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Abstract. A long-standing conjecture of De Giorgi asserts that every monotone solution of the Allen–Cahn equation

in Rn+1 is one-dimensional if n ≤ 7. A stronger version of the conjecture, also widely studied and often called “the
stable De Giorgi conjecture”, proposes that every stable solution in Rn must be one-dimensional for n ≤ 7. To this

date, both conjectures remain open for 3 ≤ n ≤ 7.

An elegant variant of this problem, advocated by Caffarelli, Córdoba, and Jerison since the 1990s, considers a
free boundary version of the Allen–Cahn equation. This variant features a step-like double-well potential, leading

to multiple free boundaries. Locally, near each free boundary, the solution satisfies the Bernoulli free boundary

problem. However, the interaction of the free boundaries causes the global behavior of the solution to resemble that
of the Allen–Cahn equation.

In this paper, we establish the validity of the stable De Giorgi conjecture in dimension 3 for the free boundary

Allen–Cahn equation and, as a corollary, we prove the corresponding De Giorgi conjecture for monotone solutions
in dimension 4. To obtain these results, a key aspect of our work is to address a classical open problem in free

boundary theory of independent interest: the classification of global stable solutions to the one-phase Bernoulli

problem in three dimensions. This result, which is the core of our paper, implies universal curvature estimates for
local stable solutions to Bernoulli, and serves as a foundation for adapting some classical ideas from minimal surface

theory—after significant refinements—to the free boundary Allen–Cahn equation.
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1. Introduction

The study of interfaces arising in nonlinear elliptic partial differential equations (PDEs) is a central theme in
mathematical analysis, with significant implications for geometric analysis, mathematical physics, and materials
science. Interfaces—often also referred to as free boundaries, minimal surfaces, etc.—appear in models of phase
transitions, fluid dynamics, and other phenomena where different states or phases coexist and interact.

A paradigmatic example of a PDE giving rise to interfaces is the classical Allen–Cahn equation. Originally
proposed to describe phase separation in metal alloys [3], this equation has achieved mathematical prominence
due to its profound connections with minimal surface theory (see, e.g., [17, 28, 73]) and its close relation to several
important phase field models—scalar, vectorial, or tensorial. Among the most closely related models are the
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Cahn–Hilliard equation, describing phase separation in binary fluids [21]; the Peierls–Nabarro equation, modeling
crystal dislocations [74,76]; the Ginzburg–Landau theory, addressing superconductivity [46]; and the Ericksen–Leslie
model for liquid crystals [38,62].

Interfaces also appear naturally in the study of free boundary problems such as the Bernoulli or one-phase
problem. First studied from a mathematical viewpoint by Alt and Caffarelli in 1981 [4], motivated by models in
flame propagation and jet flows [5–7,12], it is related to shape optimization problems, capillary hypersurfaces, and
minimal surfaces (among others; see, e.g., [13,24,59,60,83]). Also, it has been investigated as a one-phase problem,
a two-phase problem, and in vectorial form [29,37,43].

During the past five decades, substantial progress has been made in understanding the structure of absolute
energy minimizers for the Allen–Cahn equation, the Bernoulli problem, and related models. However, despite
significant efforts, the structure of stable solutions remains largely elusive, even in the physically relevant three-
dimensional space. Stable solutions are particularly important because they correspond to configurations observed
in nature, representing physically stable states. Understanding stable solutions is thus a fundamental challenging
open question in the field.

In this paper, we introduce new analytical tools for studying three-dimensional stable solutions, focusing on two
fundamental and deeply connected free boundary problems: the Allen–Cahn equation with a “step potential” and
the Bernoulli problem.

1.1. The variational model of phase transitions. The theory of minimal surfaces and phase transitions leads
to considering energy functionals of the form

Jε(u; Ω) =
ˆ
Ω

{
ε|∇u|2 + 1

ε
W (u)

}
dx,

for u ∈ H1(Ω), where ε > 0 is a small parameter, Ω ⊂ Rn is a bounded open set, and W : R → R+ is a given
(double well) potential. The function u is constrained (via the boundary datum) to satisfy −1 ≤ u ≤ 1, and the
potential is such that W (±1) = 0 and W (t) > 0 for t ∈ (−1, 1).

Prominent examples of such potentials W are given by the family of functions (Wα)0≤α≤2,

Wα(u) :=

{
(1− u2)α for 0 < α ≤ 2,

1(−1,1)(u) for α = 0,

which give rise to the energy functionals

J α
ε (u; Ω) :=

ˆ
Ω

{
ε|∇u|2 + 1

ε
Wα(u)

}
dx, for α ∈ [0, 2]. (1.1)

This family of functionals was investigated by Caffarelli and Córdoba [17] in what is considered one of the founda-
tional papers in the Allen–Cahn literature. The case α = 2 corresponds to the classical Allen–Cahn energy [3]—see,
e.g., [23] and references therein. The cases α ∈ [0, 2) are considered, for example, in [17,18,35,56,65,84,85,88] (and
also mentioned in [78–80]).

1.2. De Giorgi conjecture and its stable version. In 1978, De Giorgi stated the following celebrated conjecture
[47]:

Every solution u : Rn+1 → [−1, 1] to the Allen–Cahn equation ∆u = u− u3
(equivalently, every critical point of the functional J 2

1 defined in (1.1))
that satisfies ∂n+1u > 0 must be one-dimensional1, at least for n ≤ 7.

This conjecture, often regarded as a PDE analogue of the classical Bernstein problem for minimal surfaces, has
inspired substantial research over the past decades and has been resolved in certain cases: for n = 1 by Ghoussoub
and Gui [45], and for n = 2 by Ambrosio and Cabré [8] (see also [2]). In higher dimensions, Savin [78] proved
the conjecture for n ≤ 7 under the additional assumption that u is an energy minimizer. For n ≥ 8, del Pino,
Kowalczyk, and Wei [33] constructed counterexamples showing that the conjecture fails in these dimensions.

It is well-known that solutions that are monotone in some direction are stable, namely, the second variation of
J 2
1 is non-negative (see [2, Corollary 4.3]). Motivated by this fact, a stronger form of De Giorgi’s conjecture—often

called “the stable De Giorgi conjecture”—asserts the following:

Every stable solution u : Rn → [−1, 1] of the Allen–Cahn equation in Rn must be one-dimensional for n ≤ 7.

1That is, u(x) = ϕ(e · x) for some ϕ : R → [−1, 1] and e ∈ Sn−1.
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It is a known fact that the classical De Giorgi’s conjecture for monotone solutions in Rn+1 follows from its stable
version in Rn.2

The stable form of De Giorgi’s conjecture has been proven only in dimension n = 2 in [8, 45]. For 3 ≤ n ≤ 7 it
remains an open problem, while for n ≥ 8 counterexamples exist [64, 75]. Again, Savin established the result for
n ≤ 7 under the additional assumption that u is an energy minimizer [78–80].

It is worth emphasizing that both the De Giorgi’s conjecture and its stable form, as well as the implication
between them, are expected to hold for general double-well potentials. In fact, the majority of positive or partial
results in the literature concerning either conjecture have been established directly in this more general setting.

Let us also mention that, in some applications (see, e.g., [28]), it suffices to classify stable solutions to Allen–Cahn
in Rn satisfying the bounded energy growth condition

sup
R>0

R1−nJ 2
1 (u,R) < +∞. (1.2)

However, even under this additional assumption—which guarantees, using [51, 82], that blow-downs converge to
hyperplanes with integer multiplicity in the appropriate sense3—the stable form of De Giorgi’s conjecture has only
been verified for n = 3 in [8].

1.3. The connection to minimal surfaces. Modica and Mortola [73] rigorously established in 1977 the profound
connection between phase transitions and minimal surfaces. They showed that, as ε→ 0, minimizers of the energy
Jε converge (in L1

loc, up to subsequences) to the characteristic functions of sets with minimal perimeter.
Motivated by this result, De Giorgi proposed his conjecture in 1978 [47] as an analog of the classical Bernstein

problem for area-minimizing graphs. Similarly, its stable version corresponds to the well-known problem of classi-
fying complete, embedded, two-sided, stable minimal hypersurfaces in Rn for n ≤ 7, see [22,25–27,34,44,70,77].

The influence of minimal surface theory is evident in many foundational developments in the study of the
Allen–Cahn equation. Some examples are:

• The Caffarelli–Córdoba density estimate for {J α
ε }α∈[0,2] [17] mirrors a similar property of minimal surfaces.

• The excess decay results of Savin [78] and Wang [89] for J 2
ε draw inspiration from the cornerstone theorems

of De Giorgi and Allard in minimal surfaces.
• Modica’s monotonicity formula for the Allen–Cahn equation [71,72] is a clear analogue of Fleming’s mono-
tonicity formula for minimal surfaces.

• The half-space theorems for the Allen–Cahn equation [49] are inspired by classical results for minimal
surfaces.

It is worth emphasizing that these deep connections and analogies (of which the above points are just a few
examples) between minimal surface theory and the class of functionals Jε are valid for a very general class of
double-well potentials W that includes the family {Wα}α∈[0,2]. This fact has been well known to experts for some
time (and has been confirmed in numerous works throughout the literature—see, e.g., [17, 18, 35, 56, 65, 78–80, 84,
85, 88]). In particular, not only have techniques from minimal surface theory been adapted—often with significant
modifications—to the study of phase transitions, but there are also striking instances where methods based on
Allen–Cahn type equations have led to novel results in geometric analysis (see, for example, [28,69]).

1.4. Recent progress and challenges in stable phase transitions. In recent years, significant progress has
been made in the study of stable solutions to the Allen–Cahn equation: Wang and Wei [90, 91] and Chodosh
and Mantoulidis [28] have established key results on interface regularity and sheet separation estimates for stable
solutions.

Even more recently, substantial advances have been achieved in understanding stable minimal hypersurfaces.
The long-standing question of classifying complete minimal immersed hypersurfaces in Rn for n ≤ 7—the analog of
the stable De Giorgi conjecture—has been resolved in dimensions n ≤ 6; see [22,25–27,70].

However, while the classification of complete stable minimal surfaces in R3 has been established since the 1980s
[34, 44, 77], the stable version of De Giorgi’s conjecture in R3 remains unresolved. Put simply, despite significant

2Indeed, let u : Rn+1 → R be a solution of the Allen–Cahn equation satisfying ∂n+1u > 0. First, since u is stable (being monotone),
one easily deduces that also the two functions u±(y) = limxn+1→±∞ u(y, xn+1) are stable. Hence, if the conjecture for stable solutions

is true in Rn, then the two limits u± must be one-dimensional. One then checks that the one-dimensional solution is unique and

increasing, so the functions u± are one-dimensional and increasing. This allows one to apply [54, Theorem 1.3] and deduce that u is a
minimizer, thus [78] applies and one concludes that also u is one-dimensional.

3More precisely, Hutchinson and Tonegawa [51] showed that diffuse varifolds, constructed from the energy density and gradient
direction of solutions to the Allen–Cahn equation, converge as ε→ 0 to stationary integral varifolds, which generalize minimal surfaces

and allow for singularities.
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progress and the development of sophisticated tools to study stable minimal surfaces and phase transitions, some
deeper yet more rudimentary obstacles have prevented a proof of the conjecture in its stable form for decades.

Even after Savin’s breakthrough regularity results in 2009 [78], which fully settled the case of minimizers of J α
ε

for all α ∈ [0, 2], the stable counterpart has remained elusive over the entire range of α (including the endpoint
α = 2). As we shall discuss now, addressing these challenges requires the creation of new techniques.

A first deep heuristic obstacle is that while the large-scale behavior for absolute minimizers of scale-dependent
energies (which tend to the perimeter at large scales) mimics that of minimal surfaces, this correspondence does
not need to hold for stable critical points. As a concrete example, consider the functional

Pε(E) :=

ˆ
∂E

(
1 + ε2 |II∂E |2

)
dH2, E ⊂ R3, (1.3)

where II∂E denotes the second fundamental form of the boundary of E. One can observe that Pε behaves similarly
to the perimeter on large scales (or, equivalently, as ε → 0) and, in fact, it admits a Modica–Mortola-type Γ-
convergence result. However, one can check that a catenoid of neck size r > 0 is a stable critical point for this
functional if and only if r ≤ c ε (where c is a universal constant). Hence, although the minimizers of Pε do enjoy
an ε-independent regularity theory (much like Savin’s theory for J α

ε ), stable critical points for Pε do not possess
such uniform regularity; see [86] for further discussion.

On a more technical level, whenever one attempts to adapt classification proofs from minimal surfaces to the
Allen–Cahn setting, the following recurring difficulty arises: The elegant formulas and identities (e.g. Simons’
identity, Gauss–Bonnet, etc.) that are fundamental in minimal surface theory:
- either do not admit “perturbative” analogs for Allen–Cahn;
- or, even in situations where they do, the usefulness of the “generalized identities” is far from clear.

These obstructions underscore why the classification of stable phase transitions remains both challenging and
intriguing.

1.5. The Allen–Cahn model with a step potential. Motivated by the challenges described above, the primary
objective of this work is to overcome, for the first time, the aforementioned barriers and introduce new methods and
tools to prove a classification result for stable solutions of a free boundary version of Allen–Cahn. Specifically, we
consider stable critical points u : R3 → [−1, 1] of J 0

1 (i.e., with the step potential W0). This corresponds to looking
at solutions of the free boundary problem{

∆u = 0 in {|u| < 1}
|∇u| = 1 on ∂{|u| < 1}

(1.4)

(corresponding to the first variation of the functional J 0
1 ) that satisfy the stability inequalityˆ

{|u|<1}

(
|D2u|2 − |∇|∇u||2

)
ξ2 dx ≤

ˆ
{|u|<1}

|∇u|2 |∇ξ|2 dx for all ξ ∈ C∞
c (R3) (1.5)

(see Definition 10.1 and Lemma 10.2). For simplicity, to give a proper meaning to the equations above, we will
assume that the free boundaries ∂{|u| < 1} are smooth surfaces and that u is a classical solution of the PDE (namely,

u ∈ C2({|u| < 1}) ∩ C1
(
{|u| < 1}

)
). However, these are mere qualitative assumptions (see also Remark 1.8(iii)

below).

On a technical level, the case α = 0 (and, more generally, when 0 ≤ α < 2) has a substantial difference compared
to the classical Allen–Cahn case α = 2. Specifically, when α < 2, the solutions satisfy a free boundary problem
rather than a global semilinear PDE. A practical consequence of this distinction is that in a bounded region Ω ⊂ R3

where the free boundaries are nearly flat, two neighboring “layers” or “sheets” (i.e., distinct connected components
of {|u| < 1} ∩ Ω) do not interact via the PDE and therefore remain entirely independent. In this respect, the
situation is more analogous to minimal surfaces, where different sheets do not influence one another. In contrast,
for α = 2 (the classical Allen–Cahn equation), even nearly flat layers interact through the underlying semilinear
PDE. Analyzing these interactions requires sophisticated analytical tools, such as the Toda system, as developed
in the works of Wang–Wei [89,90] and Chodosh–Mantoulidis [23].

That said, the primary difficulties in establishing the stable De Giorgi conjecture in R3 do not arise (at least not
exclusively) from layer interactions, which are now relatively well understood [23,89,90]. Indeed, in this context, the
Pε example in (1.3) is particularly revealing: despite the absence of interactions between distinct sheets, stability
remains compatible with the presence of small necks in solutions. This demonstrates that the main obstructions lie
elsewhere.
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One of the main purposes of this paper is to shed light on obstructions beyond sheet interactions and develop
new techniques to tackle them. In this paper, we will focus on the case α = 0, but we believe that combining the
ideas developed here with the techniques from [23,89,90] will ultimately pave the way to addressing the case α = 2.

1.6. Microscopic necks: a new “enemy.” Even if the free boundary formulation avoids certain layer-interaction
issues, it gives rise to another profound difficulty: In principle, two nearly flat free boundaries corresponding to
u = +1 (or u = −1) could be joined by a microscopic neck of size r ≪ 1. Such a tiny neck contributes only a small
amount (proportional to r) to the left-hand side of the stability inequality (1.5); hence, having (possibly many)
such microscopic necks might still be compatible with stability.

Concretely, suppose that inside B1 ⊂ R3 we have {u = 1}∩B1 = ∅. Then the function 1+u is a stable solution
of the one-phase Bernoulli problem in B1 (see below). Yet it is known—see [66]—that certain global Bernoulli
solutions (when rescaled) produce free boundaries with necks of arbitrarily small radius r ≪ 1. Existing examples
of this type tend to be unstable (albeit with finite Morse index, hence “not too unstable”), but the question remains
whether such “microscopic-neck” configurations could ever be stable.

A significant portion (circa 80%) of this paper is devoted to investigating these microscopic-neck configurations
for the Bernoulli problem and proving that they must be necessarily unstable. This is a delicate problem requiring
refined PDE estimates and geometric arguments, which we will describe more thoroughly later. In essence, the chal-
lenge is to show that any purportedly stable configuration with infinitely many small necks leads to contradictions
with certain integral inequalities or regularity properties.

1.7. The one-phase Bernoulli problem. The one-phase Bernoulli free boundary problem arises from the study
of the Alt–Caffarelli energy functional, namely,

E(u; Ω) =
ˆ
Ω

{
|∇u|2 + 1{u>0}

}
dx,

where Ω ⊂ Rn is a bounded open domain, and u ∈ H1(Ω). Here, the function u is constrained to satisfy u ≥ 0.
First studied in 1981 by Alt and Caffarelli [4], the problem has received a lot of attention to date (see the

monographs [20, 87] for a nice introduction). Serving also as a model for semilinear PDEs, the study of the
Bernoulli problem has gathered many tools and ideas from the theory of minimal surfaces, to the point where
there is a formally established connection between the Bernoulli problem in dimension 2 and minimal surfaces in
dimension 3 [83]. This interplay highlights a geometric variational structure in the problem, bridging techniques
from elliptic PDEs and geometric analysis.

In this direction, the regularity theory for free boundaries in minimizers mirrors that for minimal surfaces (with
a shift in one dimension): a monotonicity formula, paired with a blow-up argument and an improvement of flatness,
reduces the study of regular free boundaries to the classification of 1-homogeneous global solutions. The currently
known results assert that minimizers have smooth free boundaries up to dimension 4 [19,55], while there are singular
solutions in dimension 7 [31]. In dimensions 5 and 6 it remains as a challenging open problem.

Most of the theory for the one-phase problem has been developed for minimizers, such as the study of graphical
solutions [31,36], the uniqueness of blow-ups at isolated singular points [37], generic regularity [42], vectorial prob-
lems [43], etc. In recent years there has been a shift in trying to understand other solutions that do not necessarily
arise as absolute minimizers: the rectifiability of free boundaries for stationary solutions [61], the nondegeneracy
of stable solutions [57], the study of solutions in the plane [50, 52, 83] and higher dimensions [66], solutions with
infinite topology [10, 53], etc. Even so, some fundamental questions remain open, with one of the most important
being:

Do global classical stable solutions of the Bernoulli problem in Rn have flat free boundaries, if n ≤ 6?

It is well known that such a global rigidity result is equivalent to a local regularity property on curvature estimates
for the free boundary of stable solutions (see, e.g., [57] or the proof of Corollary 1.7 below). For n = 2, the answer to
the previous question is affirmative thanks to a log cut-off argument that works for any semilinear PDE [39,40,57].
For n ≥ 7, the answer is negative by the recent construction in [32]. One of the main results of the present paper
is to positively answer the previous question for n = 3. The other dimensions remain a major open problem.

1.8. Contributions of the paper. Our first main result establishes the validity of the stable De Giorgi conjecture
for the functional J 0

1 when n = 3:

Theorem 1.1. Let u : R3 → [−1, 1] be a classical stable critical point of J 0
1 (i.e., a global classical stable solution

of (1.4), see Definition 10.1). Then D2u ≡ 0 in {|u| < 1} and u is one-dimensional.

As a first corollary, we obtain the corresponding result for monotone solutions in dimension 4:
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Corollary 1.2. Let u : R4 → [−1, 1] be a classical solution of (1.4) (see Definition 10.1) satisfying ∂4u > 0 in
{|u| < 1}. Then D2u ≡ 0 in {|u| < 1} and u is one-dimensional.

Combining Theorem 1.1 with the ε-robust C1,1-to-C2,α estimates for the level sets of solutions to (1.4)—see
[9]—we can also show the following:

Corollary 1.3. Let B1 ⊂ R3 and let uε : B1 → [−1, 1] be a classical stable critical point4 of J 0
ε in B1, for ε > 0

universally small. Assume that ∂{|uε| < 1}∩B1/2 ̸= ∅. Then, the principal curvatures of the level sets of uε inside
B1/2 are bounded by a universal constant.

Remark 1.4. As in the Allen–Cahn setting [28,91], once uniform curvature estimates for the level sets of the solutions
uε are established, the main result in [9] implies that their mean curvature goes to zero at an algebraic rate in ε.
This reflects the natural expectation that the level sets approximate minimal surfaces in the limit as ε→ 0.

As mentioned above, one of the most delicate estimates is to show that, thanks to stability, the free boundaries
satisfy universal curvature bounds. This can be phrased as a regularity result for the Bernoulli problem, which is
of independent interest:

Theorem 1.5. Let u : R3 → [0,∞) be a classical stable solution to the one-phase Bernoulli problem (see Defini-
tion 3.1). Then D2u ≡ 0 in {u > 0}. In particular, the free boundary consists of either one or two hyperplanes.

As a consequence, we obtain two corollaries. The first one is a classification of monotone solutions in R4:

Corollary 1.6. Let u : R4 → [0,∞) be a classical solution to the one-phase Bernoulli problem (see Definition 3.1)
satisfying ∂4u > 0 in {u > 0}. Then D2u ≡ 0 in {u > 0} and u is one-dimensional.

The second are curvature estimates for local stable solutions to the Bernoulli problem:

Corollary 1.7. Let B1 ⊂ R3 and let u : B1 → [0,∞) be a classical stable solution to the one-phase Bernoulli

problem (see Definition 3.1). Then |D2u| ≤ C in B1/2 ∩ {u > 0}, with C universal. In particular, the principal
curvatures of the free boundary are universally bounded.

Some comments are in order:

Remark 1.8. (i) Sharpness of the result: For every n ≥ 2, there exist classical solutions to the one-phase Bernoulli
problem with catenoid-like free boundaries that have finite Morse index. In particular, these solutions are stable
outside a compact set; see [66, 83]. Moreover, for n = 2, the Morse index has been shown to be exactly 1 [11]. In
view of these examples, the stability assumption in Theorem 1.5 is necessary.
(ii) The role of n = 3: Concerning Theorem 1.5, the assumption n = 3 is used to exploit a test function introduced
by Jerison and Savin in [55] to classify minimizing homogeneous solutions in R4. In view of this connection, it
seems likely to us that if one could prove that minimizing homogeneous solutions in Rk+1 are flat (which can be
true only for k ≤ 5), then our result could be extended to Rk. Less crucially, the fact that n = 3 is also used in the
classification of blow-downs in Proposition 4.1.
Regarding Theorem 1.1, the dimensional assumption is used both to apply Corollary 1.7 and to exploit an argument
from [77] based on Gauss–Bonnet. Still, if one could extend Theorem 1.5 (and thus Corollary 1.7) to higher
dimensions, in view of the recent breakthroughs in the classification of stable minimal surfaces [22, 25–27, 70], it
seems plausible to us that one could attack Theorem 1.1 in higher dimensions as well.
(iii) About the “classical solution” assumption: Since in R3 local minimizers (i.e., solutions that minimize the
energy with respect to sufficiently small perturbations5) are classical stable solution, Corollaries 1.3 and 1.7 apply
to them. More generally, the curvature estimates from Corollaries 1.3 and 1.7, as well as the classification results
from Theorems 1.1 and 1.5, apply to all weak solutions that arise as local limits of classical stable solutions. This
constitutes the largest class for which such results can be expected to hold6.

1.9. Structure of the paper. The paper is organized as follows. To better guide the reader through the main
arguments and techniques employed in the paper, in the next section we present a detailed overview of the key
ideas and structure of the proofs of our main results. Then, Sections 3–9 are dedicated to proving Theorem 1.5 and
Corollaries 1.6 and 1.7, which form the backbone of our analysis. Building on these results, Section 10 addresses
the proofs of Theorem 1.1 and Corollaries 1.2 and 1.3, which crucially depend on Corollary 1.7.

4Notice that uε is a classical stable critical point of J 0
ε in B1 if and only if uε(ε · ) is a classical stable critical point of J 0

1 in B1/ε.
5That is, a function u that minimizes the energy among all functions v ∈ u+H1

0 (B1) with ∥v − u∥H1(B1)
< δ for some δ > 0.

6For instance, in the Bernoulli problem, the function R2 ∋ (x1, x2) 7→ |x1x2| is a stationary critical point that is stable under domain
variations. However, this is a spurious example. In particular, because of our results, it cannot be locally approximated by classical

solutions, nor can it arise as a limit of solutions to a regularized problem −∆u + εF ′(u/ε) = 0, where F is a mollified version of the
indicator function of (0,+∞).
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2. Overview of the Proofs

We now give a detailed overview of the structure of the proofs and the main ideas involved. The paper is
structured following the logical dependencies of the results, and as such, the first part (Sections 3–9) is devoted to
showing Theorem 1.5 and Corollaries 1.6 and 1.7.

2.1. The Bernoulli problem: Sections 3–9. The main goal of these sections is to prove Theorem 1.5. The key
steps and main components of the proofs, along with their corresponding locations in the paper, are outlined below.

2.1.1. The objects and their properties. In Sections 3–6, we introduce the basic objects of interest and definitions,
and all the necessary properties that will be used in a contradiction argument.

1. A useful reduction. In Lemmas 3.2 and 5.1 we show that if there exists a classical stable solution ū to the Bernoulli
free boundary problem in R3 with D2ū ̸≡ 0, then there must exist a classical stable solution u : R3 → [0,∞)
satisfying the bounds

|∇u| ≤ 1 in R3, |D2u| ≤ 1 in {u > 0}, 0 ∈ FB(u), |D2u(0)| = 1,

where FB(u) = ∂{u > 0} denotes the free boundary of u (cf. [57]). Throughout the paper, we will assume that
u is as above and our goal will be to reach a contradiction.

2. Preliminary results. In Section 3 we start with some preliminary results on classical solutions to the Bernoulli
problem: e.g., some variants of ε-regularity (Lemmas 3.7, 3.8, and 3.11) and a density estimate (Lemma 3.5).

Then, in Section 4 we recall and establish some facts about classical stable solutions. For example, it is
well-known that the stability inequality (see (A.1)–(A.2)) can be written in a Sternberg–Zumbrun form (as in
[81]; cf. Lemma 4.3 below). An immediate consequence is that, for all y ∈ R3 and R > 0, we have

R2

 
BR(y)∩{u>0}

|D2u|2 dx ≤ C,

where C > 0 is a universal constant.

3. Blow-down to vee. A first consequence of stability is that the blow-down of a non-trivial global solution must
be a vee (Proposition 4.1). More precisely, we show that there exists a universal modulus of continuity ω for
which the following holds: If y ∈ FB(u) is such that |D2u(y)| ≥ 1/ϱ > 0 (ϱ ≥ 1 can be thought of as a radius of
curvature), then for all R ≥ 1 there exists e = e(y,R) ∈ S2 such that∥∥u− Vy,e∥∥L∞(BR(y))

≤ ω(ϱ/R)R,

where Vy,e is a vee, namely, a solution of the form

Vy,e(x) := |e · (x− y)|.

4. Threshold radius, neck centers, neck radii, and ball tree. Given y ∈ FB(u) we will define its associated threshold
radius r⋆(y) as follows:

r⋆(y) := sup
{
r > 0 :

ˆ
Br(x)∩{u>0}

|D2u|3 dx < η30

}
,

where η0 > 0 will be a (fixed) small universal constant.
In Subsection 5.3 we establish the existence of a discrete set Z ⊂ R3 (countable and locally finite), which we

refer to as neck centers, satisfying the following:

|D2u(x)| ≤ C

dist (x,Z)
∀x ∈ {u > 0}, and |D2u| ≤ C

r⋆(z)
in Br⋆(z)(z) ∀ z ∈ Z,

see Lemma 5.6 and Corollary 5.4. The threshold radius at a neck center is called the neck radius.
The term “neck” is motivated by the following properties:
• Away from necks, the free boundary consists of two (regular, nearly flat) disconnected sheets, and the
positivity set {u > 0} consists of two disjoint connected components. (See Lemma 5.14 for a precise
statement.)
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• Within a ball centered at a neck center with a radius comparable to the neck radius, the positivity set
becomes connected through a neck-like region. (See Lemma 5.8 for a precise statement.)

In addition, in Lemma 5.7 we show that, when centering at any given neck center and observing at a scale much
larger than the neck radius, the solution u becomes arbitrarily close to a vee. These structural properties imply
that {u > 0} can be covered by a hierarchy of balls organized into a rooted tree structure, which we call the ball
tree. This covering consists of three types of balls:
• Branching balls: regions where the free boundary is concentrated within a thin slit, requiring further
subdivision into smaller balls.
• Neck balls: regions where the two disconnected positivity components merge, and the free boundary has a
radius of curvature comparable to the ball radius.
• Regular balls: regions where the free boundary has two regular nearly flat components.

See Figure 1 and Proposition 5.12 for further details.

5. Symmetric L2 excess. For z ∈ Z and R > 0, we introduce the dimensionless quantity

Ez(u,R) := min
e∈S2

√
1

R2

 
BR(z)

|u− Vz,e|2 dx. (2.1)

Small excess, small neck radii: The goal of Section 6 (see Proposition 6.1) is to show that neck radii are controlled
by Ez. More precisely, we prove that for any γ ∈ (0, 49 ), z ∈ Z, and R > 0, we have

sup

{
r⋆(z

′)

R
: z′ ∈ Z ∩B3R/2(z)

}
≤ CγEz(u, 8R)

3γ . (2.2)

Note that, by choosing γ > 1
3 , (2.2) implies that neck radii decay superlinearly with the symmetric excess—a

crucial insight that lays the groundwork for the rest of the proof.
The proof of (2.2) builds on the Jerison–Savin test function in [55]: there exists a 1-homogeneous function F

of the Hessian such that c = F (D2u)1/3 is a subsolution of the linearized equation. In particular,

I(u,BR(y)) : =

ˆ
BR(y)∩{u>0}

c∆c dx+

ˆ
BR(y)∩∂{u>0}

c(cν +Hc) dH2 ≤ C

R2

ˆ
B2R(y)∩{u>0}

c2 dx, (2.3)

where H is the mean curvature of the free boundary, and all the integrands are non-negative. This motivates
the definition of yet another dimensionless quantity:

ϱz(u,R) :=
1

R
I(u,BR(z))

3. (2.4)

From here, to establish (2.2), we argue as follows:
(i) first, we bound the left-hand side of (2.2) by ϱz(u, 2R);
(ii) then, we bound ϱz(u, 2R) by the right-hand side in (2.2).

Step (i) is done in Proposition 6.2, by estimating I
(
u,Br⋆(z)(z)

)
from below in a neck ball (Lemma 6.8).

Step (ii) is done in Proposition 6.1, where the stability inequality (2.3) is combined with a new ingredient: a local

Lγ′
estimate, with γ′ ∈ (0, 1/2), for D2u in B2R(z)∩ {u > 0} in terms of the excess Ez(u, 4R) (see Lemma 6.6).

This new delicate estimate strongly relies on the ball tree structure described in point 4 above.

2.1.2. Sketch of the global contradiction argument. Very roughly, our strategy to prove Theorem 1.5 by contradiction
in Sections 7–9 can be summarized as follows:

(i) Assuming the neck set is non-empty, we pick a sequence of carefully chosen balls BRk
(zk) —with zk neck

centers and Rk →∞ as k →∞— for which Ezk
(u, 8Rk) =: εk ↓ 0.

(ii) By exploiting some special properties of the balls BRk
(zk) we prove the existence of new centers z′k ∈ BRk

(zk)
and scales R′

k ≪ Rk (as k →∞) such that

Ez′
k
(u,R′

k) ≤ εk(R′
k/Rk)

χ, for some χ > 0. (2.5)

(iii) Then, by using a new Monneau–Weiss-like approximate monotonicity formula with logarithmic errors, we
show that the smallness of the excess in BR′

k
(z′k) necessarily propagates to the larger ball, up to logarithmic

errors:

εk = Ezk
(u,Rk) ≤ CEz′

k
(u, 4Rk) ≤ C log(Rk/R

′
k)Ez′

k
(u,R′

k) ≤ C(R′
k/Rk)

χ log(Rk/R
′
k) εk. (2.6)

For k sufficiently large this provides a contradiction, since R′
k/Rk → 0 as k →∞.
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One of the cornerstones of the strategy outlined above is establishing a geometric excess decay between BRk
(zk)

and BR′
k
(z′k). This decay is typically obtained through a linearization procedure, akin to those developed by

De Giorgi or Allard for minimal surfaces. In this case, however—as explained further below—the situation is
considerably more intricate: for a potentially large subset of center-scale pairs, the linearization approach may not
be applicable.

Indeed, given a neck center z and a scale R > 0, suppose we aim to improve the excess from BR(z) to BR/4(z).
If the neck balls are very small (relative to R) and densely scattered throughout BR(z)—a scenario that is entirely
consistent with the estimate (2.2)—any attempt at linearization within this ball would be futile. A strategy
completely different from linearization is required at these scales: we must harness instead the density of neck balls
in a way that works to our advantage, enabling some form of improvement that can then be leveraged at smaller
scales.

To address this challenge, we develop a new dichotomy-type argument that improves the excess for fundamentally
different reasons at scales where linearization is possible and at scales where it is not. Interestingly, we are able to
establish such “dichotomic” excess decay only around certain carefully selected neck centers; however, this suffices
for our purposes.

We now describe in greater detail the main steps involved in the strategy described above.

6. Careful selection of optimal center and scale. Fix constants α ∈ ( 34 , 1) and γ ∈ (0, 49 ) such that 3αγ > 1. In
Subsection 7.1, by suitably optimizing (with respect to z and R) the quantity

Ez(u, 8R)

ϱz(u, 2R)α
,

we will show that there exist sequences Rk →∞ and zk ∈ Z such that

εk := Ezk
(u, 8Rk)→ 0 as k →∞ (2.7)

and for which, in addition, the following crucial property holds:

Ez(u, 8R) ≤ 2εk
ϱz(u,R)

α

ϱzk
(u,Rk)α

for all z ∈ Z, R ≤ Rk, (2.8)

see Lemma 7.1. It is worth emphasizing that the decay via dichotomy from the next steps crucially relies on the
property (2.8), which holds only because of the careful selection of centers zk and scales Rk.

7. Excess improvement when linearization is not possible. For ζ ∈ (0, 14 ) and a given ball BR(z) ⊂ R3, we define
the following quantity:

N
(
ζ,BR(z)

)
:= (ζR)−3

∣∣∣∣ ⋃
z′∈Aζ

z,R

BζR(z
′)

∣∣∣∣, where Aζ
z,R :=

{
z′ ∈ BR(z) ∩ Z : r⋆(z

′) ≤ ζR
}
. (2.9)

Essentially, N(ζ,BR(z)
)
is the number of balls of radius ζR needed to cover all neck centers with associated neck

radius smaller than ζR. In some sense, the map ζ 7→N(ζ,BR(z)
)
quantifies the effective Minkowski dimension

of the neck centers inside BR(z). This is essential because—as explained above—if neck centers are too densely
scattered, any linearization attempt would be futile, and we need a different argument at that scale.

Here a key idea is that—thanks to the careful selection of BRk
(zk)—whenever N(ζ,BRk

(zk)) is “too large”
for some resolution parameter ζ ∈ (0, 1), which would obstruct linearization, one can always find a smaller ball
of radius ζRk contained within BRk

(zk) that still satisfies the key property (2.8), possibly in an even stronger
form.

This observation allows us to show (see Lemma 7.3) the existence of a new ball BR̃k
(z̃k) ⊂ BRk

(zk), and

ε̃k ≤ εk, such that, for some β◦ > 0 small:

N
(
ζ,BR̃k

(z̃k)
)
< Cζ−

1+β◦
3 for all ζ ∈ (0, 14 ),

Ez(u, 8R) ≤ 2
(

R̃k

R

)α
ε̃k for all z ∈ Z with BR(z) ⊂ BR̃k

(z̃k) and R ≥ ε̃1/αk R̃k.
(2.10)

Thanks to (2.10), we can show that linearization can be performed within BR̃k
(z̃k) (see point 8 below), therefore

obtaining a geometric decay of the excess.
It is interesting to emphasize that this procedure to pass from BRk

(zk) to BR̃k
(z̃k) involves a change in the

center. This is non-standard in excess decay schemes, but it is necessary and effective for our purposes.

8. Linearization regime: splitting of {u > 0} and decay of an asymmetric excess. As already mentioned, thanks to
(2.10), we can perform a linearization argument inside BR̃k

(z̃k) to improve the excess, and this can be iterated
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for a number of scales comparable to | log ε̃k|. However, for this linearization step, the symmetric excess is not
the appropriate quantity to consider, and we will need to define an asymmetric L1 excess as follows.

First, exploiting the tree structure described in point 4 above, in Subsection 7.2 we construct two disjoint
open subsets U± such that

U∗ ⊂ U := {u > 0} ∩BR̃k
(z̃k), ∗ ∈ {+,−}.

The sets U+ and U− are essentially the two components (roughly half-spaces) in which the positivity set is split
when removing all the necks (see Lemma 7.7).

Then, in Section 8 we define the asymmetric excess Az(u,R) for balls BR(z) ⊂ BR̃k
(z̃k) as

Az(u,R) := max
∗∈{+,−}

min
a∈S2, b∈R

1

R|BR(z)|

ˆ
U∗∩BR(z)

∣∣u(x)− a · x− b∣∣ dx. (2.11)

Notice that, since we first minimize in a and b, and only later compute the maximum in ∗, the ‘optimal’
approximating planes that achieve the value of the asymmetric excess will have independent coefficients ‘on each
side’.

Now, for fixed ∗ ∈ {+,−}, it is natural to define

v∗(x) :=
u(x)− a∗ · x− b∗

ε̃kR̃k

, x ∈ U∗ ∩BR̃k
(z̃k).

In Section 8 we prove that, thanks to (2.10), the function v∗ is “approximately” a bounded weak solution of

∆w = 0 in BR̃k/2
(z̃k) ∩ {a∗ · x+ b∗ > 0} with ∂a∗w = 0 on BR̃k/2

(z̃k) ∩ {a∗ · x+ b∗ = 0}

(see the proof of Proposition 8.1). For this, the main challenge will be to prove estimates of the type

R̃p−3
k

ˆ
U∗∩BR̃k

(z̃k)/2

|∇v∗|p dx ≲ 1 for some p > 1 and

ˆ
∂U∗∩BR̃k

(z̃k)/2

|(v∗)ν |2 dH2 ≪ 1 (2.12)

(see Proposition 8.4 and Lemma 8.10). Although, from a very “low-resolution” perspective, this approach may
appear similar to the classical linearization methods of Caffarelli and De Silva [16, 30], the key distinction is
that, in our case, the difference in normal derivatives between solutions is small only in an Lp sense, rather than
the usual L∞ bound used in the viscosity approach. This Lp control is crucial because, at necks, the normal
derivative is not small, leading to a large L∞ norm. However, since the necks are relatively sparse and very small
compared to the scale under consideration, the Lp approach remains effective.

While the previous heuristic explanation justifies the use of Lp topology, the actual proof of the linearization in
this setup is much more subtle and requires utilizing all the properties of the ball BR̃k

(zk) described above—see
Section 8 for more details.

9. Conclusion. Thanks to the linearization step we establish (2.5) (see Proposition 8.1 and Lemma 9.2), and then
we can conclude as in (2.6) using the Monneau–Weiss-type monotonicity formula with a logarithmic error from
Lemma 9.1.

Once Theorem 1.5 is established, Corollaries 1.6 and 1.7 follow (see Subsection 9.3).

2.2. The free boundary Allen–Cahn: Section 10. Having now Corollary 1.7 at our disposal, we can proceed
to describe the steps of the proof of Theorem 1.1, which is done in Section 10. We argue by contradiction and
assume that there exists a classical stable critical point of J 0

1 in R3, denoted by u, that is not one-dimensional.

1. We start by recalling the Sternberg–Zumbrun inequality for stable solutions (Lemma 10.2) and Modica’s in-
equality (Lemma 10.4), both in the context of the free boundary Allen–Cahn. Thanks to Corollary 1.7, we also
observe that we have quantitative regularity in the set {|u| < 1} (Lemma 10.5). In particular, there are no
‘microscopic necks’ in the free boundary.

2. We fix δ◦ > 0 small and define the set X (δ◦) in (10.4) as those points z ∈ {|u| < 1} for which the left-hand side
in the Sternberg–Zumbrun inequality (10.2) is larger than δ◦ in a ball B2(z). We want to show that, even if δ◦
is chosen arbitrarily small, X (δ◦) must be empty, which will directly yield our desired result.

To this aim, we define G(δ◦) as the complement7 of X (δ◦) in {|u| < 1}, see (10.5). In particular, it corresponds
to points around which u has flat level sets (in an L2 sense). As a consequence, in Lemma 10.6 we prove pointwise
curvature bounds of the solution u around points in G(δ◦).

7In fact, we need to further divide {|u| < 1} \X (δ◦) into two sets, that we denote G(δ◦) and W(δ◦), according to whether the points
are respectively close or far from the free boundary. Using stability (see Section 10.3), an argument similar to the one described in point

3 here allows us to consider only the set G(δ◦) of points not in X (δ◦) that are close to the free boundary.
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3. The stability inequality in the form of Sternberg–Zumbrun also allows us to show that, for any given Λ > 0,
there exist zΛ ∈ X (δ◦) and RΛ > 1 such that

X (δ◦) ∩BRΛ+Λ(zΛ) ⊂ BRΛ
(z). (2.13)

That is, we can find arbitrarily thick annuli clean from X (δ◦) (even if their radius could be much larger than the
thickness). This is done in Lemma 10.8.

4. For Λ > 0 fixed, given z and R > 0 as in (2.13), the curvature estimates in {|u| < 1} \ X (δ◦) ensure that
the level sets are smooth submanifolds in this region. This makes it conceivable to test stability using a test
function related to the intrinsic distance along the level sets {u = λ} to X (δ◦) ∩ BR(z)—an approach inspired
by Pogorelov’s argument [77] for stable minimal surfaces in R3.

However, before proceeding in this direction, it is necessary to enlarge the set X (δ◦) by evolving it under the
vector flow generated by ∇u. Such a redefinition is possible due to the validity of curvature estimates at points
on the boundary between X (δ◦) and G(δ◦). We denote the resulting enlarged set by B.

The intrinsic distance function along the level set {u = λ} is then denoted by dλB (see (10.17)).

5. Using stability again, by means of a cut-off function with gradient supported on suitably chosen dyadic scales,
we show that for any λ ∈ (−1, 1) there is some r ∈ (Λ1/4,Λ/8) such that

H2({u = λ} ∩ {0 < dλB < 2}) ≤ C

δ◦| log Λ|
H2({u = λ} ∩ {0 < dλB < r})

r2
(2.14)

(see Lemmas 10.14 and 10.15). Moreover, we also obtain in Lemma 10.15 a precise doubling property.

6. In Proposition 10.17 we conclude the proof of Theorem 1.1 as follows. First, we use an integrated version of
Gauss–Bonnet (see Lemma 10.16) to obtain, roughly, that for any level set Σµ = {u = µ},

H2(Σµ∩{1 < dµB < r}) ≤ rH1(Σµ∩{dµB = 1})−
ˆ r

1

ˆ s

1

ˆ 2

1

ˆ
{τ<dµ

B<t}
KΣµ

dH2 dτ dt ds+Cr2H2(Σµ∩{1 < dµB < 2}),

where KΣµ is the Gauss curvature of Σµ. From here one finds that, for all r ∈ (1,Λ/8),

H2(Σµ ∩ {0 < dµB < r}) ≤ 1

4

ˆ
Σµ\X (δ◦)

|AΣµ |2(r − d
µ
B)2+ dH2 + Cr2H2(Σµ ∩ {0 < dµB < 2}),

where |AΣµ |2 is the sum of the squares of the principal curvatures.

Observe now that, due to the existence of a clean annulus (see (2.13)), (r − dµB)2+ is an admissible test
function for the stability inequality, which can be restricted to Σµ (up to a small multiplicative error) in view
of the comparison across different level sets (see Lemma 10.12). Hence, thanks to stability, the co-area formula,
and (2.14), we find the existence of a level set {u = ν} and r ∈ (Λ1/4,Λ/8) for which

H2(Σν ∩ {0 < dνB < r})
r2

≤ 1 + Cη◦
2

· H
2(Σν ∩ {0 < dνB < r})

r2
+

C

δ◦| log Λ|
H2(Σν ∩ {0 < dνB < r})

r2
, (2.15)

where η◦ = oδ◦(1). Choosing first η◦ small and then Λ large, we deduce that H2(Σν ∩ {0 < dνB < r}) = 0, from
which we easily get a contradiction.

