities home-
omorphic to the sphere. Assume that ds? has constant curvature K, then :

(1) K>0

(2)  The order of both singularities are equal;

(3)  If the order B is an integer , then (S, ds?) is isometric to a ramified
covering of degree d = § + 1 of the sphere with constant curvature K;

(4) If B is not an integer, then the two singularities are antipodal (i.e. the
distance between them is 7’-;-(- and they are conjugate points).
Furthermore, any two such surfaces are isometric if and only if they have the same

curvature, the same order at the singularities and the same distance between the two
singular points.

This theorem states that if S is a sphere with a divisor B = 8yp; + fap2, then M(S, ) is
a segment if ; = B, € N, is reduced to a point if 8; = 8, ¢ N and is empty if 51 # Bs.

In particular among the metrics representing some divisor # = f1p; +82p; on the sphere
5%, none has constant curvature. In [T], W.Thurston raises the following question :

What is the best pinching constant for a metric representing B = f1p; + Baps on 52 ?

(i.e. what is the largest § such that there exists a metric representing B with § < K < 1).
Theorem I will be a consequence of

THEOREM II. If ds? is a conformal metric on C U co with constant curvature and
conical singularities at z = 0 and z = oo, then, there exists K > 0, p € [0,00][ ,
B €)1, 00|, such that either f is an integer or y = 0, and, up to a change of coordinate
(z = pz,p € C a constant), we have

222 |df?

. ds® = . 24)? .
(2:1) s°=(2+26) (11 + pzPH1P + K|z|PB42)2

Let us derive theorem I from theorem II : By the uniformisation theorem, (S, ds? ) is
conformally equivalent to C U co; one may of course assume that the singularities of
(S,ds?) correspond to z = 0, and z = co. Theorem II implies therefore that (.S, ds?) is
isometric to C U co equipped with the metric (2.1).
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Using (1.4), we check that K in (2.1) is the curvature, this proves (1).

It is obvious from (2.1) that z = 0 is a conical singularity of order 8. To see what
happens at z = oo, consider the coordinate {( := 1/z. A computation gives us the
following expression for the metric in this coordinate :

9
(s + PP + R)?

(2.2) ds® = (2 + 28)?

so that it is apparent that at { = 0 (i.e. z = o0 ), the metric also has a conical singularity
of order 8, we have thus shown (2).

To prove (3), suppose # € N and consider the map

ZB+1

v=IE) =

This map is a ramified covering f : CUoco — C U oo with ramification divisor 8 =
B -0+ f-co ( f has singularities of order 8 over w = 0 and w = —) A straightforward
computation shows that the metric (2.1) is the pullback under f of the standard metric
on C U co with constant curvature K > 0 :

7 ‘ 2 _ % 4|'dw|2
ey i = 1" (s hepy)

To show (4), observe that the distance between z = 0 , and z = oo in the metric
(2.1) is d(0, co) = - Arctg(VE /p)! ; thus, if ¢ N, then 4 = 0 and therefore
d(0,00) = ‘/= Phrtheremore the lines {re’?,0 < r < oo} form a family of geodesic
segments joining the two singularities and depending on ¢, hence these two points are
conjugate.

Finally, the last assertion in the theorem trivially follows from the fact that 4, K and
p are the only ingredients in the expression (2.1) for the metric. O

§3 PROJECTIVE CONNECTION ON A RIEMANN SURFACE

Definition A projective connection 7 on a Riemann Surface S is a rule which associates
to each local uniformizer z on S a meromorphic quadratic differential

(3.1) n(z) = ¢(z)dz*

defined in the domain of z , in such a way that if w = w(z2) is another local uniformizer,
then, we have in the overlap of the domain of z with that of w :

(3-2) n(w) =n(z) + {2, w}dw?,

(242p)t°
(14 ptP+0)2 L K287

1In computing with the metric (2.1), use : %%Arctg ( H{_I‘;‘t;i:)
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where { , } denotes the Schwarzian derivative :

(33) i, }fﬂ—-—(ff,'),

(Some facts concerning this differential operator are collected in the appendix).
Formula (3.2) means that if n(w) = ¥(w)dw?, then Y(w(2)) = ¢(2) w(f—;)z + {z,w}.

