
INFINITE-WIDTH LIMIT OF

DEEP LINEAR NEURAL NETWORKS

LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL,
AND ALESSIO FIGALLI

Abstract. This paper studies the infinite-width limit of deep linear neural net-
works initialized with random parameters. We obtain that, when the number of
parameters diverges, the training dynamics converge (in a precise sense) to the
dynamics obtained from a gradient descent on an infinitely wide deterministic
linear neural network. Moreover, even if the weights remain random, we get their
precise law along the training dynamics, and prove a quantitative convergence
result of the linear predictor in terms of the number of parameters.

We finally study the continuous-time limit obtained for infinitely wide linear
neural networks and show that the linear predictors of the neural network converge
at an exponential rate to the minimal `2-norm minimizer of the risk.

1. Introduction

The description of the training dynamics of (artificial) neural networks (NNs) in
the infinite-width limit, has in recent years shed light on several aspects of deep
learning theory, such as (i) the existence of well-posed limits, which suggests to
interpret practical large scale models as approximations of those limits, (ii) the
importance of the choice of scalings/parametrization1 when passing to the limit —
since several well-behaved but fundamentally different limits can be obtained, and
(iii) the characterization of the long-term behavior of the dynamics — such as global
convergence or algorithmic regularization — which in turn helps understanding the
learning abilities of neural networks.

These aspects are rather well understood for two-layer neural networks, but the
theory is lacunary for deeper NNs. A description of the infinite-width dynamics
is available for the Neural Tangent (NTP) and Integrable (IP) parameterizations
(discussed below), but both limits exhibit a form of degeneracy such as a lack of
feature learning. In [45], the Maximal Update Parameterization (µP) — which is in
a sense intermediate between (NTP) and (IP) in terms of scale — was introduced

2020 Mathematics Subject Classification. 68T07, 35Q49.
∗ Authors are listed in alphabetical order.
M. C. and X. F. were supported by the SNF grant 200021 182565 and by the Swiss State

Secretariat for Education Research and Innovation (SERI) under contract number MB22.00034. X.
F. was furthermore supported by the SNF grant PZ00P2 208930, and by the AEI project PID2021-
125021NA-I00 (Spain). A. F. was supported by the European Research Council (ERC) under grant
agreement No 721675 “Regularity and Stability in Partial Differential Equations (RSPDE)” and by
the Lagrange Mathematics and Computation Research Center.

1That is, the choice, as a function of the width, of the variance of the random initialization and
of the learning rates for each layer.

1

2 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

and shown to preserve feature learning in the limit for certain architectures, such as
fully-connected NNs, which suggests that µP is a natural case of study. However,
the theoretical understanding of this limit is so far very limited, because this limit
involves large random matrices in an intricate way. In particular, the following
fundamental questions are still open:

(i) Is the infinite-width limit of Gradient Descent (GD) a GD trajectory in some
infinite-dimensional space?

(ii) Does it admit a well-posed continuous-time limit?
(iii) Does it converge to minimizers? And when several minimizers exist, can we

characterize which particular solution it selects?

In this paper, we study the infinite-width limit of deep linear2 NNs under µP,
and we answer positively to all these questions. Throughout the paper, we focus
on the three-layer case, although our tools and analysis could be extended to more
layers (the main conceptual gap happens when going from two to three layers). The
last section shows, without technical details, how our three-layer results read in the
case of deep neural networks with an arbitrary number of layers. Our analysis of
linear NN is intended as a step towards understanding the dynamics in the general
non-linear case, for which the three questions above are still unresolved.

1.1. Related work and other limits. The first analysis of wide NNs may be
traced back to [34, 7]. The dynamics of wide NNs were first studied in [28, 17, 14, 2]
for the NTP (or related linear dynamics) and in [35, 33, 11, 39, 41] for non-linear
dynamics in two-layer NNs under µP, which is known as mean-field parameterization
in this case (see Remark 2.1 for a description of these various parameterizations).
The importance of the choice of parameterization when passing to the limit was
first highlighted in [12, 32] and systematically studied in [23, 45]. Parameterizations
akin to µP were previously empirically studied in [21] as a natural extension of the
two-layer mean-field parameterization and a fix to the degeneracy of IP using large
initial learning rates was proposed in [26].