Again, once Theorem 1.1 is established, Corollaries 1.2 and 1.3 follow (see Subsection 10.7).

2.3. Notation. Throughout the paper, C > 1 and c ∈ (0, 1) denote generic constants chosen conveniently large
and small, respectively. Dependencies are denoted by subscripts or parentheses.

With Br(y) we denote the ball of radius r > 0 centered at y. When y = 0, we also write Br in place of Br(0).
By Br(A) we denote the r-fattening of a set A ⊂ Rn, namely Br(A) := {x ∈ Rn : dist (x,A) < r}, which can also
be seen as the Minkowski sum Br +A.

Given three sets A1, A2, A3 ⊂ Rn, we say

A1 ⊂ A2 in A3
def⇐⇒ A1 ∩A3 ⊂ A2 ∩A3.

We always assume that a modulus of continuity ω satisfies

ω : [0,+∞)→ [0,+∞) is increasing and concave, with ω(t) ≥ t for all t ≥ 0. (2.16)

Given y ∈ Rn and e ∈ Sn−1, we denote by Vy,e a vee, namely, a function of the form

Rn ∋ x 7→ Vy,e(x) := |e · (x− y)|.
Given a ball Br(y), a unit vector e ∈ S2, and ε ∈ (0, 1), we define a slab as

Slab(Br(y), e, ε) := {x ∈ Br(y) : |e · (x− y)| ≤ εr} = Br(y) ∩ {Vy,e ≤ εr}. (2.17)
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Finally, Hk denotes the k-dimensional Hausdorff measure.

3. The Bernoulli Problem: Preliminaries

3.1. The notions of solution. Given u : BR → R+ := [0,∞) (where BR ⊂ Rn denotes the ball of radius R > 0
centered at 0), we define the Alt–Caffarelli energy functional by:

E(u;BR) =

ˆ
BR

{
|∇u|2 + 1{u>0}

}
dx.

With this definition, critical points of E solve the so-called one-phase Bernoulli problem.
In this paper we are interested in classical solutions of the Bernoulli problem: these are functions u : BR → R+

such that

{u > 0} is locally a smooth domain in BR and

{
∆u = 0 in BR ∩ {u > 0} ,
|∇u| = 1 on BR ∩ ∂ {u > 0} .

(3.1)

The set ∂{u > 0} is called the free boundary and will also be denoted FB(u). In particular, a classical solution
satisfies that {u > 0} is locally the subgraph of a smooth function around each free boundary point (up to a
rotation).

Classical solutions u are stationary critical points of E , that is, they satisfy

d

dt

∣∣∣∣
t=0

F(u ◦Ψt;BR) = 0 for every Ψt(x) := x+ tξ(x) with ξ ∈ C∞
c (BR;Rn). (3.2)

with F = E . Stationary critical points u are called stable if they have non-negative second (inner) variations, i.e.,
they satisfy

d2

dt2

∣∣∣∣
t=0

F(u ◦Ψt;BR) ≥ 0, for every Ψt(x) := x+ tξ(x) with ξ ∈ C∞
c (BR;Rn), (3.3)

for F = E .
In Sections 3–9, a solution will always refer to the one-phase Bernoulli (or Alt–Caffarelli) problem. Moreover,

we will distinguish among the following notions:

Definition 3.1. Let n ≥ 2 and BR ⊂ Rn . In relation to the one-phase Bernoulli problem (i.e., taking F = E in
(3.2)-(3.3)), we say that u ∈ H1(BR) is:

• a stationary solution (or simply stationary) in BR if if satisfies (3.2);
• a classical solution or a classical critical point in BR if it satisfies (3.1) (in particular, it is stationary);
• a stable solution in BR if it is stationary and satisfies (3.3);
• a classical stable solution or classical stable critical point in BR if it satisfies (3.1) and (3.3).

If a function satisfies one of the previous definitions for all R > 0, we call it global.

3.2. Basic geometric properties of the free boundary. We start by presenting some geometric properties of
the free boundary for classical solutions to the Bernoulli problem.

Before that, we recall the following well-known global boundedness of solutions (see, e.g., [57, Proposition A.5]):

Lemma 3.2. Let n ≥ 2 and let u be a classical solution to the Bernoulli problem in Rn. Then |∇u| ≤ 1 in Rn.

A first useful consequence of Lemma 3.2 above is the following dimensional estimate for the area of the free
boundary inside a ball:

Lemma 3.3. Let n ≥ 2, and let u be a global classical solution to the Bernoulli problem in Rn. Then, we have that
for any R > 0 and y ∈ {u = 0} ∩BR,

Hn−1 (FB(u) ∩Bϱ(y)) ≤ Cϱn−1 for all ϱ ∈ (0, R/2),

for some C depending only on n.

Proof. Since ∆u = Hn−1|FB(u), it suffices to consider a smooth non-negative cut-off function φρ ∈ C∞
c (B2ρ) which

satisfies φρ ≡ 1 inside Bρ and |∇φρ| ≤ Cρ−1 to obtain (recall Lemma 3.2)

Hn−1 (FB(u) ∩Bϱ(y)) ≤
ˆ
φρ ∆u = −

ˆ
∇φρ · ∇u dx ≤ Cρ−1∥∇u∥L∞(Rn)|B2ρ| ≤ Cρn−1,

as desired. □

More generally, we have:
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Lemma 3.4 (Area of level sets). Let n ≥ 2, and let u : Rn → [0,∞) be 1-Lipschitz, ∆u = 0 on {u > 0}, and
|∇u| ≥ c◦ in some Ω ⊂ Rn. Then, for any BR(x◦) ⊂ Rn and t > 0,

c◦Hn−1 (BR(x◦) ∩ {u = t} ∩ Ω) ≤ CRn−1,

for some C depending only on n.

Proof. Integrating ∆u by parts inside BR(x◦) ∩ {u ≥ t} (notice that u is harmonic there), we have

0 =

ˆ
BR(x◦)∩{u≥t}

∆u dx =

ˆ
∂BR(x◦)∩{u≥t}

x

|x|
· ∇u dHn−1 −

ˆ
{u=t}∩BR(x◦)

∂νu dHn−1,

where ν is the normal unit vector to {u = t} towards {u ≥ t} (so ∂νu = |∇u|). Therefore,

c◦Hn−1 (BR(x◦) ∩ {u = t} ∩ Ω) ≤
ˆ
{u=t}∩BR(x◦)

∂νu dHn−1 =

ˆ
∂BR(x◦)∩{u≥t}

x

|x|
· ∇u dHn−1 ≤ C(n)Rn−1,

as we wanted. □

The following is a weak nondegeneracy property:

Lemma 3.5 (Clean ball property). Let n ≥ 2. There exists ε◦ = ε◦(n) > 0 such that the following holds.
Let ϱ > 0, y ∈ Rn, and let u be a classical solution to the Bernoulli problem in B2ϱ(y) ⊂ Rn. Suppose that there

is a connected component U of {u > 0} ∩B2ϱ(y) such that

|U ∩B2ϱ(y)| ≤ ε◦ϱn.
Then, U ∩Bϱ(y) = ∅.

Proof. Let ū(x) := 1
ϱ (u1U )(y + ϱx). Notice that ū is a classical solution to the Bernoulli problem in B2 with

FB(ū)∩B1 ̸= ∅ for ε◦ small, with |∇ū| ≤ C and C depending only on n (thanks to [20, Lemma 11.19]). Therefore,
for all r ∈ (0, 2), the divergence theorem applied to ∇ū inside the domain Br ∩ {ū > 0} gives

Hn−1(∂{ū > 0} ∩Br) ≤ CHn−1({ū > 0} ∩ ∂Br). (3.4)

We can then use the argument in the classical proof of the density estimate for sets of minimal perimeter to conclude
that {ū > 0} ∩B1 is empty, which is equivalent to U ∩Bϱ(y) = ∅.

More precisely, let V (r) = |{ū > 0} ∩Br|. Then, by coarea, V (r) =
´ r

0
Hn−1({ū > 0} ∩ ∂Bs) ds. Combining the

isoperimetric inequality in Rn (we denote by c(n) the isoperimetric constant) with (3.4) this implies

c(n)V (r)(n−1)/n ≤ Per({ū > 0} ∩Br) ≤ (C + 1)V ′(r)

for all r ∈ (0, 2). Moreover, by assumption, V (2) ≤ ε◦. Then, a simple ODE analysis reveals that choosing ε◦ small
enough forces V (1) = 0, that is, {ū > 0} ∩B1 = ∅. □

Remark 3.6. The previous lemma is actually a nondegeneracy property of the positivity set for classical solutions.
Namely, if u is a classical solution to the Bernoulli problem and x◦ ∈ {u > 0}, then by Lemma 3.5 applied to the
connected component of {u > 0} containing x◦ we have that, for any r > 0,

|{u > 0} ∩Br(x◦)| ≥ 2−nε◦r
n.

3.3. Regularity estimates for classical solutions to the Bernoulli problem. In this section we present some
basic regularity results for classical solutions. Several of these results actually hold for viscosity solutions, but we
will not discuss this here.

The first result is a classical ε-regularity estimate.

Lemma 3.7 (ε-regularity). Let n ≥ 2. There exists ε◦ = ε◦(n) > 0 such that the following holds.
Let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn. If

∥u− xn∥L∞(B1∩{u>0}) ≤ ε ≤ ε◦, (3.5)

then, for any k ∈ N, there exists Cn,k > 0, depending only on n and k, such that

∥u− xn∥Ck(B1/2∩{u>0}) ≤ Cn,kε and FB(u) ∩B1/2 is a Ck graph, with Ck-norm bounded by Cn,kε.

Moreover, u is analytic in B1/2 ∩ {u > 0}.
Proof. The regularity of the free boundary as well as the nonlinear bounds (i.e. without the dependence on ε) on
the Ck norm of u−xn follow from the classical improvement of flatness and higher order regularity for the Bernoulli
problem (see [30, 58]). The precise linear estimate (i.e., with the bound Cn,kε) stated here follows, e.g., from the
recent results in [63] (see Proposition B.6 in Appendix B). Alternatively, see [32, Proposition 5.1] combined with
Lemma B.1. □



14 HARDY CHAN, XAVIER FERNÁNDEZ-REAL, ALESSIO FIGALLI, AND JOAQUIM SERRA

The next result states that a C2 control follows from L1-flatness. The main part of its proof is presented in
Appendix B.

Lemma 3.8 (L1 to C2 estimate). Let n ≥ 2. There exists ε◦ = ε◦(n) > 0 such that the following holds.
Let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn, withˆ

B1∩{u>0}
|u− a · x− b| dx ≤ ε ≤ ε◦ for some a ∈ Sn−1, b ∈ R.

Then
∥u− a · x− b∥C2(B1/2∩{u>0}) ≤ Cnε,

for some Cn depending only on n.

Proof. Thanks to Proposition B.5, L1-flatness implies L∞-flatness, so the result follows from Theorem B.3 and
Proposition B.6. □

In the next result, we show that a bound on the Hessian implies higher regularity as well, with estimates that
are linear once the Hessian is bounded.

Lemma 3.9 (Higher regularity from the Hessian). Let n ≥ 2, and let u be a classical solution to the Bernoulli
problem in B1 ⊂ Rn satisfying ∥∥D2u

∥∥
L∞(B1∩{u>0}) ≤ C0 (3.6)

for some C0 > 0. Then, for any k ≥ 2,∥∥Dku
∥∥
L∞(B1/2∩{u>0}) ≤ Cn,k max{Ck−2

0 , 1}
∥∥D2u

∥∥
L∞(B1∩{u>0}) ,

for some Cn,k depending only on n and k.

Proof. Let ε = max{C0, 1}−1ε◦, where ε◦ comes from Lemma 3.7, and let x◦ ∈ B1/2 ∩ {u > 0}. We separate into
two cases:

• If dist (x◦,FB(u)) < ε/4, we let y◦ ∈ B3/4 ∩ FB(u) be the closest free boundary point to x◦, and we choose

coordinates such that en = ∇u(y◦). Then uy◦,ε =
u(y◦+ε·)

ε satisfies

∥uy◦,ε − xn∥L∞(B1∩{uy◦,ε>0}) ≤
∥∥D2uy◦,ε

∥∥
L∞(B1∩{uy◦,ε>0}) = ε

∥∥D2u
∥∥
L∞(Bε(y◦)∩{u>0}) ≤ ε◦.

Thus Lemma 3.7 applies and gives

∥uy◦,ε − xn∥Ck(B1/2∩{uy◦,ε>0}) ≤ Cn,kε
∥∥D2u

∥∥
L∞(B1∩{u>0}) .

In particular,

|Dku(x◦)| ≤
∥∥Dku

∥∥
L∞(Bε/2(y◦)∩{u>0}) ≤ ε

1−k ∥uy◦,ε − xn∥Ck(B1/2∩{uy◦,ε>0}) ≤Cn,kε
2−k

∥∥D2u
∥∥
L∞(B1∩{u>0}) .

• If dist (x◦,FB(u)) ≥ ε/4 or FB(u) = ∅, the harmonicity of D2u in Bε/8(x◦) gives the result. □

As a consequence, we also obtain linear bounds with respect to the L1 norm of the Hessian, once it is bounded:

Corollary 3.10 (Ẇ 2,1 controls Ẇ 2,∞). Let n ≥ 2, and let u be a classical solution to the Bernoulli problem in
B1 ⊂ Rn satisfying (3.6). Then,∥∥D2u

∥∥
L∞(B1/2∩{u>0}) ≤ Cn max {Cn

0 , 1}
∥∥D2u

∥∥
L1(B1∩{u>0}),

for some Cn depending only on n.

Proof. Combining the interpolation estimates from Lemma A.2 with the regularity estimate in Lemma 3.9, we get∥∥D2u
∥∥n+1

L∞(B1/2∩{u>0}) ≤ C
∥∥D2u

∥∥
L1(B1/2∩{u>0})

∥∥D3u
∥∥n
L∞(B1/2∩{u>0})

≤ C
∥∥D2u

∥∥
L1(B1/2∩{u>0}) max {Cn

0 , 1}
∥∥D2u

∥∥n
L∞(B1∩{u>0}) .

Applying this estimate to the rescalings uz,r = u(z+r·)
r for Br(z) ⊂ B1, it follows that for any δ ∈ (0, 1) there is

Cδ > 0 such that

rn
∥∥D2u

∥∥
L∞(Br/2(z)∩{u>0}) ≤ Cδ max {Cn

0 , 1}
∥∥D2u

∥∥
L1(B1∩{u>0}) + δrn

∥∥D2u
∥∥
L∞(Br(z)∩{u>0}) .

By a standard covering argument (e.g. [41, Lemma 2.27]), the result follows. □

The following lemma provides an ε-regularity result for solutions that are small in Ẇ 2,n.
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Lemma 3.11 (ε-regularity for the Hessian). Let n ≥ 2. There exists η∗ = η∗(n) > 0 such that, for all η ≤ η∗, the
following holds.

Let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn. Thenˆ
B1∩{u>0}

|D2u|n dx ≤ ηn =⇒
∥∥D2u

∥∥
L∞(B1/2∩{u>0}) ≤ Cnη, (3.7)

for some Cn depending only on n. More generally, for r > 0 and k ≥ 2, we haveˆ
Br∩{u>0}

|D2u|n dx ≤ ηn =⇒
∥∥Dku

∥∥
L∞(Br/2∩{u>0}) ≤

Cn,kη

rk−1
, (3.8)

for some Cn,k depending only on n and k.

Proof. We first show (3.7). Let

x0 ∈ argmax
B1∩{u>0}

(1− |x|)|D2u(x)|, r0 := 1− |x0|, L0 := |D2u(x0)|,

and we suppose by contradiction that, for some C∗ to be chosen later,

r0L0 > C∗η. (3.9)

Consider now v(y) := L0u(x0 + L−1
0 y). Then v is a classical solution to the Bernoulli problem in its domain. Also,

since |x0 + L−1
0 y| ≤ |x0|+ r0

2 = 1− r0
2 for |y| ≤ r0L0

2 , it follows from the definition of x0 that

|D2v(y)| = L−1
0

(1− |x0 + L−1
0 y|)|D2u(x0 + L−1

0 y)|
1− |x0 + L−1

0 y|
≤ L−1

0

r0L0

r0/2
= 2, for y ∈ Br0L0/2 ∩ {v > 0}.

This implies that the curvature of the free boundary of v is universally bounded inside Br0L0/2. Since 0 ∈ {v > 0}
and |∇v| = 1 on ∂{v > 0}, there exist a point ȳ0 and a dimensional constant cn such that 0 ∈ Bcnr0L0

(ȳ0) ⊂
Br0L0/2 ∩ {v > 0}. Thus x0 ∈ Bcnr0(x̄0) ⊂ Br0/2(x0) ∩ {u > 0} with x̄0 = x0 + L−1

0 ȳ0. In particular, we can apply

Lemma 3.9 with k = 3 to the function r−1
0 u(x0 + r0x) to deduce that

|D3u(x)| ≤ Cn,3
L0

r0
max{1, L0r0}, for x ∈ Bcnr0(x̄0).

This implies that there exists a constant c∗ = c∗(n) > 0 such that

|D2u(x)| ≥ L0 − Cn,3
L0

r0
max{1, L0r0}|x− x0| ≥

L0

2
, for x ∈ Bcnr0(x̄0) ∩Bc∗ min{L−1

0 ,r0}(x0),

therefore

ηn ≥
ˆ
Bcnr0 (x̄0)∩B

c∗ min{L−1
0 ,r0}

(x0)

|D2u|n dx ≥ 2−n|Bcnr0(x̄0) ∩Bc∗ min{L−1
0 ,r0}(x0)|L

n
0 .

Noticing now that |Bcnr0(x̄0)∩Bc∗ min{L−1
0 ,r0}(x0)| ≥ cmin{L−n

0 , rn0 } ≥ cL−n
0 min{1, Cn

∗ η
n} (recall (3.9)), we obtain

ηn ≥ ĉmin{1, Cn
∗ η

n},

for some dimensional constant ĉ = ĉ(n) > 0. However, choosing C∗ large enough so that ĉCn
∗ ≥ 2, this inequality

is impossible if η is small enough. Thus (3.9) does not hold, and we obtain (3.7).
Rescaling by a factor of r, we get (3.8) with k = 2. Finally, Lemma 3.9 (together with a covering argument)

yields (3.8) for all k ≥ 3. □

3.4. Structural results for classical solutions. Here, we present the mean convexity of the free boundary and
the regularity of solutions close to a vee.

Lemma 3.12. Let n ≥ 2, and let u be a global classical solution to the Bernoulli problem in Rn. Let ν denote the
inward unit normal vector to ∂{u > 0} at a given point, and let

v(x) := 1− |∇u(x)|2 for x ∈ Rn. (3.10)

Then v satisfies 0 ≤ v ≤ 1 in Rn, v = 0 on ∂{u > 0}, and{
∆v ≤ 0, in {u > 0},
∂νv = −2∂2ννu on FB(u).

In particular, whenever u is not a half-space solution (x · e)+ or a vee |x · e| for some e ∈ Sn−1, then H = 1
2∂νv > 0

on FB(u), where H denotes the mean curvature of FB(u) at a given point with respect to the outer unit normal −ν.
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Proof. The bound 0 ≤ v ≤ 1 comes from Lemma 3.2. Also, since ∆u(x) = 0 in {u > 0}, a simple computation
yields

∆v(x) = −2 div(D2u(x)∇u(x)) = −2|D2u(x)|2 ≤ 0 for x ∈ {u > 0}
and

∂νv(x) = ∇u(x) · ∇v(x) = −2∇u(x) ·D2u(x)∇u(x) = −2 ∂2ννu(x) for x ∈ FB(u).

In particular, since v is superharmonic, either v ≡ 0 (in which case u is either a half space (x · e)+ or a vee
|x · e|), or ∂νv(x) > 0 on ∂{u > 0} by Hopf’s lemma. Finally, noticing that for x ∈ FB(u) we have ∂2ν(x)ν(x)u =

−
∑n−1

i=1 ∂
2
τi(x)τi(x)

u for some orthonormal basis {τi(x)}1≤i≤n−1 of the tangent plane to FB(u) at x, we deduce that

H(x) =

n−1∑
i=1

∂2τi(x)τi(x)u(x) =
1

2
∂ν(x)v(x) > 0 for x ∈ FB(u),

as we wanted. □

As a consequence of Lemma 3.5, and thanks to the improvement of flatness, one obtains additional properties
needed to upgrade closeness to a vee into regularity:

Lemma 3.13 (Closeness to vee and disconnectedness implies regularity). Let n ≥ 2. There exists ε◦ = ε◦(n) > 0
such that the following holds.

Let u be a global classical solution to the Bernoulli problem in Rn satisfying∣∣u− V0,en ∣∣ ≤ εϱ ≤ ε◦ϱ in B2ϱ, (3.11)

where en is the n-th vector in the canonical basis. Suppose, in addition, that the two points ϱen and −ϱen lie in
different connected components of the open set {u > 0} ∩B2ϱ.

Then
ϱ2∥D2u∥L∞({u>0}∩Bϱ) ≤ Cεϱ

for some C depending only on n. Moreover,

{u > 0} = {xn > g(+)(x1, . . . , xn−1)} ∪ {xn < g(−)(x1, . . . , xn−1)} in Bϱ,

where g(±) : Dϱ → R with Dϱ being the lower dimensional ball {x21 + · · ·+ x2n−1 < ϱ2} in Rn−1, g(−) < g(+), and

∥g(±)∥L∞(Dϱ) + ϱ2∥D2g(±)∥L∞(Dϱ) ≤ Cεϱ.
for some C depending only on n.

Proof. Recalling that V0,en(x) = |xn|, it follows from (3.11) that

{u = 0} ∩Bϱ ⊂ {x ∈ Rn : |xn| ≤ εϱ}.
Let U+ and U− be the connected components of B2ϱ ∩ {u > 0} respectively containing the two points ±ϱen. Then
they necessarily contain the two sets {x ∈ Bϱ : xn > εϱ} and {x ∈ Bϱ : xn < −εϱ} respectively. Also, by assumption
U+ ∩ U− = ∅.

Let ū± := u1U± and observe that ū+ and ū− are classical solutions to the Bernoulli problem in B2ϱ which satisfy

∥ū± ∓ xn∥L∞(B2ϱ∩{ū±>0}) ≤ εϱ.
In particular, we can apply the classical epsilon-regularity theory in Lemma 3.7 to both ū+ and ū− and deduce the
graphicality (hence ordering) of FB(ū±) and the bound

ϱ|D2ū±| ≤ Cε in {ū± > 0} ∩Bϱ.

Moreover, thanks to Lemma 3.5, for ε◦ small enough we have

{u > 0} ∩Bϱ =
(
{ū+ > 0} ∪ {ū− > 0}

)
∩Bϱ,

or, in other words, u = ū+ + ū− in Bϱ. The lemma now follows by Lemma 3.7 applied both to ū+ and ū−. □

The following is a useful auxiliary lemma (recall the notion of Slab introduced in (2.17)):

Lemma 3.14. Let n ≥ 2, and let u be a global classical solution to the Bernoulli problem in Rn. Suppose that for
some y1 ∈ Rn, r1 > 0, and ē ∈ Sn−1, we have

∥u− Vy1,ē∥L∞(Br1
(y1)) ≤ εr1. (3.12)

Then
{u = 0} ∩Br1(y1) ⊂ Slab(Br1(y1), ē, ε) = {x ∈ Br1(y1) : |ē · (x− y1)| ≤ εr1}. (3.13)

Moreover:
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(a) For all y2 ∈ {u = 0} and r2 > 0 such that Br2(y2) ⊂ Br1(y1), we have

∥u− Vy2,ē∥L∞(Br2
(y2)) ≤ 2εr1.

(b) We have

dist (x, {u = 0}) ≤ Cnεr1, for all x ∈ Slab
(
Br1/2(y1), ē, 2ε

)
,

for some Cn depending only on n (in particular, for n = 3 one can choose C3 = 16).

Proof. Equation (3.13) is an immediate consequence of (3.12). We now prove (a) and (b).

(a) It follows from

∥u− Vy2,ē∥L∞(Br2
(y2)) ≤ ∥u− Vy1,ē∥L∞(Br1

(y1)) + ∥Vy2,ē − Vy1,ē∥L∞(Br2
(y2)),

observing that ∥Vy2,ē − Vy1,ē∥L∞(Br2
(y2)) ≤ |ē · (y2 − y1)| = Vy1,ē(y2) ≤ εr1.

(b) Given r < r1/2, we need to prove the following implication:

{u = 0} ∩Br(y) = ∅ for some y ∈ Slab(Bϱ(y1), ē, 2ε) =⇒ r < Cnεr1. (3.14)

Indeed, y ∈ Slab
(
Br1/2(y1), ē, 2ε

)
is equivalent to |y − y1| < r1/2 and |(y − y1) · ē| ≤ 2εr1. Also, since r < r1/2

we have Br(y) ⊂ Br1(y1). Thus, from (3.12) we obtain

u(y) ≤ Vy1,ē(y) + εr1 = |ē · (y − y1)|+ εr1 ≤ 3εr1.

On the other hand, still using (3.12) and the triangle inequality, we get 
Br(y)

u(x) dx ≥
 
Br(y)

|ē · (x− y1)| dx− εr1 ≥
 
Br(y)

|ē · (x− y)| dx− 3εr1 = r

 
B1

|x1| dx− 3εr1 = cnr − 3εr1.

Since
ffl
Br(y)

u = u(y) (recall that u is harmonic in Br(y)), this proves that 3εr1 ≥ cnr − 3εr1, or equivalently

r ≤ 6
cn
εr1, as wanted. (An explicit computation shows that c3 = 3

8 .) □

A variant of Lemma 3.13 that we will also use in the sequel is the following:

Lemma 3.15 (Closeness to vee and bounded Hessian implies regularity). Let n ≥ 2. Given C1 ≥ 1 there exists
ε1 > 0, depending only on n and C1, such that the following holds.

Let u be a global classical solution to the Bernoulli problem in Rn. Suppose that |D2u| ≤ C1ϱ
−1 in B2ϱ∩{u > 0}

and ∣∣u− V0,en ∣∣ ≤ εϱ ≤ ε1ϱ in B2ϱ, (3.15)

where en is the n-th vector in the canonical basis. Then, the same conclusions as in Lemma 3.13 hold true.

Proof. On the one hand, the bound on the Hessian implies that the principal curvatures of the free boundary inside
B2ϱ are bounded by CC1ϱ

−1 (recall that u = 0 and ∂νu = 1 on FB(u)). On the other hand, (3.15) implies that
FB(u) ∩B2ϱ is contained in the slab |xn| ≤ ε1ϱ (and it is non-empty, by Lemma 3.14(b)). The result follows. □

4. Blow-down of global stable solutions

The goal of this section is to prove that, in R3, non-flat global stable solutions to the Bernoulli problem look like
a vee at large scales. This is the content of the next:

Proposition 4.1 (Blow-down of non-flat solutions). Given ε > 0, there exists Rε > 0 depending only on ε such
that for any R ≥ Rε, the following holds.

Let u be a global classical stable solution to the Bernoulli problem in R3, and 0 ∈ FB(u). If∥∥D2u
∥∥
L∞(B1∩{u>0}) ≥ 1, (4.1)

then there exists eR ∈ S2 such that ∥∥u− |eR · x|∥∥L∞(BR)
≤ εR. (4.2)

In other words, there exists a universal modulus of continuity ω (of the form (2.16)) such that∥∥u− |eR · x|∥∥L∞(BR)
≤ ω(R−1)R, for all R > 0. (4.3)

To prove this result, we will need to develop a variety of tools that are of independent interest.
We first focus on results that are valid for classical stable solutions. We start by recalling the nondegeneracy

of stable solutions recently obtained in [57]. It is proved using a De Giorgi iteration with Michael–Simon–Sobolev
inequality, where the mean curvature integral is estimated using the stability inequality with test function |∇u|.
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Lemma 4.2 (Nondegeneracy of stable solutions [57]). Let n ≥ 2, and let u be a global classical stable solution to
the Bernoulli problem in Rn. Then, for all y ∈ ∂{u > 0} and r > 0, 

∂Br(y)

u dHn−1 ≥ cr and Hn−1(∂{u > 0} ∩Br(y)) ≥ crn−1, (4.4)

for some c > 0 depending only on n.

The following lemma is a direct consequence of a general result first obtained in the semilinear setting by
Sternberg–Zumbrun [81].

Lemma 4.3 (Sternberg–Zumbrun inequality). Let n ≥ 2, R > 0, and let u be a classical stable solution to the
Bernoulli problem in B2R ⊂ Rn. Then,ˆ

BR∩{u>0}
|D2u|2 dx ≤ CRn−2, and therefore

 
BR∩{u>0}

|D2u|p dx ≤ CR−p for any p ∈ [0, 2],

for some C depending only on n.

Proof. Recalling Lemma 3.2, to prove the first inequality we apply Lemma A.3 to 1
2Ru(2R ·) with η ∈ C∞

c (B1)
non-negative and satisfying η ≡ 1 in B1/2. Then, the second one follows from Hölder’s inequality. □

We now introduce an important monotone quantity: for u ∈ H1(Br) and 0 ∈ FB(u), the Weiss boundary-adjusted
energy (see [92]) is given by

W(u, r) =
1

rn

ˆ
Br

(|∇u|2 + 1{u>0}) dx−
1

rn+1

ˆ
∂Br

u2 dHn−1 = W(ur, 1), (4.5)

where ur denotes the natural dilation of u, namely

ur(x) :=
u(rx)

r
, for r > 0.

Due to the Weiss monotonicity formula (see [92, Theorem 3.1]), given u ∈ H1(BR) a stationary solution to the
Bernoulli problem, then

r 7→W(u, r) is non-decreasing on (0, R)

and

∂rW(u, r) =
2

rn+2

ˆ
∂Br

(u− x · ∇u)2 dHn−1 =
2

r

ˆ
∂B1

(ur − x · ∇ur)2dHn−1 ≥ 0 for a.e. r ∈ (0, R) (4.6)

(see also [87, Section 9]). In particular, any blow-down limit u∞ = limrk↑∞ urk satisfies W(u∞, r) = W(u,∞)
(because limrk↑∞ W(u, rkr) = limr↑∞ W(u, r)). This implies that r∂rW(u∞, r) = 0, thus u∞ is 1-homogeneous.

Let us denote

αn := W((xn)+, 1) = 2

ˆ
B1∩{xn>0}

dx−
ˆ
∂B1∩{xn>0}

x2n dHn−1 =
Hn−1(Sn−1)

2n
=

1

2
|B1|. (4.7)

It is clear that W(|xn|, 1) = 2αn. As a consequence of the next result, any classical stable solution u to (3.1)–(3.3)
in R3 with 0 ∈ FB(u) satisfies

α3 ≤W(u, 1) ≤ 2α3. (4.8)

Lemma 4.4 (Almost homogeneous solutions). For any ε ∈ (0, α3

2 ), there exists δ ∈ (0, α3

2 ) such that the following
hold.

Let u be a classical stable solution to the Bernoulli problem in R3 such that 0 ∈ FB(u) and

W(u, 2)−W(u, 1) < δ. (4.9)

Then, either ∥∥u− e · x∥∥
L∞(B1∩{u>0}) < ε for some e ∈ S2 and W(u, 2) < α3 + ε, (4.10)

or ∥∥u− |e · x|∥∥
L∞(B1)

< ε for some e ∈ S2 and W(u, 1) > 2α3 − ε. (4.11)

To prove Lemma 4.4 we will need the following compactness result for sequences of stable solutions.

Lemma 4.5 (Compactness). Let n ≥ 2, and let vk ∈ C0,1
loc (Bk) be a sequence of classical stable solutions to the

Bernoulli problem in Bk ⊂ Rn, with 0 ∈ FB(vk) for all k ∈ N. Then the following hold:

(1) Up to a subsequence, vk converges to some function v∞ satisfying |∇v∞| ≤ 1 in Rn, with strong convergence

in (H1
loc ∩ C

0,α
loc )(Rn) for all α ∈ (0, 1).
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(2) The sets {vk > 0}, {vk = 0}, and the free boundaries FB(vk), converge locally in the Hausdorff distance in
Rn to their corresponding sets for v∞ (up to a subsequence). Specifically,

{vk > 0} → {v∞ > 0}, {vk = 0} → {v∞ = 0}, and FB(vk)→ FB(v∞), locally.

(3) The limit function v∞ is a stable solution in the sense of Definition 3.1.

Proof. The proof is postponed to Appendix C. □

We can now prove Lemma 4.4.

Proof of Lemma 4.4. We divide the proof into three steps.

Step 1: We argue by contradiction, and assume that there exists ε0 > 0 and a sequence of classical stable solutions
uk with 0 ∈ FB(uk) and

W(uk, 2)−W(uk, 1) <
1

k
, (4.12)

but 
min
e∈S2

∥∥uk − e · x∥∥L∞(B1∩{u>0}) ≥ ε0 or W(uk, 2) ≥ α3 + ε0,

min
e∈S2

∥∥uk − |e · x|∥∥L∞(B1)
≥ ε0 or W(uk, 1) ≤ 2α3 − ε0.

(4.13)

By Lemma 4.5, along a subsequence we have

uk → u∞ strongly in (H1
loc ∩ C0

loc)(Rn),

for some global stationary and inner stable solution u∞ with 0 ∈ FB(u∞). Taking the limit in (4.12) (using
Lemma 4.5) we obtain

W(u∞, 2)−W(u∞, 1) = 0 =⇒ r∂rW(u∞, r) = 0 for r ∈ (1, 2).

In particular, u∞ is 1-homogeneous in the open annulus B2 \ B1, and therefore in B2 by unique continuation. Up
to extending u∞ outside of B2 in a 1-homogenous way we can assume that it is defined in the whole R3. In the
next two steps, we will show that there exists e ∈ S2 such that

either

{
u∞ = (e · x)+,
W(u∞, ·) ≡ α3,

or

{
u∞ = |e · x|,
W(u∞, ·) ≡ 2α3,

(4.14)

which is in direct contradiction with (4.13) in the limit k →∞ (using again Lemma 4.5).

Step 2: We first prove the validity of (4.14) “up to a multiplicative constant”.
Since u∞ is 1-homogeneous, FB(u∞) is a cone. Let y◦ ∈ S2 ∩ FB(u∞), and consider ũ∞ to be any blow-up of

u∞ at y◦ along a sequence rk ↓ 0, namely,

ũ∞(x) = lim
k→∞

u∞(y◦ + rkx)

rk
= lim

k→∞
u∞

(
y◦
rk

+ x

)
.

Then ũ∞ is invariant in the y◦ direction. In particular, ũ∞ is actually a 2-dimensional, 1-homogeneous, non-negative
harmonic function. Hence, it must be of the form

ũ∞(x) = a+(x · e)+ + a−(x · e)− for some a+, a− ≥ 0, e ∈ S2.
Also, up to changing e with −e, we can assume that a− ≤ a+. We now distinguish two cases.
- If a− = 0, since 0 is a free boundary point for ũ∞ it must be a+ > 0, and since it is a stationary solution then
necessarily a+ = 1.
- On the other hand, if 0 < a− ≤ a+, then by stationarity we must have a+ = a− = ã, and by the uniform
1-Lipschitz bound ã ≤ 1. Observe also that, by the nondegeneracy of classical stable solutions Lemma 4.2, we also
have8 that ã ≥ c > 0 for some universal c.

As a consequence of this discussion, we have two cases:

• If ũ∞(x) = (x · ey◦)+ for all y◦ ∈ FB(u∞) ∩ S2, then the free boundary of u is smooth everywhere outside
of the origin,9 so u∞ is a classical stable solution outside of the origin. Then, the classification of 1-
homogeneous stable solutions in R3 from [19,55] applies to our solution and implies that u∞(x) = (x · e′)+
for some e′ ∈ S2. Hence, we are in the first case of (4.14).

8We remark that any function of the form ũ∞(x) = ã|x · e| for ã ≥ 0 is stationary and stable, according to Definition 3.1.
9This follows from the fact that if a stable solution is close to (xn)+ then it is close to xn inside its positivity set (see Lemma C.1),

so the improvement of flatness in Lemma 3.7 applies. Also, note that blow-ups of limits of classical solutions are themselves limits of

classical solutions (by a diagonal argument).
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• Alternatively, if ũ∞(x) = ãy◦ |x · ey◦ | for some y◦ ∈ FB(u∞)∩S2 and ãy◦ ∈ (0, 1], then W(u∞(·+ y◦), 0+) =
2α3. On the other hand, the Weiss energy is also upper bounded by 2α3: indeed, any blow-down of u∞
around any point is equal to u∞, which is 1-homogeneous, and for any 1-homogeneous solution v we have
W(v, r) = 1

rn |{v > 0} ∩Br| ≤ |B1| = 2α3. Therefore

2α3 = W(u∞(·+ y◦), 0
+) ≤W(u∞(·+ y◦), r) ≤W(u(·+ y◦),∞) ≤ 2α3,

which implies that the Weiss energy is constant, so u∞ is homogeneous around y◦. This implies that
u∞(x) = ã|x · e| for some ã ∈ [c, 1] and some e ∈ S2 such that e · y◦ = 0. So, to conclude the proof, we only
need to show that ã = 1. This is the purpose of the next step.

Step 3: It remains to prove that, in the second case, ã = 1.
Up to subsequences and after a rotation, we know uk → ã|x1| strongly in (H1

loc ∩ C0
loc)(R3) for some ã ∈ [c, 1].

Also, thanks to Lemma 4.3, ˆ
B1∩{uk>0}

|D2uk|2 dx ≤ C, (4.15)

for some C > 0 universal, independent of k.
Now, assume by contradiction that ã < 1. By harmonic estimates we have

uk → ã|x1| in L∞(B1) ∩ C1
loc(B1 \ {x1 = 0}), for some 0 < c < ã < 1. (4.16)

The proof now follows along the lines of that of Lemma C.1. By Fubini’s theorem, we know
ˆ
B1∩{uk>0}

|D2uk|2 dx ≥
ˆ
B′

1/2

ˆ
[−1/2,1/2]∩{uk(t,σ)>0}

|D2uk|2(t, σ) dt dσ ≥
ˆ
B′

1/2

ˆ 1/2

tσ,k

|D2uk|2(t, σ) dt dσ,

where B′
r ⊂ R2 denotes the ball of radius r in R2 and, given σ ∈ B′

1/2 and k ∈ N, tσ,k is the minimal value

t∗ ∈ [−1/4, 1/4] (for k large enough) such that (t∗, 1/2) ⊂ {uk(·, σ) > 0}.
Let Π1 : R3 → R2 denote the orthogonal projection in the last two variables, that is Π1((x1, x2, x3)) = (x2, x3),

and define

Ak := Π1

(
FB(uk) ∩ ((−1/2, 1/2)×B′

1/2)
)
.

Also, let δ > 0 be a small fixed constant. Note that |∇uk|2 = 1 on FB(uk), while |∇uk(δ, σ)|2 ≤ 1+ã2

2 for k ≫ 1
large enough (due to (4.16) and harmonic estimates), therefore

ˆ δ

tσ,k

∣∣∂1|∇u|2(t, σ)∣∣dt ≥ 1− 1 + ã2

2
=

1− ã2

2
for all σ ∈ Ak

(note that, if k ≫ 1, then tσ,k ∈ (−δ, δ) for σ ∈ Ak). Thus, thanks to the bound
∣∣∇|∇uk|2∣∣2 ≤ 4|D2uk|2,

Cauchy–Schwarz, and (4.15), this implies that

1− ã2

2
|Ak| ≤

ˆ
Ak

ˆ δ

tσ,k

∣∣∂1|∇u|2(t, σ)∣∣dt dσ ≤ C(|Ak|δ
)1/2(ˆ

B1∩{uk>0}
|D2uk|2

)1/2

≤ C
(
|Ak|δ

)1/2
,

which proves

|Ak| ≤
Cδ

1− ã2
. (4.17)

Consider now instead σ ∈ B′
1/2 \ Ak. Then tσ,k = − 1

4 ≤ δ. Also, by (4.16) we know ∂1uk(−δ, σ) < − c
2 and

∂1uk(δ, σ) >
c
2 , so that ˆ δ

−δ

|∂211uk(t, σ)|dt > c > 0, for k large and σ ∈ B′
1/2 \Ak.

Hence, by |∂211uk|2 ≤ |D2uk|2, Cauchy–Schwarz, and (4.15), similarly to before we obtain

c|B′
1/2 \Ak| ≤

ˆ
B′

1/2
\Ak

ˆ δ

−δ

∣∣∂211uk∣∣(t, σ)dt dσ ≤ C(|B′
1/2 \Ak|δ

)1/2
therefre |B′

1/2 \Ak| ≤ Cδ. Combining this bound with (4.17), we get a contradiction for δ sufficiently small. □

As a consequence of the previous result, if we can lower bound the Hessian of a solution at one point, then the
solution cannot be energetically close to a half-space.
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Lemma 4.6 (Lower bound of Weiss energy). Let ε◦ = ε◦(3) and C3,2 (i.e., n = 3 and k = 2) be the constants from
Lemma 3.7, and set C◦ := C3,2ε◦. Let δ◦ ∈ (0, α3

2 ) be chosen from Lemma 4.4 with ε = ε◦.

Let u be a global classical stable solution to the Bernoulli problem in R3, with 0 ∈ FB(u). If∥∥D2u
∥∥
L∞(B1/2∩{u>0}) ≥ 2C◦, (4.18)

then

W(u, 2) ≥ α3 + δ◦. (4.19)

Proof. Recalling that W(u, 1) is always bounded from below by α3 (see (4.8)), if (4.19) does not hold then

W(u, 2)−W(u, 1) < (α3 + δ◦)− α3 = δ◦. (4.20)

Thus, by Lemma 4.4, either (4.10) or (4.11) holds. The alternative (4.10) can be ruled out, since Lemma 3.7 implies∥∥D2u
∥∥
L∞(B1/2∩{u>0}) ≤ C◦,

contradicting assumption (4.18). Thus we are left with the case (4.11), in which case

W(u, 2) ≥W(u, 1) > 2α3 − ε◦ ≥ α3 + δ◦,

contradicting (4.20). □

We can finally upgrade the previous lemma to solutions close to vees and prove Proposition 4.1.

Proof of Proposition 4.1. Let C◦ be as in Lemma 4.6, and recall the notation uR(x) =
1
Ru(Rx). Then u2C◦ satisfies∥∥D2u2C◦

∥∥
L∞(B1/2∩{u2C◦>0}) = 2C◦

∥∥D2u
∥∥
L∞(BC◦∩{u>0}) ≥ 2C◦

∥∥D2u
∥∥
L∞(B1∩{u>0}) ≥ 2C◦

therefore

W(u, 4C◦) = W(u2C◦ , 2) ≥ α3 + δ◦

by Lemma 4.6.
Now, given ε > 0, let δ0 := δ(ε) > 0 be determined by Lemma 4.4. Also, given ε1 := δ0, let δ1 := δ(ε1) be

determined by applying Lemma 4.4 one second time.
Let us now apply Lemma 4.4 with ε1, δ1 to the functions u2k+1C◦ with k = 1, . . . ,K (where K = K(ε1) is to be

chosen). We first check that the alternative (4.10) does not hold for any k. Indeed, by Lemma 3.7, (4.10) implies∥∥D2u
∥∥
L∞(B

2kC◦
∩{u>0}) =

1

2k+1C◦

∥∥D2u2k+1C◦

∥∥
L∞(B1/2∩{u

2k+1C◦
>0}) ≤

C◦

2k+1C◦
< 1,

contradicting (4.1). Hence, either

W(u, 2k+2C◦)−W(u, 2k+1C◦) ≥ δ1 for all k = 1, . . . ,K, (4.21)

or, by (4.11), there exist k ≤ K such that

W(u, 2k+1C◦) > 2α3 − ε1. (4.22)

If (4.21) holds, then summing over k from 1 to K := ⌊α3

δ1
⌋+ 1 yields

W(u, 2K+2C◦) ≥W(u, 4C◦) +Kδ1 ≥ α3 + δ◦ +Kδ1 ≥ 2α3 > 2α3 − ε1.

In either case, recalling (4.8) and choosing Rε = 2K+2C◦, for any R ≥ Rε it holds

2α3 ≥W(u,R) ≥W(u,Rε) > 2α3 − ε1.

This implies that W(uR, 2)−W(uR, 1) < ε1 = δ(ε) and W(uR, 2) > 2α3 − ε1 > α3 + ε, so by applying Lemma 4.4
again we obtain ∥∥uR − |eR · x|∥∥L∞(B1)

< ε

for some eR ∈ S2, as desired. □

5. Necks: definition and properties

In this section we begin our study of global classical stable solutions. We will need to properly define the “neck”
regions (i.e., regions where the free boundary is not flat) and study their properties.
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5.1. Reduction. Let us begin with the following reduction lemma. From now on, whenever u is a classical solution
and x◦ ∈ FB(u), we write D2u(x◦) to denote the limit of D2u from the positivity set: more precisely, D2u(x◦) :=
lim{u>0}∋x→x◦ D

2u(x).