The projective connection 7 is regular at p € S if 5 is holomorphic at this point, it has
a regular singularity of weight c if

(3.4) n(z) = (z% + g + & (z)) d=?, ¢1 holomorphic,

where z is a uniformizer at p (such that z(p) = 0).
LEMMA. This definition of the weight is independant of the choice of uniformizer.

Proof : Suppose that 7 is given by (3.4) and that w is another uniformizer at p (such that
w(p) = 0). We have n(w) = p(w)dw?, with P(w(z)) = (--; + < +¢1(z)) ( ) +{z, w}.
However, 42 = (£ 4 zg(z)) with ¢ holomorphic, so ¥(w) = & + h(w), h having at
most a sxmple pole O

The connection is said to be compatible with the divisor #:= 3_7_, Bip; if it is regular
in S — {p;} and has, for each i, a regular singularity of wheight ¢; = —38;(8; +2) at p;.
Observe that if §; > —1, then ¢; < 3. Projective connections compatible with integral
divisors have been studied by Mandelbau [M] .

Example I f is a meromorphic function on S, then a projective connection is defined
on S by

(3.5) 1(z) = {f, 2}d2*.
It is compatible with the ramification divisor of f : § — CP?.

LEMMA. Ifds? = e**|dz|? is a (conformal) metric of constant curvature on S represent-
ing the divisor f§ then

(3.6) n(z) = (g; - (%)2) . dz?

defines a projective connection compatible with the divisor .

Proof : Three things have to be checked : (A) The quadratic differential 5, given by
(3.6) is holomorphic outside of the support of #, (B) 7 is a projective connection (i.e.
(3.2) is verified) , (C) I p is a conical singularity of order 3, then 5 has at p a regular
singularity of weight ¢ = —3 ,B(,B + 2).
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To check (A), one applies % to the equation (1.4) :

_ 0K —ou [ Bu du 8%y
0=%: =% (62282 =% azaz)

8 (02w [Ou\?
_— 7—214___ = ==
=5 (622 (az))

(B) If w and z are two coordinates in some part of S, then ds? = €2*|dz|? = €?*|dw|?
with v = u + log|dz/dw|; therefore we have :

n(w) =2 (52@ + log|dz/dul]) ( o(u + zogldz/dwl))?) - dw?

Ow? Ow
= n(2) + {z, w}dw?.

(C) Suppose that p is a conical singularity of order 8; then we can write ds? = €2*|dz|?,
where u(z) = Blog|z| 4+ u;(2) with u; continuous and verifying the elliptic equation

azu‘l

020z
Assume first that § > 0, using the classical elliptic regularity theory,we can show that
u; is of class C? at z = 0.

We have
9 &u du\? o 0%u,y Auy \° 2/9 du;  B(B+2)

Z - _[= =922t _(ZEL) | o1 _

0z? 0z 022 0z z 0z 222
this proves (C) in this case.
If -1 < f <0, then u; might not be C? and the computation above might not work.
However, we may lift the metric to a local branched cover, to this aim, set z = w™
(m € N), then the metric can be lifted in the w — plane : ds'? = 2 |dw|? , with

' = u + log|dz/dw| = u + (m — 1)log|w| + log m, and one sees that ds'? has at w = 0
a conical singularity of order ' = m(f + 1) — 1. Choosing m large enough, we can

= —4K|z|*P 2™,

! [ 2
have #' > 0, so that n(w) =2 (%%"f - (%) ) -dw? has a regular singularity of weight
—38'(6' +2) at w = 0. Now we have

n(z) = n(w) — {2z, w}dw?®

=n(w) - IQ_U,TZ du’
! l+2 1— 2 A
- (ELAD 1o ) et

2
= —3 (BB + DM 4y ()i,
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with 4, having at most a simple pole. Now (C) follows from 42 = % a

,w fd

If a projective connection 7 is related to a metric ds? according to (3.6), one says that
ds? is associated to 7.

Let us introduce the following sets defined on a Riemann surface with divisor (S,f) :
PC(S,B) = set of projective connections compatible with # on S.

M(S,B,1) = set of conformal metrics with constant curvature representing f# on S
and associated to 7.

M(S,B,) = Uy,M(S,8,1) ( = set of all conformal metrics with constant curvature
representing f on S).

If one wants to describe the set M(S,B) , one has first to understand PC(S,B) , and
then , for each € PC(S, ), one has to study M(S,B,7) .