Our work has strong connections to [45], which shows, essentially, that all the
random vectors that are generated when running a finite number of GD steps on
a (non-linear) NN converge jointly in law to a family of objects characterized by
an abstract algorithm. Because of the intricate dependency that arises between
random matrices and random vectors, this limit “algorithm” is, unfortunately, more
complex than its finite-width counterpart and hard to study beyond a few GD steps
(in particular, it is non Markovian, i.e. the state of the infinite width system at time
t is not enough to determine the state at time t + 1). One of our contributions is,
for the particular case of linear NNs, to exhibit a simple and theoretically tractable
structure in this limit. From a technical viewpoint, [45] relies on the technique of
Gaussian conditioning, which originated in the field of statistical physics to describe
TAP equations [8, 9], while we use the method of moments which is another classical
technique of random matrix theory that allows to easily obtain universality (i.e., our
results apply for non-Gaussian initializations as well; note that the universality of the
technique of [45] was proved recently in [24]) and rates that are quantitative in the

2Linear NNs are NNs without nonlinear maps between layers. Although they are linear in the
input data, we note that these models are non-linear in their parameters.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 3

width. The random matrix statements of our work (in particular Proposition 3.3)
have thus their counterpart in the language of [45]; by proposing an independent
proof with different techniques, our purpose is to make the analysis self-contained
as well as to shed a different light on the objects appearing in the limit. See also [27]
for more links between random matrix theory and NN theory.

Another closely related work is [10], which introduces a closed system of equa-
tions describing the dynamics of infinite width (non-linear) NNs. These equations
can be written in continuous-time as well, thus giving an answer the question (ii).
The aforementioned work, however, which relies on tools from dynamical mean-field
theory, is derived at a formal level with no explicit control of the error terms. For
the linear case, [10] writes a more specific system of equations that describes the
same dynamics as ours, but our descriptions are of different nature: as in [45], the
system derived in [10] is non Markovian. In contrast, our description is a gradient
flow dynamics — thus Markovian — and all the complexity that arises from the
correlated random matrices is encoded in the initial state of the dynamics. The sim-
plicity of our limit system allows us in particular to study the large time behavior
of the dynamics to answer question (iii).

Finally, there is a rich literature on the training dynamics of linear NNs. Some
works show that the optimization landscape is benign [6, 19, 15] (the latter stud-
ies the NTP and thus a dynamics that becomes linear in the large width case),
other works study settings where the dynamics display a “saddle to saddle” behav-
ior [31, 29, 22, 40], and finally, a line of works studies the implicit bias of gradient
descent [30, 4]; that is, which solution is chosen when the problem is underdeter-
mined. A common assumption in this literature is that the matrices are balanced
at initialization, that is, W`W

>
` = W>`+1W`+1 where W` and W`+1 are the initial

matrices in two consecutive layers of the NN. This assumption leads to simple dy-
namics [3], which remain tractable even in the infinite depth limit [13]. While the
assumption covers the case of orthogonal initialization, it is not satisfied for standard
i.i.d. initializations, where W`W

>
` and W>`+1W`+1 are independent random matrices.

The simplification that results from the “balancedness” assumption can be seen in
our analysis from the fact that in Proposition 3.3, most of the terms in the right
hand side would vanish, leading to a much simpler recursion.

Our analysis in the last section borrows ideas from [30] which shows a min-`2
implicit bias for linear NNs with the logistic loss. Note that linear NN do not
always exhibit this type of implicit bias: there are subtle results for architectures
that are not fully connected [25, 38, 44, 37].

1.2. Organization of the paper. In Section 2, we present our main results and
illustrate them with numerical experiments. Section 3 studies the structure of iter-
ated products of large random matrices with random vectors, and we show that they
can be expanded in a basis of random vectors. These objects are the building blocks
of the GD iterations and these results are exploited in Section 4, which contains
the proof of the infinite-width limit. In Section 5 we study properties of the limit
system. Finally, in Section 6 we describe the analogous results for multi-layer NNs.

4 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

2. Presentation of the main results

This section presents a rigorous discussion of linear neural networks under µP of
width m, in the limit as m → ∞. In the case of two-layer neural networks, the
analogous problem has been qualitatively understood in [35, 33, 11, 39, 41, 43] (see
also the reviews [18, 20, 5]). The first striking special feature of the two layers case
is that there is a natural choice of the parametrization — which mathematically is
represented by a suitable factor of m in front of the output weights — that allows the
parameters to remain nondegenerate and deterministic in the limit m→∞. Under
this parametrization, two-layer neural networks can be interpreted as a Wasserstein
gradient flow for the weights (also in the limit), and hence the problem as m→∞
is also a solution of a Wasserstein gradient flow (and in particular it can be written
as a family of parabolic equations).