Lemma 5.1 (Reduction). Let n ≥ 2, and suppose there exists a global classical stable solution v to the Bernoulli
problem in Rn such that |D2v| ̸≡ 0 in {v > 0}. Then, there exists a global classical stable solution u such that

0 ∈ FB(u), |D2u| ≤ 1 in {u > 0}, and |D2u|(0) = 1.

Proof. Notice that v must have a free boundary; indeed, if not, it would be a positive harmonic function, so it
would be constant, contradicting the assumption that |D2v| ̸≡ 0.

Let us suppose first sup{v>0} |D2v| =∞. Consider xk ∈ Bk ∩ {v > 0} such that

hk := |D2v(xk)|
(
1− |xk|

k

)
= max

x∈Bk∩{v>0}
|D2v(x)|

(
1− |x|

k

)
,

which satisfies hk ≥ 1
2 max

Bk/2

|D2v| → ∞ as k → ∞. Let dk := |D2v(xk)| and ρk = 1 − |xk|
k , and define the classical

stable solutions

uk(y) := dk v

(
xk +

y

dk

)
for y ∈ Bdkρk

.

We have 0 ∈ {uk > 0} and |D2uk(0)| = 1. Also, by definition of hk, for x = xk + y
dk
∈ {v > 0} with |y| < dkρk we

have ∣∣∣∣D2v

(
xk +

y

dk

)∣∣∣∣ ≤ |D2v(xk)|
1− |xk|

k

1− |xk+y/dk|
k

≤ |D2v(xk)|
ρk

ρk − ρk/k
.

Therefore,

|D2uk(y)| =
1

dk

∣∣∣∣D2v

(
xk +

y

dk

)∣∣∣∣ ≤ 1

1− 1/k
in Bdkρk

∩ {uk > 0}.

Since dkρk = hk → ∞ as k → ∞, Lemma 4.5 implies that (up to a subsequence) uk converges to some global

stable solution u with 0 ∈ {u > 0}. Moreover, thanks to the upper bound on the Hessian, the free boundaries are

uniformly smooth and |D2u| ≤ 1 in {u > 0}.
We observe that u is a classical stable solution satisfying |D2u|(0) = 1. Indeed, given x◦ ∈ FB(u) and r > 0, the

uniform bound |D2uk| ≤ 1 implies—using the condition ∂νuk = 1 on FB(uk) and Lemma 3.5—that the positivity
sets {uk > 0} are locally the union of at most two smooth hypographs (in opposite directions) inside Br(x◦).
Moreover, these hypographs have uniform curvature estimates for their boundaries. Hence, applying the Arzelà-
Ascoli theorem, these hypographs converge (up to a subsequence) to smooth hypographs as k → ∞, and the
free boundaries FB(uk) converge smoothly to FB(u). Also, since |D2uk(0)| = 1 and the free boundaries converge
smoothly, the Hessian of u must be nonzero in an open set near 0.

To verify that u is classical we only need to rule out tangency situations: i.e., we must show that the boundaries
two locally connected components of {u > 0}∩Br(x◦) cannot touch. To show this, note that because of Lemma 3.12,
each component of {u > 0} ∩ Br(x◦) is mean concave. Thus, the presence of a tangency point x◦ would force the
mean curvature to be zero at x◦, and therefore (again by Lemma 3.12) D2u ≡ 0 in a neighborhood of x◦. By unique
continuation, this would imply D2u ≡ 0 in all of these two connected components of {u > 0}, which would imply
that u is a vee. However, this contradicts the fact that the Hessian of u is nonzero in an open set near 0. Thus, no
tangency point can exist, completing the argument.

Note now that, since u is a classical solution, the bound |D2uk(0)| = 1 implies in the limit that |D2u(0)| = 1.
It remains to consider the case M := sup{v>0} |D2v| ∈ (0,∞). In this case, it suffices to choose xk ∈ {v > 0}

such that |D2v(xk)| → M and define u as the limit of uk(x) := M v
(
xk + x

M

)
. Arguing similarly to above, uk

converges locally uniformly to a classical solution u satisfying |D2u| ≤ 1 on {u > 0} and |D2u|(0) = 1. Again by
the strong maximum principle (|D2u|2 is subharmonic) we obtain 0 ∈ FB(u). □

5.2. Fixing global assumptions. Let us now fix some global assumptions and variables. Throughout the rest of
the paper, and until otherwise stated, we set n = 3 and u ∈ Lip(R3) to be a fixed global classical stable solution to
the Bernoulli problem in R3, with

0 ∈ FB(u), |∇u| ≤ 1, |D2u(0)| = 1, and |D2u| ≤ 1 in {u > 0}, (5.1)

(as in Lemma 5.1).
We also fix the global universal constant

η0 := η∗(3) (5.2)
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where η∗(3) the constant in Lemma 3.11 for dimension n = 3.

5.3. Definition of neck centers. Given u and η0 as above, we define the set of neck centers Z as follows.

• First, for any y ∈ FB(u), we define its threshold radius as

r⋆(y) := inf

{
r > 0 :

ˆ
Br(y)∩{u>0}

|D2u|3 dx ≥ η30
}
. (5.3)

Observe that, since we are assuming |D2u| to be globally and universally bounded, we know that

r⋆(x) ≥ rmin = rmin(η0) := c η0 > 0 for all x ∈ FB(u). (5.4)

• Then, for any k ∈ N0, we define

Z̃k :=
{
x ∈ FB(u) : r⋆(x) ∈ [rmin2

k, rmin2
k+1)

}
. (5.5)

• Given λ > 0 and Y ⊂ FB(u), we denote

Bλ(Y) :=
⋃
y∈Y

Bλr⋆(y)(y) (5.6)

(not to be confused with the notation Br(A) = A+Br in Section 2.3). Thanks to Vitali’s covering lemma,

we can consider a countable subset of centers Z0 ⊂ Z̃0 such that

Br⋆(z1)(z1) ∩Br⋆(z2)(z2) = ∅ for all z1, z2 ∈ Z0, z1 ̸= z2,

and
Z̃0 ⊂ B1(Z̃0) ⊂ B4(Z0).

• Then, for k ≥ 1, we recursively define

Z ′
k := {x ∈ Z̃k : B4r⋆(x)(x) ∩ Z<k = ∅}, (5.7)

where we have denoted Z<k :=
⋃k−1

i=0 Zi. We take Zk to be the centers of a Vitali subcovering of B1(Z ′
k),

namely, Zk ⊂ Z ′
k is a countable subset such that

Br⋆(z1)(z1) ∩Br⋆(z2)(z2) = ∅ for all z1, z2 ∈ Zk, z1 ̸= z2,

and
Z ′

k ⊂ B1(Z ′
k) ⊂ B4(Zk).

• Finally, we define

Z :=
⋃
k≥0

Zk.

We call the points in Z neck centers and denote the points in Z by z, zk, etc. The threshold radii of neck
centers are simply called neck radii.

The first observation is that Z exists:

Lemma 5.2. There holds r⋆(0) ≤ Cη0. Consequently, the set of neck centers Z is nonempty.

Proof. Recalling (5.1)–(5.2), Lemma 3.11 gives 1 = |D2u(0)| ≤ ∥D2u∥L∞(Br⋆(0)/2∩{u>0}) ≤ Cη0

r⋆(0)
, as desired. □

From now on, the set Z is fixed as above.

5.4. Basic properties of the neck centers and neck radii. Given the previous definitions, we start to discuss
some basic properties of the neck centers.

Lemma 5.3 (Covering omitted neck centers). For any k ≥ 1, we have

Z̃<k :=

k−1⋃
j=0

Z̃j ⊂ B2k+2rmin
(Z<k) = Z<k +B2k+2rmin

.

Proof. For any j ≥ 1 and x ∈ Z̃j \ Z ′
j , it follows from (5.7) that x ∈ B4r⋆(x)(Z<j). Recalling (5.5), this implies

Z̃j \ Z ′
j ⊂ B4rmin·2j+1(Z<j).

Thus, using (5.5) again for all j ≤ k − 1 (recall (5.6)),

Z̃<k ⊂
k−1⋃
j=0

(
Z ′

j ∪ (Z̃j \ Z ′
j)
)
⊂

k−1⋃
j=0

(
B4(Zj) ∪B4rmin·2k(Z<j)

)
⊂ B4(Z<k) ∪B4rmin·2k(Z<k−1).

The result follows. □
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Corollary 5.4. For any z ∈ Z, we have

r⋆(z)
∥∥D2u

∥∥
L∞(B2r⋆(z)(z)∩{u>0}) ≤ C,

for some C universal.

Proof. Let z ∈ Zk. By Lemma 5.3 together with (5.5)–(5.7),

Z̃<k−1 ⊂ B2k+1rmin
(Z<k−1) ⊂ B2r⋆(z)(Z<k) ⊂ R3 \B2r⋆(z)(z),

therefore

B2r⋆(z)(z) ∩ Z̃<k−1 = ∅ =⇒ r⋆(y) ≥ r⋆(z)/4 for all y ∈ FB(u) ∩B2r⋆(z)(z). (5.8)

(Here we understand that Z̃<k−1 = ∅ if k − 1 ≤ 0.) We now claim that

r⋆(y) ≤ 4r⋆(z) for all y ∈ FB(u) ∩B2r⋆(z)(z). (5.9)

Indeed, if not, then (5.3) yields10

η30 =

ˆ
Br⋆(z)(z)∩{u>0}

|D2u|3 dx ≤
ˆ
B4r⋆(z)(y)∩{u>0}

|D2u|3 dx <
ˆ
Br⋆(y)(y)∩{u>0}

|D2u|3 dx = η30 ,

a contradiction. Hence, (5.9) holds.

After a rescaling (considering u(z+r⋆(z)x)
r⋆(z)

instead of u), let us assume r⋆(z) = 1. Then r⋆(x) ∈ [ 14 , 4] for all

x ∈ FB(u) ∩ B2. Also, by Lemma 3.11, |D2u| ≤ Cη0 in {u > 0} ∩ B2 ∩ {dist (·,FB(u)) < 1
8}. Furthermore, since

u is 1-Lipschitz, harmonic estimates imply that |D2u| ≤ C in dist (·,FB(u)) ≥ 1
8 . This shows that |D2u| ≤ C in

{u > 0} ∩B2, which is the desired result (once one rescales the solution back). □

We now observe that the threshold radius controls the distance to the set Z of neck centers:

Lemma 5.5 (r⋆ controls distance to neck centers). Let x ∈ FB(u) and Z be defined as above. Then

dist (x,Z) ≤ 8r⋆(x).

Proof. By construction, there exists k ∈ N such that x ∈ Z̃k. If dist (x,Z<k) < 4r⋆(x) then we are done, since
Z<k ⊂ Z. Otherwise, x ∈ Z ′

k and there exists x̄ ∈ Zk ⊂ Z such that

dist (x,Z) ≤ |x− x̄| ≤ 4r⋆(x̄) ≤ 4rmin2
k+1 = 8rmin2

k ≤ 8r⋆(x). □

Next, we show that the Hessian is controlled by its distance to Z:

Lemma 5.6 (Global Hessian decay). We have:

|D2u(x)| ≤ Cmin

{
1

dist (x,Z)
, 1

}
, for all x ∈ {u > 0},

for some C universal.

Proof. We divide the proof into two cases. Recall that η0 = η∗(3), from Lemma 3.11.

Case 1: x◦ ∈ {u > 0} and dist (x◦,FB(u)) ≤ 1
25dist (x◦,Z). In this case, choose y◦ ∈ FB(u) closest to x◦ so that,

by triangle inequality,

dist (x◦,Z) ≤ dist (y◦,Z) + |x◦ − y◦| ≤ dist (y◦,Z) + 1
25dist (x◦,Z).

By Lemma 5.5, this gives the chain of inequalities

24|x◦ − y◦| ≤
24

25
dist (x◦,Z) ≤ dist (y◦,Z) ≤ 8r⋆(y◦),

and therefore

x◦ ∈ B 3
2 |x◦−y◦|(y◦) ⊂ Br⋆(y◦)/2(y◦).

Now, using (3.8) around y◦ and Lemma 5.5,

|D2u(x◦)| ≤
∥∥D2u

∥∥
L∞(Br⋆(y◦)/2(y◦)∩{u>0}) ≤

Cη0
r⋆(y◦)

≤ Cη0
dist (x◦,Z)

.

10Here the strict inequality follows from the fact that, if |D2u| were to vanish in
(
Br⋆(y)(y) \ B4r⋆(z)(y)

)
∩ {u > 0}, then it would

be zero inside B4r⋆(z)(y) ∩ {u > 0} by unique continuation.
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Case 2: x◦ ∈ {u > 0} and dist (x◦,FB(u)) >
1
25dist (x◦,Z). In this case, we apply harmonic estimates to u inside

B 1
2dist (x◦,FB(u))(x◦). Since u(x) ≤ dist (x,FB(u)) (recall that |∇u| ≤ 1), this yields

|D2u(x◦)| ≤
C

dist (x◦,FB(u))
≤ C

dist (x◦,Z)
.

This proves that |D2u(x)| ≤ C
dist (x,Z) . Recalling that |D2u| ≤ 1 (see (5.1)), the result follows. □

The next lemma says that, around a neck center and at scales much larger than the neck radius, the solution
increasingly resembles a vee:

Lemma 5.7 (Blow-down around neck center). For any ε > 0 there exists M = M(ε) ≥ 1 such that the following
holds.

For every z ∈ Z and every R ≥Mr⋆(z), we have

min
e∈S2

∥∥u− Vz,e∥∥L∞(BR(z))
≤ εR. (5.10)

In particular (recall (2.1))

Ez(u,R) ≤ ε. (5.11)

More precisely, choosing M∗ := (2|B1|)
1
3 η−1

0 ≥ 1 and ω as in (4.3), the relation between ε and M is implicitly given
by

ω
(
M∗/M

)
= ε

Proof. Let uz,ρ(x) :=
u(z+ρx)

ρ with ρ =M∗r⋆(z) and M∗ := |B1|
1
3 η−1

0 . Then 0 ∈ FB(uz,ρ) and

1 = η−3
0

ˆ
Br⋆(z)(z)∩{u>0}

|D2u|3 dx ≤ ∥D2u∥3L∞(Bρ(z)∩{u>0})ρ
3 =

∥∥D2uz,ρ
∥∥3
L∞(B1∩{uz,ρ>0}) .

By Proposition 4.1, for any r > 0,

min
e∈S2

∥∥uz,ρ − V0,e∥∥L∞(Br)
≤ ω(r−1)r, or equivalently min

e∈S2

∥∥u− Vz,e∥∥L∞(Bρr(z))
≤ ω(r−1)ρr,

In particular, given ε > 0, by choosing M so large that ω(M∗/M) < ε we obtain that (5.10) holds for R ≥
Mr⋆(z). □

Up to now, it may not be completely clear why we introduced the notions of neck centers and neck radii. If z ∈ Z
is a given neck radius, then the previous lemma shows that, for R ≫ r⋆(z), the positivity set will be contained in
some very thin strip —see Lemma 3.14(b):

{u = 0} ∩BR(z) ⊂ {x ∈ R3 : |e · (x− z)| = o(R)},

for some e ∈ S2 (depending on z and R).
The next lemma actually shows that neck radii detect ‘necks’ or ‘bridges’ of the positivity set {u > 0} between

the two sides of the set {|e · (x − z)| > o(R)}. In other words, at scales R ≫ r⋆(z), {u > 0} ∩ BR(z) becomes
connected.

Lemma 5.8 (neck centers detect ‘necks’). There exists a large universal constant M̄ ≥ 1 such that whenever z ∈ Z
and ϱ ≥ M̄r⋆(z), any two points of {u > 0}∩Bϱ(z) can be joined by a continuous path contained in {u > 0}∩B2ϱ(z).

Proof. Let ε̄ > 0 be a small constant that will be fixed later and consider M̄ = M(ε̄) given by Lemma 5.7. Then,
for any ϱ ≥ M̄r⋆(z) we have

B2ϱ(z) ∩ {u = 0} ⊂ {x : |e2ϱ,z · (x− z)| ≤ ε̄ϱ}.
Let U+ and U− denote the connected components of B2ϱ(z) ∩ {u > 0} that contain the sets

{x ∈ B2ϱ(z) : e2ϱ,z · (x− z) > ε̄ϱ} and {x ∈ B2ϱ(z) : e2ϱ,z · (x− z) < −ε̄ϱ},

respectively. Suppose by contradiction that U+ ∩ U− = ∅ and define ū± := u1U± . By Lemma 3.5, if ε̄ is chosen
small enough, we have u = ū+ + ū− inside Bϱ(z) (that is, there are no other connected components of {u > 0}).
Thus, Lemma 5.7 and Lemma 3.13 imply

ϱ|D2u| ≤ Cε̄ in {u > 0} ∩Bϱ/2(z).

In particular

η30 ≤
ˆ
Br⋆(z)(z)∩{u>0}

|D2u|3 ≤
ˆ
Bϱ/2(z)∩{u>0}

|D2u|3 dx ≤ Cε̄3,



26 HARDY CHAN, XAVIER FERNÁNDEZ-REAL, ALESSIO FIGALLI, AND JOAQUIM SERRA

which is a contradiction for ε̄ small enough. This proves that U+ = U− are the same connected component of
B2ϱ(z)∩{u > 0}. Since by Lemma 3.5 we have already seen that any other connected component of B2ϱ(z)∩{u > 0}
lies outside of Bϱ(z), we obtain the desired result. □

We finish this subsection with the following two related lemmas:

Lemma 5.9. For any M ≥ 1 the following holds. Given z ∈ Z and ϱ =Mr⋆(z), for all z′ ∈ Z ∩Bϱ(z) we have

r⋆(z
′) ≥ r⋆(z)

CM
and ∥D2u∥L∞({u>0}∩Bϱ(z)) ≤

CM

r⋆(z)
,

for some CM depending only on M .

Proof. For M ≤ 2, the comparability of the neck radii and the Hessian estimate follows from (5.8)–(5.9) and
Corollary 5.4, respectively. So let us assume M > 2.

Suppose for the sake of contradiction that there is z′ ∈ Z ∩Bϱ(z) with r⋆(z
′) < r⋆(z)

K , for K sufficiently large to
be chosen later (depending on M). Then, since 3ϱ = 3Mr⋆(z) ≥ 6r⋆(z) ≥ 6Kr⋆(z

′), Corollary 5.4 implies that∥∥u− Vz′,e

∥∥
L∞(B3ϱ(z′))

≤ ε(K)ϱ/2,

for some e ∈ S2, where ε(K) ↓ 0 as K ↑ ∞. Therefore, thanks to Lemma 3.14(a),∥∥u− Vz,e∥∥L∞(B2r⋆(z)(z))
≤ ε(K)ϱ = ε(K)Mr⋆(z).

Thus, recalling Corollary 5.4 and Lemma 3.15, if we choose K large so that ε(K)M is sufficiently small we get

r⋆(z)|D2u| ≤ η0
100

in Br⋆(z)(z) ∩ {u > 0}.

Integrating in Br⋆(z)(z) ∩ {u > 0} we reach a contradiction with the definition of r⋆(z).
The second point is then a consequence of Corollary 5.4 and Lemma 5.6. □

Lemma 5.10. There exists M◦ > 0 universal such that if z ∈ Z and R ≥ M◦r⋆(z), then r⋆(z
′) ≤ R

8 for all
z′ ∈ Z ∩B3R/4(z).

Proof. Let ε◦ > 0 be a small constant to be fixed, and apply Lemma 5.7 to findM◦ > 0 such that, for R ≥M◦r⋆(z),
there exists e ∈ S2 such that

∥u− Vz,e∥L∞(BR(z)) ≤ 1
2ε◦R and ∥u− Vz′,e∥L∞(BR/4(z′)) ≤ ε◦R, (5.12)

where the second bound follows from Lemma 3.14(a).
Now, assume by contradiction that r⋆(z

′) ≥ R
8 . Then Lemma 5.9 implies that |D2u| ≤ C/R in B2R(z

′)∩{u > 0},
with C universal. By Lemma 3.15 this gives r⋆(z)|D2u| ≤ Cε◦ in Br⋆(z)(z)∩{u > 0}, which integrated over Br⋆(z)(z)
contradicts the definition of r⋆(z) if ε◦ is chosen small enough. □

5.5. Ball tree: ‘soft’ geometric description of the zero set. The goal of this section is to show Proposition 5.12
below, which shall be very useful in the sequel. To state it, we first recall the notion of rooted tree:

Definition 5.11 (rooted tree). Let N be some given a (finite, for simplicity) set. The elements ν ∈ N will be
called nodes. Suppose that there exist a distinguished node ν0 ∈ N (the root) and a map p : N \ {ν0} → N (the
predecessor map) for which the following property holds: for all ν ∈ N there is ℓ ∈ N≥1 such that pℓ(ν) = ν0. We
then call the pair (N , p) a rooted tree.

Notice that (N , p) becomes naturally ‘graded’ or ‘stratified’ as follows: N =
⋃

ℓ≥0N (ℓ) where N (0) := {ν0} and
N (ℓ) := {ν ∈ N : pℓ(ν) = ν0}. Notice also that, by definition, p maps N (ℓ) to a subset of N (ℓ−1) (here ℓ ≥ 1).

Given ν ∈ N we put desc(ν) := p−1({ν}) and call it the descendants of ν. Nodes ν with desc(ν) = ∅ are called
leaves or terminal nodes. Nodes ν with desc(ν) ̸= ∅ are called internal or branching nodes.

Intuitively, a node will be a given large ball. Then, then free boundary inside the node will be covered by the
node’s descendants in the next (smaller) scales, and such branching taking place in balls that are large with respect
to neck radii. In other words, one keeps zooming in until a neck or two regular phases are seen at the threshold
scale, while keeping track of the intermediate balls, the closedness of u to a vee as well as the tilting. See Figure 1.

We can now give the following result concerning the geometric structure of {u > 0} (recall the definition of Slab
in (2.17)):

Proposition 5.12. There exists a small universal constant θ◦ > 0 such that, for any given θ ∈ (0, θ◦), there exists
M =M(θ) ≥ 1 (large) such that the following holds true.

For any given z ∈ Z and R > Mr⋆(z), there exist:
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<latexit sha1_base64="+KWNVoCUWSipOkNcH6eKocMWGo0=">AAACK3icbVDLSgMxFE181vpqdekmWATdlBkp6lJ041LFqtApJcncajCPIcmoZeivuNWNX+NKcet/mKld+DoQcjjnXu69h2VSOB9Fr3hicmp6ZrYyV51fWFxartVXzp3JLYc2N9LYS0YdSKGh7YWXcJlZoIpJuGA3h6V/cQvWCaPP/CCDrqJXWvQFpz5IvdpKwoxM3UCFj8DmQY9t9WqNqBmNQP6SeEwaaIzjXh3jJDU8V6A9l9S5ThxlvltQ6wWXMKwmuYOM8ht6BZ1ANVXgusVo+SHZCEpK+saGpz0Zqd87CqpcuV+oVNRfu99eKf7ndXLf3+sWQme5B82/BvVzSbwhZRIkFRa4l4NAKLci7Er4NbWU+5DXjymszCicoeGOG6WoTovkdFgk5UzGyOmwWg2hxb8j+kvOt5vxTnPnpNXYb43jq6A1tI42UYx20T46QseojTi6Rw/oET3hZ/yC3/D7V+kEHvesoh/AH5+nTqXW</latexit>

e(Bb)

<latexit sha1_base64="VF30tQXKoR/mhmI5nkTBEo0OvCg=">AAACK3icbVDLSgMxFE181vpqdekmWIS6KTNS1KXoxqWKrUKnlEzmVoN5DElGLUN/xa1u/BpXilv/w0ztwlYPhBzOuZd774lTwa0Lgnc8Mzs3v7BYWiovr6yurVeqG22rM8OgxbTQ5jqmFgRX0HLcCbhODVAZC7iK704K/+oejOVaXbpBCl1JbxTvc0adl3qVjSjWIrED6T8C9eMe3e1VakEjGIH8JeGY1NAYZ70qxlGiWSZBOSaotZ0wSF03p8ZxJmBYjjILKWV39AY6nioqwXbz0fJDsuOVhPS18U85MlJ/d+RU2mI/Xympu7XTXiH+53Uy1z/s5lylmQPFfgb1M0GcJkUSJOEGmBMDTygz3O9K2C01lDmf18SUuMjIn6HggWkpqUry6GKYR8XMOCYXw3LZhxZOR/SXtPca4X5j/7xZO2qO4yuhLbSN6ihEB+gInaIz1EIMPaIn9Ixe8Ct+wx/486d0Bo97NtEE8Nc3pZml1Q==</latexit>

e(Ba)
<latexit sha1_base64="q1wke0eS1/a0q6kZrWuYhSNjbpw=">AAACK3icbVDLSgMxFE181vpqdekmWIS6KTNS1KXoxqWKrUKnlEzmVoN5DElGLUN/xa1u/BpXilv/w0ztwlYPhBzOuZd774lTwa0Lgnc8Mzs3v7BYWiovr6yurVeqG22rM8OgxbTQ5jqmFgRX0HLcCbhODVAZC7iK704K/+oejOVaXbpBCl1JbxTvc0adl3qVjSjWIrED6T8C9eMe2+1VakEjGIH8JeGY1NAYZ70qxlGiWSZBOSaotZ0wSF03p8ZxJmBYjjILKWV39AY6nioqwXbz0fJDsuOVhPS18U85MlJ/d+RU2mI/Xympu7XTXiH+53Uy1z/s5lylmQPFfgb1M0GcJkUSJOEGmBMDTygz3O9K2C01lDmf18SUuMjIn6HggWkpqUry6GKYR8XMOCYXw3LZhxZOR/SXtPca4X5j/7xZO2qO4yuhLbSN6ihEB+gInaIz1EIMPaIn9Ixe8Ct+wx/486d0Bo97NtEE8Nc3qQOl1w==</latexit>

e(Bc)

Figure 1. Illustration of branching structure in ball tree: Proposition 5.12 and Definition 5.13.
From left to right: a neck-type terminal ball, a regular terminal ball, and a branching ball.

• A finite collection N of balls of R3 with BR(z) ∈ N .
• A predecessor map p : N \ {BR(z)} → N such that (N , p) is a rooted tree with root BR(z).
• A map e : N → S2 called polarity map.

The previous objects satisfy the following properties:

(1) Every ball (or node) B ∈ N (ℓ), ℓ ≥ 0, has radius ϱℓ := θℓR and is centered at some point in {u = 0}∩BR(z).
(2) For every node B = Bϱ(y) ∈ N (ℓ) (so that ϱ = ϱℓ) we have∥∥u− Vy,e∥∥L∞(B2ϱ(y))

≤ θ4ϱ, (5.13)

where e = e(B) is the polarity of B. In particular,

{u = 0} ∩B2ϱ(y) ⊂ {x ∈ R3 : |e · (x− y)| ≤ θ4ϱ}. (5.14)

(3) A ball B = Bϱ(y) in N is an internal or branching node whenever

there exists z ∈ B2ϱ(y) ∩ Z such that Mr⋆(z) ≤ ϱ. (5.15)

Otherwise, the ball is a terminal node.
(4) For every branching node B ∈ N , each of its descendants in desc(B) is centered at some point in {u =

0} ∩ Slab
(
B, e, θ4

)
, where e = e(B) is the polarity of B. Moreover, the union of the balls in desc(B) are

a “Vitali covering” of Slab
(
B, e, θ2

)
(namely, they cover Slab

(
B, e, θ2

)
and the balls with the same centers

and radii scaled by a factor 1/4 are pairwise disjoint). In particular, the number of balls in desc(B) is
bounded by 28θ−2.

(5) For any B′ ∈ desc(B) we have |e(B)− e(B′)| ≤ θ3.

Proof. We will construct the tree (N , p) using an iterative procedure. The process begins at the root BR(z), which
will always serve as a branching node. For any given node, we will define the criteria that determine whether it is
branching or terminal, along with the procedure for constructing its descendants in the branching case.

This construction is divided into two steps:

Step 1. We present a claim that acts as a fundamental step in the construction process. It governs the selection
of the constant M and outlines the procedure for determining descendants from a branching node.

Claim. For any given θ > 0 sufficiently small, there is M = M(θ) such that the following holds.
Suppose that u(y) = 0 and B = Bϱ(y) ⊂ R3 is some ball such that (5.15) holds. Assume in
addition that e ∈ S2 is a unit vector such that (5.13) holds. Then, there exists a collection of points
{yj}1≤j≤N in {u = 0} ∩ Slab

(
Bϱ(y), e, θ

4
)
satisfying the following properties:

(i) The balls {Bθϱ/4(yj)}1≤j≤N are disjoint. In particular, the number of points N is bounded by

28θ−2.
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(ii) The balls {Bθϱ(yj)}1≤j≤N cover Slab
(
Bϱ(y), e, θ

2
)

(iii) There exists ẽ ∈ S2 with |e− ẽ| ≤ θ3 such that for all 1 ≤ j ≤ N we have∥∥u(x)− |ẽ · (x− yj)|∥∥L∞(B2θϱ(yj))
≤ θ4(θϱ) = θ5ϱ, (5.16)

Let us prove this claim. By assumption (5.15), there exists z ∈ B2ϱ(y) ∩ Z such that Mr⋆(z) ≤ ϱ. Within the
setup of Lemma 5.7, choose M =M(θ) such that

8ω
(
M∗/M

)
≤ θ6.

Then, Lemma 5.7 guarantees the existence of ẽ ∈ S2 such that∥∥u(x)− |ẽ · (x− z)|
∥∥
L∞(B4ϱ(z))

≤ ω
(
M∗/M

)
4ϱ ≤ 1

2θ
6ϱ.

Since changing the sign to ẽ does not change the previous bound, we choose the sign giving e · ẽ ≥ 0.
Then using Lemma 3.14(a) (with y1 = z, y2 = y, r1 = 4ϱ, r2 = 2ϱ, ε = θ6/8)∥∥u(x)− |ẽ · (x− y)|∥∥

L∞(B2ϱ(y))
≤ θ6ϱ, (5.17)

therefore
{u = 0} ∩B2ϱ(y) ⊂ {x ∈ R3 : |ẽ · (x− y)| ≤ θ6ϱ}. (5.18)

Next, define the set {yj}1≤j≤N as a subset of {u = 0}∩Slab
(
Bϱ(y), ẽ, θ

6
)
such that the balls Bθϱ/4(yj) are pairwise

disjoint. Furthermore, this subset is chosen to be maximal with respect to this disjointness property. Observe also
that by (5.14), we have

{yj}1≤j≤N ⊂ {u = 0} ∩Bϱ(y) ⊂ Slab
(
Bϱ(y), e, θ

4
)
.

Now, maximality implies (by a usual Vitali-type argument) that the triple balls are a cover:

{u = 0} ∩ Slab
(
Bϱ(y), ẽ, θ

6
)
⊂

⋃
1≤j≤N

B3θϱ/4(yj). (5.19)

Also, by (5.17) and Lemma 3.14(b) we know

dist (x, {u = 0}) ≤ 8θ6ϱ for all x ∈ Slab
(
Bϱ(y), ẽ, θ

6
)
,

i.e. Slab
(
Bϱ(y), ẽ, θ

6
)
⊂ {u = 0}+B8θ6ϱ, upgrading (5.19) to

Slab
(
Bϱ(y), ẽ, θ

6
)
⊂

⋃
1≤j≤N

B4θϱ/5(yj),

provided θ is small so that 3θ/4 + 8θ6 < 4θ/5.
Also for θ small enough (such that 2θ2 + 4θ/5 ≤ 5θ/6)

Slab
(
Bϱ(y), ẽ, 2θ

2
)
⊂

⋃
1≤j≤N

B5θϱ/6(yj). (5.20)

Since the intersections of the balls Bθϱ/4(yj) with the plane {x ∈ R3 : ẽ · (x− y) = 0} are disjoint disks of radius

≥ θϱ/8, and they are all contained in Slab
(
B(1+θ/3)ϱ(y), ẽ, 0

)
a simple comparison of areas gives

N(θϱ/8)2 ≤ (1 + θ/3)2ϱ2.

Therefore since θ/3 ≤ 1 we obtain Nθ2 ≤ 28 as claimed. We have thus established (i).
To establish (iii) we observe first that (repeating similar triangle inequality arguments as above) from (5.17) and

using |ẽ · (yj − y)| ≤ θ6ϱ we obtain that (5.16) is automatically satisfied for all j provided 2θ6 ≤ θ5.
Similarly, combining (5.13) and (5.17) using the triangle inequality we obtain∥∥Vy,e − Vy,ẽ∥∥L∞(B2ϱ(y))

=
∥∥ |e · ( · − y)| − |ẽ · ( · − y)|∥∥

L∞(B2ϱ(y))
≤ (θ4 + θ6)ϱ < 2θ4ϱ.

Recalling e · ẽ ≥ 0 this implies |e− ẽ| ≤ 2θ4, which is less than the claimed θ3 (θ is small).
Finally, (ii) follows from (5.20) together with |e− ẽ| ≤ θ3. This finishes the proof of the claim.

Step 2. We now use the claim to construct the tree (N , p).
We start by defining the root N (0) := {BR(z)}. Since R > Mr⋆(z) by assumption, the conditions of the claim are

satisfied for BR(z), thanks to Lemma 5.7. This allows us to apply the branching procedure from the claim to BR(z),
producing a finite collection of balls {BθR(yj)}1≤j≤N , each centered at a point in {u = 0} ∩ Slab

(
BR(z), e, θ

4
)
and

satisfying the covering and disjointness properties of the claim in Step 1.
Next, for each branching node Bϱ(y) ∈ N (k) (at level k of the tree), we apply the claim to generate its descendants,

forming the next generation of nodes N (k+1). If a ball satisfies the branching condition (5.15), it branches into a
finite collection of descendants, where each ball in the descendant set satisfies the same geometric properties as the
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initial node. If a node fails the branching condition, it becomes a terminal node, and no further descendants are
generated.

The predecessor map p : N \ {BR(z)} → N is defined by setting p(B′) = B whenever B′ branches out from B.
This establishes the rooted tree structure of (N , p), where BR(z) is the root.

The polarity map e : N → S2 is defined iteratively: for the root BR(z), we assign polarity e given by Lemma 5.7,
and for each descendant Bθϱ(yj) of a branching node Bϱ(y), we assign the polarity ẽ from the claim, satisfying
|e(B)− e(B′)| ≤ θ3 for any descendant B′ of B.

Note that for the root BR(z), we may also arbitrarily assign the polarity −e. Once this sign is chosen, however,
the signs of the polarities for all descendants are uniquely determined.

The iterative process continues until all nodes in the tree are either terminal or have their descendants constructed.
The covering, disjointness, and approximation properties of the descendants are guaranteed by the claim, which
ensures that every ball in N satisfies the conditions in Proposition 5.12.

Finally, the number of descendants at each branching node is bounded by 28θ−2, and the radii of the balls
decrease geometrically by a factor of θ at each generation. This ensures that the process terminates after a finite
number of steps (since rmin > 0), yielding a well-defined, finite tree structure. □

The following definition and lemmas extract the relevant analytic information from the rooted tree constructed
in Proposition 5.12 to be used in the following sections:

Definition 5.13. Given θ > 0 (sufficiently small), let M = M(θ) be the constant provided by Proposition 5.12.
Suppose z ∈ Z and R > Mr⋆(z). Let (N , p) denote the ball tree rooted at BR(z), and let e be the associated
polarity map, both as described in Proposition 5.12. We partition N into two sets:

N = I ∪ T ,

where I consists of the internal nodes (branching balls), and T consists of the terminal nodes (balls that do not
branch further). A terminal ball B = Bϱ(y) ∈ T is called regular if

B2ϱ(y) ∩ Z = ∅.

The set of regular terminal balls will be denoted as T reg. The non-regular terminal balls will be called neck balls.
We denote them by T neck, so that T = T reg ∪ T neck.

We have the following:

Lemma 5.14. In the setting of Definition 5.13, let θ ∈ (0, θ◦), where θ◦ > 0 is the universal constant provided by
Proposition 5.12. For every regular terminal ball B = Bϱ(y) ∈ T reg, the set {u > 0} ∩B3ϱ/2(y) can be written as

{u > 0} ∩B3ϱ/2 = B(+,3/2) ∪B(−,3/2),

where B(+,3/2) and B(−,3/2) are two disjoint connected components of {u > 0}∩B3ϱ/2(y), characterized by containing
the points y ± ϱe, where e = e(B) is the polarity of B. In addition, we have:

|∇u(x)− e| ≤ θ3 ∀x ∈ B(+,3/2) and |∇u(x) + e| ≤ θ3 ∀x ∈ B(−,3/2). (5.21)

Moreover, the two free boundaries ∂{u > 0} ∩ ∂B(±,3/2) are flat C1,1 graphs. More precisely, if we choose an
Euclidean coordinate system (X1, X2, X3) with origin at y and X3 pointing in the direction of e, we have

B(+,3/2) = {X3 > g(+)(X1, X2)} ∩B3ϱ/2(y) and B(−,3/2) = {X3 < g(−)(X1, X2)} ∩B3ϱ/2(y),

where the functions g(±) : D3ϱ/2 → R, with D3ϱ/2 being the disk {X2
1 +X2

2 < (3ϱ/2)2} in R2, are ordered —that is

g(−) < g(+)— and satisfy the estimates:

∥g(±)∥L∞(D3ϱ/2) + ϱ2∥D2g(±)∥L∞(D3ϱ/2) ≤ θ
3ϱ.

Proof. It follows by combining Proposition 5.12 with Lemma 5.6 and Lemma 3.13. Indeed, if B = Bϱ(y) is a regular
terminal ball then, by definition, B2ϱ(y) ∩ Z = ∅. Hence, by Lemma 5.6 we obtain

|D2u| ≤ C1

ϱ
in {u > 0} ∩B7ϱ/4(y),

with C1 universal. Recalling (5.13)—which holds thanks to Proposition 5.12(2)— we can use Lemma 3.15 (with a
covering argument) to conclude. □

Definition 5.15. For given B = Bϱ(y) ∈ N \ T neck we define B(+), B(−), as follows:
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• If B ∈ I is an internal ball and e = e(B), we define (the regular regions)

B(+) := {x ∈ Bϱ(y) : e · (x− y) > θ2ϱ}, B(−) := {x ∈ Bϱ(y) : e · (x− y) < −θ2ϱ}.
Similarly, for given λ ∈ [1, 3/2] we define

B(±,λ) := {x ∈ Bλϱ(y) : ±e · (x− y) > θ2ϱ}.
• If B ∈ T reg is a regular terminal ball we define

B(+) := B(+,3/2) ∩B, B(−) := B(+,3/2) ∩B,
where B(+,3/2) and B(+,3/2) are as in Lemma 5.14. Also, for for given λ ∈ [1, 3/2] we define

B(±,λ) := B(±,3/2) ∩Bλϱ(y).

Finally, given a ball treeN with root BR(z), we define the two subsets Ω
(+) = Ω(+)(BR(z)) and Ω(−) = Ω(−)(BR(z))

as

Ω(±) :=
⋃
{B(±) : B ∈ I ∪ T reg}.

Remark 5.16 (Reversed polarity map). Notice that if (N , p) and e : N → S2 are the tree and polarity map
constructed in Proposition 5.12, then replacing the map e with −e results in a new polarity map that satisfies
exactly the same properties. In other words, we can always change the sign of the polarity at one node (e.g., the
root), but this change must be propagated to all other nodes accordingly.

It is also useful to observe that for each ball B the set B(−) defined using the polarity e is the same as B(+) for
the polarity −e. Thus, the set Ω(−) defined using the polarity e is the same as Ω(+) for the polarity −e.

In the previous definition, we have a lower bound on the gradient inside Ω(±):

Lemma 5.17. In the setting of Definitions 5.13 and 5.15, let θ ∈ (0, θ◦). For all B ∈ I ∪ T reg we have:

|∇u(x)− e| ≤ Cθ2 ∀x ∈ B(+,3/2) and |∇u(x) + e| ≤ Cθ2 ∀x ∈ B(−,3/2), (5.22)

where e = e(B) and C is universal. In particular, |∇u| ≥ 9
10 in Ω(±).

Proof. For B ∈ T reg, this is implied by (5.21). For B = Bϱ(y) ∈ I this follows from interior estimates for the

harmonic function u using that ∥u− Vy,e∥L∞(Bϱ(y)) ≤ θ4ϱ and B(±) = {x : ±e · (x− z) > θ2ρ}. □

Notice also that, thanks to the tree structure, Ω(±) cover the whole {u > 0} ∩BR(z) except T neck:

Lemma 5.18. In the setting of Definitions 5.13 and 5.15, we have

{u > 0} ∩BR(z) ⊂ Ω(+) ∪ Ω(−) ∪
⋃
T neck.

Proof. We reason by induction using the tree structure. Indeed, let N =
⋃

ℓ≥0N (ℓ) be as in Definition 5.11 and
define

Ω(ℓ,±) :=
⋃
{B(±) : B ∈ N (ℓ) ∩ (I ∪ T reg)}, and Ω(≤ℓ,±) :=

ℓ⋃
k=0

Ω(k,±). (5.23)

Then the result follows noticing that

BR(z) ⊂ Ω(≤ℓ,±) ∪
⋃
N (ℓ) ∪

⋃
T .

which is established for all ℓ ≥ 0 using Proposition 5.12(4) —more precisely, we use that the union of the balls in
desc(B) covers all Slab

(
B, e, θ2

)
— and induction. □

6. Estimating neck radii from symmetric excess

The goal of this section is to estimate the size of neck radii using a test function introduced by Jerison and Savin
in [55]. More precisely, given a global classical stable solution u : R3 → R to Bernoulli satisfying (5.1), following
Jerison and Savin we define the functions w and c as

w := F (D2u) = f(λ1, λ2, λ3) =

√∑
λi>0

λ2i + 4
∑
λi<0

λ2i , and c := w1/3 in {u > 0}, (6.1)

where λi are the eigenvalues of D2u at a given point. We define (see (2.3))

I(u, U) :=

ˆ
{u>0}∩U

c∆c dx+

ˆ
∂{u>0}∩U

c(cν +Hc)dH2, for any open set U ⊂ R3. (6.2)
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We recall that H denotes the mean curvature of the free boundary at a point, and in particular, H(x) = −∂2ννu(x) >
0 for x ∈ FB(u) (see Lemma 3.12). Notice that, by the stability inequality (2.3), we have

I(u,B1) ≤ C
∥∥∥|D2u| 23

∥∥∥
L1(B2∩{u>0})

.

In addition, it follows from [55] that the two integrands in the definition of I are non-negative. In particular,

I(u, U ′) ≤ I(u, U) for any U ′ ⊂ U. (6.3)

Finally, I enjoys the following scaling property:

I(u, U) = r
1
3 I
(
uz,r,

1
r (U − z)

)
, where uz,r(x) :=

u(z + rx)

r
, r > 0. (6.4)

For notational convenience, for z ∈ Z we define (recall (2.4))

ϱz(u,R) :=
1

R
I(u,BR(z))

3.

The goal of this section is to establish the following two propositions. The first one provides a control on ϱz by the
symmetric excess (recall (2.1)):

Proposition 6.1. For any γ ∈ (0, 49 ) there exists Cγ > 0 such that

ϱz(u,R) ≤ CγEz(u, 4R)
3γ for all z ∈ Z and R > 0.

The second proposition gives a control on the neck radii by ϱz:

Proposition 6.2. There exists C ≥ 1 universal such that, for any z ∈ Z and R ≥ r⋆(z),

r⋆(z
′)

R
≤ Cϱz(u, 2R) for all z′ ∈ Z ∩B3R/2(z). (6.5)

6.1. Hessian estimates in Lγ′
: Proof of Proposition 6.1. We start by proving some estimates for positive

harmonic functions in half-balls or flat-Lipschitz domains. The next two results follow from standard arguments,
and we present their proofs in Appendix D for the reader’s convenience.

Lemma 6.3. Let r > 0, n ≥ 2, and w : B2r ∩ {xn > 0} → (0,∞) a positive harmonic function. Then, denoting
x = (x′, xn) ∈ Rn−1 × R, we haveˆ

{|x′|<3r/2}
w(x′, t) dx′ ≤ C w(ren)rn−1 for all t ∈ (0, r),

where C = C(n) is a dimensional constant.

Lemma 6.4. Let n ≥ 2 and w : B2r ∩D → (0,∞) a positive harmonic function, where D = {xn > φ(x′)} for some
φ : B′

2r ⊂ Rn−1 → R with

|φ|+ r|∇φ| ≤ c◦r.
Let γ′ ∈ (0, 12 ). Then, for c◦ small enough depending only on n and γ′, we have

r2γ
′−n

ˆ
Br∩D

|D2w|γ
′
dx ≤ Cn,γ′ w(ren)

γ′
, (6.6)

for some Cn,γ′ depending only on n and γ′.