Two projective connections compatible with the same divisor # on a Riemann Surface

S differ by a quadratic differential having at most a simple pole at p; (: = 1,...,n);

thus PC(S,B) is either empty or it is a finite dimensional affine space.
The set M(S,B) can be embedded in a linear space. To this purpose, choose a point

¢ € S not in the support of B and denote by Jet*(g) the space of infinite jets at ¢ of

functions h : § — C , and choose also a uniformizer z at ¢. Then ds® = e?*|dz|* at ¢
and one may define : j(ds?) := jet at g of e™*,(= jet at g of J%j-l).

Since ds? is analytic, j defines an injective map (assuming S connected) j : M(S,8) —
Jet™(q). :

The situation can be summarized by the following diagramm :

M(S,8,m) —— M(S,8) —— Jet=(q)
Pe(s,p)

Once a projective connection is fixed, a metric associated to this connection depends
on four parameters only.?

Inddeed, one has the following

%A heuristical argument for this fact is the following observation : If ds? is a conformal metric of constant
curvature K defined in a neighbourhood of a point ¢ € CUco and g € 5L, C is a Mbius transformation
sufficiently close to the identity, then g*ds? is also a conformal metric of constant curvature K defined
in a neighbourhood of q. Hence, the local 6 dimensional Lie group SL2C acts on the set of germs
at g of conformal metrics with constant curvature K associated to a fixed projective connection. The
stabiliser of a metric for this action is the 3 dimensional local subgroup of its isometries , thus, one
should except a metric associated with a given projective connection to depend on 6 — 3 + 1 = 4 real
parameters only (the additional parameter beeing the curvature).
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PROPOSITION 1. There exists a linear map Jet™(q) — R* such that the restriction of
this map to M(S,B,n) is injective.

Proof : A projective connection is given at ¢ by n(2) = ¢(2)dz?, where ¢ is a holomorphic
function, and can thus be written as '

(3.7) $(z) =—2) b,2".
p=0
Suppose ds? = e**|dz|* € M(S,B,n), and set h = e~*. Then we have from (3.6)

2h
(3.8) o= —%qﬁ(z) - h.

The function h = h(z, Z) being a real analytic function, we have:

(3.9) ' - h(z,2) = Z O n2" 2"

m,n=0

The equation (3.8), with (3.7), gives then . y

m nr':: bu m—w,n:
(3:10) m=+2, (m+2)m+1) Z @

Since h = R, we have Gm n = @p . 50 (3.10) implies that a solution h of (3.8) is com-
pletely determined from agp,a;; € R and ap; = @19 € C. Thus the proposition is
proved if one defines the map Jet*(q) —» R* by h = l——l — (@g,0,01,1, Re(ag,1), Im(ag,))
O

§4 PROJECTIVE CONNECTIONS WITH TWO SINGULARITIES
ON THE SPHERE

We are now in position to classify the proje‘ctive connections with two regular singular-
ities on the sphere :

PROPOSITION 2. Let 1 be a projective connection on §? = C U co with regular singu-
larities at z =0 and z = co , then we have (in the standard coordinate z) :

(4.1) 7 n(z) = = - d2?, c€ C.

In pax‘tfcdar, both singularities have the same weight.

As a consequence, the set PC(S?, B1p1 + Bap2) is empty if By # B,.
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Proof : If 5 is a projective connection on C U oo with regular singularities at z = 0 and
z = oo , then we have by (3.4)

n(z) = (-Z% + g + ¢1(z)) dz?,

where ¢;, being holomorphic in C, is an entire function. Therefore either ¢; is a constant
or it has an essential singularity at z = oo.

Setting w = l/z we have {z,w} = 0, and so, using (3.2) we have n(w) = ¢(w)dw? with

P(w) = ( + £ + 451(;:)) (m)z =54+ d 4 =A%ﬂ Since % is meromorphic at w =0
with a pole of order 2; we must have &1 = 0 and d = 0. O

The situation is rather different for surfaces of higher genus :

PROPOSITION 3. Let (5,8) be compact Riemann Surface of genus g > 2 equipped with
a divisor B = Y., Bipi. Then the set PC(S,p) of projective connections compatible
with B is a complex affine space of dimension 3g — 3 + n.