With these two preliminary results at hand, we now focus on a series of estimates for our solution u : R3 → R to
Bernoulli. First, we prove that L1-closeness to a vee implies L∞-closeness from below:

Lemma 6.5. Let y ∈ R3, e ∈ S2, and R > 0. Then, the following implication holds for all ε ∈ (0, 1):

1

R

 
{x∈BR(y) : e·(x−y)>R/8}

(u(x)− e · (x− y))− dx ≤ ε =⇒ u(x) + CεR ≥ e · (x− y) ∀x ∈ B3R/4(y),

where (t)− = max(−t, 0) denotes the negative part of t ∈ R and C is universal.
In particular:

1

R

 
BR(y)

|u− Vy,e| dx ≤ ε =⇒ u+ CεR ≥ Vy,e in B3R/4(y).
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Proof. Throughout the proof, we will assume without loss of generality that ε > 0 is sufficiently small, since
otherwise the conclusion is trivially true (for some appropriately large C). Defining

v(x) := u(x)− e · (x− y),
our goal is to show that

v ≥ −CεR in B7R/8(y), (6.7)

with C universal.
Since |∇u| ≤ 1 we have |∇v−| ≤ 2, so by our assumption and L1-Lip interpolation11 we have

∥v−∥L∞(BR(y)) ≤ CRε1/4 ≤ R/8,
provided ε is small enough. In particular, u > 0 in DR,y := BR(y) ∩ {x : e · (x− y) > R/8}. Thus v is harmonic
and v− subharmonic in DR,y. Hence, since by assumption 

DR,y

v− dx ≤ CεR,

the L1 to L∞ estimates for subharmonic functions give

v− ≤ CεR in B7R/8(y) ∩ {x : (x− y) · e > R/6}.
Since

∂ev(x) = ∂eu(x)− 1 ≤ |∇u(x)| − 1 ≤ 0 in R3,

(recall that |∇u| ≤ 1), (6.7) follows. □

One of the cornerstones of this section is the following result, which strongly relies on the geometric information
about {u > 0} provided by the tree structure constructed in Proposition 5.12. :

Lemma 6.6. Let n = 3. Given γ′ ∈ (0, 12 ), there exist M =M(γ′) ≥ 1 and Cγ′ ≥ 1 (both large constants depending

only on γ′) such that the following implication holds for every z ∈ Z, e ∈ S2, and R ≥Mr⋆(z):

1

R

 
B2R(z)

∣∣u− Vz,e∣∣ dx ≤ ε =⇒ Rγ′−3

ˆ
BR(z)∩{u>0}

|D2u|γ
′
dx ≤ Cγ′εγ

′
. (6.8)

Proof. Note that, by Lemma 4.3 with p = γ′,

Rγ′−3

ˆ
BR(z)∩{u>0}

|D2u|γ
′
dx ≤ C,

with C universal. Hence, to prove the lemma, we may assume without loss of generality that ε is sufficiently small.
As mentioned above, we will rely on the geometric information about {u > 0} provided by the tree structure

constructed in Proposition 5.12. For a given γ′ ∈ (0, 12 ), we will choose an appropriately small θ > 0 and consider
the ball tree from Proposition 5.12. The precise choice of θ in terms of γ′ will become clear later in the proof, but

we can already note that θ → 0+ as γ′ →
(
1
2

)−
.

For θ > 0 small depending on γ′, we use Proposition 5.12 to obtain a ball tree (N , p) rooted at BR(z) and
polarity map e : N → S2. Also, we set M(γ′) equal to M(θ), the (large) constant from Proposition 5.12.

We divide the proof into three steps:
Step 1: Define the function v : B2R(z)→ R as

v(x) = u(x)− e · (x− z).

By Lemma 6.5 we have

v ≥ −CεR in B3R/2(z) and {u = 0} ∩B3R/2(z) ⊂ Slab
(
B3R/2(z), e, Cε

)
(6.9)

with C universal. Since both ε and θ are small enough, we can choose the sign of the polarity e(BR(z)) so that

e · e(BR(z)) ≥ 1− 1

100
. (6.10)

For a given ball B = Bϱ(y) ∈ N we define its ‘positive pole’ and ‘negative pole’ as:

P+(B) := y +
ϱ

2
e(B) and P−(B) := y − ϱ

2
e(B).

11Here we use a rescaled version of the classical interpolation inequality

∥w∥n+1
L∞(B1)

≤ C(n)∥w∥L1(B1)
∥∇w∥nL∞(B1)

,

which holds true for all Lipschitz functions w defined in the unit ball of Rn; cf. Lemma A.2.
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Define U := B3R/2(z) ∩ {u > 0}. We claim that, if w : U → [0,∞) is a non-negative harmonic function, then∑
B∈N (ℓ)

w
(
P+(B)

)
≤ (Kθ−2)ℓw

(
P+(BR(z))

)
, (6.11)

where K is a universal constant; and analogously with P−.
Indeed, for any branching ball B′ ∈ N (ℓ), thanks to Harnack’s inequality and Proposition 5.12(4) we have∑

B∈desc(B′)

w
(
P+(B)

)
≤ C(θϱℓ)−3

∑
B∈desc(B′)

ˆ
Bθϱℓ/8

(P+(B))

w dx ≤ C(θϱℓ)−3

ˆ
B3ϱℓ/2

∩S(B′)

w dx,

where ϱℓ = θℓR, S(B′) = {θϱℓ/16 ≤ e(B′) · (x−cent(B′)) ≤ 2θϱℓ}, and cent(B′) is the center of B′. Thus, applying
Lemma 6.3 (integrated for t ∈ θϱℓ/16, 2θϱℓ)) using again the Harnack inequality we obtain∑

B∈desc(B′)

w
(
P+(B)

)
≤ Kθ−2w

(
P+(B′)

)
.

This implies ∑
B∈N (ℓ)

w
(
P+(B)

)
≤ Kθ−2

∑
B∈N (ℓ−1)

w
(
P+(B)

)
for all ℓ ≥ 1,

from which (6.11) follows.

Step 2: We now show the existence of a constant Cγ′ , depending only on γ′, such that:

(a) For every internal or regular terminal ball B ∈ N (ℓ) ∩ (I ∪ T reg), we haveˆ
B(+)

|D2w|γ
′
dx ≤ Cγ′(θℓR)3−2γ′

w
(
P+(B)

)γ′

. (6.12)

(b) For every neck-type terminal ball B ∈ N (ℓ) ∩ T neck, we haveˆ
B∩{u>0}

|D2w|γ
′
dx ≤ Cγ′(θℓR)3−2γ′

w
(
P+(B)

)γ′

. (6.13)

Indeed, provided that θ > 0 is chosen small enough, (a) follows from a direct application of Lemma 6.4 to the
non-negative harmonic function w in B(+,3/2).

The proof of (b) is much more involved and relies on Lemmas 5.8, 5.9, and 6.4, together with a suitable covering
argument and a Harnack chain. We now provide the details of the proof.

Note first that, by the definition of a neck-type terminal ball, given B = Bϱ(y) ∈ T neck there exists z ∈ B2ϱ(y)∩Z
with Mr⋆(z) > ϱ, M = M(θ). Thus, setting ϱ̃ := 4max{M, M̄}r⋆(z) (where M̄ is the universal constant from
Lemma 5.8), we have

|D2u| ≤ C(M)

ϱ̃
in B3ϱ̃(z) ∩ {u > 0} and B ⊂ Bϱ̃(z), (6.14)

where the Hessian bound follows from Lemma 5.9. As a consequence of this (note that u = 0 and ∂νu = 1 on
∂{u > 0}), we deduce the following:
For any given y′ ∈ B2ϱ(z) ∩ ∂{u > 0}, the connected component of Bcϱ(y

′) ∩ {u > 0} whose boundary contains
y′ satisfies the assumptions of Lemma 6.4 (in an appropriate Euclidean coordinate frame), where c > 0 is a small
constant depending only on M (i.e., depending only on γ′).

Thanks to this observation, we can argue as follows: first, we cover B2ϱ̃(z) ∩ {dist(·, ∂{u > 0} ≤ c2ϱ̃} by a finite
collection of balls {Bcϱ̃/10(y

′
j)}1≤j≤N=N(γ′) with y′j ∈ B2ϱ(z) ∩ ∂{u > 0}, and for each j we let y′′j to be a point

such that Bcϱ̃/4(y
′′
j ) ⊂ Bcϱ̃(y

′
j) ∩ {u > 0}.

Then, we cover B2ϱ̃(z)∩{dist(·, {u = 0} > c2ϱ̃} with finitely many balls {Bcϱ̃/8(ŷ
′′
j )}1≤j≤M such that Bcϱ̃/4(ŷ

′′
j ) ⊂

{u > 0} and the balls {Bcϱ̃/4(ŷ
′′
j )}1≤j≤M have bounded overlapping. This guarantees that M is bounded by

a constant depending only on c (and thus only on γ′). Now, by applying Lemma 6.4 inside each of the balls
{Bcϱ̃/10(y

′
j)}1≤j≤N , and interior harmonic estimates inside each of the balls {Bcϱ̃/4(ŷ

′′
j )}1≤j≤M , since ϱ̃ is comparable

to θℓR we get ˆ
B∩{u>0}

|D2w|γ
′
dx ≤ Cγ′(θℓR)3−2γ′

( ∑
1≤j≤N

w(y′′j )
γ′

+
∑

1≤j≤M

w(ŷ′′j )
γ′
)
. (6.15)

We now claim that, for any given point y′′ ∈ Bϱ̃(z) such that Bcϱ̃/4(y
′′) ⊂ {u > 0}, we have

w(y′′) ≤ C1w(P
+(B)), (6.16)
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where C1 depends only on γ′. Combining this claim with (6.15), (b) follows immediately. So, we only need to prove
(6.16).

To this aim, we first apply Lemma 5.8 to find continuous path Γ : [0, 1]→ B2ϱ̃(z) ∩ {u > 0} such that

Γ(0) = y′′, Γ(1) = P+(B).

Next, we show that there exists another continuous path Γ̃ : [0, 1]→ B3ϱ̃(z) ∩ {u > 0} such that

Γ̃(0) = y′′, Γ̃(1) = P+(B), and Γ̃(s) +Bc4ϱ̃ ⊂ B3ϱ̃(z) ∩ {u > 0} for all s ∈ [0, 1].

Indeed, we can consider the vector field F = h(u)∇u, where h : R→ [0,∞) is a smooth cut-off such that

h(u) =

{
1 if u ≤ c3ϱ̃,
0 if u ≥ c2ϱ̃,

and define Γ̃(s) := ΦF (Γ(s), cϱ̃), where ΦF = ΦF (x, t) is the flow of F .12

Finally, to establish (6.16), we cover Γ̃([0, 1]) by a number Ñ (depending only on γ′) of balls of radius c4ϱ̃/2.

This gives a ‘chain of balls’ Bc4ϱ̃/2(xj) of length Ñ such that

Bc4ϱ̃/2(xj) ∩Bc4ϱ̃/2(xj+1) ̸= ∅, 1 ≤ j < Ñ.

Then, applying Harnack inequality along the chain of balls {Bc4ϱ̃(xj)}1≤j≤Ñ (which have sufficient overlap between

consecutive balls), we obtain (6.16).

Step 3: Consider the function w = v + CεR. As proved in Step 1, w is non-negative in B3R/2(z). We then apply
the estimates from Step 2 to w.

More precisely, in Ω(+) we sum over ℓ the estimate proved in (a), recalling Definition 5.15 and that the number
of descendants of each node in N is bounded by 28θ−2 and thus |N (ℓ)| ≤ (28θ−2)ℓ. In this way, by the concavity of

t 7→ tγ
′
and (6.11), we obtain:ˆ

Ω(+)

|D2v|γ
′
dx ≤

∑
ℓ≥0

∑
B∈N (ℓ)∩(I∪T reg)

ˆ
B(+)

|D2w|γ
′
dx

≤ Cγ′R3−2γ′ ∑
ℓ≥0

θ(3−2γ′)ℓ
∑

B∈N (ℓ)

w
(
P+(B)

)γ′

≤ Cγ′R3−2γ′ ∑
ℓ≥0

θ(3−2γ′)ℓ |N (ℓ)|
(

1

|N (ℓ)|
∑

B∈N (ℓ)

w
(
P+(B)

))γ′

≤ Cγ′R3−2γ′ ∑
ℓ≥0

θ(3−2γ′)ℓ ((28θ−2)ℓ)1−γ′
(Kθ−2)γ

′ℓw
(
P+(BR(z))

)γ′

≤ Cγ′R3−2γ′ ∑
ℓ≥0

(
θ1−2γ′

Kγ′
28(1−γ′)

)ℓ (
CεR

)γ′

.

(6.17)

In the last line we used that, by the Harnack inequality and (6.9), we have w
(
P+(BR(z))

)
≤ CεR, where C is

universal. Notice that, since γ′ < 1/2, we can choose θ = θ(γ′) sufficiently small so that θ1−2γ′
Kγ′

28(1−γ′) < 1 and
the geometric series above converges to a constant depending only on γ′.

The assumptions of the lemma do not change if we replace e by −e. But, by (6.10), doing so reverses the polarity
of the tree and therefore we obtain the same bounds over Ω(−).

Finally, we obtain a similar estimate for
∑

B∈T neck

´
B
|D2v|γ′

dx reasoning exactly as above but using (b) instead

of (a). Since {u > 0} ∩BR(z) ⊂ Ω(+) ∪ Ω(−) ∪
(⋃
T neck

)
(by Lemma 5.18), the proof is complete. □

We can finally prove Proposition 6.1.

Proof of Proposition 6.1. On the one hand, the Hessian estimate in Lemma 6.6 implies:

Rγ′
 
B2R(z)∩{u>0}

|D2u|γ
′
dx ≤ Cγ′Ez(u, 4R)

γ′
, for any γ′ ∈ (0, 1/2), (6.18)

12That is, ΦF satisfies Φ̇F (x, t) = F (ΦF (x, t)) for t > 0, with ΦF (x, 0) = x.
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where Cγ′ is a constant depending on γ′. On the other hand, the Sternberg–Zumbrun stability inequality from
Lemma 4.3 gives:

R2

 
B2R(z)∩{u>0}

|D2u|2 dx ≤ C.

Noticing that 2
3 = 4

3(2−γ′) ·γ
′+ 2−3γ′

3(2−γ′) ·2, we can combine these two inequalities using Hölder’s inequality to obtain

R2/3

 
B2R(z)∩{u>0}

|D2u|2/3 dx ≤ CγEz(u, 4R)
γ ,

where γ := 4γ′

3(2−γ′) →
(
4
9

)−
as γ′ →

(
1
2

)−
.

Finally, applying Jerison–Savin’s stability inequality (2.3), and noting that c2 = F (D2u)2/3 ≤ C|D2u|2/3, we get

R−1/3I(u,BR(z)) ≤ CEz(u, 4R)
γ ,

as desired. □

6.2. The left-hand side of Jerison–Savin controls neck radii: Proof of Proposition 6.2. The goal of this
subsection is to show the following result, which will imply Proposition 6.2:

Proposition 6.7. There exists a large universal constant κ > 0 such that the following holds.
Let u be a classical solution to the Bernoulli problem in B2 ⊂ R3 with |∇u| ≤ 1 in B2 and u(0) = 0. If

∥D2u∥L∞(B2∩{u>0}) ≤ C0 for some C0 > 0, then

∥D2u∥κL∞(B1∩{u>0}) ≤ C I(u,B2),

for some C depending only on C0.

Before proving this result we note that, as its consequence, I is bounded from below at neck balls (see Section 5.3):

Lemma 6.8. There exists c > 0 universal such that

I(u,B2r⋆(z)(z)) ≥ c r
1
3
⋆ (z) > 0, for all z ∈ Z.

Proof. For r = r⋆(z) define ũ(x) =
u(z+rx)

r . Then, by the definition of neck radius and Corollary 5.4, we haveˆ
B1∩{ũ>0}

|D2ũ|3 dx = η30 and |D2ũ| ≤ C in B2 ∩ {ũ > 0},

for some C universal. Thus, we can apply Proposition 6.7, and obtain

ηκ0 = ∥D2ũ∥κL3(B1∩{ũ>0}) ≤ C∥D
2ũ∥κL∞(B1∩{ũ>0}) ≤ C I(ũ, B2) = Cr−

1
3 I(u,B2r(z)),

where we have also used (6.4). This is our desired result. □

Hence, we can prove Proposition 6.2.

Proof of Proposition 6.2. Suppose first that R ≥M◦r⋆(z), with M◦ given by Lemma 5.10. By the choice of M◦ we
know that B2r⋆(z′)(z

′) ⊂ B2R(z) for every z′ ∈ B3R/2(z) ∩ Z. Thus, thanks to Lemma 6.8 and the definition of I
(2.3), we have

cr
1/3
⋆ (z′) ≤ I(u,B2r⋆(z′)(z

′)) ≤ I(u,B2R(z)) for all z′ ∈ B3R/2(z) ∩ Z,
as desired.

Suppose now r⋆(z) ≤ R ≤M◦r⋆(z). On the one hand, Lemma 6.8 gives

ϱz(u, 2R) =
I(u,B2R(z))

3

2R
≥

I(u,B2r⋆(z)(z))
3

2M◦r⋆(z)
≥ c > 0,

while on the other hand, thanks to Lemma 5.10,

r⋆(z
′) ≤ 1

4M◦r⋆(z) ≤ 1
4M◦R for all z′ ∈ B3R/2(z) ∩ Z ⊂ B3M◦r⋆(z)/2(z) ∩ Z.

This gives the desired result. □

The rest of this subsection will now be dedicated to the proof of Proposition 6.7.
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6.2.1. The test function revisited. Until the end of the subsection, we assume that

u is a classical solution to the Bernoulli problem in B2 ⊂ R3, with Ω = {u > 0}. (6.19)

We recall that, as a consequence of [55, Theorem 4.1], the function w = F (D2u) (as defined in (6.1)) satisfies

w∆w − 2

3
|∇w|2 ≥ 0 in Ω = {u > 0} ,

wν + 3Hw ≥ 0 on ∂Ω = ∂ {u > 0} ,

where ν denotes the inward normal towards {u > 0}, and H is the mean curvature of ∂Ω. In particular, ∆(wα) ≥ 0
in Ω for α ≥ 1

3 , and (wα)ν +Hwα ≥ 0 on ∂Ω for 0 ≤ α ≤ 1
3 . We aim to keep track of the remainder in the previous

inequalities.

We start with the interior inequality. Notice that the function f(λ1, λ2, λ3) =
√∑

λi>0 λ
2
i + 4

∑
λi<0 λ

2
i is convex,

therefore (λi − λj)(fλi
− fλj

) ≥ 0 (here and in the sequel, fλi
= ∂λi

f). We recall that (λi)i denote the eigenvalues

of D2u.

Lemma 6.9 (Remainder of interior inequality). Let u be as in (6.19). At all points where λ1, λ2, λ3 are not all
equal (to 0),

w∆w − 2

3
|∇w|2 ≥ 2

3

3∑
k=1

∑
1≤i<j≤3, i,j ̸=k(λi − λj)(fλi

− fλj
)∑

1≤i≤3, i ̸=k(λi − λk)(fλi
− fλk

)
w2

k, in Ω.

Proof. Following the proof of [55, Theorem 4.1], we write

w∆w ≥ 2

n

n∑
k=1

w2
k

nf∑
i ̸=k(λi − λk)(fλi − fλk

)
=

2

n

n∑
k=1

w2
k

(
1 +

nf −
∑

i ̸=k(λi − λk)(fλi − fλk
)∑

i̸=k(λi − λk)(fλi − fλk
)

)
.

From [55, eq. (4.7)], we have that for each k = 1, . . . , n,

nf −
∑
i ̸=k

(λi − λk)(fλi
− fλk

) =
∑

1≤i<j≤n

(λi − λj)(fλi
− fλj

)−

 ∑
1≤i<k≤n

+
∑

1≤k<i≤n

 (λi − λk)(fλi
− fλk

)

=
∑

1≤i<j≤n
i,j ̸=k

(λi − λj)(fλi
− fλj

),

Rearranging gives the desired result, in particular for n = 3. □

Next, we refine the lower bound on the boundary inequality.

Lemma 6.10 (Remainder of boundary inequality). Let u as in (6.19). Let (λ1, λ2, λ3) be the eigenvalues of D2u
evaluated at points on ∂{u > 0}, and let us write (λ1, λ2, λ3) = ((µ+ 1)H,−µH,−H) for some µ ≥ − 1

2 . Then,

wν + 3Hw ≥ min

{
1

4
(µ− 1)2, 1

}
Hw on ∂Ω.

Proof. Recall from [55, Section 4.3] that

wν

Hw
+ 3 = 2−

∑
λi>0 λ

3
i + 4

∑
λs<0 λ

3
s + 4H

∑n
k=1 λ

2
k

Hw2
.

We want to find a positive lower bound of the right-hand side, which in both cases we denote by g(µ).
Suppose first that µ ≥ 0. Then, we have

g(µ) = 2− (1 + µ)3 − 4µ3 + 4((1 + µ)2 + µ2)

(1 + µ)2 + 4µ2 + 4
=

(µ− 1)2(3µ+ 5)

(1 + µ)2 + 4µ2 + 4
≥ min

{
1

4
(µ− 1)2, 1

}
.

Suppose now µ < 0. In this case, we get

g(µ) = 2− (1 + µ)3 − µ3 + 4((1 + µ)2 + µ2)

(1 + µ)2 + µ2 + 4
=

5− 7(1 + µ)µ

5 + 2(1 + µ)µ
≥ 1.

In both cases, the proof is complete. □
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6.2.2. Mean curvature controls Hessian. Our next step consists in proving that the mean curvature of the free
boundary controls the Hessian nearby. This is the purpose of the next:

Proposition 6.11. Let u be as in (6.19) with |∇u| ≤ 1, 0 ∈ FB(u), and |D2u| ≤ C0 in B2. Then∥∥D2u
∥∥2
L∞(B1/2∩{u>0}) ≤ Cmax{C3

0 , 1}∥H∥L∞(B2∩FB(u)),

for some C > 0 universal.

To show this result, we first prove some preliminary lemmas. The first one shows that the mean curvature
controls the L1 norm of 1− |∇u|2 ∈ [0, 1]:

Lemma 6.12 (Controlling 1 − |∇u|2). Under the assumptions of Proposition 6.11, let v be defined as in (3.10).
Then ˆ

B1/2∩{u>0}
v dx ≤ Cmax

{
C3

0 , 1
}
∥H∥L∞(B2∩FB(u)),

for some universal C.

Proof. For simplicity, let us denote H0 := ∥H∥L∞(B2∩FB(u)). We divide B1/2 ∩{u > 0} into slabs Sk := {y ∈ B1/2 :

2−k−1 ≤ dy ≤ 2−k}, k ≥ 1, where dy = dist (y,FB(u)). Then:

• Since |D2u| ≤ C0, we have |∇u| ≥ 1
2 in {dy ≤ 1

2C0
} and the area of B1/2∩{dy = t} for t ≤ 1

2C0
is comparable

to the area of B1/2 ∩ FB(u) (see e.g. [91, eq. (3.4)]), hence universally bounded (see Lemma 3.3). In

particular, for 2−k ≤ 1
2C0

, Sk can be covered by C22k balls of radius 2−k.

• For 2−k ≥ 1
2C0

, Sk can be (trivially) covered by CC3
0 balls of radius 1

4C0
.

We now observe the validity of the following Hopf-type estimate: given y ∈ B1/2, consider the superharmonic
function vy,dy

(z) = v(y + dyz) for z ∈ B1, and note that B1 touches ∂{vy,dy
> 0} from the interior at some point

z0. Then, combining Lemma A.1 and Lemma 3.12, we get 
Bdy/2(y)

v(x) dx =

 
B1/2

vy,dy
(z) dz ≤ C ∂νvy,dy

(z0) ≤ CdyH0.

Applying this bound inside each of the balls Bdyk,j
(yk,j) constructed above to cover the slabs Sk, since dyk,j

= 2−k

we get

ˆ
B1/2

v(x) dx ≤
( ∞∑

2k=2C0

C22k∑
j=1

+

4C0∑
2k=1

CC3
0∑

j=1

)ˆ
Bdyk,j

/2(yk,j)

v(x) dx ≤ C
( ∞∑

2k=2C0

22kd4yk,j
+

4C0∑
2k=1

C3
0d

4
yk,j

)
H0

≤ Cmax
{
C3

0 , 1
} ∞∑

k=1

22k2−4kH0 ≤ Cmax
{
C3

0 , 1
}
H0. □

Thanks to the previous lemma, we now show that the mean curvature controls L2 norm of the Hessian.

Lemma 6.13 (Controlling D2u). Under the assumptions of Proposition 6.11, we haveˆ
B1/4∩{u>0}

|D2u|2 dx ≤ Cmax
{
C3

0 , 1
}
∥H∥L∞(B2∩FB(u)),

for some C universal.

Proof. Let η ∈ C∞
c (B1/2) be a non-negative cut-off function satisfying η ≡ 1 inside B1/4, and let v be defined as in

(3.10). We computeˆ
B1/4∩{u>0}

|D2u|2 dx ≤
ˆ
B1/2∩{u>0}

|D2u|2η dx =
1

2

ˆ
B1/2∩{u>0}

−∆v · η dx

=
1

2

ˆ
B1/2∩FB(u)

∂νv · η dHn−1 − 1

2

ˆ
B1/2∩{u>0}

v (−∆η) dx

≤ C
ˆ
B1/2∩FB(u)

H dHn−1 + C

ˆ
B1/2∩{u>0}

v dx.

Combining Lemma 3.3 and Lemma 6.12, the result follows. □

We can now proceed with the proof of Proposition 6.11.
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Proof of Proposition 6.11. By a scaling and covering argument, Lemma 6.13 holds replacing B1/4 with B1 in the
left-hand side. Hence, thanks to Hölder’s inequality, we get(ˆ

B1∩{u>0}
|D2u| dx

)2

≤ C
ˆ
B1∩{u>0}

|D2u|2 dx ≤ Cmax
{
C3

0 , 1
}
∥H∥L∞(B2∩FB(u)),

with C universal. Recalling Corollary 3.10, this concludes the proof. □

6.2.3. Conclusion. We can now finally prove Proposition 6.7.

Proof of Proposition 6.7. Without loss of generality we can assume that

C0 ≤ δ0
for some δ0 small universal constant to be chosen.

In fact, once the result is known when C0 is sufficiently small, the general case follows by replacing u with
ur(x) = 1

ru(rx) with r = δ0/C0. Indeed |D2ur| ≤ δ0 inside B2/r, so applying the result to ur together with a
covering yields the desired estimate for u near the free boundary. Using Proposition 6.11 to relate a Hessian bound
on the boundary with a Hessian bound in the interior, yields the desired result (up to redefining κ).

So, from now on, we assume that ∥D2u∥L∞(B2∩{u>0}) ≤ δ0 for some δ0 sufficiently small, to be fixed later. We
divide the proof into five steps.

Step 1: We first perform an expansion of u around the origin.
Since ∥D2u∥L∞(B2∩{u>0}) ≤ δ0, we have

0 < H ≤ Cδ0 on B2 ∩ ∂ {u > 0} . (6.20)

We select a subset on which H satisfies a doubling property as follows. Let

2δ3 := max
B3/2∩∂{u>0}

(
3
2 − |x|

)
H(x) ≤ Cδ0

be attained at x0. Then, by (6.20), r0 := 3
2 − |x0| ≥

1
Cδ0

δ3 ≥ δ3. For y ∈ B1/2, set

ū(y) =
1

r0
u(x0 + r0y), H̄(y) = r0H(x0 + r0y) for y ∈ ∂{ū > 0}.

Note that
H̄(0) = 2δ3, H̄(y) ≤ 4δ3 for y ∈ B1/2. (6.21)

In addition, since |D2ū| ≤ Cδ0 in B1, Lemma 6.13 givesˆ
B1/8∩{ū>0}

|D2ū|3 dx ≤ Cδ0
ˆ
B1/8∩{ū>0}

|D2ū|2 dx ≤ Cδ3,

and therefore (recall Lemma 3.11, assuming δ small),

|Dkū| ≤ Cδ in B1/16 ∩ {ū > 0}, for k = 2, 3, 4. (6.22)

Since δ3 ≤ Cδ0, in order to have δ sufficiently small it is enough to assume δ0 small.
Let us use expansions of ū around 0. Up to a rotation, we also assume ν(0) = ∇ū(0) = e3. Thus, in principal

coordinates, we have

ū(x) = x3 +

3∑
i=1

aix
2
i +

3∑
i=1

Aiiix
3
i +

∑
1≤i ̸=j≤3

Aiijx
2
ixj +A123x1x2x3 +O(|x|4) in {ū > 0}. (6.23)

where all the coefficients are bounded, and the big O notation is with universal constants.
Thanks to this expansion, it follows that

FB(ū) =

{
x3 = −

3∑
i=1

aix
2
i +O(|x|3)

}
=

{
x3 = −

2∑
i=1

aix
2
i +O(|x|3)

}
. (6.24)

Also a3 = −δ3 (since H̄(0) = 2δ3), and the harmonicity of ū inside B1 ∩ {ū > 0} gives

0 =
1

2
∆ū = (a1 + a2 − δ3) + 3

3∑
i=1

Aiiixi +
∑

1≤i ̸=j≤3

Aiijxj +O(|x|2) ⇒

{
a1 + a2 = δ3,

3A333 +A113 +A223 = 0.
(6.25)

Let us now obtain a relation from the fact that |∇ū| = 1 on FB(ū). Since

∇ū =
(
2a1x1 +O(|x|2), 2a2x2 +O(|x|2), 1 + 2a3x3 +A113x

2
1 +A223x

2
2 +A123x1x2 +O(x23) +O(|x|3)

)⊤
,
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then on FB(ū) we have (recall (6.24) and that a3 = −δ3)
(∇ū)3 =

(
1 + 2δ3(a1x

2
1 + a2x

2
2) +A113x

2
1 +A223x

2
2 +A123x1x2 +O(|x|3)

)
,

and therefore

1 = |∇ū|2 = 4(a21x
2
1 + a22x

2
2) + 1 + 4δ3(a1x

2
1 + a2x

2) + 2A113x
2
1 + 2A223x

2
2 + 2A123x1x2 +O(|x|3)

for x ∈ FB(ū). Looking at the coefficients of x21 and x22, we deduce that

ū113(0) = 2A113 = −4a21 − 4δ3a1, ū223(0) = 2A223 = −4a22 − 4δ3a2. (6.26)

Step 2: By analyzing the remainder in the stability inequality, we identify two possible regimes.
More precisely, since the remainder of the boundary inequality in Lemma 6.10 vanishes whenever (λ1, λ2, λ3) =

(2H̄,−H̄,−H̄), we analyze two cases depending on the closeness of D2ū(0) to diag(2H̄(0),−H̄(0),−H̄(0)).
To this aim, let us write the eigenvalues of D2ū on the FB(ū) as

λ1 = (µ+ 1)H̄, λ2 = −µH̄, λ3 = −H̄, (6.27)

where µ : FB(ū)→ [− 1
2 ,+∞) is defined as

µ(x) + 1 := max
τ∈S2:τ ·∇ū(x)=0

∂2ττ ū(x)

H̄(x)
.

Then, thanks to Lemma 6.10, w := F (D2ū) satisfies

(w
1
3 )ν + H̄w

1
3 =

1

3
w− 2

3

(
wν + 3H̄w

)
≥ 1

12
min

{
(µ− 1)2, 1

}
H̄w

1
3 . (6.28)

Consider a small threshold εE ∈ (0, 1) to be fixed later. At 0 ∈ FB(ū), we will distinguish between two cases:

(1) |µ(0)− 1| ≥ εE;
(2) |µ(0)− 1| < εE.

Step 3: Case (1) holds.
We observe first that, in a neighborhood of 0, µ(x) is a Lipschitz function. More precisely, since H̄(0) = 2δ3 and

|D3ū| ≤ Cδ, we have H̄(x) ≥ δ3 on FB(ū) ∩Bcδ2 for some c > 0 small. Therefore∣∣∣∣∇τ ′
∂2ττ ū(x)

H̄(x)

∣∣∣∣ ≤ C( δ

H̄(x)
+

δ2

H̄2(x)

)
≤ Cδ−4 for all x ∈ FB(ū) ∩Bcδ2 , τ, τ ′ ∈ S2 ∩∇ū(x)⊥.

This implies that µ(x) is obtained as the maximum of Lipschitz functions with gradient bounded by Cδ−4, thus

|∇τ ′µ(x)| ≤ Cδ−4 for all FB(ū) ∩Bcδ2 , τ ′ ∈ S2 ∩∇ū(x)⊥,
for some universal C. Thus, since we are in case (1),

|µ(x)− 1| ≥ εE
2
, for all x ∈ FB(ū) ∩Bδ5 , (6.29)

where δ is small enough depending on εE , which will be fixed universal. Hence, since w ≥ H̄, thanks to (6.28)–(6.29)
we get

I(ū, B1) ≥ I(ū, Bδ5) ≥
ˆ
FB(ū)∩Bδ5

w
1
3

(
(w

1
3 )ν + H̄w

1
3

)
dH2 ≥ ε2E

48

ˆ
FB(ū)∩Bδ5

H̄w
2
3 dH2 ≥ cε2Eδ15.

Step 4: Case (2) holds.
In this case we have that

|D2ū(0)− 2δ3diag(2,−1,−1)| ≤ 2εEδ
3. (6.30)

Let A(x) := δ−3D2ū(δ2x). Then, recalling (6.22),

|A(0)− 2diag(2,−1,−1)| ≤ 2εE , and |DA(x)|+ |D2A(x)| ≤ C in B1 ∩ {ū(δ2 · ) > 0}. (6.31)

In particular, if we denote by λA1 (x) and eA1 (x) respectively the largest eigenvalue and the corresponding (unit)
eigenvector of A(x), then λA1 (x) is simple near the origin. Hence, because of (6.31),

|∇λA1 (x)|+ |D2λA1 (x)|+ |DeA1 (x)| ≤ C for x ∈ Bc ∩ {ū(δ2 · ) > 0},
for some c and C universal. Thus, if we denote by (λ1(x), λ2(x), λ3(x)) the eigenvalues of D2ū(x) at x ∈ Bδ3 ∩
{ū > 0}, with λ1(x) being the largest one, and by e1(x) the (unit) eigenvector corresponding to λ1(x), then

δ−1|∇λ1(x)|+ δ|D2λ1(x)|+ δ2|De1(x)| ≤ C for x ∈ Bcδ2 ∩ {ū > 0}. (6.32)
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Furthermore, by (6.30) and (6.32),

|λ1(x)− 4δ3| ≤ 4εEδ
3, |λ2(x) + 2δ3| ≤ 4εEδ

3, |λ3(x) + 2δ3| ≤ 4εEδ
3 for x ∈ Bcδ2 ∩ {ū > 0}. (6.33)

Recalling the interior inequality from Lemma 6.9, since ffλ1
= λ1, ffλ2

= 4λ2, ffλ3
= 4λ3, and (λi−λj)(fλi

−fλj
) ≥

0, we get (notice w
1
3∆w

1
3 = 1

3w
− 4

3

(
w∆w − 2

3 |∇w|
2
)
)

I(ū, B1) ≥ I(ū, Bδ3) ≥
2

9

ˆ
{ū>0}∩Bδ3

∑
1≤k≤3, i<j

{i,j,k}={1,2,3}

(λi − λj)(fλi
− fλj

)

(λi − λk)(fλi − fλk
) + (λj − λk)(fλj − fλk

)
w2

kw
− 4

3 dx

≥ 2

9

ˆ
{ū>0}∩Bδ3

∑
{j,k}={2,3}

(λ1 − λj)(λ1 − 4λj)

(λ1 − λk)(λ1 − 4λk) + 4(λj − λk)2
w2

kw
− 4

3 dx

≥ 2

9

ˆ
{ū>0}∩Bδ3

(6− 8εE)(12− 20εE)

(6 + 8εE)(12 + 20εE) + 256ε2E
(w2

2 + w2
3)w

− 4
3 dx ≥ 1

9

ˆ
{ū>0}∩Bδ3

g w− 4
3−2 dx,

(6.34)

for εE small universal, where we have denoted

g = w2(w2
2 + w2

3) = w2(|∇w|2 − w2
1) =

1

4

(∣∣∇(w2)
∣∣2 − (e1(x) · ∇(w2)

)2)
.

Notice that the function g is well-defined, since the eigenvector e1(x) is simple around 0. Let us show it is Lipschitz.
Indeed, since w2(x) = 4|D2ū(x)|2 − 3λ21(x), it follows from (6.22) and (6.32) that

|∇(w2)|+ |D2(w2)| ≤ Cδ2 in Bcδ2 ∩ {ū > 0},
and hence, using (6.32) again,

|∇g| ≤ Cδ2 in Bcδ2 ∩ {ū > 0}. (6.35)

We now want to evaluate ww3 at the origin using that, at 0, we can take e3 as an eigenvector (with eigenvalue
−2δ3).

Recalling (6.26) and observing that 2a1 = λ1(0) and 2a2 = λ2(0), it follows that

ū113(0) = −λ1(0)2 − 2δ3λ1(0), ū223(0) = −λ2(0)2 − 2δ3λ2(0).

Given that we are in Case (2), this implies that

|ū113(0) + 24δ6|+ |ū223(0)| ≤ CεEδ6.
Since w2 = f2 = λ21 + 4λ22 + 4λ23 and ww3 =

∑
i=1,2,3 ffλi

ūii3 (see [55, Section 4.1 and Eq. (4.4)]) we get

ww3 =
∑

i=1,2,3

ffλi
ūii3 =

∑
i=1,2

(ffλi
− ffλ3

)ūii3 = (λ1 − 4λ3)ū113 + (4λ2 − 4λ3)ū223

= [12 +O(εE)]δ
3 · [−24 +O(εE)]δ

6 +O(εE)δ
3 ·O(εE)δ

6 = [−288 +O(εE)]δ
9 ≤ −2δ9 at y = 0,

for εE small universal. In particular,
g(0) ≥ (ww3)

2(0) ≥ 4δ18.

Together with (6.35), this implies

g ≥ δ18 in Bcδ16 ∩ {ū > 0}.
Inserting this estimate in (6.34) we obtain (notice also w ≤ Cδ)

I(ū, B1) ≥ I(ū, Bcδ16) ≥
1

9

ˆ
{ū>0}∩Bcδ16

gw− 4
3−2 dx ≥ δ15+16·3.

Step 5: We can now conclude the proof.
By Steps 3 and 4 we get that, in all cases,

I(ū, B1) ≥ δ63. (6.36)

We finally have all the ingredients to proceed with the proof of Proposition 6.7. Indeed, using the notation from
the previous steps, we have

I(u,B1) ≥ I(u,Br0(x0)) = r
1
3
0 I(ū, B1) ≥ δ64

where we used (6.4), (6.36), and the fact that r0 ≥ δ3. Thus, by the definition of δ and Proposition 6.11 we obtain
(after a covering argument)

C I(u,B1)
1
64 ≥ max

x∈B4/3∩∂{u>0}
H(x) ≥ C−1

∥∥D2u
∥∥2
L∞(B1/2∩{u>0}),
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as desired (in particular, we may take κ = 128). □

7. Selection of center and scale

In the present section (and until the end of Section 9), we fix the following universal constants:

γ :=
11

25
=

4

9
− 1

225
, α :=

39

50
=

3

4
+

3

100
, β◦ :=

1

20
. (7.1)

We remark that

3αγ = 1 +
37

1250
> 1.

7.1. Selection of center and scale. We now set up the contradiction argument that will yield the desired result.
For z ∈ Z and R ≥ r⋆(z), recall Ez(u,R) and ϱz(u,R) defined in (2.1) and (2.4). By Propositions 6.1 and 6.2,

we have
r⋆(z

′)

R
≤ Cϱz(u, 2R) ≤ CEz(u, 8R)

3γ for any z′ ∈ B3R/2(z) ∩ Z, R ≥ r⋆(z). (7.2)

In this section, it will be convenient to introduce the following definition: for given R > 0, we define

ZR := {z ∈ Z : r⋆(z) ≤ R}, (7.3)

which is nonempty for large R due to Lemma 5.2.
The next lemma provides suitable centers and scales where we can start our argument:

Lemma 7.1. There exist sequences Rk > 0 and zk ∈ ZRk
, with Rk →∞ as k →∞, such that

r⋆(zk)

Rk
≤ ϱzk

(u, 2Rk)→ 0 and εk := Ezk
(u, 8Rk)→ 0 as k →∞, (7.4)

and

Ez(u, 8R) ≤ 2
ϱz(u, 2R)

α

ϱzk
(u, 2Rk)α

εk for all z ∈ ZR, R ≤ Rk. (7.5)

Proof. Let us define the quotient

Fu(R) := sup
z∈ZR

Ez(u, 8R)

ϱz(u, 2R)α
.

Notice that, because of (7.2) and (5.4), Fu(R) ≤ supz∈ZR
(R/r⋆(z))

αEz(u, 8R) ≤ CRα (here we use that Ez(u, ·)
is always bounded, since |∇u| ≤ 1). So Fu is well-defined.

Also, thanks to (7.2) and Lemma 5.7 (recall that 3αγ > 1),

lim sup
R→∞

Fu(R) ≥ lim sup
R→∞

sup
z∈ZR

Ez(u, 8R)

CαEz(u, 8R)3αγ
≥ 1

Cα
lim sup
R→∞

sup
z∈ZR

ω

(
M∗r⋆(z)

8R

)1−3αγ

= +∞. (7.6)

Consider now the ‘nondecreasing envelope’ of Fu, namely

F̃u(R) := sup
R′≤R

Fu(R
′),

and choose a monotone increasing sequence Rk →∞ such that, for each k, there exists zk ∈ ZRk
satisfying

1
2 F̃u(Rk) ≤

Ezk
(u, 8Rk)

ϱzk
(u, 2Rk)α

≤ F̃u(Rk) (7.7)

and let εk := Ezk
(u, 8Rk).

Notice that the numerator in (7.7) is always bounded using |∇u| ≤ 1. Thus, the only way F̃u(Rk) may diverge
is if the denominator in (7.7) converges to zero. But then the numerator must converge to zero as well since, by
Lemma 5.7 and (7.2), Ezk

(u, 8Rk) ≤ ω(r⋆(zk)/8Rk) ≤ ω(Cϱzk
(u, 2Rk))→ 0. This shows (7.4).

In addition, by the definition of F̃u we have

Ez(u, 8R)

ϱz(u, 2R)α
≤ F̃u(Rk) ≤ 2

Ezk
(u, 8Rk)

ϱzk
(u, 2Rk)α

=
2εk

ϱzk
(u, 2Rk)α

for all z ∈ ZR, R ≤ Rk,

so (7.5) follows. □

Given ζ ∈ (0, 1) and a ball BR(z) ⊂ R3, recalling (7.3) we define

N
(
ζ,BR(z)

)
:= (ζR)−3

∣∣∣∣ ⋃
z′∈Aζ

z,R

BζR(z
′)

∣∣∣∣, where Aζ
z,R := ZζR ∩BR(z). (7.8)

This is roughly the number of balls of radius ζR needed to cover ZζR∩BR(z). More precisely, we have the following:
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Lemma 7.2. There exists Ãζ
z,R ⊂ A

ζ
z,R, with #Ãζ

z,R ≤ CN
(
ζ,BR(z)

)
for some C universal, such that⋃

z′∈Aζ
z,R

BζR(z
′) ⊂

⋃
z′∈Ãζ

z,R

B2ζR(z
′).

Proof. Applying Besicovitch covering theorem to the family of balls {BζR(z
′)}z′∈Aζ

z,R
, we can find a subcovering

Ãζ
z,R of Aζ

z,R with bounded overlapping, thus #Ãζ
z,R ≤ CN

(
ζ,BR(z)

)
. Also,⋃

z′∈Ãζ
z,R

B2ζR(z
′) =

⋃
z′∈Ãζ

z,R

BζR(z
′) +BζR ⊃ Aζ

z,R +BζR =
⋃

z′∈Aζ
z,R

BζR(z
′).

□

Starting from Lemma 7.1, we can define new sequences z̃k ∈ Z and R̃k > 0 satisfying the following:

Lemma 7.3. Let Rk and zk be the sequences given by Lemma 7.1. There exist ζ̃k ∈ (0, 1] and z̃k ∈ Z ∩ BRk
(zk)

such that, setting

R̃k := ζ̃kRk and ε̃k := ζ̃αβ◦
k εk,

we have R̃k →∞, ε̃k → 0, and the following properties hold:

BR̃k
(z̃k) ⊂ BRk

(zk),
ϱz̃k

(u, 2R̃k)

ϱzk
(u, 2Rk)

≤ ζ̃β◦
k , (7.9)

and
N
(
ζ,BR̃k

(z̃k)
)
≤ Cζ−

1+β◦
3 for all ζ ∈ (0, 1). (7.10)

Moreover, for all k sufficiently large, we have:

r⋆(z) ≤ CR̃kε̃
3γ
k ≤

R̃k

10
ε̃
1/α
k for all z ∈ Z ∩B3R̃k/2

(z̃k); (7.11)

and

Ez(u, 8R) ≤ 2
(

R̃k

R

)α
ε̃k for all z ∈ Z with BR(z) ⊂ BR̃k

(z̃k) and R ≥ ε̃1/αk R̃k. (7.12)

Here, the constant C is universal and N is given by (7.8)

Proof. We divide the proof into two steps.

Step 1: We first construct ζ̃k, show that R̃k →∞, and prove (7.9) and (7.10).
Define

ζk := inf

{
ζ > 0 : there exists z ∈ ZζRk

s.t. BζRk
(z) ⊂ BRk

(zk) and
ϱz(u, 2ζRk)

ϱzk
(u, 2Rk)

≤ ζβ◦

}
.

Notice that ζ = 1 and zk = z is always an admissible choice, therefore ζk ≤ 1. Also, since r⋆(z) ≥ rmin > 0 for all
z ∈ Z (recall (5.4)), we must have ζk ≥ c/Rk > 0.

Now, by the definition of ζk, there exists ζ̃k ∈ [ζk,min{2ζk, 1}] and z̃k ∈ ZR̃k
∩BRk

(zk) (where R̃k := ζ̃kRk) such

that (7.9) holds. Also, recalling (7.2) and that rmin > 0, since ϱz̃k
(u, 2R̃k) ≤ ϱzk

(u, 2Rk)→ 0 as k →∞ we deduce

that R̃k →∞. Furthermore ε̃k ≤ εk → 0.
We now prove (7.10). Notice that by the definition of ζk and the inclusion in (7.9), we must have

ϱz(u, 2tR̃k)

ϱz̃k
(u, 2R̃k)

> tβ◦ for all t ∈ (0, 1), z ∈ ZtR̃k
, BtR̃k

(z) ⊂ BR̃k
(z̃k).

or equivalently, recalling (2.4),

I(u,B2tR̃k
(z))

I(u,B2R̃k
(z̃k))

> t
1+β◦

3 for all t ∈ (0, 1), z ∈ ZtR̃k
, BtR̃k

(z) ⊂ BR̃k
(z̃k). (7.13)

Now, for k fixed and ζ ∈ (0, 1), define Aζ := Aζ

z̃k,R̃k
(recall (7.8)), so that in the definition of N(ζ,BR̃k

(zk)), we

are considering the covering {BζR̃k
(z′) : z′ ∈ Aζ}. Then, by Besicovitch covering theorem there exists a universal

constant C3 such that, for C3 distinct subfamilies A(1)
ζ , . . . ,A(C3)

ζ ⊂ Aζ , we have⋃
z′∈Aζ

BζR̃k
(z′) ⊂

C3⋃
j=1

⋃
z′∈A(j)

ζ

B2ζR̃k
(z′), (7.14)
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and, for each j ∈ {1, . . . , C3}, the family {BζR̃k
(z′) : z′ ∈ A(j)

ζ } consists of disjoint balls. Thus

I(u,B2R̃k
(z̃k)) ≥ I

(
u,

⋃
z′∈A(j)

ζ

BζR̃k
(z′)

)
≥

∑
z′∈A(j)

ζ

I
(
u,BζR̃k

(z′)
)
≥ #A(j)

ζ · min
z′∈A(j)

ζ

I
(
u,BζR̃k

(z′)
)
,

for every j ∈ {1, . . . , C3}. Also, because of (7.13),

min
z′∈A(j)

ζ

I
(
u,BζR̃k

(z′)
)
≥ (ζ/2)

1+β◦
3 I(u,B2R̃k

(z̃k)),

therefore

#A(j)
ζ ≤ Cζ

− 1+β◦
3 for every j ∈ {1, . . . , C3},

for some universal constant C. Thus, choosing Ãζ :=
⋃C3

j=1A
(j)
ζ , it follows from (7.14) that⋃

z′∈Aζ

BζR̃k
(z′) ⊂

⋃
z′∈Ãζ

B2ζR̃k
(z′) with #Ãζ ≤ Cζ−

1+β◦
3 , (7.15)

and ∣∣∣∣ ⋃
z′∈Aζ

BζR̃k
(z′)

∣∣∣∣ ≤ C(2ζR̃k)
3#Ãζ ≤ C(ζR̃k)

3ζ−
1+β◦

3 .

Thus, (7.10) holds.

Step 2: We now prove (7.11) and (7.12).
Note that, by the monotonicity of I (see (6.3)) and the definition of ϱ (see (2.4)), for all R > 0 and z ∈ BR(z)

such that BR(z) ⊂ BR(z) we have

Rϱz(u, 2R) ≤ Rϱz(u, 2R).
Combined with (7.5), this gives

Ez(u, 8R) ≤ 2
(

R̃k

R

)α
ε̃k for all z ∈ ZR and R ≤ R̃k, with BR(z) ⊂ BR̃k

(z̃k). (7.16)

Then, using (7.2) and (7.16) with z = z̃k ∈ ZR̃k
and R = R̃k, (7.11) follows (recall that 3γα > 1). Consequently,

noticing that

ZR ∩B3R̃k/2
(z̃k) = Z ∩B3R̃k/2

(z̃k) for all R ≥ ε̃1/αk R̃k, (7.17)

(7.16) implies (7.12). □

7.2. Definition of U+ and U−. Recall the sets Ω(±) introduced in Lemma 7.4. Our first goal is showing the
following lemma—a structural property that says that the sets Ω(±) = Ω(±) ⊂ {u > 0} are connected, disjoint open
sets of {u > 0} (roughly, two half-spaces in BR(z), which only miss T neck):

Lemma 7.4. Let (N , p) be the tree provided by Proposition 5.12 with root BR(z), and let Ω(±) = Ω(±)(BR(z)) be
as in Definition 5.15.

Then there exists θ′◦ > 0 universal such that, for all θ ∈ (0, θ′◦), Ω
(+) and Ω(−) are disjoint, open, connected, and

satisfy

{±e · (x− z) > θ4R} ⊂ Ω(±) ⊂ {±e · (x− z) > −θ4R} in BR(z),

where e is the polarity of the root. Moreover, their union covers {u > 0} ∩ BR(z) minus the union of ‘neck-type’
terminal balls: (

{u > 0} ∩BR(z)
)
\
⋃
T neck ⊂ Ω(+) ∪ Ω(−).

The proof of Lemma 7.4 relies crucially on the following result:

Lemma 7.5. Under the same assumptions as in Lemma 7.4, define F := ∇u|{u>0} and denote by ΦF = ΦF (x, t)
the associated flow (with maximal domain):{

Φ̇F (x, t) = F (ΦF (x, t))) for t > 0,
ΦF (x, 0) = x.

(7.18)

For any given B ∈ N \ {BR(z)} and x ∈ B(+,5/4) there exists τ > 0 such that ΦF (x, t) ∈ B(+,3/2) for t ∈ [0, τ ] and

ΦF (x, τ ′) ∈ p(B)(+,5/4), for some τ ′ ∈ (0, τ) .

(Recall that p(B) is the predecessor of B.) The same statement holds with + replaced by −.
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Proof. We can always assume that θ ∈ (0, θ◦), where θ◦ is as in Proposition 5.12. Given some ball B = Bϱ(y) ∈ N
with polarity e and its predecessor p(B) = Bϱ′(y′) —thus ϱ = θϱ′— with polarity e′, by Proposition 5.12 we know
that

y ∈ Bϱ′(y′) ∩ {x : |e · (x− y′)| ≤ θ4ϱ′}, |e− e′| ≤ θ3. (7.19)

Combining this with Lemma 5.17 one can easily see that (for θ universally small) the integral curves of ∇u starting
at B(+,5/4) meet p(B)(+,5/4) for some universal time before leaving B(+,3/2). □

We can now show Lemma 7.4.

Proof of Lemma 7.4. We will exploit the tree structure to reason by induction. Note that the covering property
follows from Lemma 5.18.

Set N =
⋃

ℓ≥0N (ℓ) as in Definition 5.11, and let Ω(≤ℓ,±) as in Lemma 5.18 (see (5.23)). We need to show that

the sets Ω(+) and Ω(−) are disjoint, connected, and open.
The openness directly follows because each set is a finite union of open sets, intersected with an open ball.
For the connectedness, will show by induction over ℓ = 0, 1, 2, . . . that the two sets Ω(≤ℓ,+) and Ω(≤ℓ,−) are

connected. Since the tree is finite, these two sets will eventually coincide with Ω(+) and Ω(−). Since the root is always
internal (see Proposition 5.12), Ω(≤0,+) and Ω(≤0,−) coincide respectively with B(+) and B(−) as in Definition 5.15
(with B being the root and e its polarity). Each of these two sets is connected (and they are disjoint). Now
assuming that Ω(≤ℓ−1,±) are connected open sets for some ℓ ≥ 1, the result follows by induction from the following
observation, which is a consequence of Proposition 5.12 (for θ small): for any given B ∈ N (ℓ) ∩ (I ∪ T reg) we have

B(±) ∩ Ω(≤ℓ−1,±) ̸= ∅.
Since for any B ∈ N (ℓ) we have p(B) ∈ N (ℓ−1) ∩ I, we obtain p(B)(±) ⊂ Ω(≤ℓ−1,±), so the connectedness follows.

To show that Ω(+) and Ω(−) are disjoint we use Lemma 7.5 iteratively. Indeed, if x̄ ∈ Ω(+) ∩ Ω(−), repeated
iterations of Lemma 7.5 for both + and − (notice that the flow is always well defined, since the value of u increases
along it) imply that

Φ(x̄, T+) ∈ B5R/4(z) ∩ {e · (x− z) > θ2R} and Φ(x̄, T−) ∈ B5R/4(z) ∩ {e · (x− z) < −θ2R}
for some T± > 0, where e = e(BR(z)). In addition, Φ(x̄, t) ∈ B3R/2(z) for all t < max{T+, T−}. Assume now,

without loss of generality, that T+ < T−. Then, since Φ(x̄, T+) ∈ B5R/4(z)∩{e · (x−z) > θ2R} and ∇u is very close
to e (see (5.22)), for t ≥ T+ the flow goes outside of B3R/2(z) without crossing {e · (x− z) = 0}, a contradiction to

the fact that Φ(x̄, T−) ∈ B5R/4(z) ∩ {e · (x− z) < −θ2R}. Hence, Ω(+) and Ω(−) are disjoint. □

We can now define the sets U± and U0.

Definition 7.6. Given θ > 0 universal such that Lemma 7.4 holds, let R̃k and z̃k be given by Lemma 7.3, and let
Ω(±) = Ω(±)(BR̃k

(z̃k)) be the two open connected subdomains of {u > 0}∩BR̃k
(z̃k) constructed in Definition 5.15.

Fix a subset Ã ⊂ Aζ̃

z̃k,R̃k
with ζ̃ = 1

2 ε̃
1/α
k as in Lemma 7.2 such that

(Z ∩BR̃k
(z̃k)) +B 1

2 R̃k ε̃
1/α
k

⊂
⋃
z∈Ã

B
R̃k ε̃

1/α
k

(z), #Ã ≤ Cε̃−
1+β◦
3α

k (7.20)

(note that Aζ̃

z̃k,R̃k
= Z ∩BR̃k

(z̃k) by (7.17)), and define

U0 :=
⋃
z∈Ã

B
R̃k ε̃

1/α
k

(z), U+ :=
(
Ω(+) ∩BR̃k/2

(z̃k)
)
\ U0, and U− :=

(
Ω(−) ∩BR̃k/2

(z̃k)
)
\ U0. (7.21)

We note that since Ω(+) ∩ Ω(−) = ∅ by Lemma 7.4, the sets U+ and U− are disjoint open subsets of BR̃k
(z̃k).

We also remark that the sets Ω(±), U±, and U0 depend on k, but we drop this dependence in our notation for the
sake of readability.

The following observations on U+, U− will be used several times in the sequel:

Lemma 7.7. Let Ω(±) = Ω(±)(BR̃k
(z̃k)) and U± be as in Definition 7.6 above. Then:

(i) The (disjoint open) sets U+ and U− satisfy

U+ ∪ U− =
(
{u > 0} ∩BR̃k/2

(z̃k)
)
\ U0 (7.22)

and (
(∂U+ ∪ ∂U−) ∩BR̃k/2

(z̃k)
)
\ U0 ⊂ ∂{u > 0}. (7.23)
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(ii) For all z ∈ Z and R ≥ ε̃1/αk R̃k such that BR(z) ⊂ BR̃k/2
(z̃k) there is e ∈ S2 such that{

±e · (x− z) > Cε̃k(R̃k/R)
αR
}
⊂ U± ⊂

{
±e · (x− z) > −Cε̃k(R̃k/R)

αR
}

in BR(z), (7.24)

for some C universal.

Proof. (i) We first show that the union of all neck balls of N = N (BR̃k
(z̃k)) that intersect BR̃k/2

(z̃k) is contained

in U0, namely, ⋃{
B ∈ T neck : B ∩BR̃k/2

(z̃k) ̸= ∅
}
⊂ U0. (7.25)

To prove this, let B = Bϱ(y) ∈ T neck with B ∩ BR̃k/2
(z̃k) ̸= ∅. On the one hand, by definition13 of neck ball, we

have y ∈ BR̃k
(z̃k)∩{u = 0}, ϱ ≤ θR̃k, B2ϱ(y)∩Z is nonempty, and for every z ∈ B2ϱ(y)∩Z it holds ϱ < M(θ)r⋆(z).

On the other hand, picking an arbitrary z ∈ B2ϱ(y) ∩ Z, (7.11) implies that r⋆(z) ≤ CR̃kε̃
3γ
k ≪ R̃kε̃

1/α
k . Thus, we

conclude that ϱ≪ R̃kε̃
1/α
k as k →∞, and therefore B ⊂ U0 (recall (7.21)). This proves (7.25).

Recall now that, by Lemma 5.18, Ω(+), Ω(−), and the neck balls cover all of {u > 0} ∩ BR̃k
(z̃k). Thus (7.25)

implies (7.22), from which (7.23) is a direct consequence.
(ii) Let C∗ be a large universal constant to be chosen later. Notice that (7.24) becomes trivially true at scales

R < C∗R̃kε̃
1/α
k with C = Cα

∗ , so we can assume R ≥ C∗R̃kε̃
1/α
k .

From (7.12) and Lemma 6.5 we know that, for some e ∈ S2,

{u = 0} ∩BR(z) ⊂ Slab
(
BR(z), e, C1(R̃k/R)

αε̃k

)
.

with C1 > 1 universal. Hence, recalling (7.21) and that R ≥ R̃kε̃
1/α
k , we obtain

({u = 0} ∪ U0) ∩BR(z) ⊂ Slab
(
BR(z), e, 2C1(R̃k/R)

αε̃k

)
.

This will imply (7.24), provided we can show that both U+ and U− must intersect the set

({u > 0} ∩BR(z)) \ Slab
(
BR(z), e, 2C1(R̃k/R)

αε̃k

)
for R ≥ C∗R̃kε̃

1/α
k . To show this we recall that, by the proof of (i), the radii of the neck balls are much smaller

than ε̃
1/α
k R̃k. Thus, if C∗ is sufficiently large (depending on the parameter θ in the construction of the ball tree),

there exist balls B ∈ N (in particular, centered at points of {u = 0}) that:
- are either regular terminal or interior;
- are fully contained in BR(z);
- and their radius is larger than cR, for some c = c(θ) > 0.
Reasoning with these balls (and recalling Definition 5.15 and Proposition 5.12), we deduce that both B(+) and B(−)

(and therefore both U+ and U−) must intersect {u > 0} ∩ BR(z) \ Slab
(
BR(z), e, 2C1(R̃k/R)

αε̃k
)
. This concludes

the proof. □

8. Linearization

In this section, we fix the sets U± ⊂ BR̃k/2
(z̃k) and U0 from Definition 7.6, where R̃k and z̃k are given by

Lemma 7.3. We define the asymmetric excess Az(u,R) for balls BR(z) ⊂ BR̃k/2
(z̃k) as follows (see (2.11)):

Az(u,R) := max
∗∈{+,−}

min
a∈S2, b∈R

1

R|BR(z)|

ˆ
U∗∩BR(z)

∣∣u(x)− a · x− b∣∣ dx,
= max

∗∈{+,−}
min

a∈S2, b̄∈R

1

R|BR(z)|

ˆ
U∗∩BR(z)

∣∣u(x)− a · (x− z)− b̄
∣∣ dx. (8.1)

In this section (and for the following ones) we also fix (in addition to the constants in (7.1)) the constant

χ :=
1

500
. (8.2)

The goal of this section is to show the following result on the decay of the excess, with a two-scale behaviour
depending on the size of the radius. More precisely, we first prove that up to some mesoscopic scale (depending
on ε̃k) there is a C1,1/3 improvement in flatness, while until a second smaller mesoscopic scale there is a sort of
“preservation on average” of the L∞ norm.

13See Proposition 5.12 and Definition 5.13
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Proposition 8.1. Let R̃k and z̃k be given by Lemma 7.3, and let R♭
k := ε̃χk R̃k. Then, for every z ∈ BR̃k/16

(z̃k)∩Z,

Az(u,R) ≤
(
R

R̃k

)1/3

ε̃k for all R ∈
[
R♭

k, R̃k/C
]

(8.3)

for some C > 0 universal. Moreover, there exist a♭+, a
♭
− ∈ S2 and b♭+, b

♭
− ∈ R such that 

U∗∩Br(z)

|u− a♭∗ · x− b♭∗| dx ≤ Cε̃
1+χ/3
k R♭

k for ∗ ∈ {+,−}, for all r ∈ [ε̃1+2χ
k R̃k, R

♭
k], (8.4)

with C > 0 universal.

To prove this proposition, we will need several preliminary results that we now present.

8.1. Linearization: auxiliary results. We start by proving the following:

Lemma 8.2. For BR(z) ⊂ BR̃k/2
(z̃k) with R ≥ ε̃1/αk R̃k, we have

Az(u, 8R) ≤ C
(

R̃k

R

)α
ε̃k,

where C is universal.

Proof. Fix z ∈ Z and R ≥ ε̃1/αk R̃k such that BR(z) ⊂ BR̃k/2
(z̃k). Also, define η =

(
R̃k

R

)α
ε̃k.

On the one hand, by (7.12) and Hölder’s inequality, we obtainˆ
BR(z)

|u− Vz,e| dx ≤ CηR4. (8.5)

On the other hand, by (7.24),

D± :=
(
U± \ {±e · (x− z) > CηR}

)
∩BR(z) ⊂ Slab(BR(z), e, Cη) . (8.6)

(We notice that in the proof of (7.24), the vector e is given by Lemma 6.5, from which we deduce that the unit
vectors e in (8.5) and (8.6) are indeed the same.)

Also, since u(z) = 0 (because z ∈ Z), from the gradient bound |∇u| ≤ 1 we obtain

sup
BR(z)

|u− Vz,e| ≤ CR. (8.7)

Combining (8.5),(8.6), and (8.7), we getˆ
U±

|u(x)∓ (e · x)| dx ≤ CηR4 + C|D±|R ≤ CηR4,

thus Az(u,R) ≤ Cη, as wanted. □

We next state an abstract lemma that will be applied in the context of Lemma 7.3. It provides pointwise gradient
and flux bounds in a linearization regime.

Proposition 8.3 (Linearization). There exist a+ ∈ S2 and b+ ∈ R such that, denoting v(x) := u(x)− a+ · x− b+,
we have

1

R̃k

 
BR̃k

(z̃k)∩U+

|v| dx ≤ C ε̃k,

for some C universal. Moreover, for all x̄ ∈ U+ ∩BR̃k/4
(z̃k),

|∇v(x̄)| = |∇u(x̄)− a+| ≤ C
(

R̃k

dist (x̄,Z)

)α

ε̃k.

In particular, for all x̄ ∈ ∂U+ ∩BR̃k/4
(z̃k) with dist (x̄,Z) ≥ R̃kε̃

1/α
k , we have x̄ ∈ FB(u) and

|∂νv(x̄)| = |1− a+ · ν(x̄)| ≤ C
(

R̃k

dist (x̄,Z)

)2α

ε̃2k,

where ν(x̄) is the inward unit normal vector to FB(u), and the constant C is universal
The same statement holds with a+, b+, U+ replaced by a−, b−, U−.
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Proof. By Lemma 8.2 we have

Az(u,R) ≤ C
(
R̃k

R

)α

ε̃k, (8.8)

as long as BR(z) ⊂ BR̃k/2
(z̃k) and R ≥ ε̃1/αk R̃k. In particular, choosing z = z̃k and R = R̃k and using the definition

of the asymmetric excess in (8.1), it follows that there exist a+ ∈ S2 and b+ ∈ R such that

1

R4

ˆ
U∗∩BR(z)

∣∣u(x)− a+ · x− b+∣∣ dx ≤ Cε̃k, (8.9)

so the first inequality in the statement of the proposition holds.

Now, fix x̄ ∈ U+ ∩ BR̃k/4
(z̃k) and define ρ := |x̄ − z(x̄)| ≤ R̃k

4 , where z(x̄) ∈ Z ∩ BR̃k/2
(z̃k) is such that

dist (x̄,Z) = ρ. Since |∇u(x̄) − a+| ≤ 2, our desired estimate is trivially true if ρ ≤ C∗R̃kε̃
1/α
k , so we can assume

ρ ≥ C∗R̃kε̃
1/α
k for a universal C∗ ≥ 2. Moreover, since r⋆(z(x̄)) ≤ 1

10 R̃kε̃
1/α
k (by (7.11)), we have Bρ/2(x̄)∩U0 = ∅.

Now, on the one hand, set ρj := 2jρ with 0 ≤ j ≤ jmax := ⌊log2( R̃k

2ρ )⌋. Then (8.8) gives the existence of aj ∈ S2
and bj ∈ R such that

2

ρj

 
Bρj/2

(x̄)∩U+

|u(x)− aj · x− bj | dx ≤
C

2ρj

 
B2ρj

(z(x̄))∩U+

|u(x)− aj · x− bj | dx ≤ C
(
R̃k

ρj

)α

ε̃k (8.10)

for 0 ≤ j ≤ jmax. Hence, if we set ajmax+1 = a+ and bjmax+1 = b+, it follows from the bounds above and (8.9) that

|aj − aj−1| ≤
C

ρj

 
Bρj(z(x̄))∩U+

|(aj − aj−1) · x| dx ≤ C
(
R̃k

ρj

)α

ε̃k, 1 ≤ j ≤ jmax + 1

(note that, because of (7.24), at the scales of interest U+ is roughly a half-space).
On the other hand, since Bρ/2(x̄) ∩ U0 = ∅, it follows from (7.25) that u

∣∣
U+

is a (classical) solution to the

Bernoulli problem in Bρ/2(x̄). Hence, by (8.10) for j = 0, we can apply a rescaled version of Lemma 3.8 to obtain

|∇u(x̄)− a0| ≤ C
(
R̃k

ρ

)α

ε̃k, in U+ ∩Bρ/4(x̄).

Summing up,

|∇u(x̄)− a+| ≤ C
jmax+1∑
j=1

(
R̃k

ρj

)α

ε̃k ≤ C
(
R̃k

ρ

)α

ε̃k.

This proves the desired bound on ∇v.
Finally, assume x̄ ∈ ∂U+ ∩BR̃k/4

(z̃k) with dist (x̄,Z) ≥ R̃kε̃
1/α
k . Thanks to (7.23), since x̄ /∈ U0 then x̄ ∈ FB(u).

Thus, since a+ and ∇u(x̄) are unit vectors, we get

|1− a+ · ∇u(x̄)| =
1

2
|a+ −∇u(x̄)|2 ≤ C

(
R̃k

ρ

)2α

ε̃2k,

as desired. □

Proposition 8.4. Let v be as in Proposition 8.3. For any given β ∈ [0, 1] satisfying 12αβ < 5− β◦, we haveˆ
(∂U+∪∂U−)∩BR̃k/8(z̃k)

|∂νv|2 dH2 ≤ C R̃2
kε̃

4β
k ,

where ν is the unit inward normal vector and C depends only on β.

Remark 8.5. Recalling (7.1), one can choose β := 2+δ◦
4 with δ◦ := 1

10 .

Proof. We prove it for U+, the same proof works for U−. Observe that, for x̄ ∈ FB(u), Proposition 8.3 implies that

|∂νv(x̄)| ≤ C
(

R̃k

dist (x̄,Z)

)2α

ε̃2k for x̄ ∈ ∂U+ ∩BR̃k/4
(z̃k) ∩

{
dist(·,Z) ≥ R̃kε̃

1/α
k

}
.

In particular, since |∂νv(x̄)| ≤ 2, for any β ∈ [0, 1] we have

|∂νv(x̄)| ≤ 2|∂νv(x̄)|β ≤ C
(

R̃k

dist (x̄,Z)

)2αβ

ε̃2βk for x̄ ∈ ∂U+ ∩BR̃k/4
(z̃k) ∩

{
dist(·,Z) ≥ R̃kε̃

1/α
k

}
. (8.11)
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Now, for each t ∈ (0, R̃k), consider the sets

Dt :=
⋃

z′∈Z∩BR̃k
(z̃k)

Bt(z
′) ∩ ∂U+ ∩BR̃k/8

(z̃k).

Notice that, by the definition of U0 (cf. Definition 7.6), for t ≥ R̃kε̃
1/α
k the set Dt covers U0 ∩ ∂U+ . In particular,

if t̃ := R̃kε̃
1/α
k then Dt \ Dt̃ ⊂ FB(u) (see (7.23)). Hence, by (7.10), Lemma 7.2, and the perimeter bound from

Lemma 3.3, we obtain

H2(Dt \Dt̃) ≤ Ct2(t/R̃k)
− 1+β◦

3 for t ≥ t̃.
In addition, again by (7.23), H2(Dt̃) ≤ H2(FB(u) ∩Dt̃) +H2(∂U0). Thus, arguing as above,

H2(Dt̃) ≤ C(2t̃)2(2t̃/R̃k)
− 1+β◦

3 + Ct̃2(t̃/R̃k)
− 1+β◦

3 ≤ Ct̃2(t̃/R̃k)
− 1+β◦

3 .

Hence, combining the last two estimates, we conclude that

H2(Dt) ≤ Ct2(t/R̃k)
− 1+β◦

3 for t ≥ R̃kε̃
1/α
k . (8.12)

This allows us to obtain the desired estimate, using the following standard ‘layer cake’ formula:
If (Et)t∈[a,b] is an increasing collection of (measurable) sets with t 7→ Hk(Et) continuous, f : Eb → [0,∞) is

integrable and satisfies 0 ≤ f ≤ g(t) in Eb \ Et and 0 ≤ f ≤ g(a) in Ea, where g ∈ C1([a, b]) is nonincreasing, thenˆ
Eb

f dHk ≤
ˆ b

a

Hk(Et) |g′(t)| dt+Hk(Eb) g(b) +Hk(Ea) g(a).

Using this formula with Et = Dt, a = R̃kε̃
1/α
k , b = R̃k, f = |∂νv|2, and g(t) = min

{(
R̃k

t

)4αβ
ε̃4βk , 1

}
(see (8.11)),

thanks to (8.12) we obtain

ˆ
∂U+∩BR̃k/8(z̃k)

|∂νv|2 dH2 ≤ C
ˆ R̃k

R̃k ε̃
1/α
k

H2(Dt)

∣∣∣∣ ddt(( R̃k

t

)4αβ
ε̃4βk

)∣∣∣∣ dt+ CR̃2
kε̃

4β
k + CR̃2

kε̃
5−β◦
3α

k

≤ C R̃4αβ+ 1+β◦
3

k ε̃4βk

ˆ R̃k

0

t2−
1+β◦

3 −4αβ−1dt+ CR̃2
kε̃

4β
k + CR̃2

kε̃
5−β◦
3α

k

≤ Cβ R̃
2
kε̃

4β
k

provided that 2− 1+β◦
3 − 4αβ − 1 > −1, that is, 4αβ < 5/3− β◦/3. □

8.2. The compactness argument. We now present two abstract compactness results that will be used to show
Proposition 8.1:

Lemma 8.6. Let n ≥ 2 and p > 1. For any η > 0 there exists δ = δ(η, n, p) > 0 such that the following holds.
Let Ωδ ⊂ Rn be a Lipschitz and locally piecewise smooth domain, and let v ∈ H1(B1) satisfy

∆v = 0 in Ωδ ∩B1 and ∥v∥W 1,p(Ωδ∩B1) ≤ 1.

Suppose that

B1 ∩ {xn ≥ δ} ⊂ Ωδ, Ωδ ∩B1 ⊂ {xn ≥ −δ}, and

ˆ
∂Ωδ∩B1

|vν | dHn−1 ≤ δ,

where ν is the inwards unit normal to ∂Ωδ. Then there exists w : B1 → R, harmonic in B1 and even in xn, such
that ˆ

Ωδ∩B1

|v − w| dx ≤ η.

Proof. We argue by contradiction. Suppose that the statement does not hold. Then there exists some η◦ > 0 such
that, for each k ∈ N, there is some vk and Ωk with

∆vk = 0 in Ωk ∩B1 and ∥vk∥W 1,p(Ωk∩B1) ≤ 1,

and

B1 ∩ {xn ≥ 1/k} ⊂ Ωk, Ωk ∩B1 ⊂ {xn ≥ −1/k}, and

ˆ
∂Ωk∩B1

|(vk)ν | dHn−1 ≤ 1

k
,

such that ˆ
Ωk∩B1

|vk − w| dx > η◦ > 0 for all w harmonic in B1 and even in xn.
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Notice first that, by harmonic estimates, up to subsequences we have that vk converges locally uniformly in {xn >
0} ∩B1 to some function v∞ which satisfies

∆v∞ = 0 in {xn > 0} ∩B1 and ∥v∞∥W 1,p({xn>0}∩B1) ≤ 1.

We now want to show that ∂nv∞ = 0 on {xn = 0} ∩B1. To this aim, let φ ∈ C∞
c (B1) and µ > 0 (small) be fixed.

For k ∈ N ∪ {∞} with k > 1/µ and Ω∞ := {xn > 0},∣∣∣∣ˆ
Ωk∩B1

∇vk · ∇φdx
∣∣∣∣ ≤

∣∣∣∣∣
ˆ
{xn>µ}∩B1−µ

∇vk · ∇φdx

∣∣∣∣∣+
∣∣∣∣∣
ˆ
Ak

µ

∇vk · ∇φdx

∣∣∣∣∣ ,
where Ak

µ := (Ωk ∩B1) \ ({xn > µ}∩B1−µ). In particular, since |Aµ| ≤ Cµ, by Hölder’s inequality with 1
p +

1
p′ = 1

we get ∣∣∣∣∣
ˆ
Ak

µ

∇vk · ∇φdx

∣∣∣∣∣ ≤ ∥∇vk∥Lp(Ωk∩B1)∥∇φ∥L∞(B1)|A
k
µ|

1
p′ ≤ C∥∇φ∥L∞(B1)µ

1
p′ . (8.13)

We compute now∣∣∣∣∣
ˆ
{xn>0}∩B1

∇v∞ · ∇φdx

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
{xn>µ}∩B1−µ

∇v∞ · ∇φdx

∣∣∣∣∣+ C∥∇φ∥L∞(B1)µ
1
p′

≤

∣∣∣∣∣
ˆ
{xn>µ}∩B1−µ

∇vk · ∇φdx

∣∣∣∣∣+ C∥∇φ∥L∞(B1)

(
∥∇vk −∇v∞∥L∞({xn>µ}∩B1−µ) + µ

1
p′
)

≤
∣∣∣∣ˆ

Ωk∩B1

∇vk · ∇φdx
∣∣∣∣+ C∥∇φ∥L∞(B1)

(
∥∇vk −∇v∞∥L∞({xn>µ}∩B1−µ) + 2µ

1
p′
)
,

where, in the last inequality, we have used (8.13). By the assumption on vk for k ∈ N, we know∣∣∣∣ˆ
Ωk∩B1

∇vk · ∇φdx
∣∣∣∣ = ∣∣∣∣ˆ

∂Ωk∩B1

ν · ∇vk φdHn−1

∣∣∣∣ ≤ ∥φ∥L∞(B1)

k
.

Thus, we have∣∣∣∣∣
ˆ
{xn>0}∩B1

∇v∞ · ∇φdx

∣∣∣∣∣ ≤ ∥φ∥L∞(B1)

k
+ C∥∇φ∥L∞(B1)

(
∥∇vk −∇v∞∥L∞({xn>µ}∩B1−µ) + 2µ

1
p′
)
.

Letting k →∞, since vk → v∞ smoothly in the interior of {xn > 0} ∩B1 (by harmonic estimates) we deduce that∣∣∣∣∣
ˆ
{xn>0}∩B1

∇v∞ · ∇φdx

∣∣∣∣∣ ≤ C∥∇φ∥L∞(B1)µ
1
p′ ,

and so, by the arbitrariness of µ > 0,ˆ
{xn>0}∩B1

∇v∞ · ∇φdx = 0 ∀φ ∈ C∞
c (B1).

This is the weak formulation of {
∆v∞ = 0 in {xn > 0} ∩B1,
∂nv∞ = 0 on {xn = 0} ∩B1.

In particular, v∞ extends evenly to a harmonic function v̄∞ defined in the whole B1. Also, for any µ > 0 we haveˆ
{xn>µ}∩B1−µ

|vk − v̄∞| dx→ 0 as k →∞.

Hence, since ∥vk∥Lp(Ωδ∩B1) ≤ 1 for all k ∈ N ∪ {∞}, again by Hölder inequality we getˆ
Ak

µ

|vk − v̄∞| dx ≤ C∥vk − v̄∞∥Lp(Ωk∩B1)|A
k
µ|p

′
≤ Cµp′

.

Hence, choosing µ small enough so that Cµp′ ≤ η◦
2 , we reach a contradiction for k large enough. □

From the previous compactness result, we obtain the following global version:
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Lemma 8.7. Let n ≥ 2, p > 1, and d ≥ 0. For any η > 0 there exists δ = δ(η, n, p, d) small such that the following
holds.

Let Ωδ ⊂ Rn be a Lipschitz and locally piecewise smooth domain, and let v ∈ H1(B1/δ) satisfy

∆v = 0 in Ωδ ∩B1/δ, and

( 
Ωδ∩Bρ

|v|p dx

)1/p

+ ρ

( 
Ωδ∩Bρ

|∇v|p dx

)1/p

≤ ρd+1/2 for 1 ≤ ρ ≤ 1
δ .

Suppose that

{ẽρ · x ≥ ρδ} ⊂ Ωδ ⊂ {ẽρ · x ≥ −ρδ} in Bρ, for 1 ≤ ρ ≤ 1
δ ,

1

ρn−2

ˆ
∂Ωδ∩Bρ

|vν | dHn−1 ≤ δρd+1/2 for 1 ≤ ρ ≤ 1
δ ,

where ν is the outwards unit normal to ∂Ωδ, for some ẽρ ∈ Sn−1 depending on ρ. Then there exists a harmonic
polynomial pd of degree at most d such that ˆ

Ωδ∩B1

|v − pd| dx ≤ η,

where pd is even in the ẽ1 direction and satisfies ∥pδ∥L1(B1) ≤ |B1|.

Proof. We argue by compactness/contradiction. Suppose that the statement is not true, so that there is a sequence
vk satisfying the previous hypotheses for δk ↓ 0 but the conclusion fails for a certain η = η◦ > 0.

Applying Lemma 8.6 inside each ball Bρ with 1 ≤ ρ ≤ 1
δk

and a standard diagonal argument, we obtain that

vk converges in L1
loc(Rn) to some harmonic function v∞, even with respect to {ẽ1 · x = 0}. Also, v∞ satisfies the

growth bound  
Bρ

|v| dx ≤ ρd+1/2 for all ρ ≥ 1.

By the Liouville theorem, v∞ must be a harmonic polynomial of degree ≤ d, thus reaching a contradiction for k
large enough. Finally, the bound ∥pδ∥L1(B1) ≤ |B1| comes from the growth bound with ρ = 1. □

In analogy with Lemmas 6.3–6.4, we also have the following general estimates for monotone harmonic functions:

Lemma 8.8. Suppose that n ≥ 2 and w : B2 ∩ {xn > 0} → (0,∞) is a harmonic function satisfying ∂nw ≤ 0 in
B2 ∩ {xn > 0}. Then, denoting x = (x′, xn) ∈ Rn−1 × R, for every q ∈ (1,∞) we haveˆ

{|x′|<3/2}
|∇w|q(x′, t) dx′ ≤ Ct(n−1)(1−q)

ˆ
B2∩{xn≥1/4}

|∇w|q dx for all t ∈ (0, 1),

where C depends only on n and q.

Proof. Denote B+
r = Br ∩ {xn > 0} ⊂ Rn and B′

r = {x′ : |x′| < r} ⊂ Rn−1. By harmonic estimates and Poincaré
inequality,

∥w − c∥L∞(B7/4∩{xn≥1/3}) ≤ C∥w − c∥Lq(B2∩{xn≥1/4}) ≤ C∥∇w∥Lq(B2∩{xn≥1/4}),

where C = C(n, q) ≥ is a constant. Now, up to replacing w by

w − c
2Cq∥∇w∥Lq(B2∩{xn≥1/4})

+
1

2
,

we can assume that 0 ≤ w ≤ 1 inside B7/4 ∩{xn ≥ 1/3}. Thus, since ∂nw ≤ 0, it follows that w(en) ≤ 1 and w ≥ 0

in B+
3/2, and under these assumptions we need to prove that

ˆ
{|x′|<3/2}

|∇w|q(x′, t) dx′ ≤ Cqt
(n−1)(1−q).

To this aim, set wn := ∂nw. By standard Poisson kernel bounds, since w is harmonic with w(en) ≤ 1 and w ≥ 0
in B+

3/2, it follows that ∥w(x′, 0)∥L1(B′
5/4

) ≤ C. Similarly, since wn is harmonic with |wn(en)| ≤ C and wn ≤ 0 in

B+
3/2, we also get ∥wn(x

′, 0)∥L1(B′
5/4

) ≤ C.
Now, let us denote respectively by w̄ and w̄n, the harmonic extensions inside {xn > 0} of w(·, 0)1B′

4/3
and

wn(·, 0)1B′
4/3

. Then, by boundary Harnack, we have
∥∥∥w−w̄

xn

∥∥∥
C1(B+

5/4
)
≤ C. In particular,

∥w − w̄∥C1(B+
5/4

) + ∥wn − w̄n∥L∞(B+
5/4

) ≤ C. (8.14)
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Now, the Poisson representation for the half-space {xn > 0} ⊂ Rn reads

w̄( · , t) = P (·, t) ∗x′ w̄(·, 0), w̄n( · , t) = P (·, t) ∗x′ w̄n(·, 0), P (x′, t) := cn
t

(|x′|2 + t2)n/2
.

Thus, recalling that ∥w̄(·, t)∥qL1(Rn−1) + ∥w̄n(·, 0)∥qL1(Rn−1) ≤ C, by Young’s inequality and a direct computation we
get

∥w̄(·, t)∥qLq(Rn−1) + ∥w̄n(·, t)∥qLq(Rn−1) ≤ C∥P (·, t)∥
q
Lq(Rn−1) ≤ Cqt

(n−1)(1−q) ∀ q ≥ 1.

In particular, thanks to (8.14),

∥w(·, t)∥qLq(B′
5/4

) + ∥wn(·, t)∥qLq(B′
5/4

) ≤ Cqt
(n−1)(1−q).

Finally, since w̄n(·, t) = −(−∆)
1/2
x′ w̄(·, t), by W 1,q estimates14 for (−∆x′)1/2 imply that

∥∇′w̄(·, t)∥qLq(B′
1)
≤ Cq∥w(·, t)∥qLq(B′

5/4
) + ∥wn(·, t)∥qLq(B′

5/4
) ≤ Cqt

(n−1)(1−q) ∀ q ∈ (1,∞).

Using again (8.14), we get the desired bound on ∇w. □

As shown in Appendix D, Lemma 8.8 implies the following result in flat-Lipschitz domains:

Lemma 8.9. Let n ≥ 2 and fix q ∈ (1, n
n−1 ). Assume that w : B2r ∩D → (0,∞) is a positive harmonic function

inside D = {xn > φ(x′)}, where φ : B′
2r ⊂ Rn−1 → R satisfies

|φ|+ r|∇φ| ≤ c◦r.
Assume, in addition, that ∂nw ≤ 0 in B2r ∩D. Then, for c◦ small enough depending only on n and q, we haveˆ

Br∩D

|∇w|q dx ≤ Cq

ˆ
B2r∩{x3≥r/4}

|∇w|q dx,

where Cq depends only on n and q.

To show Proposition 8.1, we will need to apply Lemma 8.7 to a suitable sequence. The following result will
ensure that the sequence satisfies the hypotheses of Lemma 8.7:

Lemma 8.10. Let p ∈ [1, 32 ] and γ̄ = 1
10 . There exists ε◦ depending only on p such that if 0 < ε̃k < ε◦ the following

holds for any z ∈ BR̃k/8
(z̃k) ∩ Z.

Let a+ ∈ S2 and b+ ∈ R be given by Proposition 8.3, and assume that for some δ > 0 and R ∈ (R̃kε̃
1+γ̄
k , R̃k/8)

we have
1

R

 
U+∩BR(z)

|u− a · x− b| dx ≤ ε̃kδ, for some a ∈ S2 with |a− a+| ≤ ε̃1/2k and b ∈ R.

Then
1

Rp

 
U+∩BR/2(z)

|u− a · x− b|p dx+

 
U+∩BR/2(z)

|∇u− a|p dx ≤ C
(
(ε̃kδ)

p +
R̃k

R
ε̃1+γ̄
k

)
,

where C depends only on p.

Proof. Up to a rotation, we can assume that a+ = e3. We write v = u− x3− b and divide the proof into two steps.

Step 1: we prove the Ẇ 1,p bound.

We begin by noticing that if u(x) ≥ R̃kε̃
1+γ̄
k then15 dist (x,Z) ≥ R̃kε̃

2
1+α

k ≫ R̃kε̃
1
α

k as long as 1 + γ̄ < 2
1+α (the

chosen value γ̄ = 1
10 works since α = 39

50 ). Thus, thanks to Proposition 8.3,

|∇u− e3| ≤ Cε̃
1−α
1+α

k ≪ 1 in Ωγ̄
+ ∩BR̃k/4

(z̃k), where Ωγ̄
+ := U+ ∩

{
u ≥ R̃kε̃

1+γ̄
k

}
. (8.15)

Note that (8.15) implies that ∂ẽu > 0 in Ωγ̄
+ as long as ẽ · e3 ≥ ε̃

1−α
2

k ≫ Cε̃
1−α
1+α

k . Hence, noticing that {u =

R̃kε̃
1+γ̄
k } ∩ ∂U+ ∩ BR̃k/5

(z) = ∅, we deduce that ∂Ωγ̄
+ ∩ BR̃k/5

(z) is an ε̃
1−α
2

k -Lipschitz graph both in the e3

14Combining classical Calderón–Zygmund estimates for the Riesz transform with interior estimates for 1
2
-harmonic functions, one

obtains the following: If (−∆)1/2u = f in B1 ⊂ Rd with f ∈ Lp(B1) and p ∈ (1,∞), then

∥u∥W1,p(B1/2)
≤ Cd,p

(
∥f∥Lp(B1) +

ˆ
Rd

|u(y)|
1 + |y|d+1

dy

)
.

15Recall that |∇u| ≤ 1 in R3 and Z ⊂ {u = 0}.
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direction and in the a direction (recall that, by assumption, |a − e3| = |a − a+| ≤ ε̃
1/2
k ). In particular, for any

y◦ ∈ ∂Ωγ̄
+ ∩BR̃k/8

(z) we have (using γ̄ < 1−α
2 )

{x3 ≥ ρε̃γ̄k} ⊂ Ωγ̄
+ − y◦ ⊂ {x3 ≥ −ρε̃

γ̄
k} in Bρ, for any ρ ∈ (0, R̃k/8). (8.16)

We divide the set U+ ∩BR/2(z) into two regions:

U+ ∩BR/2(z) = A1 ∪A2, where A1 := Ωγ̄
+ ∩BR/2(z), A2 := (U+ \ Ωγ̄

+) ∩BR/2(z). (8.17)

Now, we first use Lemma 8.9 in A1 (recall A1 is a flat-Lipschitz domain in the e3 direction, and notice that
∂3v ≤ |∇u| − 1 ≤ 0) with a covering argument to obtainˆ

A1

|∇v|p dx ≤ C
ˆ
B2R/3(z)∩{(x−z)·e3≥R/12}

|∇v|p dx ≤ C
ˆ
B2R/3(z)∩{(x−z)·a≥R/15}

|∇v|p dx ≤ CR3(ε̃kδ)
p,

where the last inequality follows by interior harmonic estimates and the L1-smallness assumption of v inside U+ ∩
BR(z) ⊃ B2R/3(z) ∩ {(x− z) · a ≥ R/20}.