This is the first part of theorem 3 in [M], we shortly give the idea of the proof :

As seen in the §3, PC(S,P) is either empty or it is an affine space over the space of
quadratic differential having at most simple poles at the p;. The dimension of this space
is computed (with the help of the Riemann-Roch theorem) to be 3g — 3+ n. Hence, we
only have to show that there exists at least one projective connection compatible with
B. Using the Riemann-Roch theorem again, we can show that the for each p € §, there
exist a (non-unique) quadratic differential w, on S such that

wp = (o3 +(2))de?

(where 2 is a uniformizer at p, and ¢ has at most a simple pole), and w, is smooth
outside p.

Let 77 be a smooth projective connection on S, then
1 n
=1~ §Z i(Bi + 2)wp,

is the desired connection OO

§5 PROOF OF THEOREM II

Let ds? = e€?*|dz|* be a conformal metric metric on C U co with constant curvature
representing the divisor # = 8,0 + fz00. By the formula (3.6), the metric ds? defines a
projective connection 7 on C U co compatible with §, hence Proposition 2 implies that

E ﬁ2(=: ﬁ) and

Gn (=250 2
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Setting h = e™*, we have from (5.1) and (3.8)

oh_, BB+2) 1

(5'2) 822 4 22"

All solutions of (5.2) ar‘e.of the form

(5.3) h(z,2) = f(2)27P/? 4+ g(2)22+F/2,

Since h is real (h = h) and analytic, we must have

(5.4) h(z,%) = a(zz) 7P/ 4 b1 HP/2z—BI2 | pz1+B/2 ,—B2 | c(zg)“ﬁ‘/z'

with a,c € R,b € C. It follows from (1.2) that a # 0, so one may define y := b/a and
v = (ac — bb)/a®, In this way, we get from (5.4) :

‘ B+1)2 2442
(5.4") h(z,2) = a- (Il + pz l| |ﬂ+ vz| ) _
2l

The condition that k is a uniform function is equivallent to :
(5.5) p=0 or BEN,

and the condition that A = ¢~ is a globally defined positive function on C \ {0} is
equivalent to :

(5.6) a>0 and v>0.

So far, we have proved that a conformal metric on C U co with constant curvature
representing the divisor 8 = 80 + Boo is given by

s lde? _ 1 [2[2#]d]?
2

. d
D I (e R F

with a, y, v subjected to the conditions (5.5) and (5.6).
Setting z = pz' (p € C), (5.7) becomes

1 |2'|?P|d2" |2
a'? . (Il +Mlzlﬂ+]|2 + Urlzllﬂﬂ.;.z)z’

(5.8) | ds? =

with @’ = alp|~(F+D) ' = pupf+1 o' = v|p[?#+2. We may, by appropriately choosing p,
obtain

(5.9) | a =

' € [0, o0f;
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(indeed choose

(a(zp+ e iz,

(a(28 + 2))/BF) i fu =0).
We thus have with this choice of p:
|2' [P |dz"|*
T+ o £ PR
with v' > 0,p' € [o,00[,f €] — 1,00[ and p' =0if S ¢ N. O

APPENDIX : ABOUT THE SCHWARZIAN DERIVATIVE.

(5.10) ds? = (2 + 28)?

Let f(t) be a non constant meromorphic function, its Schwarzian derivative is defined

by
3 " f 2 B 2f f1 — 3f“2
{f,t}= "—“—(f,) =

for instance {e?,t} = —3, {logt,t} = 5Ly , {t*,} = %‘ﬁ—(a #0), {%t%g,t} = 0(ifad—

be # 0).

The Schwarzian enjoys the following properties :
1) {yt}={zt} iff. z=2,
@ Az} = {2} (%)
(3) {v,z}=(&)" ({y,f} {z,1}),
@ =152 (2) +ie,

Furthermore, if v and v are lmea.rly independant solutions of the equation u" = —14(t)-
u, then {Z,t} = ¢

Property (1) states that the Schwarzian derivative is invariant under the action of the
projective group SL,C, it is therefore a usefull tool in studying the projective geometry
of a Riemann surface.

The properties (2) and (3) above tell us that ¢(z,w) = {z,w}dw? is a one cocycle in
the sheaf of germ of holomorphic quadratic differential. Thus, by definition, a projec-
tive connection is a meromorphic 0-cochain 5 (in the same sheaf) such that én = o.
In particular, there always exists a smooth projective connection a compact Riemann
surface, since H*(S.k?) = 0 (where « is the canonical bundle on S).
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