Concerning A2, Lemma 3.4 together with the coarea formula and the fact that the gradient is lower bounded in

Ω(±) ⊃ U± (see Lemma 5.17) imply that |A2| ≤ CR2R̃kε̃
1+γ̄
k . Hence, since |∇v| ≤ 2,ˆ

A2

|∇v|p dx ≤ CR2R̃kε̃
1+γ̄
k .

This proves the desired bound on |∇v|p.

Step 2: We now prove the Lp bound.
As before, consider the sets A1 and A2 as in (8.17). Notice first that, since |∇v| ≤ 2, by the L1 bound of v in

BR(z) we deduce that |v| ≤ CR in A2. Hence,ˆ
A2

|v|p dx ≤ CRp|A2| ≤ CRp+2R̃kε̃
1+γ
k .

On the other hand, since A1 is a Lipschitz domain, by Sobolev embedding (see, for example, [1, Theorem 3]) and
Hölder inequality we get( 

A1

|v|p dx
)1/p

≤
( 

A1

|v|3/2 dx
)2/3

≤ C
 
A1

|v| dx+ CR

 
A1

|∇v| dx

≤ C
 
A1

|v| dx+ CR

( 
A1

|∇v|p dx
)1/p

whenever 1 ≤ p ≤ 3

2
.

Thus, using Step 1 and the assumption on v, we get the desired estimate. □

8.3. Proof of Proposition 8.1. We conclude by proving the main result of this section.

Proof of Proposition 8.1. We split the proof into two steps.

Step 1: We first show an algebraic decay of A from scale R̃k to scale R♭
k (with given center z). More precisely, we

start by showing

Az(u,R) ≤ C◦

(
R

R̃k

)1/2

ε̃k, for all R ∈
[
R♭

k, R̃k/16
]
, (8.18)

for some C◦ universal. Note that (8.3) follows directly from this bound, choosing C = C6
◦ .

Let us denote Rℓ := 2−ℓR̃k, and let ℓ0 ∈ N be a large constant to be fixed. Thanks to Lemma 8.2, up to choosing
C◦ sufficiently large (depending only on ℓ0), we can assume that (8.18) holds for R = R4, R5, R6, R7, . . . , Rℓ0 .

We now argue by induction and prove the following: if (8.18) holds for R = R4, R5, R6, R7, . . . , Rℓ for some
ℓ ≥ ℓ0 such that 2−ℓ ≥ ε̃χk , then (8.18) holds for Rℓ+1. This will imply the desired bound.

To prove the inductive step, we will apply Lemma 8.7 to a suitable function. Recall that Az is given by the
maximum of two integrals, one inside U+ and one inside U− (see (8.1)). Here we just prove the estimate for U+,
since the case of U− is completely analogous.

Fix z ∈ BR̃k/16
(z̃k) ∩ Z. By the inductive hypothesis, for all m = 4, 5, 6, . . . , ℓ there exist am ∈ S2 and bm ∈ R

such that
1

|BRm |

ˆ
U+∩BRm (z)

|vm| dx ≤ C◦2
−m/2Rmε̃k, where vm(x) := u(x)− am · x− bm. (8.19)
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Then, by the triangle inequality (similarly to Proposition 8.3, using that U+∩Bρ(z) is roughly a half-space at scales

ρ≫ R̃kε̃
1/α
k ≥ r⋆(z)) we get

Rm|am − am+1|+ |bm − bm+1| ≤ CC◦2
−m/2Rmε̃k.

In particular, this implies that for any 4 ≤ ℓ1 ≤ ℓ2 ≤ ℓ we have

|aℓ1 − aℓ2 | ≤ CC◦2
−ℓ1/2ε̃k, |bℓ1 − bℓ2 | ≤ CC◦2

−ℓ1/2Rℓ1 ε̃k. (8.20)

Furthermore, if we consider the function v(x) = u(x)− a+ · x− b+ provided by Proposition 8.3, by the very same
reason we also have

|aℓ1 − a+| ≤ CC◦ε̃k for any 4 ≤ ℓ1 ≤ ℓ. (8.21)

Fix now p > 1 satisfying 1+γ̄−χ
p ≥ 1 + χ

2 (for instance, one can choose p = 1 + 1
20 ), and recall that by assumption

2−ℓ ≥ ε̃χk . Then, thanks to (8.19), we can apply Lemma 8.10 with δ = C◦2
−m/2 to deduce that, for any 4 ≤ m ≤ ℓ,

1

Rp
m

 
U+∩BRm/2(z)

|vm|p dx+

 
U+∩BRm/2(z)

|∇vm|p dx ≤ (CC◦2
−m/2ε̃k)

p.

Using (8.20), this implies that

1

Rp
m

 
U+∩BRm/2(z)

|vℓ|p dx+

 
U+∩BRm/2(z)

|∇vℓ|p dx ≤ (C̃C◦2
−m/2ε̃k)

p ∀m ∈ {ℓ− ℓ0, . . . , ℓ},

for some C̃ universal. Hence, if we define ṽℓ(x) := (C̃C◦2
−ℓ/2Rℓε̃k)

−1vℓ(z+Rℓx), we get( 
R−1

ℓ (U+−z)∩Bρ/2

|∇ṽℓ|p dx
)1/p

≤ ρ1/2,
( 

R−1
ℓ (U+−z)∩Bρ/2

|ṽℓ|p dx
)1/p

≤ ρ3/2, for ρ ∈ {20, 21, 22, . . . , 2ℓ0}.

(8.22)
On the other hand, Proposition 8.4 and Remark 8.5 yieldˆ

∂U+∩BR4
(z)

|∂νv|2 dH2 ≤ C R̃2
kε̃

2+δ◦
k .

Also, by the triangle inequality and (8.21),

|1− ν · aℓ|2 =
1

4
|∇u− aℓ|4 ≤ |∇u− a+|4 + (CC◦ε̃k)

4 = 4|1− ν · a+|2 + (CC◦ε̃k)
4 on FB(u),

therefore

|∂νvℓ|2 ≤ 4|∂νv|2 + (CC◦ε̃k)
4 on FB(u).

Recalling that H2(∂U0) ≤ CR̃2
kε̃

5−β◦
3α

k ≤ CR̃2
kε̃

2+δ◦
k (see (8.12)) and that H2(∂U+ ∩ BR4(z)) ≤ CR̃2

k + H2(∂U0 ∩
BR̃k/2

(z̃k)) ≤ CR̃2
k (see Lemma 3.3 and (7.21)), we then obtain

ˆ
∂U+∩BR4

(z)

|∂νvℓ|2 dH2 ≤ CR̃2
kε̃

2+δ◦
k +

ˆ
∂U+∩BR4

(z)\∂U0

|∂νvℓ|2 dH2

≤ C R̃2
k

(
ε̃2+δ◦
k + C4

0 ε̃
4
k

)
+ 4

ˆ
∂U+∩BR4

(z)\∂U0

|∂νv|2 dH2 ≤ C R̃2
k

(
ε̃2+δ◦
k + C4

0 ε̃
4
k

)
.

By Hölder’s inequality, using again H2(∂U+ ∩BR4
(z)) ≤ CR̃2

k, this impliesˆ
∂U+∩BR4

(z)

|∂νvℓ| dH2 ≤ C R̃2
k(ε̃

1+δ◦/2
k + C2

◦ ε̃
2
k) =⇒

ˆ
R−1

ℓ (∂U+−z)∩B
2ℓ−4

|∂ν ṽℓ(x)| dH2 ≤ C25ℓ/2(ε̃δ◦/2k + C2
◦ ε̃k).

Hence, taking ε̃k small enough depending on C◦ so that C2
◦ ε̃k ≤ ε̃

1/2
k , since 2ℓ ≤ (ε̃k)

−χ and δ◦/2− 5χ/2 ≥ δ◦/4 we
get ˆ

R−1
ℓ (∂U+−z)∩Bρ

|∂ν ṽℓ(x)| dH2 ≤ C 25ℓ/2ε̃
δ◦/2
k ≤ C 25ℓ/2ρ5/2ε̃

δ◦/2
k ≤ Cρ5/2ε̃δ◦/4k , for ρ ∈ [1, 2ℓ0−4]. (8.23)

To go further, we note that (7.12) and Lemma 7.7(ii) imply the existence of a vector eR = eR,z ∈ S2 such that
 
BR(z)

|u− Vz,eR | dx ≤ C
(
R̃k

R

)α

R ε̃k (8.24)
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(where Hölder’s inequality is used) and{
eR · x > C

(
R̃k

R

)α

Rε̃k

}
⊂ U+ − z ⊂

{
eR · x ≥ −C

(
R̃k

R

)α

Rε̃k

}
in BR.

(As already noted in the proof of Lemma 8.2, eR is the same for both estimates.) Thus, if we denote ρ = 2ℓRR̃−1
k

and ẽρ = e2−ℓρR̃k
, as long as 2−ℓ ≥ ε̃χk ≫ ε̃k we have that the domain R−1

ℓ (U+ − z) satisfies{
ẽρ · x ≥ Cε̃1−αχ

k ρ
}
⊂ R−1

ℓ (U+ − z) ⊂
{
ẽρ · x ≥ −Cε̃1−αχ

k ρ
}

in Bρ, for 1 ≤ ρ ≤ 2ℓ0 . (8.25)

Also, by (8.24) with R = Rℓ, we have 
BR(z)

∣∣u− |ẽ1 · (x− z)|
∣∣ dx ≤ Cε̃1−αχ

k Rℓ

and in particular, because of (8.19), it follows that |aℓ − ẽ1| ≤ CC◦ε̃
1−αχ
k ≤ CC◦ε̃

1/2
k .

Thanks to (8.22), (8.23), and (8.25), we can now apply Lemma 8.7 with d = 1 to ṽℓ. As a consequence, given
η > 0 fixed (to be chosen universally), for ε̃k small enough and ℓ0 large enough we haveˆ

R−1
ℓ (U+−z)∩B1/2

|ṽℓ − a · x− b| dx ≤ η,

for some a ∈ R2 with a · ẽ1 = 0 and b ∈ R, with |a|+ |b| ≤ C. In terms of u, this gives

R−3
ℓ

ˆ
U+∩BRℓ/2

(z)

∣∣∣u(x)− aℓ · x− bℓ − C̃C◦ε̃k2
−ℓ/2a · (x− z)− C̃C◦Rℓε̃k2

−ℓ/2b
∣∣∣ dx ≤ C̃C◦Rℓε̃k2

−ℓ/2η.

Let us denote bℓ+1 := bℓ+ C̃C◦Rℓε̃k2
−ℓ/2b+ C̃C◦ε̃k2

−ℓ/2a ·z, as well as ãℓ+1 = aℓ+ C̃C◦ε̃k2
−ℓ/2a and aℓ+1 = ãℓ+1

|ãℓ+1| .

Then, thanks to the fact that |aℓ − ẽ1| ≤ CC◦ε̃
1/2
k and a · ẽ1 = 0 we deduce that |a · aℓ| ≤ CC◦ε̃

1/2
k and thus

|ãℓ+1 − aℓ+1| ≤ CC2
◦ ε̃

3/2
k 2−ℓ/2. Combining all together, we obtain 
U+∩BRℓ/2

(z)

|u(x)− aℓ+1 · x− bℓ+1| dx ≤ CC◦Rℓε̃k2
−ℓ/2

(
η + C◦ε̃

1/2
k

)
.

We now choose η small so that Cη ≤ 1
4 , which in turn fixes ℓ0, C◦, and an upper bound for ε̃k. Then, choosing ε̃k

small enough so that CC◦ε̃
1/2
k ≤ 1

4 , we get (8.18), as desired. This concludes the proof of (8.3).

Step 2: We now show (8.4) for ∗ = +; the same proof holds for ∗ = −. Recall that R♭
k = ε̃χk R̃k. Then, for

z ∈ BR̃k/8
(z̃k) ∩ Z fixed, we define w := u− a♭+ · x− b♭+, where a♭+ ∈ S2 and b♭+ ∈ R are such that

 
U+∩B

R♭
k
(z)

|u− a♭+ · x− b♭+| dx ≤ CAz(u,R
♭
k) ≤ ε̃

1+χ/3
k R♭

k.

To prove (8.4), we will show that, for some small universal constant β̄ > 0, it holds that

for all r ∈ [ε̃1+2χ
k R̃k, R

♭
k] there exists c = c(r) such that

 
U+∩Br(z)

|w − c| dx ≤ Cε̃1+χ/3
k R♭

k(r/R
♭
k)

β̄ . (8.26)

Notice that this directly yields the desired result by adding a geometric series, since by the triangle inequality,

we have |c(r1) − c(r2)| ≤ Cε̃
1+χ/3
k R♭

k(r1/R
♭
k)

β̄ for all r2 ∈ (r1/2, r1) and r1 ∈ [ε̃1+2χ
k R̃k, R

♭
k] (and we may take

c(R♭
k) = 0).
The first key observation is that, by Proposition 8.4, arguing as in Step 1 we getˆ

∂U+∩BR̃k/16(z)

|∂νw|2 dH2 ≤ Cε̃2+δ◦
k R̃2

k =⇒
ˆ
∂U+∩Br(z)

|∂νw|2 dH2 ≤ Cε̃2+2χ
k (R♭

k)
2(r/R♭

k)
2β̄ (8.27)

for all r ∈ [ε̃1+2χ
k R̃k, R

♭
k], provided that δ◦ > 4χ+ 2β̄(1 + 2χ) (this is true, for example, choosing β̄ ≤ 1

50 ).

Set rℓ := 2−ℓR♭
k. As in Step 1, we can assume that (8.26) holds for r = r0, r1, r2, r3, . . . , rℓ for some ℓ ≥ ℓ0, and

we will show its validity for rℓ+1 as well, as long as 2−ℓ ≥ ε̃1+2χ
k .

Again as in Step 1, by assumption there exist cm ∈ R such that, if we define wm(x) = w(x)− cm, then 
U+∩Brm (z)

|wm| dx ≤ C2−β̄mε̃
1+χ/3
k R♭

k, |cm − cℓ| ≤ Cβ̄2
−β̄mε̃

1+χ/3
k R♭

k, for all 0 ≤ m ≤ ℓ. (8.28)
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Thus, applying Lemma 8.10 with R = rm and δ = C2−β̄mε̃
χ/3
k R♭

k/rm and using the induction hypothesis, for any
2 ≤ m ≤ ℓ we get  

U+∩Brm/2(z)

|wm|p dx+ rpm

 
U+∩Brm/2(z)

|∇wm|p dx ≤ C
(
ε̃
1+χ/3
k R♭

k2
−β̄m

)p
,

for some p > 1 and β̄ > 0 sufficiently small (more precisely, we need β̄p ≤ p − 1 and 1+γ̄−χ
p > 1 + χ

3 ). By the

triangle inequality and (8.28), the same holds for wℓ. Thus, if we define

w̃ℓ(x) :=
wℓ(z+ rℓx)

2Cε̃
1+χ/3
k R♭

k2
−β̄ℓ

,

since β̄ < 1/2 we get( 
r−1
ℓ (U+−z)∩Bρ/2

|w̃ℓ|p dx

)1/p

+ ρ

( 
r−1
ℓ (U+−z)∩Bρ/2

|∇w̃ℓ|p dx

)1/p

≤ ρ1/2 for ρ ∈ {20, 21, 22, . . . , 2ℓ0}. (8.29)

Also, by (8.27) and Hölder inequality, we have

1

ρ

ˆ
r−1
ℓ (∂U+−z)∩Bρ

|∂νw̃ℓ(x)| dH2 ≤ C ε̃χ/3k for ρ ∈ [1, 2ℓ0 ]. (8.30)

Finally, since rℓ ≥ ε̃1+2χ
k R̃k ≫ r⋆(z) (see (7.11)), as in Step 1 we obtain

{ẽρ · x ≥ oε̃k(1)ρ} ⊂ r
−1
ℓ (U+ − z) ⊂ {ẽρ · x ≥ −oε̃k(1)ρ} in Bρ, for ρ ≥ 1, (8.31)

and |a♭+ − ẽ1| = oε̃k(1), where oε̃k(1)→ 0 as k →∞.
Thanks to (8.29), (8.30), and (8.31), we can apply Lemma 8.7 with d = 0 to obtain that, for any η > 0, there

exist ε̃k small enough and ℓ0 large enough such thatˆ
r−1
ℓ (U+−z)∩B1/2

|w̃ℓ − c| dx ≤ η,

for some c ∈ R. Similarly to Step 1, after rescaling we deduce that (8.28) holds for m = ℓ + 1, for some suitable

cℓ+1 ∈ R with |cℓ+1 − cℓ| ≤ C2−β̄ℓε̃
1+χ/3
k R♭

k. This proves (8.26), concluding the proof. □

9. Proofs of Theorem 1.5 and its corollaries

In this section, we prove Theorem 1.5 and Corollaries 1.6 and 1.7. As we shall see, Theorem 1.5 follows from
Proposition 8.1 together with a contradiction argument.

9.1. Remainder involving symmetric excess. Recall that the Weiss energy W was introduced in (4.5). We
will need two new quantities, M and T, that we now define.16

Recalling that ur(x) = r−1u(rx), given e ∈ Sn−1 we define

M(u, r, e) :=
1

rn+1

ˆ
∂Br

(u−|e ·x|)2 dHn−1, so that M(u, r, e) = M(ur, 1, e) =

ˆ
∂B1

(ur−|e ·x|)2 dHn−1, (9.1)

and

T(u, r, e) :=
1

rn+2

ˆ
Br

(u− |e · x|)2 dx, so that T(u, r, e) = T(ur, 1, e) =

ˆ
B1

(ur − |e · x|)2 dx. (9.2)

Note that ∂r
(
rn+2T(u, r, e)

)
= rn+1M(u, r, e), therefore

rn+2
2 T(u, r2, e)− rn+2

1 T(u, r1, e) =

ˆ r2

r1

sn+1M(u, s, e) ds for all 0 < r1 < r2. (9.3)

While the quantities M and T are not necessarily monotone,17 we can still find nice relations between them and
W that will be crucial for our argument.

16The letter M is motivated by the analogies of our quantity with the so-called Monneau energy, which plays a crucial role in obstacle

problems. However, contrary to that setting, now M is not a monotone quantity.
17The fact that we can exploit non-monotone quantities is rather remarkable, since usually the lack of monotonicity formulas makes

this type of quantities useless. In this respect, our argument is very robust and we expect it to be useful in several other problems.
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Lemma 9.1. For any e ∈ Sn−1, it holds

∂rW(u, r) ≥ 2r
(
∂r
√
M(u, r, e)

)2
.

Consequently, for any r > 0 and η ∈ (0, 1),

M(u, r, e) ≤ | log η| (W(u, r)−W(u, ηr)) + 2M(u, ηr, e)

and

T(u, r, e) ≤ | log(η)|
n+ 2

(W(u, r)−W(u, ηr)) +
2

n+ 2
M(u, ηr, e) + ηn+2T(u, ηr, e).

Proof. Since ur−x ·∇ur = −r∂rur, we have ∂rW(u, r) = 2r
´
∂B1

(∂rur)
2 dHn−1 (recall (4.6)). By Cauchy–Schwarz,

∂rM(u, r, e) = 2

ˆ
∂B1

(ur − |e · x|)∂rur dHn−1

≤ 2

√ˆ
∂B1

(ur − |e · x|)2 dHn−1

√ˆ
∂B1

(∂rur)2 dHn−1 = 2

√
M(u, r, e)

∂rW(u, r)

2r
.

Rearranging the terms, we get the first inequality.
Now, we integrate the first inequality between ηr and r, we multiply the result by

´ r

ηr
dρ
ρ = | log η|, and then we

apply Hölder inequality:

| log η| (W(u, r)−W(u, ηr)) ≥ 2

(ˆ r

ηr

dρ

ρ

)ˆ r

ηr

ρ
(
∂ρ
√
M(u, ρ, e)

)2
dρ ≥ 2

(ˆ r

ηr

∂ρ
√
M(u, ρ, e) dρ

)2

.

This gives

1

2
| log η| (W(u, r)−W(u, ηr)) ≥

(√
M(u, r, e)−

√
M(u, ηr, e)

)2
≥ 1

2
M(u, r, e)−M(u, ηr, e),

which proves the second inequality.
Finally, using (9.3) with r2 = r and r1 = ηr, by the second inequality we get

T(u, r, e) ≤ r−n−2

ˆ r

ηr

sn+1M(u, s, e)ds+ ηn+2T(u, ηr, e)

≤ r−n−2

ˆ r

ηr

sn+1

(
log

(
s

ηr

)
(W(u, s)−W(u, ηr)) + 2M(u, ηr, e)

)
ds+ ηn+2T(u, ηr, e).

Since log
(

s
ηr

)
≤ | log η| and W(u, s) ≤W(u, r) for s ∈ [ηr, r] (recall that W(u, ·) is non-decreasing), we can bound

the term above by(
| log(η)|(W(u, r)−W(u, ηr)) + 2M(u, ηr, e)

)
r−n−2

ˆ r

ηr

sn+1 dx+ ηn+2T(u, ηr, e),

from which the third inequality follows easily. □

It will now be convenient to allow the center of the different quantities to vary. To this aim, we denote

Wx◦(u, r) = W(u(· − x◦), r), Mx◦(u, r, e) = M(u(· − x◦), r, e), and Tx◦(u, r, e) = T(u(· − x◦), r, e).

We want to show the existence of a free boundary point where the Weiss energy is close to its maximum while
T and M are very small, all in terms of εk. In this result, it will be crucial that we can prove a bound in ε̃k with a
power strictly larger than 2.

Lemma 9.2. Let α3 be as in (4.7). Then, in the setting of Proposition 8.1 and for k ≫ 1, there exists ȳ ∈
BR̃k/32

(z̃k) ∩ FB(u) such that

2α3 −Wȳ(u,R
♭
k/16) ≤ ε̃

2+χ/2
k and Tȳ(u,R

♭
k/4, e) +Mȳ(u,R

♭
k/4, e) ≤ ε̃

2+χ/2
k ,

for some e ∈ S2.

Proof. Recall that R♭
k = ε̃χk R̃k. We divide the proof into three steps.

Step 1: Given any z ∈ BR̃k/16
(z̃k) ∩Z, we start by proving some controls on the vectors a♭± and the constants b♭±

from Proposition 8.1 (whose dependence on z is omitted).
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Up to a translation, we can assume that z = 0. By (8.4), if we set r♭k := ε̃1+2χ
k R̃k, then 

U∗∩Br

|u− a♭∗ · x− b♭∗| dx ≤ Cε̃
1+χ/3
k R♭

k for any r ∈ [r♭k, R
♭
k], ∗ ∈ {+,−}. (9.4)

Since u− a♭∗ · x is 2-Lipschitz and vanishes at 0, (9.4) with r = r♭k implies

|b♭∗| ≤ 2r♭k + Cε̃
1+χ/3
k R♭

k ≤ Cε̃
1+χ/3
k R♭

k for ∗ ∈ {+,−}. (9.5)

Furthermore, since R♭
k ≫ r⋆(0), Lemma 5.7 implies that u is L∞-close to a vee V0,e in BR♭

k
. By the L1-closeness

condition (9.4), we must have |a♭+ − e| ≪ 1 (up to replacing e by −e). Consequently, u > 0 in the region

BR♭
k
∩ {a♭+ · x > R♭

k/16}, where it is harmonic. Thus, by L1-to-L∞ estimates for harmonic functions, we have

|u − a♭+ · x − b♭+| ≤ Cε̃
1+χ/3
k R♭

k in B3R♭
k/4
∩ {a♭+ · x ≥ R♭

k/8}. This, together with a♭+ · ∇(u − a♭+ · x − b♭+) ≤ 0 and

the bound on b♭+, gives

u(x) ≥ a♭+ · x+ b♭+ − Cε̃
1+χ/3
k R♭

k ≥ a♭+ · x− Cε̃
1+χ/3
k R♭

k in BR♭
k/2
.

By symmetry, the same bound holds for a♭−, therefore

u(x) ≥ max{a♭+ · x, a♭− · x} − Cε̃
1+χ/3
k R♭

k in BR♭
k/2
. (9.6)

Next, we note that the closeness of u to a vee implies that |a♭+ + a♭−| ≪ 1, and we want to quantify this. To this
aim, we first note that

inf
B

R♭
k
/2

∩{e·x≥R♭
k/8}

u = 0 for any e ⊥ a♭+. (9.7)

Indeed, since the sum of radii of the balls forming U0 is bounded by CR̃kε̃
1/α
k ε̃

− 1+β◦
3α

k ≪ R♭
k (recall (7.20)), it follows

from Lemma 7.7 that we can always find free boundary points inside BR♭
k/2
∩ {e · x ≥ R♭

k/8}.

Now, assume that |a♭+ + a♭−| > 0 (otherwise there is nothing to prove) and consider the vector e =
a♭
++a♭

−
|a♭

++a♭
−| −

1
2 |a

♭
+ + a♭−|a♭+. Since |a♭+ + a♭−| ≪ 1, e is almost unitary and almost parallel to a♭+ + a♭−. Also, one can readily check

that e · a♭+ = 0. Thus, (9.6) yields

u(x) ≥
(a♭+ + a♭−) · x

2
− Cε̃1+χ/3

k R♭
k ≥ c|a♭+ + a♭−|R♭

k − Cε̃
1+χ/3
k R♭

k in BR♭
k/2
∩ {e · x ≥ R♭

k/8},

for some universal constant c > 0. Combining this bound with (9.7), this proves that |a♭+ + a♭−| ≤ Cε̃
1+χ/3
k R♭

k. In
particular, recalling (9.5), we conclude that

|a♭+ + a♭−| ≤ Cε̃
1+χ/3
k and |b♭+|+ |b♭−| ≤ Cε̃

1+χ/3
k R♭

k. (9.8)

Step 2: We now show the existence of a point ȳ ∈ BR̃k/32
(z̃k)∩FB(u) whose distance from Z is comparable to R♭

k.

Indeed, recalling that r⋆(z
′) ≪ R♭

k for all z′ ∈ BR̃k/32
(z̃k), it follows from (7.10) and Lemma 7.2 that the set

Z ∩BR̃k/64
(z̃k) can be covered by Cε̃

− (1+β◦)χ
3

k balls of radius 1
4R

♭
k. Hence, recalling Definition 7.6, we also have

U0 ∩BR̃k/64
(z̃k) ⊂

N⋃
i=1

B 3
4R

♭
k

(zi) =: S,

for some zi ∈ Z, where N ≤ Cε̃
− (1+β◦)χ

3

k . Notice now that, thanks to Lemma 7.7, (FB(u) ∪ U0) ∩ BR̃k/32
(z̃k) is

contained inside a strip W := Slab
(
BR̃k/32

(z̃k), e, ε̃k

)
of width R̃kε̃k ≪ R♭

k. In addition, again by Lemma 7.7,

FB(u) ∪ (S ∩ W ) separates {u > 0} ∩ BR̃k/64
(z̃k) into two disjoint regions. By projecting these sets onto the

hyperplane {e · (x− z̃k) = 0}, we see that the area contributed by S ∩W is of order (R♭
k)

2ε̃
− (1+β◦)χ

3

k ≪ R̃2
k, which

means in particular that one can always find a point ȳ ∈ ∂S∩FB(u)∩BR̃k/32
(z̃k). In particular, by the construction,

it follows that

ȳ ∈ FB(u) ∩BR̃k/32
(z̃k) ∩

{
1
2R

♭
k ≤ dist (·,Z) ≤ 3

4R
♭
k

}
.
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Let z ∈ Z ∩BR̃k/16
(z̃k) be such that dist (ȳ,Z) = |ȳ − z|. After a translation, we assume z = 0 (so we are putting

ourselves in the setting of Step 1). From (9.4) we know that 
U±∩B

R♭
k
/8

(ȳ)

|u− a♭± · x− b♭±| dx ≤ Cε̃
1+χ/3
k R♭

k, (9.9)

where a♭± and b♭± satisfy (9.8). Notice also that, by assumption, there are no neck centers Z in BR♭
k/4

(ȳ); therefore,

∂U± ⊂ FB(u) and U+ ∪ U− = {u > 0} inside BR♭
k/8

(ȳ), and the restriction of u to U± is a classical solution to the

Bernoulli problem inside BR♭
k/8

(ȳ). Consequently, we can apply Lemma 3.8 (rescaled) to such restrictions to obtain

|u− a♭± · x− b♭±| ≤ Cε̃
1+χ/3
k R♭

k and |∇u− a♭±| ≤ Cε̃
1+χ/3
k in U± ∩BR♭

k/16
(ȳ).

In particular, applying the first bound above with x = ȳ ∈ FB(u) it follows that |a♭± · ȳ + b♭±| ≤ Cε̃
1+χ/3
k R♭

k, that
combined with the bounds above implies

|u− a♭± · (x− ȳ)| ≤ Cε̃
1+χ/3
k R♭

k and |∇u− a♭±| ≤ Cε̃
1+χ/3
k in U± ∩BR♭

k/16
(ȳ).

Combining this estimate with (9.8), we conclude that

{±a♭+ · x ≥ Cε̃
1+χ/3
k R♭

k} ⊂ U± − ȳ ⊂ {±a♭+ · x ≥ −Cε̃
1+χ/3
k R♭

k} in BR♭
k/16

,

i.e., the two free boundaries are Cε̃
1+χ/3
k -flat at scale R♭

k/16 and are at distance Cε̃
1+χ/3
k R♭

k from each other.
Since ε̃k ≪ 1 for k sufficiently large, combining all these estimates together we get the desired bounds on Mȳ

and Tȳ with e = a♭+.

Step 3: Let ū(x) := 16
R♭

k

u
(
ȳ +

R♭
k

16 x
)
be defined in B1. By Step 2 we know that {ū > 0} has two flat connected

components Ū± and that, after a rotation

|ū∓ x3| ≤ Cε̃1+χ/3
k , |∇ū∓ e3| ≤ Cε̃1+χ/3

k in Ū± ∩B1, (9.10)

and {
±x3 ≥ Cε̃1+χ/3

k

}
⊂ Ū± ⊂

{
±x3 ≥ −Cε̃1+χ/3

k

}
in B1. (9.11)

Let ū± denote the restrictions of ū to Ū±, so that ū = ū+ + ū− and

Wȳ(u,R
♭
k/16) = W(ū, 1) = W(ū+, 1) +W(ū−, 1).

Now, given any solution w to the Bernoulli problem in B1, let Ω := {w > 0}, so that w = 0 on ∂Ω and ∇w coincides
with the inner unit normal. Then, using integration by parts, on the one hand we have

W(w, 1) =

ˆ
∂B1

(x · ∇w − w)w dH2 + |Ω ∩B1|,

and, on the other hand (here we use that, on ∂Ω, w = 0 and ∇w coincides with the inner unit normal),ˆ
Ω∩∂B1

x · ∇w x3 dH2 −
ˆ
∂Ω∩B1

x3 dH2 =

ˆ
Ω∩B1

∇w · ∇x3 dx =

ˆ
Ω∩∂B1

wx · ∇x3 dH2 =

ˆ
Ω∩∂B1

wx3 dH2.

Combining these two identities, we deduce that

W(w, 1) =

ˆ
∂B1

(x · ∇w − w)(w − x3) dH2 +

ˆ
∂Ω∩B1

x3 dH2 + |Ω ∩B1|.

Notice that, applying the divergence theorem to the vector field x3e3 inside a Lipschitz domain A, it follows that

|A ∩B1| =
ˆ
A∩B1

div(x3e3) dx =

ˆ
∂A∩B1

x3e3 · ν dH2 +

ˆ
A∩∂B1

x23 dH2.

Applying this estimate both with A = B1 \ Ω and A = B−
1 := B1 ∩ {x3 ≤ 0}, we obtainˆ

∂Ω∩B1

x3 dH2 − |B1 \ Ω|+ |B−
1 | =

ˆ
∂Ω∩B1

x3(1− e3 · ν) dH2 −
ˆ
(B1\Ω)∩∂B1

x23dH2 +

ˆ
{x3≤0}∩∂B1

x23 dH2,

where ν is the inner unit normal to Ω, and therefore∣∣∣∣ˆ
∂Ω∩B1

x3 dH2 + |Ω ∩B1| − 1
2 |B1|

∣∣∣∣ ≤ 1

2

ˆ
∂Ω∩B1

|x3| |ν − e3|2 dH2 +

ˆ
((B1\Ω)∆{x3≤0})∩∂B1

x23 dH2.
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Applying this bound with w = ū+ and Ω = Ū+, recalling (9.10) and (9.11) we get
ˆ
∂Ū+∩B1

x3 dH2 + |Ω ∩B1| = 1
2 |B1|+O

(
ε̃
3(1+χ/3)
k

)
,

thus

W(ū+, 1) =

ˆ
∂B1

(x · ∇ū+ − ū+)(ū+ − x3) dH2 + 1
2 |B1|+O

(
ε̃
3(1+χ/3)
k

)
.

Thanks again to (9.10) and (9.11), we see that the integrand above is bounded by Cε̃
2(1+χ/3)
k . This implies that

W(ū+, 1) = 1
2 |B1|+O

(
ε̃
2(1+χ/3)
k

)
=⇒ Wȳ(u,R

♭
k/16) = W(ū, 1) = |B1|+O

(
ε̃
2(1+χ/3)
k

)
,

so the desired bound follows. □

9.2. Proof of Theorem 1.5. We are now ready to prove our main result.

Proof of Theorem 1.5. We assume the statement to be false. After the reduction provided by Lemma 5.1, we can
assume u to have a globally bounded Hessian. Then, we can define the neck centers Z as done in Subsection 5.3,
and this set is non-empty because of Lemma 5.2.

We define the symmetric excess Ez(u,R) at any z ∈ Z and R > 0 as in (2.1). By Lemma 7.1, there exist
Rk →∞ and zk ∈ Z such that

εk = Ezk
(u, 8Rk)→ 0 as k →∞.

Moreover, by Lemma 7.3, there are R̃k = ζ̃kRk →∞ and z̃k ∈ Z∩BRk
(zk) such that (7.12) holds, with ε̃k = ζ̃αβ◦

k εk
and ζ̃k ∈ (0, 1].

Now, by (4.8), the monotonicity of the Weiss energy, and Lemma 9.2 (using the notation there, as well), there
exists a point ȳ ∈ BR̃k/32

(z̃k) ∩ FB(u) such that

|B1| − ε̃2+χ/2
k ≤Wȳ(u, r) ≤ |B1| for all r ≥ R♭

k/16.

Thus, combining this bound with Lemmas 9.2 and 9.1, we get (for e ∈ S2 as in Lemma 9.2)

Tȳ(u, 32Rk, e) ≤ | log(CRk/R
♭
k)|ε̃

2+χ/2
k +Mȳ(u,R

♭
k/16, e) +Tȳ(u,R

♭
k/16, e) ≤ C| log(ζ̃kε̃

χ
k )|ε̃

2+χ/2
k .

where we used that R♭
k = ε̃χk R̃k = ε̃χk ζ̃kRk. Now, recalling recalling ε̃k = ζ̃αβ◦

k εk, it follows that | log(ζ̃kε̃χk )|ε̃
χ/3
k → 0

as εk → 0. Hence, in particular,

Tȳ(u, 32Rk, e) ≤ ε2+χ/6
k for k ≫ 1.

(Here is the only place in the paper where we are using that β◦ > 0.) Since B8Rk
(zk) ⊂ B32Rk

(ȳ), for k sufficiently
large we get

εk = Ezk
(u, 8Rk) ≤

(
Tzk

(u, 8Rk, e)
)1/2 ≤ ((32

8

)5
Tȳ(u, 32Rk, e)

)1/2

≤ 25ε
1+χ/12
k , (9.12)

a contradiction. □

Remark 9.3. The conditions to be satisfied by all the constants appearing throughout the paper are:

3αγ > 1, 12αβ < 5− β◦, δ◦ = 2(2β − 1) > 0, γ̄ <
1− α
α

,
3

4
< α <

5− β◦
6

, p < 1 + γ̄,

as well as

4χ+ 2(1 + 2χ)β̄ < δ◦, β̄ <
p− 1

p
, χ <

1 + γ̄ − p
1 + p

,
δ◦
8
≥ 5χ

2
.

One possible choice is:

β◦ =
1

20
, β =

1

2
+

1

40
, α =

39

50
, γ =

11

25
, p =

21

20
, β̄ =

1

40
, δ◦ =

1

10
, χ =

1

500
, γ̄ =

1

10
.
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9.3. Proofs of Corollaries 1.6 and 1.7. Corollaries 1.6 and 1.7 are now rather standard consequences of Theo-
rem 1.5. We sketch their proofs here for the reader’s convenience:

Proof of Corollary 1.6. Let u be a global classical solution of the Bernoulli problem in R4 satisfying ∂x4
u > 0 in

{u > 0}. We start by noticing that u is stable. Indeed, for every smooth compactly supported function ξ, let
spt(ξ) ⊂ K = K ′ × [−C,C] for some compact set K ′ ⊂ R3. Then, whenever K ∩ {u > 0} ≠ ∅ we have

inf
K∩{u>0}

∂4u ≥ c(u,K) > 0

(see, for instance, [36, Lemma 4.1]), which shows that translations of the graph of u in the x4 direction locally
foliate the graph of u. It is then a standard fact that this property implies the minimality of u with respect to
sufficiently small variations and, therefore, its stability (for a detailed proof of this fact see, for instance, [2, Proof
of Theorem 4.5]).18

Suppose now, by contradiction, that D2u ̸≡ 0 in {u > 0}. By Lemma 5.1, there exists a (classical) stable solution
(which, as an abuse of notation, we still denote u) satisfying

|D2u| ≤ 1 in {u > 0} and |D2u(0)| = 1.

Also, as one can easily check, the proof Lemma 5.1 provides a new function that will still satisfy monotonicity but
in the weaker form ∂x4

u ≥ 0. Moreover, up to restricting u to a single connected component of {u > 0}, we can
assume without loss of generality that {u > 0} has one connected component.

We now consider the two limits

u = u(x1, x2, x3) := lim
x4→−∞

u and u = u(x1, x2, x3) := lim
x4→+∞

u.

Thanks to the bound |D2u| ≤ 1 (which also gives uniform curvature bounds on the free boundary), u ≤ u is either
identically zero or is a classical stable solution of Bernoulli in R3 (cf. proof of Lemma 5.1). Analogously, u ≥ u is
either identically +∞ or is a classical stable solution of Bernoulli in R3.

Applying Theorem 1.5 to both u and u we obtain that, if they are not constant (respectively equal to 0 or +∞),
then {u = 0} and {u = 0} are either a half-space or a slab (i.e., the region between two parallel hyperplanes). Since
0 ≤ u ≤ u, in this second scenario also {u > 0} would be disconnected, contradicting our setup. Thus:
(i) u is either zero, or a 1D monotone minimizer (so, of the form (x · e − a)+), or a maximum of two minimizers
with disjoint support;
(ii) u is either a 1D monotone minimizer or +∞.
This ensures that u and u are, respectively, lower and upper barriers for minimizers (since minimizers cannot cross).
Thus, since the family of translated graphs {x5 = u(x+ te4)}t∈R foliates the region{

(x, x5) ∈ R4 × [0,+∞) : u(x) ≤ x5 ≤ u(x)
}
,

a standard foliation argument (see [54, Proof of Theorem 1.3]) implies that u must be energy-minimizing in every
compact subset of R4. But then it follows from the regularity theory for minimizers for the Bernoulli problem (e.g.
using [30,55]) that D2u is identically zero in {u > 0}, contradicting |D2u(0)| = 1. □

Corollary 1.7 will be obtained as a particular case of the following more technical proposition that will be useful
in the sequel as well. A direct proof of the fact that Theorem 1.5 implies Corollary 1.7 is essentially contained
in [57]. However, the current proof of [57, Theorem 1.2] relies on [20, Lemma 1.21] (see the discussion before
[57, Proposition A.4]), whose proof is incomplete. We fix this gap in our Lemma 4.5.

Proposition 9.4. Let u be a classical stable solution to the Bernoulli problem in B1 ⊂ R4 satisfying ∂4u ≥ 0 in
B1. Then |D2u| ≤ C in B1/2 ∩ {u > 0}, for some C universal.

Proof. We proceed as in the proof of Lemma 5.1 and assume by contradiction that the statement does not hold.
Then, there exists a sequence uk of classical stable solutions to the Bernoulli problem in B1 ⊂ R4, with 0 ∈ FB(uk),
∂4uk ≥ 0, and such that

hk := |D2uk(xk)|
(
3

4
− |xk|

)
= max

x∈B3/4∩∂{uk>0}
|D2uk(x)|

(
3

4
− |x|

)
→∞ as k →∞.

18An alternative way to obtain the stability inequality from a positive (sub-)solution of the linearized equation is as follows: if ψ > 0

satisfies ∆ψ = 0 in {u > 0}, ψν +Hψ = 0 on FB(u), then for ϕ ∈ C0,1
c (R4), testing against ϕ2/ψ gives

ˆ
{u>0}

|∇ϕ|2 dx−
ˆ
FB(u)

Hϕ2 dH3 =

ˆ
{u>0}

(
|∇ϕ|2 −∇ ·

ϕ2∇ψ
ψ

)
dx =

ˆ
{u>0}

∣∣∣∣∇ϕ−
ϕ∇ψ
ψ

∣∣∣∣2 dx ≥ 0.
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Set dk := D2uk(xk) and ρk = 3
4 − |xk|, and define the classical stable solution

ũk(x) := dkuk(xk + x/dk) for x ∈ Bdkρk/2.

Since dkρk → ∞, proceeding as in Lemma 5.1 we can take the limit of ũk (up to subsequences) to find a global
classical stable solution ũ∞, with 0 ∈ FB(u∞), ∂4ũ∞ ≥ 0, |D2ũ∞(0)| = 1, and |D2ũ∞| ≤ 1 in {ũ∞ > 0}.

Up to restricting ũ∞ to one connected component of {ũ∞ > 0}, we can assume that {ũ∞ > 0} has a single
connected component. Then, by the strong minimum principle, either ∂4ũ∞ ≡ 0 (in which case we contradict
Theorem 1.5) or ∂4ũ∞ > 0 (contradicting Corollary 1.6). □

We can now prove our second corollary.

Proof of Corollary 1.7. It suffices to extend our function to B1 × R ⊂ R3 × R by taking it constant in the last
variable, and then apply Proposition 9.4. □

10. The Free Boundary Allen–Cahn

10.1. Preliminaries. The goal of this section is to prove Theorem 1.1. To show it, we will combine the curvature
estimates obtained for the free boundary in the Bernoulli problem (see Corollary 1.7) with the Sternberg–Zumbrun
stability inequality (see Lemma 10.2 below). This will allow us to extend Pogorelov’s argument [77] for stable
minimal surfaces in R3 to our setting.

Before beginning with the proof, let us give the definition of classical solution, in analogy with Definition 3.1.
Consider the energy J 0

1 from (1.1). We call u : BR → [−1, 1] a classical solutions of J 0
1 if

{|u| < 1} is locally a smooth domain in BR and

{
∆u = 0 in BR ∩ {|u| < 1} ,
|∇u| = 1 on BR ∩ ∂ {|u| < 1} .

(10.1)

The set ∂{u > 0} is called the free boundary and will also be denoted FB(u). In particular, a classical solution
satisfies that {u > 0} is locally the subgraph of a smooth function around each free boundary point (up to a
rotation).

Classical solutions u are stationary critical points of J 0
1 , in the sense that they satisfy (3.2) with F = J 0

1 ; and
stationary critical points u are called stable if they have non-negative second (inner) variations, i.e., they satisfy
(3.3) with F = J 0

1 .
From now on, a solution will refer, unless otherwise stated, to the free boundary Allen–Cahn energy J 0

1 .

Definition 10.1. Let n ≥ 2 and R > 0. In relation to the free boundary Allen–Cahn, i.e., choosing F = J 0
1 in

(3.2)–(3.3), we say that u ∈ H1(BR) with BR ⊂ Rn is:

• a classical solution or classical critical point in BR if it satisfies (10.1) (in particular, it satisfies (3.2));
• a classical stable solution or classical stable critical point in BR if it is a classical solution and satisfies (3.3).

If a function satisfies one of the previous definitions for all R > 0, we call it global.

The Sternberg–Zumbrun stability inequality for the free boundary Allen–Cahn is the following:

Lemma 10.2 (Sternberg–Zumbrun stability inequality). Let n ≥ 2, and let u be a classical stable critical point of
J 0
1 (see (1.1)) in Rn. Thenˆ

Rn

|A(u)|2|∇u|2ζ2 dx ≤
ˆ
Rn

|∇u|2|∇ζ|2 dx for all ζ ∈ C0,1
c (Rn), (10.2)

where

|A(u)|2(x) :=

{
|A(u(x))|2 + |∇T log |∇u(x)||2 if |u| < 1 and |∇u(x)| ≠ 0

0 otherwise.

Here, A(u(x)) denotes the second fundamental form of the level set {u = u(x)} at the point x (therefore, |A(u(x))|2
is the sum of the squares of the principal curvatures) and ∇T denotes the tangential gradient to the level sets.

Proof. As in the case of Bernoulli case, it follows from (A.3) using the identity in [81, Lemma 2.1]. □

Remark 10.3. Notice that, by approximation and smoothly extending and cutting off inside {|u| = 1}, it suffices in

(10.2) to consider test functions with ζ ∈ C0,1
c

(
{|u| < 1}

)
.

As a first observation, we have Modica’s inequality (in analogy with its smooth counterpart [71]):

Lemma 10.4 (Modica’s inequality). Let n ≥ 2, and let u be a classical solution of J 0
1 in Rn. Then Modica’s

inequality takes the form
|∇u|2 ≤ 1. (10.3)
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Proof. The global Lipschitz bound with a dimensional constant C holds by the same proof as for the Bernoulli
problem, see for example [20, Lemma 11.19]. Let us now prove that this constant can be chosen to be 1.

By contradiction, assume that
sup
Rn

|∇u| = 1 + κ > 1,

for some κ ∈ (0, C − 1]. Then, since |∇u|2 is subharmonic inside {|u| < 1}, and |∇u| = 1 on the free boundary,
the maximum principle implies that there exists a sequence zi ∈ {|u| < 1}, with |zi| → ∞ as i → ∞, such that
|∇u(zi)| ↑ 1 + κ. Let yi ∈ ∂{|u| < 1} satisfy dist (zi, ∂{|u| < 1}) = |zi − yi| =: τi. Notice that, since |u| ≤ 1,
harmonic estimates imply that |∇u| ≤ Cdist(·, ∂{|u| < 1})−1, so τi is necessarily bounded (but it could go to zero).

Up to taking a subsequence and replacing u with −u, we can assume that u(yi) = −1 for all i. Then, if we define

vi(x) :=
u(zi + τix) + 1

τi
≥ 0,

it follows that vi satisfies

∆vi = 0 and vi > 0 in B1, sup
Rn

|∇vi| = 1 + κ, |∇vi(0)| ↑i 1 + κ, |∇vi| = 1 on ∂{vi > 0}.

Also, up to a rotation, we can assume that zi − yi = τien, therefore vi(−en) = 0.
Then, up to a subsequence, the functions vi converge locally uniformly in Rn to a (1 + κ)-Lipschitz function v∞

that is harmonic in B1 and satisfies |∇v∞(0)| = 1 + κ, v∞ ≥ 0 in B1, and v∞(−en) = 0. Thus, by the strong
maximum principle, |∇v∞| ≡ 1 + κ in B1, and therefore v∞(x) = (1 + κ)(xn + 1) in B1. By unique continuation,
it follows that v∞(x) = (1 + κ)(xn + 1) in {−1 ≤ xn ≤ 1}.

Thus, we have proved that the non-negative functions vi converge locally uniformly to (1 + κ)(xn + 1) inside
{−1 < xn < 1}. Consider now the harmonic sub-barrier

ψκ,ε(x) := (1 + κ
2 )(xn + 1) + ε

(
(xn + 1)2 − 1

n−1 (x
2
1 + · · ·+ x2n−1)

)
.

For ε sufficiently small (depending only on κ) and for i large enough (depending on ε and κ), we see that vi ≥
ψκ,ε(x− sen) on ∂B2(−en) for all s ∈ [0, 1], and ψκ,ε(x− en) ≤ vi in B2(−en).

We now perform a sliding argument and let s decrease from 1 until ψκ,ε(x− sen) touches vi from below. By the
previous considerations and the maximum principle, the touching point must be on the free boundary of vi. But
this is a contradiction, since |∇vi| = 1 on the free boundary while |∇ψκ,ε| ≥ ∂nψκ,ε ≥ 1 + κ

2 − Cnε > 1 for ε small
enough, depending only on n and κ. □

The stability inequality (10.2) will now be used in four ways:

(1) With a Euclidean log-cut-off in R3, showing that the amount of “bad regions” is sublinear. This results in
a clean annulus (see Lemma 10.8).

(2) With a Euclidean Lipschitz cut-off, ensuring good estimates in the clean annulus (see Proposition 10.9).
(3) With an intrinsic log-cut-off on a level set, a 2-surface, bounding the average area near the “bad region”

(see Lemma 10.14).
(4) With an intrinsic “tent” function of the form (r − dB)+, in an integral way (see (10.30)), allowing us to

close a Gauss–Bonnet type estimate (see Lemma 10.16).

10.2. Definition of B. From now on, we will assume that n = 3 and u is a global classical stable solution to
the free boundary Allen–Cahn in R3 according to Definition 10.1. We start with the following universal derivative
bounds, which follow from the curvature bounds on the free boundary of stable solutions of the one-phase Bernoulli
problem.

Lemma 10.5 (Regularity). For any k ≥ 2 there exists a constant Ck > 0, depending only on k, such that
|Dku| ≤ Ck inside {|u| < 1}.

Proof. Fix x◦ ∈ ∂{|u| < 1} and, up to replacing u with −u, assume that u(x◦) = −1. Thanks to Lemma 10.4
we know that |∇u| ≤ 1, therefore u ≤ 0 < 1 in B1(x◦). This implies that u + 1 is a classical stable solution to
the Bernoulli problem in B1(x◦) (see Definition 3.1), so we can apply Corollary 1.7 and Lemma 3.9 to deduce that
|Dku| ≤ Ck in B1/2(x◦)∩{u+1 > 0}. Repeating this argument at every free boundary point, we obtain |Dku| ≤ Ck

inside {0 < dist (·, {|u| = 1}) < 1/2}. Finally, the bound inside {|u| < 1} follows by interior regularity estimates for
harmonic functions. □

Motivated by Lemma 10.2, given δ◦ ∈ (0, 1) we define

X (δ◦) :=
{
z ∈ {|u| < 1} :

ˆ
B2(z)

|A(u)|2|∇u|2 dx > δ◦

}
̸= ∅. (10.4)
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Note that Theorem 1.1 is equivalent to showing that X (δ◦) = ∅ for any δ◦ > 0. So, by contradiction, we assume
that there exists δ◦ ∈ (0, 1) small (to be fixed later) such that X (δ◦) ̸= ∅, and define

G(δ◦) :=
{
z ∈ {|u| < 1} \ X (δ◦) : dist (z, {|u| = 1}) ≤ 8

}
(10.5)

and

W(δ◦) := {|u| < 1} \ (X (δ◦) ∪ G(δ◦)).
The following result says that the set G(δ◦) locally looks like arbitrarily flat strips:

Lemma 10.6 (Curvature bound in G(δ◦)). Given η◦ ∈ (0, 1), there exists δ◦ = δ◦(η◦) > 0 such that if x◦ ∈ G(δ◦),
then

|D2u| ≤ η◦ in B3/2(x◦) ∩ {|u| < 1},
and ∇u almost achieves equality in Modica’s inequality (10.3):

1− η◦ ≤ |∇u| ≤ 1 in {|u| < 1} ∩B3/2(x◦). (10.6)

In particular, for all λ ∈ (−1, 1), the level set {|u| = λ}∩B3/2(x◦) is a smooth surface with curvature bounded by η◦.

Proof. Translating if necessary, we can assume x◦ = 0. We show first the bound on the Hessian.
As in the proof of Lemma A.3, |D2u|2 ≤ 3|A(u)|2|∇u|2 wherever u is harmonic. Thus,ˆ

B2∩{|u|<1}
|D2u|2 dx ≤ 3δ◦.

Also, thanks to Lemma 10.5, |D3u| ≤ C in B3/2 ∩ {|u| < 1}, and the free boundaries have bounded curvature and

they are uniformly separated. So, by Lemma A.2 applied to |D2u| we get

|D2u| ≤ Cδ1/8◦ in B3/2 ∩ {|u| < 1}. (10.7)

This proves the first bound in the statement.
For the second one, we proceed by contradiction and compactness. Let uk be a sequence of (nonconstant) stable

critical points of J 0
1 in R3 for which 0 ∈ G(δk) with δk = 1

k , but |∇uk(xk)| < 1−η◦ for some xk ∈ {|uk| < 1}∩B3/2.
Note that, as a consequence of 10.7,

∥D2uk∥L∞(B3/2∩{|uk|<1}) ≤ Ck−1/8 → 0, as k →∞. (10.8)

Thanks to Lemma 10.5, up to a subsequence the functions uk converge to u∞, which is a classical stable solution
satisfying (because of (10.8) and unique continuation) |D2u∞| ≡ 0 in any connected component of {|u∞| < 1}
touching B3/2. Also, there exists a point x∞ ∈ {|u∞| < 1} ∩B3/2 such that |∇u∞(x∞)| ≤ 1− η◦. Since |∇u∞| = 1
on the free boundary, this implies that every connected component of {|u∞| < 1} touching B3/2 cannot have any

boundary, therefore the only option is that {|u∞| < 1} = R3. By the convergence of uk to u∞, this implies that uk
has no free boundary point inside B16 for k large, a contradiction to the fact that 0 ∈ G(δ◦). □

Remark 10.7. As a consequence of the previous result, inside G(δ◦) the integral curves of ∇u are almost straight
and |∇u| is very close to 1. Hence, by looking how the value of u changes along integral curves of ∇u, for any point
z ∈ G(δ◦) it holds dist (z, {|u| = 1}) ≤ 1−|u|+oδ◦(1) ≤ 2, where oδ◦(1) ↓ 0 as δ◦ ↓ 0. In particular, by the definition
of W(δ◦), it follows that |zg − zw| ≥ 6 for any (zg, zw) ∈ G(δ◦) ×W(δ◦). Hence, these two sets are separated and
since W(δ◦) is far from the free boundaries, it must always be surrounded by X (δ◦).

Now, given α > 0 we define

S∗α(δ◦) :=
⋃

z∈X (δ◦)

Bα(z) = X (δ◦) +Bα.

Then, given x ∈ G(δ◦) \ S∗4 (δ◦) and λ ∈ [−1, 1], we define the πλ “projection” as the point on Σλ := {u = λ}
obtained from flowing x perpendicularly to the level sets until it intersects Σλ. That is, let nx : [−1, 1]→ {|u| < 1}
be defined by

ṅx(t) =
∇u(nx(t))
|∇u(nx(t))|2

, nx(u(x)) = x, (10.9)

and set

πλ(x) := nx(λ). (10.10)

Notice that, if x ∈ G(δ◦)\S∗4 (δ◦), then Lemma 10.6 and Remark 10.7 imply that 1−η◦ ≤ |∇u| ≤ 1 in B4(x)∩{|u| <
1}, so the map above is well defined (provided δ◦ is sufficiently small so that η◦ ≤ 1/2).
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Finally, we define

B∗(δ◦) := S∗4 (δ◦) ∪
⋃

x∈∂S∗
4 (δ◦)∩G(δ◦)

{nx(t) : t ∈ [−1, 1]} = S∗4 (δ◦) ∪
⋃

x∈∂S∗
4 (δ◦)∩G(δ◦)

{πλ(x) : λ ∈ [−1, 1]} .

In other words, we add to S∗4 (δ◦) the image of ∂S∗4 (δ◦) ∩ G(δ◦) through the flow ∇u across the level sets. Observe
that, by construction and thanks to Lemma 10.6,

B∗(δ◦) ⊂ S∗8 (δ◦). (10.11)

Moreover, G(δ◦) \B∗(δ◦) is “invariant” under the flow of ∇u, that is,

if x ∈ G(δ◦) \B∗(δ◦), then πλ(x) is well defined and πλ(x) ∈ G(δ◦) \B∗(δ◦) for all λ ∈ [−1, 1].

Now, thanks to the stability of u, we can prove that for any Λ > 0 (large) we can find an annulus BR+Λ(z)\BR(z)
of width Λ, with z ∈ X (δ◦), which does not intersect S∗8 (δ◦).

Lemma 10.8 (Existence of a clean annulus). Let δ◦ > 0 be sufficiently small so that η◦ ≤ 1/2. For every Λ > 0
there exist z ∈ X (δ◦) and R > 1 such that

B∗(δ◦) ∩BR+Λ(z) ⊂ S∗8 (δ◦) ∩BR+Λ(z) ⊂ BR(z).

Proof. The first inclusion follows from (10.11).
For the second inclusion, assume by contradiction that it does not hold. Then, there exists Λ > 0 such that for

every z̄ ∈ X (δ◦) and k ≥ 1, there is z ∈ X (δ◦) with B8(z) ∩B(k+1)Λ(z̄) \BkΛ(z̄) ̸= ∅. In particular

B(k+1)Λ+8(z̄) \BkΛ−8(z̄) ⊃ B8(z) =⇒ |S∗8 (δ◦) ∩ (B(k+1)Λ+8(z̄) \BkΛ−8(z̄))| ≥ |B8| ∀ k ≥ 8

Λ
,

from which we easily deduce that

|S∗8 (δ◦) ∩BR(z̄)| ≥ c
R

Λ
for all R > 1, z̄ ∈ X (δ◦), (10.12)

for some c > 0 universal.
On the other hand, applying the stability inequality (10.2) with ζ ∈ C∞

c (B2R(z̄)) such that ζ ≡ 1 in BR(z̄) and
|∇ζ| ≤ C̄/R in R3, recalling that |∇u| ≤ 1 we getˆ

BR(z̄)

|A(u)|2|∇u|2 dx ≤ CR.

Now, recalling the definition of X (δ◦), a covering argument implies that the left-hand side above is bounded from
below by cδ◦|S∗8 (δ◦) ∩BR−8(z̄)| for all R > 9. Therefore, we have proved that

|S∗8 (δ◦) ∩BR(z̄)| ≤ Cδ−1
◦ R for all R > 1, z̄ ∈ X (δ◦), (10.13)

with C universal.
Now, given z̄ ∈ X (δ◦) and R large, for t ≥ 1 we define

At
R,z̄ :=

⋃
{Bt(z) : z ∈ X (δ◦), B8(z) ∩BR(z̄) ̸= ∅} .

Then, for any t ∈ [4, R], by Vitali’s covering lemma we can find a disjoint subcollection of balls of radius t/4,
centered at some z ∈ X (δ◦), such that the balls of radius 2t cover At

R,z̄. Since:

(i) each disjoint ball of radius t/4 contains at least cΛ−1t mass from S∗8 (δ◦) (by (10.12));
(ii) these balls are all contained inside B2R(z̄);
(iii) and |S∗8 (δ◦) ∩B2R(z̄)| ≤ Cδ−1

◦ R (by (10.13));
it follows that the number of disjoint balls of radius t/4 is bounded by C(δ◦t)

−1ΛR with C universal. In particular,
since the balls of radius 2t cover At

R,z̄, we get

|At
R,z̄| ≤ (number of disjoint balls)× |B2t| ≤ Cδ−1

◦ ΛRt2 for all t ∈ [4, R].

Note that, for t ∈ (0, 4], we can simply use the bound |At
R,z̄| ≤ Cδ−1

◦ R.

Now, consider R > 1 large (to be fixed later), set d(x) := dist(x,A8
R,z̄), and define the test function:

ζ(x) =
(
1− log(1+d(x))

log(1+R)

)
+
, which satisfies |∇ζ(x)| =

{
1

(1+d(x)) log(1+R) if 0 < d ≤ R,
0 otherwise.

Applying the stability inequality with ζ(x) and R≫ 1, we estimate the two terms as follows:
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• by a covering argument, the definitions of X (δ◦) and S∗8 (δ◦), and (10.12), we can bound the left-hand side:ˆ
R3

|A(u)|2|∇u|2ζ2 dx ≥
ˆ
A8

R,z̄

|A(u)|2|∇u|2 dx ≥ cδ◦|S∗8 (δ◦) ∩BR(z̄)| ≥ cδ◦Λ−1R;

• by the “layer-cake formula” and since |∇u| ≤ 1, we can bound right-hand side:ˆ
R3

|∇ζ|2 dx ≤ C
ˆ R

0

1

(1 + t)2 log2(1 +R)

d(CΛRt2)

dt
dt ≤ CΛ R

logR
.

For R large enough, this provides the desired contradiction, proving the lemma. □

Now, for a given δ◦ > 0 small and Λ > 1 large, let zΛ ∈ X (δ◦) and RΛ > 1 be given by Lemma 10.8, and define
the sets

B = B(δ◦,Λ) := B∗(δ◦) ∩BRΛ+Λ(zΛ), Sα = Sα(δ◦,Λ) :=
⋃

z∈X (δ◦)∩B(δ◦,Λ)

Bα(z). (10.14)

Note that, since S∗4 (δ◦) ⊂ B∗(δ◦) ⊂ S∗8 (δ◦), it follows from Lemma 10.8 that S4 ⊂ B ⊂ S8. We now start our
analysis.

10.3. A first case: annulus formed of W(δ◦). With δ◦ > 0 (small) and Λ > 1 (large) fixed, we recall that
zΛ ∈ X (δ◦) and RΛ > 1 are given by Lemma 10.8. Since dist (W(δ◦), {|u| = 1} ∪ G(δ◦)) ≥ 6 (by the definition of
W(δ◦) and Remark 10.7), Lemma 10.8 implies that

either BRΛ+Λ(zΛ) \BRΛ
(zΛ) ⊂ W(δ◦), (10.15)

or BRΛ+Λ(zΛ) \BRΛ(zΛ) ⊂ {|u| = 1} ∪ G(δ◦). (10.16)

We want to prove that the first case cannot occur.

Proposition 10.9. There exists Λ0 sufficiently large, depending only on δ◦, such that if Λ > Λ0 then (10.16) holds.

In order to prove it, we will use the following:

Lemma 10.10. Let δ◦ > 0 and Λ ≥ 64, and let B and S8 be as in (10.14). Thenˆ
B

|A(u)|2|∇u|2 dx ≥ cδ◦|S8| ≥ cδ◦|B|,

for a universal constant c.

Proof. Recall that S2 ⊂ B ⊂ S8. Let S̃2 ⊂ S2 be the union of a maximally disjoint family of N balls of radius 2
centered at X (δ◦) ∩B such that the balls with radius 2 · 3 + 6 cover S8 = S2 + B6. In particular, we know that
N |B2| ≤ |S2| ≤ |S8| ≤ N |B12|. Moreover, by the definition of X (δ◦),ˆ

S̃2(δ◦)

|A(u)|2|∇u|2 dx > Nδ◦ ≥ c|S8|δ◦ ≥ c|B|δ◦.

This yields the result. □

We can now prove that (10.15) does not occur.

Proof of Proposition 10.9. We argue by contradiction and assume (10.15) holds. Then, |u| < 1 (and so it is
harmonic) insideW(δ◦) ⊃ BRΛ+Λ(zΛ)\BRΛ

(zΛ). Also, since dist (W(δ◦), {|u| = 1}∪G(δ◦)) ≥ 6, we have ∂W(δ◦) ⊂
∂X (δ◦) (i.e., W(δ◦) is surrounded by X (δ◦)). In particular, thanks to Lemma 10.8, the following Lipschitz function
is compactly supported inside BRΛ+Λ/2(zΛ) (note |∇ζ| ≠ 0 only in W(δ◦)):

ζ(x) =

{
1 if x ∈ (B ∪ G(δ◦) ∪ {|u| = 1}) ∩BRΛ

(zΛ),

(1− 2
Λdist (x,B))+ otherwise.

Now, consider the set St as in (10.14) and note that |St(δ◦)| ≤ Ct3|B| for t ≥ 2. Also, by harmonic estimates,
|∇u| ≤ C

t inside {|∇ζ| ̸= 0} ∩ BRΛ+Λ/2(zΛ) \ St(δ◦). Hence, since |∇dist (·,B)| = 1, by the layer-cake formula we
get ˆ

R3

|∇u|2|∇ζ|2 dx ≤ C

Λ2

(
|S2(δ◦)|+

ˆ Λ/2

2

t−2 d(Ct
3|B|)
dt

dt

)
≤ C|B|

Λ
.

Thus, by the stability inequality (10.2), the bound above, Lemma 10.10, and (10.2), we obtain

c|B|δ◦ ≤
ˆ
B

|A(u)|2|∇u|2 dx ≤ C|B|
Λ

.
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This provides the desired contradiction for Λ sufficiently large (depending on δ◦). □

Thanks to the previous proposition, we now on we will assume that (10.16) holds.

10.4. The intrinsic distance projection. Define

ΣG
λ := Σλ ∩ G(δ◦) = {u = λ} ∩ G(δ◦), for λ ∈ (−1, 1).

Also, recall (10.10). We have the following result about the comparability of the length of curves when projected
onto different level sets:

Lemma 10.11. For any ε◦ > 0 there exists δ◦ > 0 such that the following holds.
Given λ ∈ (−1, 1) and a Lipschitz curve γλ : [0, 1] → ΣG

λ \B∗(δ◦), define γ̄µ : [0, 1] → ΣG
λ \B∗(δ◦) as γ̄µ(t) :=

πµ(γλ(t)), µ ∈ [−1, 1]. Then,

(1− ε◦)Length(γ̄µ) ≤ Length(γλ) ≤ (1 + ε◦)Length(γ̄µ) ∀µ ∈ [−1, 1].

Proof. This is a direct consequence of the smallness of the curvature of the level sets given by Lemma 10.6. □

Next, given λ ∈ [−1, 1], we define the intrinsic distance along Σλ in the set G(δ◦) as follows:

dλB : BRΛ+Λ(zΛ) ∩ {|u| < 1} → R ∪ {+∞}, dλB(x) :=

{
distΣλ

(πλ(x),B) if x ∈ G(δ◦) \B,
0 otherwise.

(10.17)

where distΣλ
is the intrinsic distance inside the surface Σλ, and zΛ ∈ X (δ◦) and RΛ > 1 are given by Lemma 10.8.

(We have omitted in dλB the dependence on δ◦ and Λ for the sake of readability.) Note that {dλB > 0} is disjoint
from W(δ◦). The next result shows how distΣλ

changes when varying λ.

Lemma 10.12 (Comparison across levels). Let δ◦ > 0 and Λ > 0. Let B = B(δ◦,Λ) be as in (10.14), with dλB as
in (10.17). Then, for any λ, µ ∈ (−1, 1) and 0 < r < Λ/8, it holds:

• For any p ∈ N, there exists δ◦ small enough depending only on p such that,(
r − dλB

)
+
≤
(
21/pr − dµB

)
+
, in BRΛ+Λ(zΛ) ∩ {|u| < 1}.

• Let ε◦ be as in Lemma 10.11. Then∣∣∇dλB∣∣ ≤ 1 + ε◦, in BRΛ+Λ(zΛ) ∩ {|u| < 1} ∩ {dλB < Λ/4}.

Proof. Let x ∈ BRΛ+Λ(zΛ) ∩ {|u| < 1} ∩ {dλB < Λ/4}. We can assume that G(δ◦) \B, otherwise dµB(x) = 0 for all
µ and the result holds.

Now, for 0 < dλB(x) < r ≤ Λ/8, it follows from Lemma 10.8 that x ∈ BRΛ+Λ/6(zΛ). Also, by Lemma 10.11 and

the definition of B∗(δ◦), we have dλB(x) ≥ (1− ε◦)dµB(x). Thus,

(r−dλB(x))+ ≤ (r− (1− ε◦)dµB(x))+ ≤
(
r − dµB(x) +

ε◦
1− ε◦

dλB(x)

)
+

≤
(
(1+2ε◦)r−dµB(x)

)
+
≤ (21/pr−dµB(x))+

for ε◦ small enough, depending only on p.
The second part is a consequence of Lemma 10.11. Indeed, recalling the validity of (10.16), the distance to B

(when nonzero) is achieved along curves fully contained inside BRΛ+Λ/2(zΛ) ∩ G(δ◦) \B (recall Lemma 10.8). So,
we can apply Lemma 10.11 to deduce that πλ is (1 + ε◦)-Lipschitz near the support of minimizing curves. Since
the intrinsic distance is always 1-Lipschitz, the result follows. □

10.5. Consequences of stability. Recall that, thanks to Proposition 10.9, we can assume that (10.16) holds. We
now show some first consequences of stability.

Lemma 10.13. Let δ◦ > 0 and Λ ≥ 64, and let B and S8 be as in (10.14). Then, for any λ ∈ (−1, 1) we have

C|B| ≥ H2(Σλ ∩ {0 < dλB < 2}) ≥ c
ˆ
B

|A(u)|2|∇u|2 dx ≥ c′δ◦|S8| ≥ c′δ◦|B|,

where C, c, and c′ are positive universal constants.

Proof. The third and fourth inequalities are from Lemma 10.10.
For the second one, we apply the stability inequality (10.2) with ζ(x) = (2−dλB(x))+ (recall Remark 10.3), which

is compactly supported in BRΛ+Λ/2(zΛ) by Lemma 10.8. Then, thanks to Lemmas 10.4 and 10.12 and we get

4

ˆ
B

|A(u)|2|∇u|2 dx ≤
ˆ
R3

|A(u)|2|∇u|2ζ2 dx ≤
ˆ
{0<dλ

B<2}
|∇u|2|∇ζ|2 dx ≤ C|{0 < dλB < 2} ∩ {|u| < 1}|.
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Observing that H2(Σλ ∩{0 < dλB < 2}) is comparable to |{0 < dλB < 2}∩ {|u| < 1}| (by the curvature estimates on
the level sets and lower bound on |∇u| from Lemma 10.6), we get the second inequality. Finally, since |{0 < dλB <
2} ∩ {|u| < 1}| ≤ |S16| ≤ C|S2| ≤ C|B|, also the first inequality follows. □

We now start bounding level sets near B:

Lemma 10.14 (Stability near B, intrinsic). Let λ ∈ (−1, 1), δ◦ > 0, Λ ≥ 64, and B = B(δ◦,Λ) as in (10.14).
Consider the following set of “indicator functions” on N:

Ξ(Λ) :=

{
ξ : N→ {0, 1} : such that {ξ = 1} ⊂

[
1
4 log2 Λ, log2 Λ− 5

]
and

∑
k∈N

ξ(k) = ⌈ 14 log2 Λ⌉
}
. (10.18)

Then

H2
(
Σλ ∩ {0 < dλB < 2}

)
≤ C

δ◦| log Λ|2
min

ξ∈Ξ(Λ)

∑
k

ξ(k)
H2(Σλ ∩ {2k ≤ dλB < 2k+1})

22k
, (10.19)

for a universal constant C.

Proof. Let ψ : R→ [0, 1] be a smooth nonincreasing function satisfying ψ(t) = 1 for t ≤ 1, ψ(t) = 0 for t ≥ 2, and
|ψ′| ≤ 2. Given ξ ∈ Ξ(Λ) fixed, we consider the stability inequality (10.2) with

ζ(x) :=
1∑

k ξ(k)

∑
k

ξ(k)ψ(2−kdλB(x))

(recall Remark 10.3). Notice that ζ is supported in {dλB ≤ Λ/16} ⊂ BRΛ+Λ/8(zΛ) (by Lemma 10.8 and (10.16)),

and it is constantly equal to 1 on {dλB < Λ1/4}.
Now, thanks to Lemma 10.12, the right-hand side of the stability inequality (10.2) can be bounded by

ˆ
R3

|∇ζ|2|∇u|2 dx ≤
ˆ
{|u|<1}

|∇ζ|2 dx ≤
ˆ
BRΛ+Λ/4(zΛ)\B

|∇ζ|2 dx

≤ (1 + ε◦)
2

(
∑

k ξ(k))
2

∑
k

ξ(k)

22k

ˆ
BRΛ+Λ/4(zΛ)\B

|ψ′(2−kdλB(x))|2 dx.

(Here we used that, for each t ≥ 0, ψ′(2−kt) is non-zero for a single k = k(t) ∈ N.)
Recalling Lemma 10.6, we now consider adapted coordinates (y, t) ∈ Σλ × [−1, 1] ←→ x = ny(t) ∈ Σt (recall

(10.9)), so that dx ≤ (1 + Cη◦) dt dH2
y. Thus

ˆ
BRΛ+Λ/4(zΛ)\B

|ψ′
Λ(2

−kdλB(x))|2 dx ≤
(
1 + Cη◦)

ˆ 1

−1

ˆ
Σλ∩(BRΛ+Λ/4(zΛ)\B)

|ψ′
Λ(2

−kdλB(y))|2dH2
y dt

≤ 4(1 + Cη◦)H2
(
Σλ ∩ {2k ≤ dλB < 2k+1}

)
,

where we used that |ψ′| ≤ 2. Thus, for δ◦ universally small enough (so that both ε◦ and η◦ are small), we get

ˆ
R3

|∇ζ|2|∇u|2 dx ≤ C

| log Λ|2
∑
k

ξ(k)
H2
(
Σλ ∩ {2k ≤ dλB < 2k+1}

)
22k

.

Combining this estimate with (10.2) and Lemma 10.13, the result follows. □

Next, we prove a doubling property:

Lemma 10.15 (Doubling). Given δ◦ > 0 small, there exists Λ0 ≥ 64, depending only on δ◦, such that the following
holds whenever Λ ≥ Λ0.

Let B = B(δ◦,Λ) be as in (10.14), Ξ(Λ) as in (10.18), and fix p ≥ 16. Then, for any given λ ∈ (−1, 1) there
exists r ∈ (Λ1/4,Λ/8) such that the following two inequalities hold simultaneously:

H2
(
Σλ ∩

{
0 < dλB < 21/pr

})
≤ 2H2

(
Σλ ∩

{
0 < dλB < r

})
(10.20)

and

1

| log2 Λ|
min

ξ∈Ξ(Λ)

∑
k

ξ(k)
H2(Σλ ∩ {2k ≤ dλB < 2k+1})

22k
≤ 16

H2(Σλ ∩
{
0 < dλB < r

}
)

r2
. (10.21)
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Proof. Fix λ ∈ (−1, 1) and define

Θ(r) := H2(Σλ ∩ {0 < dλB < r}).

Note that, by the curvature estimates of the level sets and lower bound on |∇u| from Lemma 10.6, Θ(r) is comparable
to |{0 < dλB < r}∩{|u| < 1}|. Hence, recalling (10.14) and noticing that |{0 < dλB < r}∩{|u| < 1}| ≤ |Sr+2| ≤ C|Sr|,
by the Euclidean cubic volume growth of balls and Lemma 10.13 we get

Θ(r) ≤ C|Sr| ≤ C|S4|r3 ≤ Cδ−1
◦ Θ(2)r3 for all 4 ≤ r ≤ Λ/2. (10.22)

Recalling the definition of Ξ(Λ) in (10.18), we define

K := N ∩
[
1
4 log2 Λ, log2 Λ− 5

]
, a(k) :=

Θ(2k+1)−Θ(2k)

22k
for k ∈ K.

Let M be the median value of a within K,

M := median
(
{a(k) : k ∈ K}

)
,

and note that, from the definition of Ξ(Λ), we have

1

log2 Λ
min

ξ∈Ξ(Λ)

∑
k

ξ(k)
H2(Σλ ∩ {2k ≤ dλB < 2k+1})

22k
=

1

log2 Λ
min

ξ∈Ξ(Λ)

∑
k

ξ(k)a(k) < M (10.23)

Define K ′ :=
{
k ∈ K : a(k) ≥M

}
and notice that

M ≤ a(k) ≤ Θ(2k+1)

22k
≤ 16

Θ(r)

r2
for all k ∈ K ′ and r ∈ [2k+1, 2k+2]. (10.24)

Hence, to show that (10.20) and (10.21) hold simultaneously at some scale r ∈
(
Λ1/4,Λ/8

)
, we only need to find an

r as in (10.24) for which (10.20) holds.
To prove it, we will consider r as in (10.24) of the form r = 2ℓ/p for ℓ ∈ N. So, we define

L := {ℓ ∈ N : ℓ/p ∈ [k + 1, k + 2) for some k ∈ K ′},

and we notice that

#L ≥ p#K ′ ≥ p

2
#K ≥ p

4
log2 Λ. (10.25)

To conclude the proof, we claim that there exists ℓ ∈ L such that Θ(2(ℓ+1)/p) ≤ 2Θ(2ℓ/p). Indeed, if the claim were
false, we would have that Θ(2(ℓ+1)/p) > 2Θ(2ℓ/p) for all ℓ ∈ L. Thus, since since ℓ 7→ Θ(2ℓ/p) is nondecreasing,
setting ℓ∗ := p(⌈log2 Λ⌉ − 4) we would get

Θ(2ℓ∗/p) > 2#LΘ(2) > (2ℓ∗/p)p/4Θ(2) ≥ (2ℓ∗/p)4Θ(2),

where we used (10.25) and that p/4 ≥ 4. This quartic growth contradicts the cubic growth bound in (10.22) if
2ℓ∗/p ∼ Λ is large enough, depending only on δ◦, so the claim holds. □

10.6. Integrated Gauss–Bonnet result. Our next result is an estimate on the areas of sublevel sets of the
distance to a compact set. Here we crucially use the fact that we consider 2-dimensional surfaces, since we exploit
Gauss–Bonnet on level sets of the distance. Our proof is inspired by a classical argument of Pogorelov [77], but
requires a much more refined analysis due to potential singularities of the distance function. We recall that the
distance function to a set is always semiconcave (namely, in any chart, it can be written as the sum of a concave
and a smooth function), see [68], therefore its distributional Riemannian Hessian is a measure whose singular part
is negative definite.

Lemma 10.16. Let Σ be a smooth 2-dimensional Riemannian surface, K ⊂ Σ, and dK := distΣ(·,K), where distΣ
is the intrinsic distance on Σ. Then, for a.e. r1, r2 > 0 such that r2 > 2r1 and {r1 < dK < r2} ⋐ Σ (namely,
{r1 < dK < r2} is compactly contained in Σ), we have

H2({r1 < dK < r2})
r2 − r1

≤ H1({dK = r1})−
 r2

r1

ˆ s

r1

ˆ 2

1

ˆ
{τr1<dK<t}

KΣ dH2 dτ dt ds+
1

r1

ˆ
{r1<dK<2r1}

(∆dK)a dH2,

where (∆dK)a denotes the absolutely continuous part of the (Riemannian) Laplacian of dK, and KΣ is the Gauss
curvature.
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Proof. Throughout the proof, all the differential operators are the Riemmanian ones on Σ. We divide the proof
into two steps:

Step 1: Assume first that {r1 < dK < r2} is connected and {dK > r2} ≠ ∅. Since |∇dK| = 1 a.e., by the coarea
formula we have

H2({r1 < dK < r2}) =
ˆ r2

r1

H1({dK = s}) ds.

We now observe that, for a.e. s, ∇dK is H1-a.e. equal to the outer normal of {dK < s}, hence

H1({dK = s})−H1({dK = r1}) =
ˆ
∂{r1<dK<s}

ν · ∇dK dH1 =

ˆ
{r1<dK<s}

∆dK dH2

where ∆dK is the distributional Laplacian. Recalling that the distance function is always locally semiconcave, ∆dK
is a locally finite measure whose positive part has bounded density with respect to H2.

This implies that, for a.e. r1 < r2,

H2({r1 < dK < r2}) = (r2 − r1)H1({dK = r1}) +
ˆ r2

r1

ˆ
{r1<dK<s}

∆dK dH2 ds.

Now, given a smooth function φ : Σ→ R, consider the expression
ˆ
{r1<φ<s}

|∇φ|div
(
∇φ
|∇φ|

)
dH2 =

ˆ s

r1

ˆ
{φ=t}

div

(
∇φ
|∇φ|

)
dH1 dt,

where the equality follows by the coarea formula. We observe that, by Sard’s Theorem, for a.e. t the level set
{φ = t} is a smooth curve without critical points of φ, and div

( ∇φ
|∇φ|

)
corresponds to its geodesic curvature.

Assume, moreover, that {r1 < φ < r2} ⋐ Σ. Then, by Gauss–Bonnet, for any τ ∈ [1, 2] it holds

ˆ
{φ=t}

div

(
∇φ
|∇φ|

)
dH1 = −

ˆ
{τr1<φ<t}

KΣ dH2 +

ˆ
{φ=τr1}

div

(
∇φ
|∇φ|

)
dH1 + 2πχ({τr1 < φ < t}).

Averaging this bound with respect to τ ∈ [1, 2], this proves that

ˆ
{r1<φ<s}

|∇φ|div
(
∇φ
|∇φ|

)
dH2 ≤ −

ˆ s

r1

ˆ 2

1

ˆ
{τr1<φ<t}

KΣ dH2 dτ dt

+ (s− r1)
ˆ 2

1

ˆ
{φ=τr1}

div

(
∇φ
|∇φ|

)
dH1 dτ + 2π

ˆ s

r1

ˆ 2

1

χ({τr1 < φ < t}) dτ dt. (10.26)

We are now going to apply this identity to a smoothed version of the distance function, and then let the regularization
parameter go to zero. More precisely, fix a compact neighborhood of {r1 < dK < s} and cover it with a finite atlas
{(Um, ϕm)}Nm=1. Then consider a partition of unity {ψm}Nm=1 subordinate to this atlas, and fix ρ : Rn → [0,∞)
a smooth compactly supported mollifier. Then, for η > 0, set ρη(z) := η−nρ(z/η), we define the following local
smoothing operator for functions f : Σ→ R:

f 7→ [f ]η(x) :=

N∑
m=1

ψm(x)
(
(f ◦ ϕ−1

m ) ∗ ρη
)
(ϕm(x)).

While this regularization does not commute with derivatives, it does in the limit. More precisely we recall that, in
local coordinates, the Hessian of a function f is given by (D2f)ij = ∂2ijf − Γk

ij∂kf, where Γk
ij are the Christoffel

symbols of the Riemannian metric g on Σ, and we adopt the Einstein convention of summation over repeated
indices. Hence, when locally mollifying in charts as done above, for any given smooth h : Um → R, x ∈ ϕm(Um)
and η > 0 sufficiently small, we have

(D2(h ∗ ρη))ij(x)− (D2h)ij ∗ ρη(x) =
ˆ
ϕm(Um)

[
Γk
ij(y)− Γk

ij(x)
]
∂kh(y)ρη(x− y) dy.

Now, if we define φη := [dK]η, applying the formula above to h = dK ◦ ϕ−1
m , m = 1, . . . , N , since dK is 1-Lipschitz

it follows easily that

(D2φη)ij = [(D2dK)ij ]η +O(η). (10.27)
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Now, since φη → dK locally uniformly and ∆φη ⇀
∗ ∆dK in the sense of measures, using (10.26) with φ = φη, for

a.e. r1 < s we haveˆ
{r1<dK<s}

∆dK dH2 = lim
η→0

ˆ
{r1<φη<s}

∆φη dH2

≤ lim sup
η→0

ˆ
{r1<φη<s}

|∇φη|div
(
∇φη

|∇φη|

)
dH2 + lim sup

η→0

ˆ
{r1<φη<s}

〈
D2φη ·

∇φη

|∇φη|
,
∇φη

|∇φη|

〉
dH2

≤ −
ˆ s

r1

ˆ 2

1

ˆ
{τr1<φ<t}

KΣ dH2 dτ dt+ (s− r1) lim sup
η→0

ˆ 2

1

ˆ
{φη=τr1}

div

(
∇φη

|∇φη|

)
dH1 dτ

+ 2π lim sup
η→0

ˆ s

r1

ˆ 2

1

χ({τr1 < φη < t}) dτ dt+ lim sup
η→0

ˆ
{r1<φη<s}

〈
D2φη ·

∇φη

|∇φη|
,
∇φη

|∇φη|

〉
dH2.

Recall now that χ = 2− 2g − b for surfaces with b boundary components and genus g. Hence, since by assumption
{dK < r2} is connected and {dK > r2} ≠ ∅, it follows that g ≥ 0 and b ≥ 2, and therefore χ({τr1 < φη < t}) ≤ 0
for η sufficiently small.

Also, as discussed before, the semiconcavity of dK implies that D2dK is a matrix-valued measure whose singular
part is negative. Hence, if D2

adK denotes the absolutely continuous part of the Hessian, recalling (10.27) we get

lim sup
η→0

ˆ
{r1<φη<s}

〈
D2φη ·

∇φη

|∇φη|
,
∇φη

|∇φη|

〉
dH2 ≤ lim sup

η→0

ˆ
{r1<φη<s}

[(D2
adK)ij ]η ·

∂iφη

|∇φη|
∂jφη

|∇φη|
dH2.

Since [(D2
adK)ij ]η → (D2

adK)ij in L1
loc (because (D2

adK)ij is a locally integrable function) and ∇φη → ∇dK H2-a.e.,
by dominated convergence we deduce that the limsup in the right-hand side above is equal toˆ

{r1<dK<s}

〈
D2

adK · ∇dK,∇dK
〉
dH2.

Also, because D2
adK · ∇dK = ( 12∇|∇dK|

2)a = 0 a.e. (where the subscript a denotes the absolutely continuous part,

and the derivative is zero because |∇dK|2 = 1 a.e.), the integral above is zero. Hence, we proved thatˆ
{r1<dK<s}

∆dK dH2 ≤ −
ˆ s

r1

ˆ 2

1

ˆ
{τr1<dK<t}

KΣ dH2 dτ dt+ (s− r1) lim sup
η→0

ˆ 2

1

ˆ
{φη=τr1}

div

(
∇φη

|∇φη|

)
dH1 dτ

= −
ˆ s

r1

ˆ 2

1

ˆ
{τr1<dK<t}

KΣ dH2 dτ dt+ (s− r1) lim sup
η→0

1

r1

ˆ
{r1<φη<2r1}

|∇φη|div
(
∇φη

|∇φη|

)
dH2,

where the last identity follows by the coarea formula. Finally, arguing exactly as before, we have

|∇φη|div
(
∇φη

|∇φη|

)
=

〈
D2φη ·

∇⊥φη

|∇φη|
,
∇⊥φη

|∇φη|

〉
≤ [(D2

adK)ij ]η ·
(∇⊥φη)

i

|∇φη|
(∇⊥φη)

j

|∇φη|
+O(η),

and therefore

lim sup
η→0

1

r1

ˆ
{r1<φη<2r1}

|∇φη|div
(
∇φη

|∇φη|

)
dH2 ≤ 1

r1

ˆ
{r1<dK<2r1}

〈
D2

adK · ∇⊥dK,∇⊥dK
〉
dH2.

Noticing that

(∆dK)a =
〈
D2

adK · ∇⊥dK,∇⊥dK
〉
+
〈
D2

adK · ∇dK,∇dK
〉
=
〈
D2

adK · ∇⊥dK,∇⊥dK
〉

(recall that
〈
D2

adK · ∇dK,∇dK
〉
= 0 a.e.), the result follows.

Step 2: In the general case, we can treat each connected component of {r1 < dK < r2} separately. More precisely,
given a connected component C of {r1 < dK < r2} and r1 < r2, fix r

′
2 ∈ (r1, r2) and consider a smooth submanifold

Σ′
C such that {r1 < dK < r′2}∩C ⋐ Σ′

C ⋐ C. Then, we first apply Step 1 with {r1 < dK < r′2}∩C inside Σ′
C (note

that {dK > r′2} ∩ Σ′
C ̸= ∅) and finally we take the limit as r′2 ↑ r2. This concludes the proof. □

10.7. Proof of Theorem 1.1 and its corollaries. We can now proceed with the proof of our main result that,
as explained before, directly implies Theorem 1.1.

Proposition 10.17. For every δ◦ ∈ (0, 1), the set X (δ◦) is empty.

Proof. Since the sets X (δ◦) are monotonically decreasing, it suffices to prove the result for all δ◦ sufficiently small.
So, assume by contradiction that X (δ◦) ̸= ∅, then for Λ > 64 we construct the set B ̸= ∅ as in (10.14). Also,

by choosing Λ sufficiently large (depending on δ◦), we can assume (10.16) holds (recall Proposition 10.9).



71

Now, let Σ denote one of the level sets of u inside BRΛ+Λ(zΛ) ∩ G(δ◦) \B (note that this is a smooth surface),
and apply Lemma 10.16 with K = B, r1 ∈ (1/4, 2), and r2 = r < Λ/8 (recall B surrounds W(δ◦) and separates it
from G(δ◦) on Σ). Since (Hess dB)a(∇⊥dB,∇⊥dB) ≤ C on {r1 < dB < 2r1} by the semiconcavity of the distance
(see for instance [68]), for a.e. r1 < r we have

H2({r1 < dB < r}) ≤ (r − r1)H1({dB = r1})

−
ˆ r

r1

ˆ s

r1

ˆ 2

1

ˆ
{τr1<dB<t}

KΣ dH2 dτ dt ds+ C(r − r1)2H2({r1 < dB < 2r1}). (10.28)

Since
´ r

r1

´ s

r1
1{dB<t} dt ds =

1
2 (r − dB)2+ for r1 < dB and |KΣ| ≤ 1

2 |AΣ|2 (where |AΣ|2 denotes the sum of squares

of principal curvatures), using Fubini we get

−
ˆ r

r1

ˆ s

r1

ˆ 2

1

ˆ
Σ∩{τr1<dB<t}

KΣ dH2 dτ dt ds ≤ 1

2

ˆ r

r1

ˆ s

r1

ˆ
Σ∩{r1<dB<r}

|AΣ|2 1{dB<t} dH2 dt ds

=
1

4

ˆ
Σ∩{r1<dB<r}

|AΣ|2(r − dB)2+ dH2.

Thanks to this bound, averaging (10.28) over r1 ∈ [ 12 , 1], since
´ 1

1/2
H1(Σ∩{dB = r1}) dr1 = H2(Σ∩{1/2 < dB < 1})

we obtain

H2(Σ ∩ {1 < dB < r}) ≤ 1

4

ˆ
Σ\B
|AΣ|2(r − dB)2+ dH2 + Cr2H2(Σ ∩ {0 < dB < 2})

for a.e. r ∈ (1,Λ/8), which also implies (up to replacing C with C + 1 in the right-hand side)

H2(Σ ∩ {0 < dB < r}) ≤ 1

4

ˆ
Σ\B
|AΣ|2(r − dB)2+ dH2 + Cr2H2(Σ ∩ {0 < dB < 2}).

Now choose ν ∈ (−1, 1) such that

ˆ
Σν

|AΣν |2
(
r − dνB

)2
+
dH2 ≤

 1

−1

ˆ
Σλ

|AΣλ
|2
(
r − dλB

)2
+
dH2 dλ,

and apply the bound above to the level set Σ = Σν . Then, thanks to Lemma 10.14 we get

H2(Σν ∩ {0 < dνB < r})
r2

≤ 1

4r2

 1

−1

ˆ
Σλ

|AΣλ
|2
(
r − dλB

)2
+
dH2 dλ+ CH2(Σν ∩ {0 < dνB < 2})

≤ 1

4r2

 1

−1

ˆ
Σλ

|AΣλ
|2
(
r − dλB

)2
+
dH2 dλ+

C

δ◦| log Λ|2
min

ξ∈Ξ(Λ)

∑
k

ξ(k)
H2(Σν ∩ {2k ≤ dνB < 2k+1})

22k
. (10.29)

Note now that, thanks to Lemma 10.12 with p = 16, the coarea formula, and Lemma 10.6, for any µ ∈ (−1, 1) it
holds ˆ 1

−1

ˆ
Σλ\B

|AΣλ
|2
(
r − dλB

)2
+
dH2 dλ ≤

ˆ 1

−1

ˆ
Σλ\B

|AΣλ
|2
(
21/pr − dµB

)2
+
dH2 dλ

≤ (1 + Cη◦)

ˆ
{|u|<1}\B

|A(u)|2 |∇u|2
(
21/pr − dµB

)2
+
dx,

for some universal C. Next, we apply the stability inequality (10.2) with test function
(
21/pr − dµB(x)

)
+

(which is

admissible for r ≤ Λ/8, due to Lemma 10.8 for r ≤ Λ/8 and (10.16), recall also Remark 10.3), giving

ˆ 1

−1

ˆ
Σλ

|AΣλ
|2
(
r − dλB

)2
+
dH2 dλ ≤ (1 + Cη◦)

ˆ
{|u|<1}

|∇u|2
∣∣∣∇(21/pr − dµB)+∣∣∣2 dx

≤ (1 + C(η◦ + ε◦))
∣∣∣{|u| < 1} ∩ {0 < dµB < 21/pr}

∣∣∣
≤ 2(1 + C(η◦ + ε◦))H2(Σµ ∩ {0 < dµB < 21/pr}),

(10.30)

for some universal C (that can be different line to line). In the last inequality we have again used the flatness of
level sets given by Lemma 10.6.
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Combining this bound with (10.29), we obtain

H2(Σν ∩ {0 < dνB < r})
r2

≤ 1 + C(η◦ + ε◦)

4
·
H2(Σν ∩

{
0 < dνB < 21/pr

}
)

r2

+
2C

δ◦| log Λ|2
min

ξ∈Ξ(Λ)

∑
k

ξ(k)
H2(Σν ∩ {2k ≤ dνB < 2k+1})

22k
.

(10.31)

Recalling Lemma 10.15, this implies the existence of r ∈ (Λ1/4,Λ/8) such that

H2(Σν ∩ {0 < dνB < r})
r2

≤ 1 + C(η◦ + ε◦)

2
· H

2(Σν ∩ {0 < dνB < r})
r2

+
C

δ◦| log Λ|
H2(Σν ∩ {0 < dνB < r})

r2
. (10.32)

Fixing η◦ and ε◦ (and thus δ◦) sufficiently small so that C(η◦ + ε◦) <
1
4 , and then fixing Λ sufficiently large

so that C
δ◦| log Λ| ≤

1
8 and Proposition 10.9 holds, we deduce H2(Σν ∩ {0 < dνB < r}) = 0. This means that Σν ∩

{0 < dνB < r} = ∅ for some ν ∈ (−1, 1), and therefore for all ν ∈ (−1, 1) (this follows, for instance, by Lemma 10.11).
Since Λ (and therefore r) can be chosen arbitrarily large, we have shown that {|u| < 1} has a bounded connected

component C that is contained inside B ⊂ BR(z). However this is impossible, as one can show, for instance, by
taking a test function ζ in (10.2) such that C ⊂ {ζ ≡ 1} and supp(∇ζ) ⊂ {|u| = 1}. This contradiction proves that
X (δ◦) = ∅, as desired. □

Thanks to this last result, our main theorem follows immediately:

Proof of Theorem 1.1. Thanks to Proposition 10.17, the sets X (δ◦) = ∅ are empty for every δ◦ > 0. Recalling their
definition, this implies that locally either A(u) ≡ 0 or ∇u ≡ 0. Thus, by unique continuation, either the solution is
constant, or all level sets are flat and the solution is one-dimensional. □

Next, we want to prove Corollary 1.2. The following lemma will be useful:

Lemma 10.18. Let n ≥ 2, and let u be a global classical solution to the free boundary Allen–Cahn problem in Rn

(see Definition 10.1). Given V any connected component of {|u| < 1}, there is a unique global classical solution to
the free boundary Allen–Cahn problem ũ such that:
- ũ = u in V ;
- ũ restricted to Rn \ V takes values in {±1}.

Proof. The only delicate part is to show that we can assign a constant value (either +1 or −1) to each connected
component W of Rn \ V in a way that it agrees with u on ∂W . Although intuitive, to rigorously justify it, we use
that the two free boundaries Γ± := ∂V ∩{u = ±1} are smooth submanifolds of Rn (in particular, they are oriented
and embedded). We want to show that, given a connected component W of Rn \ V , the boundary ∂W is either
fully contained in Γ+ (and then we assign +1 to u in W ) or in Γ− (and then we assign −1).

Assume by contradiction the existence of two points p± ∈ Γ± such that p̂± := p± − tν(p±) ∈ W for t > 0 small
enough, where ν is the inward unit normal to V . Since W is open and connected, there is a smooth curve γ1 joining
p̂+ and p̂− that does not intersect ∂W—in particular, it does not intersect Γ+. On the other hand, since V is open
and connected, there is another curve γ2 contained in V and joining the two points p̃± = p± + tν(p±) ∈ V (for t
small) that does not intersect ∂V—in particular, it does not intersect Γ+. But then the concatenation of γ1 and
γ2 with the two segments p̃+p̂+ and p̃−p̂− would give a closed curve intersecting Γ+ exactly once (notice that the
segment p̃−p− intersects Γ− and not Γ+). However, by the invariance of the mod 2 self-intersection number (see,
e.g., [48, Chapter 2]), any closed curve has to intersect Γ+ an even number of times (being homologous to zero in
Z/2-homology), a contradiction. □

The proof of Corollary 1.2 now follows through rather standard arguments, which we sketch for the reader’s
convenience:

Proof of Corollary 1.2. By Lemma 10.18 we can assume that {|u| < 1} is connected. Similarly to the proof of
Corollary 1.6 (see Subsection 9.3), thanks to the monotonicity assumption, the solution is stable and we have
universal curvature estimates for the free boundary (see Proposition 9.4), so the limits

u(x1, x2, x3) := lim
x4→−∞

u and u(x1, x2, x3) := lim
x4→+∞

u.

are classical stable solutions in R3. Thus, by Theorem 1.1, u and u depend only on one Euclidean variable.
We now claim u is an energy minimizer. Indeed, since u is monotone in the x4 direction, there are three cases

to consider (up to rotation in the first three variables and replacing u(x′, x4) by −u(x′,−x4), if needed):
(i) u ≡ −1 and u ≡ +1;
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(ii) u ≡ −1 and u = h(x1) for some h : R→ [−1, 1] not constant;
(iii) u = h(x1) and u = h(x1) for some h, h : R→ [−1, 1] not constant.
Now, the assumption that {|u| < 1} is connected and −1 ≤ u ≤ u ≤ u ≤ 1 imply that {u = 1} cannot contain
a slab {a ≤ x1 ≤ b} with a ≤ b finite, as otherwise we would have that u = 1 in such a slab, thus disconnecting
{|u| < 1}. Symmetrically, there cannot be a slab {a ≤ x1 ≤ b} where u = −1.

It follows that, in the previous possible scenarios: either u is a minimizer (identically −1, or a 1D monotone
solution) or a maximum of two minimizers, and u is either a minimizer (identically +1, or a 1D monotone solution) or
a minimum of two minimizers. This ensures that u and u are, respectively, lower and upper barriers for minimizers.
Therefore, since the family of translated graphs {x5 = u(x+ te4)}t∈R foliates the region

{u(x) ≤ x5 ≤ u(x)} ⊂ R4 × [−1,+1],

via a standard foliation argument (see [54, Proof of Theorem 1.3]) it follows that u must be an energy minimizer
in every compact subset of R4, as claimed. Thanks to the energy minimality, we can apply [85, Theorem 3] to
conclude that u is one-dimensional. □

Finally, we provide the proof of Corollary 1.3, relying on the C1,1 to C2,α estimate established in [9]. Notably,
the estimate in [9] is significantly more elementary than its Allen–Cahn counterpart in [28,91], as it does not need
to account for sheet interactions.

Proof of Corollary 1.3. We claim that
sup

B3/4∩{|uε|<1}
ε|D2uε| ≤ C, (10.33)

with a universal constant C. Note that since |uε| ≤ 1 and |∇uε| = 1/ε on ∂{|uε| < 1}, the estimate (10.33) provides
universal curvature bounds for the free boundary and all level sets of uε within B3/4, for ε sufficiently small.

To prove (10.33), we argue by contradiction, combining the C1,1-to-C2,α estimates from [9] with Theorem 1.1.
This approach is a standard scaling-compactness argument analogous to the curvature estimate proofs in [23, 91].
Indeed, suppose—for the sake of contradiction—that there exists a sequence uk of classical stable critical points of
J 0
εk

in B1 for some εk ∈ (0, 1) such that

sup
B1 ∩{|uk|<1}

εk|D2uk(x)| (1− |x|) ≥ k −→ ∞.

Let xk be a point where the maximum is attained and set

hk := εk|D2uk(xk)|
(
1− |xk|

)
= max

x∈B1∩{|uk|<1}
εk|D2uk(x)|

(
1− |x|

)
→∞, as k →∞.

Let dk := εk|D2uk(xk)| and ρk = 1− |xk|, so that hk = dkρk and dk →∞. Notice that, by Lemma 10.5 applied to
uεk(εk ·), we have εkdk ≤ C with C universal.

Now, choose any sequence τk ↓ 0 such that τkhk →∞ and define

ũk(y) := uk

(
xk +

y

dk

)
for y ∈ Bτkdkρk

.

Then ũk is a classical stable critical point of J 0
ε̃k

in Bτkdkρk
, where ε̃k = εkdk ≤ C, with 0 ∈ {|ũk| < 1} and

ε̃k|D2ũk(0)| = 1. Also, by definition of hk, for x = xk + y
dk
∈ {uk > 0} with |y| < τkdkρk we have

εk

∣∣∣∣D2uk

(
xk +

y

dk

)∣∣∣∣ ≤ εk|D2uk(xk)|
1− |xk|

1− |xk + y/dk|
≤ dk

ρk
ρk − τkρk

.

Therefore,

ε̃k|D2ũk(y)| =
εk
dk

∣∣∣∣D2uk

(
xk +

y

dk

)∣∣∣∣ ≤ 1

1− τk
for y ∈ Bτkdkρk

∩ {ũk > 0}.

By construction, the radius of the ball τkdkρk = τkhk goes to infinity as k →∞.
We now distinguish two cases:

(a) If limk→∞ ε̃k = 0, then using the C1,1-to-C2,α estimates in [9]—similarly to [28,91]—we obtain that the free
boundaries of ũk converge (with local graphical C2 convergence) to a complete stable minimal surface in
the Euclidean space R3 with non-zero second fundamental form at the origin. This contradicts the classical
classification of stable minimal surfaces in R3 (see [34,44,77]), stating that such surfaces must be flat.

(b) Otherwise, up to passing to a subsequence, we have ε̃ := limk→∞ ε̃k > 0. Then the functions ũk(ε̃ · ) must
converge—similar to the proof of Lemma 5.1—to a classical stable critical point of J 0

1 in the whole R3 with
nonzero Hessian at the origin, contradicting Theorem 1.1.

This completes the proof. □
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Remark 10.19. With arguments similar to the ones above, one could also show the following Riemannian version
of Corollary 1.3:
Let g be a Riemannian metric on the Euclidean ball B1 ⊂ R3, and assume that ∥g∥C2(B1) + ∥g−1∥C2(B1) ≤M . Let
uε : B1 → [−1, 1] be a classical stable critical point of

J 0
g,ε(u;B1) =

ˆ
B1

{
ε gij∂iu∂ju+

1

ε
1(−1,1)(u)

}
dvolg, ε ∈ (0, 1).

Then the principal curvatures of the level sets of uε are bounded in B1/2 by a constant depending only on M .

Appendix A. Some classical results

We begin by recalling the following quantitative version of Hopf’s lemma.

Lemma A.1 (Hopf). Suppose B1(en) touches Ω ⊂ Rn from the interior at 0. Suppose −∆u ≥ 0 in B1(en),
u > 0 in B1(en),

u(0) = 0.

Then there exist dimensional constants c1, c2 > 0 such that

∂νu(0) ≥ c1 inf
B1/2(en)

u ≥ c2
 
B1/2(en)

u dx.

Here ν is the inward unit normal of Ω (as consistent with the Bernoulli problem).

Proof. Define

Γn : B1(en) \ {en} → R, Γn(x) :=

{
− log |x−en|

log 2 if n = 2,
|x−en|2−n−1

2n−2−1 if n ≥ 3,

so that
∆Γn = 0 in B1(en) \ {en}, Γn|∂B1(en) = 0, Γn|∂B1/2(en) = 1.

Then v(x) =
(
inf∂B1/2(en) u

)
Γn(x) is a lower barrier for u inside B1(en) \ B1/2(en), thus ∂νu(0) ≥ ∂νΓn(0) =

c(n) inf∂B1/2(en) u. This proves the first inequality. The second follows from the mean value inequality for super-
harmonic functions. □

We also present a useful interpolation inequality between L1 and Lip:

Lemma A.2 (Interpolation). Let n ≥ 2, and let Ω := {(x′, xn) ∈ Rn−1 × R : xn > ϕ(x′)} with ϕ(0) = 0 and
|∇ϕ| ≤ C◦. Let u ∈ Lip(Ω ∩B1). Then,

∥u∥n+1
L∞(Ω∩B1)

≤ C∥u∥L1(Ω∩B1)∥∇u∥
n
L∞(Ω∩B1)

,

for some C depending only on n and C◦. In particular, for any ε > 0,

∥u∥L∞(Ω∩B1) ≤ Cε∥u∥L1(Ω∩B1) + ε∥∇u∥L∞(Ω∩B1),

for some Cε > 0 depending only on n, C◦, and ε.

Proof. Let h = ∥u∥L∞(Ω∩B1), V = ∥u∥L1(Ω∩B1), L = ∥∇u∥L∞(Ω∩B1), and let x◦ ∈ Ω∩B1 be such that |u(x◦)| ≥ h
2 .

Then, since u is L-Lipschitz, we have

|u(x)| ≥ h

2
− L|x− x◦|.

In particular, denoting r = h
4L , we have |u| ≥ h

4 in Br(x◦) and therefore

V =

ˆ
Ω∩B1

|u| ≥
ˆ
Br(x◦)∩Ω

|u| ≥ h

4
|Br(x◦) ∩ Ω| ≥ chrn = c4−nh

n+1

Ln
,

which gives the first result. The second estimate then follows from Young’s inequality. □

In the following result, we will use the stability inequality for classical solutions to the Bernoulli problem in B1,
which reads as ˆ

∂{u>0}
Hξ2 dHn−1 ≤

ˆ
{u>0}

|∇ξ|2 dx, for all ξ ∈ C∞
c (B1), ξ ≥ 0, (A.1)

(see [19, Lemma 1]). We recall that H denotes the mean curvature of the free boundary, and H(x) = −∂2ννu(x) for
x ∈ FB(u), where ν is the inward unit normal vector field to FB(u) (cf. Lemma 3.12).
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Setting ξ = cη in (A.1) and integrating by parts, we get the following equivalent formulation:ˆ
{u>0}

c∆c η2 dx+

ˆ
∂{u>0}

c(cν +Hc)η2 dHn−1 ≤
ˆ
{u>0}

c2|∇η|2 dx, for all c, η ∈ C∞
c (B1), c ≥ 0. (A.2)

One can then prove the following version consequence of the stability inequality.

Lemma A.3 (Sternberg–Zumbrun inequality). Let n ≥ 2, and let u be a classical stable solution to the Bernoulli
problem in B1 ⊂ Rn. Thenˆ

B1∩{u>0}
|D2u|2η2 dx ≤ n

ˆ
B1

|∇u|2|∇η|2 dx for all η ∈ C∞
c (B1).

Proof. The proof follows along the lines of [40, Theorem 1.9] (cf. [14, 39, 81] for the semilinear case), using the
stability condition (A.2) with c = |∇u|. More precisely, by harmonicity of u we have

|∇u|∆|∇u| = 1

2
∆
(
|∇u|2

)
−
∣∣∇|∇u|∣∣2 = |D2u|2 −

∣∣∇|∇u|∣∣2 inside {u > 0} ∩ {|∇u| > 0} .

Setting ν = ∇u
|∇u| (which is the inward unit normal of super-level sets of u and extends the inward unit normal on

FB(u) to {u > 0} ∩ {|∇u| > 0}), we note that

∇|∇u| = (∇|∇u|2 · ν)ν
2|∇u|

= (∂2ννu)ν, therefore ∂ν |∇u| = −H on ∂{u > 0}.

Thus, thanks to (A.2), we haveˆ
B1

|∇u|2|∇η|2 dx ≥
ˆ
B1∩{u>0}∩{|∇u|>0}

(
|D2u|2 −

∣∣∇|∇u|∣∣2) η2 dx for any η ∈ C∞
c (B1). (A.3)

Notice that, since u is harmonic in {u > 0}, the set {|∇u| = 0}∩{u > 0} has zero measure (by unique continuation)
and therefore the right integral above is in fact inside B1 ∩ {u > 0}. Now, given any point x◦ ∈ {u > 0}, up to a
rotation we can assume then ∇u(x◦) = e1|∇u(x◦)|. Then, at such point, the previous integrand equals(

|D2u|2 −
∣∣∇|∇u|∣∣2) (x◦) = n∑

i,j=1

(∂2iju(x◦))
2 − (∂211u(x◦))

2 =

n∑
i,j=1

(i,j)̸=(1,1)

(∂2iju(x◦))
2.

Notice that, by harmonicity,

(∂211u(x◦))
2 =

(
∂222u(x◦) + ∂233u(x◦) + · · ·+ ∂2nnu(x◦)

)2
≤ (n− 1)

(
(∂222u(x◦))

2 + (∂233u(x◦))
2 + · · ·+ (∂2nnu(x◦))

2
)
,

and so, for any τ ∈ [0, 1],

n∑
i,j=1

(i,j)̸=(1,1)

(∂2iju(x◦))
2 ≥ (1− τ)

n∑
i,j=1

(i,j)̸=(1,1)

(∂2iju(x◦))
2 +

τ

n− 1
(∂211u(x◦))

2.

Choosing τ = n−1
n , this proves that(

|D2u|2 −
∣∣∇|∇u|∣∣2) (x◦) ≥ 1

n

n∑
i,j=1

(∂2iju(x◦))
2 =

1

n
|D2u(x◦)|2.

Combining this inequality with (A.3), we get the desired result. □

Appendix B. Linear estimates for the Bernoulli problem

In this appendix, we prove some linear estimates for the Bernoulli or one-phase problem that are useful throughout
the work. In the following, we keep in mind the equivalence:

Lemma B.1. Let n ≥ 2, e ∈ Sn−1, and let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn with
0 ∈ FB(u). Then, the following are equivalent for any ε◦ = ε◦(n) small enough:

(i) |u− e · x| ≤ ε◦ in B1 ∩ {u > 0};
(ii) (e · x− ε◦)+ ≤ u ≤ (e · x+ ε◦)+ in B1.
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Proof. All implications are elementary, except that (i) implies u ≥ (e · x− ε◦)+ in B1. By contradiction, we would
have u ≡ 0 in B1 ∩ {|x · e| ≥ ε◦}. However, since 0 ∈ FB(u), this contradicts Lemma 3.5 (or Remark 3.6) if ε◦ is
small enough. □

Remark B.2. In the previous statement, the hypothesis 0 ∈ FB(u) can be replaced, e.g., with B7/8 ∩ {u > 0} ≠ ∅.

Theorem B.3. Given n ≥ 2, there exists ε◦ > 0 small enough depending only on n such that the following holds.
Let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn, and suppose that

∥u− e · x− b∥L∞(B1∩{u>0}) ≤ ε◦ for some e ∈ Sn−1, b ∈ R.
Then, for any α ∈ (0, 1) we have

∥∇u− e∥L∞(B1/2∩{u>0}) + [∇u]Cα(B1/2∩{u>0}) ≤ C∥u− e · x− b∥L∞(B1∩{u>0}),

for some constant C depending only on n and α.

Proof. Denote ε := ∥u − e · x − b∥L∞(B1∩{u>0}) ≤ ε◦. If there are no free boundary points in B3/4 we are done,
either by harmonic estimates if u > 0 in B3/4, or because u ≡ 0 in B3/4. Thus, let us assume x◦ ∈ B3/4 ∩ FB(u),

and consider ū(x) = 8u
(
x◦ +

x
8

)
, which is a classical solution to the Bernoulli problem in B1 such that

∥ū− e · (8x◦ + x)− 8b∥L∞(B1∩{ū>0}) ≤ 8ε ≤ 8ε◦.

In particular, since ū(0) = 0, we have |8e · x◦ + 8b| ≤ 8ε, and therefore

∥ū− e · x∥L∞(B1∩{ū>0}) ≤ 16ε ≤ 16ε◦.

Recalling Lemma B.1, for ε◦ small enough we can iteratively apply [30, Lemma 4.1] (cf. [30, Proof of Theorem 1.1])
to get

[∇ū]C1,α(B1/2∩{ū>0}) ≤ Cε.
In particular, setting z◦ := 1

4e,
∥∇ū−∇ū(z◦)∥L∞(B1/2∩{u>0}) ≤ Cε.

Since the free boundary is flat, we can use harmonic estimates for ū− e · x in B1/8(z◦), to deduce

|∇ū(z◦)− e| ≤ C∥ū− e · x∥L∞(B1/8(z◦)) ≤ Cε.
Combining this bound with the above estimate at z◦, we obtain

∥∇ū− e∥L∞(B1/2∩{ū>0}) ≤ ∥∇ū−∇ū(z◦)∥L∞(B1/2∩{ū>0}) + |∇ū(z◦)− e| ≤ Cε.
By rescaling back and a covering argument, we get the desired result. □

Remark B.4. Since u is Lipschitz, the estimate

∥∇u− e∥L∞(B1/2∩{u>0}) ≤ C∥u− e · x− b∥L∞(B1∩{u>0}),

holds with C = 2ε−1
◦ when the right-hand side is not smaller than ε◦.

By a standard interpolation argument, we can now show that L1-flatness implies L∞-flatness:

Proposition B.5. Let n ≥ 2, and let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn. There exists
a dimensional constant C such that, for any e ∈ Sn−1 and b ∈ R,

∥u− e · x− b∥L∞(B1/2∩{u>0}) ≤ C∥u− e · x− b∥L1(B1∩{u>0}),

for some constant C depending only on n.

Proof. From Theorem B.3 and Remark B.4), we know that for any e ∈ Sn−1 and b ∈ R,
∥∇u− e∥L∞(B1/2∩{u>0}) ≤ C∥u− e · x− b∥L∞(B1∩{u>0}).

Combining this bound with the interpolation Lemma A.2, for any e ∈ Sn−1, b ∈ R, and δ > 0,

∥u− e · x− b∥L∞(B1/2∩{u>0}) ≤ Cδ∥u− e · x− b∥L1(B1/2∩{u>0}) + δ∥u− e · x− b∥L∞(B1∩{u>0}),

for some Cδ > 0. Now, for any Br(z) ⊂ B1 applying this estimate to ur,z = u(z+r·)
r with b replaced by b+e·z

r , we
deduce that

rn∥u− e · x− b∥L∞(Br/2(z)∩{u>0}) ≤ Cδ∥u− e · x− b∥L1(B1/2∩{u>0}) + δrn∥u− e · x− b∥L∞(Br(z)∩{u>0}).

Now, choosing δ sufficiently small, we can apply a standard covering trick to reabsorb the L∞-term in the right-hand
side (see, for example, [41, Lemma 2.27]) and we deduce that, for any e ∈ Sn−1 and b ∈ R, it holds

∥u− e · x− b∥L∞(B1/4∩{u>0}) ≤ C∥u− e · x− b∥L1(B1/2∩{u>0}).
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After a final covering and scaling argument, this proves our desired result. □

Finally, exploiting the recent results in [63], one obtains the linear estimates for higher-order derivatives of
solutions to the Bernoulli problem:

Proposition B.6. Let n ≥ 2 and k ∈ N. There exists ε◦ = ε◦(n) > 0 small enough such that the following holds.
Let u be a classical solution to the Bernoulli problem in B1 ⊂ Rn, and let us suppose that

∥u− e · x− b∥L∞(B1∩{u>0}) ≤ ε◦ for some e ∈ Sn−1, b ∈ R.
Then, we have

∥Dku∥L∞(B1/2∩{u>0}) ≤ C∥u− e · x− b∥L∞(B1∩{u>0}),

for some constant C depending only on n and k.

Proof. Let us denote ε := ∥u − e · x − b∥L∞(B1∩{u>0}) ≤ ε◦. The proof follows by tracking the dependence on ε
in [63, Theorem 1.31] (with right-hand side f = 0). More precisely, after a translation, rotation, and a covering
argument, thanks to Theorem B.3 we can assume that

∥u− xn∥C1,1/2(B5/6∩{u>0}) ≤ Cε,

where {u > 0} coincides inside B5/6 with the epigraph {xn > φ(x′)}, where φ is uniformly C1,1/2. From this point,
the proof follows by induction as in [63, Theorem 1.31]. Namely, by repeated applications of [63, Theorem 1.29] we
deduce that, for any k ≥ 2,

∥u− xn∥Ck,1/2(Ω∩Bρk
) ≤ Ckε, for some radii 1

2 < ρk+1 < ρk < 1,

which gives the desired result. □

Appendix C. Compactness of stable solutions

In this appendix we show the compactness of sequences of stable solutions to the Bernoulli problem, as stated
in Lemma 4.5. Before that, we need an auxiliary lemma:

Lemma C.1. Let n ≥ 2, δ > 0, and let u be a classical stable solution to the Bernoulli problem in B2 ⊂ Rn with
0 ∈ FB(u). Assume, in addition: {

u > 0 in B2 ∩ {xn > δ}
u ≤ δ in B2 ∩ {xn < −δ}.

Then u = 0 in B1 ∩ {xn < −Cδ}, where C is a dimensional constant.

Proof. Combining our assumption with Lemma 4.2, it follows that the free boundary of u is contained in a strip
{−C0δ ≤ xn ≤ δ} inside B7/4, with C0 dimensional. Hence, to prove the result, we assume by contradiction that

0 < u ≤ δ inside {xn < −C0δ} ∩B1. (C.1)

By Lemma 4.2 and Lipschitz estimates (see, e.g., [20, Lemma 11.19]), we have supB1
u ≥ c1 > 0 and |∇u| < C2 in

B3/2, where c1 and C2 are dimensional constants. Hence, there exists y ∈ B1 such that minBr/2(y) u ≥ c1/2 where

r = c1/C2 > 0. Assuming that δ is sufficiently small (if not, we take C = 1/δ in the conclusion) and recalling that
u ≤ δ in B2 ∩ {xn < −δ}, it follows that yn > r/4.

Since ∆u = 0 in B2 ∩ {xn > δ} ⊂ {u > 0}, by Harnack’s inequality we obtain

u ≥ c > 0 in B7/4 ∩ {xn > 1/8}
and therefore, by a standard barrier argument,

u(x) ≥ c(xn − δ) > 0 for all x ∈ B3/2 ∩ {xn > δ}. (C.2)

We now want to exploit Lemma A.3. Recall that, by contradiction, we are assuming (C.1). Thus, by Fubini’s
theorem we haveˆ

B1∩{u>0}
|D2u|2 dx ≥

ˆ
B′

1/2

ˆ
[−1/2,1/2]∩{u(σ,t)>0}

|D2u|2(σ, t) dt dσ ≥
ˆ
B′

1/2

ˆ tσ

−1/2

|D2u|2(σ, t) dt dσ,

where:
- B′

r ⊂ Rn−1 denotes the ball of radius r in Rn−1;
- given σ ∈ B′

1/2, tσ denotes the maximal value t∗ ∈ [−1/4, 1/4] such that (−1/2, t∗) ⊂ {u(σ, ·) > 0}.
Now, let Πn : Rn → Rn−1 denote the orthogonal projection onto the first n− 1 variables, and define

A := Πn

(
FB(u) ∩ (B′

1/2 × (−1/2, 1/2))
)
⊂ B′

1/2 ⊂ Rn−1.
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Notice now that, by (C.1) and harmonic estimates, there exists C > 1 dimensional such that |∇u(σ,−Cδ)|2 ≤ 1/2
for all σ ∈ B′

1/2. Also, for σ ∈ A, we have −C0δ ≤ tσ ≤ δ. Hence, since |∇u|2 = 1 on FB(u) and
∣∣∇|∇u|2∣∣ ≤ 2|D2u|,

it follows that
1

2
|A| ≤

ˆ
A

ˆ tσ

−Cδ

∣∣∂n|∇u|2(σ, t)∣∣dt dσ ≤ 2

ˆ
A

ˆ δ

−Cδ

|D2u|dt dσ.

Thus, applying Cauchy–Schwarz and Lemma A.3, we obtain

1

2
|A| ≤ C(|A|δ)1/2

(ˆ
B1∩{u>0}

|D2u|2 dx

)1/2

≤ C(|A|δ)1/2 =⇒ |A| ≤ Cδ.

On the other hand, for σ ∈ B′
1/2 \ A we have tσ = 1

4 ≥ δ1/2. Thus, from (C.2) and the fact that 0 ≤ u ≤ δ for

{xn < −δ}, for δ sufficiently small we obtain

ˆ δ1/2

−δ1/2
|∂2nnu(σ, t)|dt ≥

∣∣∣∣u(σ, δ1/2)− u(σ,−Cδ)δ1/2 + Cδ
− u(σ,−Cδ)− u(σ,−δ−1/2)

−Cδ + δ1/2

∣∣∣∣
≥
(
c(δ1/2 − δ)− δ

2δ1/2
− δ − 0

1
2δ

1/2

)
≥ c

4
.

Hence, arguing similarly to before, we get

c

4
|B′

1/2 \A| ≤
ˆ
B′

1/2
\A

ˆ δ1/2

−δ1/2
|∂2nnu(σ, t)|dt ≤ C

(
|B′

1/2 \A|δ
1/2
)1/2(ˆ

B1∩{u>0}
|D2u|2 dx

)1/2

≤ C
(
|B′

1/2 \A|δ
1/2
)1/2

,

which proves that |B′
1/2\A| ≤ Cδ

1/2. Combining the bounds that we have obtained, we get |B′
1/2| ≤ |A|+|B

′
1/2\A| ≤

C(δ + δ1/2), a contradiction for δ small enough. □

We can now give the proof of Lemma 4.5. This fixes a small gap in [57, Theorem 1.2], since the authors rely on
[20, Lemma 1.21] and the proof there is incomplete, as one can see by comparing their argument with ours below.

Proof of Lemma 4.5. We prove the three points separately.

(1) Since ∥∇vk∥L∞(Bk/2)
≤ C (by Lipschitz regularity of classical solutions, see e.g. [20, Lemma 11.19]), for any

α ∈ (0, 1) we have vk → v∞ in C0,α
loc (Rn), where ∥∇v∞∥L∞(Rn) ≤ C(n) (in fact, v∞ is 1-Lipschitz by Lemma 3.2).

Also, since vk is subharmonic, so is v∞ and we have

∇vk → ∇v∞ strongly in L1
loc(Rn),

(see for instance [15, Lemma A.1(b1)]). Hence, thanks to the bound ∥∇(vk − v∞)∥L∞(Bk/2) ≤ C, it follows by

interpolation that vk → v∞ strongly in H1
loc(Rn).

(2) We now prove the Hausdorff convergence of the different sets.
• Hausdorff convergence of free boundaries.
Thanks to (4.4), given xk ∈ FB(vk) with xk → z∞ we have

∥vk∥L∞(Br(xk))
≥ c(n)r =⇒ ∥v∞∥L∞(Br(x∞)) ≥ c(n)r.

In particular, since v∞(x∞) = limk→∞ vk(xk) = 0, it follows that x∞ ∈ FB(v∞).
Conversely, let x∞ ∈ FB(v∞) and assume by contradiction that there is no free boundary point for vk in a

neighborhood, for all k large. Then the functions vk are all harmonic around x◦ (they are either identically zero,
or positive and harmonic), and thus v∞ would be harmonic in a uniform neighborhood around x◦; impossible.

• Hausdorff convergence of {vk = 0} to {v∞ = 0}.
If xk ∈ {vk = 0} and xk → x∞, then v∞(x∞) = 0. Conversely, if v∞(x∞) = 0, we want to prove that there exist
points xk ∈ {vk = 0} such that xk → x∞. This is the main part of the proof.

Let C ⊂ {v∞ = 0} denote the set of zero points of v∞ that are also accumulation points of convergent sequences xk
with vk(xk) > 0. Note that C is closed and that, by the Hausdorff convergence of the free boundaries, ∂C ⊂ FB(v∞).
We need to prove that the interior of C is empty.

If not, by contradiction, there exists x◦ ∈ ∂C such that the open sets int C ∩ Bϱ(x◦) and {v∞ > 0} ∩ Bϱ(x◦)
are both nonempty. By Lemma 3.3 and Lemma 4.2, the sets FB(vk) are “equi-uniformly” Alfohrs–David regular:
namely, there exists a dimensional constant C1 > 1 such that, for all k,

1

C1
rn−1 ≤ Hn−1(FB(vk) ∩Br(y)) ≤ C1r

n−1 for all y ∈ FB(vk), r > 0.
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This implies, by standard covering arguments using Besicovitch theorem,

Hn((FB(vk) +Bt) ∩Br(y)) ≤ C2r
n−1t for all y ∈ Rn, r > 0, t ∈ (0, r).

This last inequality is stable under Hausdorff convergence, giving

Hn((FB(v∞) +Bt) ∩Br(y)) ≤ C2r
n−1t for all y ∈ Rn, r > 0, t ∈ (0, r).

This proves that the (n− 1)-dimensional upper Minkowski content of the boundary

∂C ∩Bϱ(x◦) = FB(v∞) ∩Bϱ(x◦)

is finite, and therefore the set {v∞ > 0} ∩Bϱ(x◦) has finite (relative) perimeter in Bϱ(x◦). Thus, as a consequence
of De Giorgi’s structure theorem, [67, Chapter 15], there is a point y◦ belonging to the reduced boundary of C
in Bρ/2(x◦), y◦ ∈ ∂∗C ∩ Bρ/2(x◦). Hence, by zooming enough around y◦, both C and {v∞ > 0} look locally like
half-spaces around y◦, and therefore we can apply Lemma C.1 to deduce that the functions vk have to vanish
somewhere near y◦, for k large enough. This provides a contradiction and concludes the proof.

• Hausdorff convergence of {vk > 0} to {v∞ > 0}.
This follows from the convergence of the free boundaries and the closures of the contact sets.

(3) Given u ∈ H1
loc(Rn) and a smooth compactly supported vector field Ψ ∈ C∞

c (Rn;Rn), it is a direct computation
to obtain the first and second inner variation of the energy in the direction Ψ:

d

dt

∣∣∣∣
t=0

(E(u(·+ tΨ));Rn) =

ˆ
Rn

{
−2∇uDΨ(∇u)⊤ + |∇u|2div(DΨ)

}
dx+

ˆ
{u>0}

div(Ψ) dx,

and

d2

dt2

∣∣∣∣
t=0

(E(u(·+ tΨ));Rn) =

ˆ
Rn

∇u
[
4(DΨ)2 + 2DΨ(DΨ)⊤ − 4(divΨ)DΨ+ (divΨ)2Id− tr

(
(DΨ)2

)]
(∇u)⊤ dx

+

ˆ
{u>0}

(
(divΨ)2 − tr

(
(DΨ)2

))
dx.

Thanks to the convergences proved in points (1) and (2) above, together with the fact that ∥∇vk∥L∞(Bk/2)
≤ C,

we can let k →∞ in the formulas for the first and second variation to deduce that v∞ is stationary and that

0 ≤ d2

dt2

∣∣∣∣
t=0

(E(vk(·+ tΨ));Rn)→ d2

dt2

∣∣∣∣
t=0

(E(v∞(·+ tΨ));Rn) as k →∞,

for any Ψ ∈ C∞
c (Rn;Rn) fixed. This proves that v∞ is a stable solution. □

Appendix D. Estimates for positive harmonic functions in a flat-Lipschitz domain

Proof of Lemma 6.3. The statement is scale-invariant, so we can fix r = 1. Let B+,t
2 := B2∩{xn ≥ t}, and consider

Pt(x, y) : B
+,t
2 ×∂B

+,t
2 → [0,∞) the Poisson kernel for the domain B+,t

2 . We note that there exists some dimensional
constant cn > 0 such that Pt

(
5
4en, y

)
≥ cn > 0 for any t ∈ [0, 1] and y ∈ B3/2 ∩ {xn = t} (this can be seen, for

example, by comparing Pt to the Poisson kernel of the half-space). Therefore,

w
(
5
4en
)
≥
ˆ
|y′|≤3/2

Pt

(
5
4en, (y

′, t)
)
w(y′, t) dy′ ≥ cn

ˆ
|y′|≤3/2

w(y′, t) dy′.

Since the values w
(
5
4en
)
and w(en) are comparable (by Harnack inequality), the result follows. □

Proof of Lemma 6.4. We divide the proof into two steps.

Step 1: By scaling invariance, we fix r = 1. Let rk = 2−k and split B1 ∩D =
⋃

k≥1 Sk, where Sk = {x ∈ B1 : rk <

dist (x,Dc) ≤ rk−1} can be covered by a union of balls
⋃

i∈Ik
Brk+1

(xi) with bounded overlapping. In particular,

#Ik ≤ Cr−(n−1)
k .
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Now, using Harnack inequality and interior estimates, (6.6) holds in S1 (in place of B1 ∩ D). Also, again by
interior estimates, for k ≥ 2 we haveˆ

B1∩Sk

|D2w|γ
′
dx ≤

∑
i∈Ik

ˆ
Brk+2

(xi)

|D2w|γ
′
dx ≤ C

∑
i∈Ik

r−2γ′

k

ˆ
Brk+1

(xi)

wγ′
dx

≤ Cr−2γ′+n
k #Ik |Brk+1

|
(

1

#Ik |Brk+1
|
∑
i∈Ik

ˆ
Brk+1

(xi)

w dx

)γ′

≤ Cr−2γ′

k

(
#Ik |Brk+1

|
)1−γ′

( ˆ
Sk−1∪Sk∪Sk+1

w dx

)γ′

≤ Cr1−3γ′

k

(ˆ
Sk−1∪Sk∪Sk+1

w dx

)γ′

,

where, in the second line, we applied Jensen’s inequality (note that t 7→ tγ is concave).
Step 2: Let τ ≪ 1 be universally small (to be fixed later) and assume that c◦ ≪ τ2. For i ∈ N, consider

the scales ρi := 1
8τ

i and indices j ∈ I(i) so that the “graphical lattice” p
(i)
j ∈ ∂D ∩ B3/2 projects along en to

(p
(i)
j )′ ∈ 1

16ρiZ
n−1 ⊂ {xn = 0}. Then, consider the covering by spherical caps,

D ∩B3/2 ∩
{
xn ≤ 1

16

}
⊂

∞⋃
i=0

⋃
j∈I(i)

D
(i)
j , for D

(i)
j := p

(i)
j +

{
xn ≥ τ2ρi

}
∩Bρi

⊂ D. (D.1)

Using Lemma 6.3 at scale ρi and integrating over t ∈ [0, 1], since c◦ ≪ τ2) we deduce thatˆ
D

(i)
j

w dx ≤ C
ˆ
D̃

(i)
j

w dx, for D̃
(i)
j := p

(i)
j +

{
xn ≥ 1

4ρi
}
∩B2ρi

. (D.2)

We now define the slabs

S
(i)
j := p

(i)
j +

{
τ
8ρi ≤ xn ≤ 4τρi

}
∩Bρi/2

and note that

S
(i)
j ⊃

⋃
ℓ∈I

(i+1)
j

D̃
(i+1)
ℓ for some family of indices I

(i+1)
j satisfying

⋃
j∈I(i)

I
(i+1)
j = I(i+1).

Applying Lemma 6.3 again at scale ρi, but this time integrating over t ∈ [0, 4τ ]), we have∑
ℓ∈I

(i+1)
j

ˆ
D̃

(i+1)
ℓ

w dx ≤ C
ˆ
S

(i)
j

w dx ≤ C̃τ
ˆ
D̃

(i)
j

w dx,

so
∑

j∈I(i)

´
D̃

(i)
j
w dx decays geometrically as long as τ < 1

C̃
. Hence, recalling (D.2) we get

ˆ
B3/2∩S̃τ

i

w ≤
∑

j∈I(i)

ˆ
D

(i)
J

w dx ≤ (C̃τ)i+1

ˆ
D̃

(0)
j

w dx ≤ C
ˆ
{x3≥1/64}∩B7/4

w dx ≤ C(C̃τ)i+1w(en),

where S̃τ
i = {τ i+2/8 < dist (·, Dc) < τ i/16}, and where we have also used Harnack inequality.

Observe now that Sk−1 ∪ Sk ∪ Sk+1 ⊂ B3/2 ∩ (S̃τ
i ∪ S̃τ

i+1) as long as 2−k−1 > τ i+2/8 and 2−k+1 < τ i−1/16. This
holds, for instance, for i = ⌊k/| log2(τ)|⌋ with τ universally small. Hence, by the previous inequality, we getˆ

Sk−1∪Sk∪Sk+1

w dx ≤
ˆ
B3/2∩(S̃τ

i ∪S̃τ
i+1)

w dx ≤ C(C̃τ)k/| log2(τ)|w(en) ≤ C2k
C

| log τ| 2−kw(en).

Applying Step 1 and adding over k, we finally
ˆ
B1∩D

|D2w|γ
′
dx ≤ C(w(en))γ

′ ∑
k≥1

r
1−2γ′− Cγ′

| log τ|
k .

Note that previous sum is finite as long as −2γ′+1− Cγ′

| log τ | > 0, which holds for any γ′ < 1
2 by choosing τ sufficiently

small (depending on γ′). This concludes the proof. □



81

Proof of Lemma 8.9. By scale invariance, we fix r = 1. Proceeding exactly as in Step 2 of the proof of Lemma 6.4
(see above), by applying Lemma 8.8 instead of Lemma 6.3 (which is integrable in t as long as (n− 1)(1− q) > −1)
we obtain ∑

ℓ∈I
(i+1)
j

ˆ
D̃

(i+1)
ℓ

|∇w|q dx ≤ C
ˆ
S

(i)
j

|∇w|q dx ≤ Cqτ
n−(n−1)q

ˆ
D̃

(i)
j

|∇w|q dx.

As before,
∑

j∈I(i)

´
D̃

(i)
j
|∇w|q dx decays geometrically (now for q ∈ (1, n

n−1 ) and τ = τ(n, q) fixed). Thus,

ˆ
D∩B3/2∩{xn≤ 1

16}
|∇w|q dx ≤ C

∞∑
i=0

∑
j∈I(i)

ˆ
D̃

(i)
j

|∇w|q dx

≤ C
∞∑
i=0

(
Cqτ

n−(n−1)q
)i ∑

j∈I(0)

ˆ
D̃

(0)
j

|∇w|q dx ≤ Cq

ˆ
B7/4∩{xn≥ 1

64}
|∇w|q dx,

from which it follows that ˆ
D∩B3/2

|∇w|q dx ≤ Cq

ˆ
B7/4∩{xn≥ 1

64}
|∇w|q dx.

Using again Lemma 8.8 (to replace
{
xn ≥ 1

64

}
with

{
xn ≥ 1

4

}
), the result follows. □
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