For neural networks of more than two layers, several aspects of the previous analy-
sis change. Firstly, as discussed in the introduction, it is not possible to find a natural
parametrization (that is, a consistent rescaling of the three layers of weights) such
that one expects them to remain nondegenerate or deterministic in the limit m→∞.
In fact, as we will also see a posteriori, with the right choice of parametrization out-
lined in subsections 2.1 and 2.2 below, the evolution of the entries of the intermediate
layer is negligible with respect to their initialization size, but these small variations
change significantly the output. Due to this issue with parametrizations, it is essen-
tial in our analysis to consider randomized initial data, and to expect such random
effect to survive in our limit system with some averaging effects.

Our limit system is expressed in a basis of independent, identically distributed
gaussian random variables. In turn, its coefficients are obtained by solving an infin-
itely wide linear neural network, which in the continuous-time limit can be repre-
sented as an explicit collection of ODEs.

2.1. Setting. Let h̃m be a single output three-layer linear neural network with input
x ∈ Rd, width m ∈ N, and weights Ũm ∈ Rm×d, W̃m ∈ Rm×m, and Ṽ m ∈ Rm:

y = h̃m(x, Ũm, W̃m, Ṽ m) =
m∑
i=1

Ṽ m
i

m∑
j=1

W̃m
ij

d∑
`=1

Ũm
j`x` = 〈Ṽ m, W̃mŨmx〉.

Given a smooth loss function L : R × R → R, we study the behavior of Gradient
Descent (GD) starting from a random initialization on the expected loss F̃ defined
as

F̃m(Ũm, W̃m, Ṽ m) :=

∫
Rd×R

L(h̃m(x), y) dρ(x, y).

where ρ ∈ P(Rd ×R) is a probability distribution that represents the input/output
data. Specifically, we consider the sequence initialized as

Ũmj` (0) ∼ N (0, 1) , W̃m
ij (0) ∼ N

(
0,

1

m

)
, Ṽ m

i (0) ∼ N
(

0,
1

m2

)
, (2.1)

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 5

and, with a step-size/learning rate τ , defined recursively as

Ũm(κ+ 1) = Ũm(κ)− τm
∫
L′(h̃mκ,τ (x), y)∇Ũm h̃

m
κ,τ (x)dρκ(x, y),

W̃m(κ+ 1) = W̃m(κ)− τ
∫
L′(h̃mκ,τ (x), y)∇W̃m h̃mκ,τ (x)dρκ(x, y),

Ṽ m(κ+ 1) = Ṽ m(κ)− τm−1

∫
L′(h̃mκ,τ (x), y)∇Ṽ m h̃mκ,τ (x)dρκ(x, y).

where for notational convenience we are denoting

h̃mκ,τ (x) = h̃m(x, Ũm(κ), W̃m(κ), Ṽ m(κ))

∇•h̃mκ,τ (x) = (∇•h̃m)(x, Ũm(κ), W̃m(κ), Ṽ m(κ)),

and L′ denotes the derivative of the loss function with respect to the first argu-
ment. For the sake of generality, we are also considering ρκ depending on κ, so that
(mini-batch) stochastic gradient descent (SGD) is covered by our analysis3. Our
only assumption is that these probability measures have uniformly bounded second
moments in the first variable:

sup
κ

∫
|x|2ρκ(x, y) < +∞. (2.2)

The factors in red (m and m−1) are layer-wise learning rates introduced so that each
layer contributes equally to the variations of the predictor in the limit, as the theory
will verify.

The randomness of the initialization — and in particular the large random matrix
W̃ (0) — play a key role in our analysis. The choice of scalings is motivated as follows:

• The scaling of Ũ and W̃ is chosen so that Ũm(0)x and W̃m(0)Ũm(0)x have
a nonzero variance that does not depend on m for large m (by the CLT);

• The scaling of Ṽ is of order 1/m in order to avoid the lazy training phenom-
enon [12], that leads to a linear dynamics described in [28].

Remark 2.1. This choice of scale for initialization is referred to as Maximal Update
Parametrization (µP) in [45], where it is shown to lead to feature-learning for each
layer4. In the introduction, we mentioned NTP, which corresponds to the scales (2.1)

but with Ṽi(0) ∼ N (0, 1/m); and IP which corresponds to (2.1) but with W̃ij(0) ∼
N(c, 1/m2) which is degenerate unless one chooses c 6= 0 or time-dependent learning
rates [26].

Computing the gradient using the chain rule, we get the following recursion
Ũm(κ+ 1) = Ũm(κ)− τmW̃m(κ)>Ṽ m(κ)(ξ̃mκ)>,

W̃m(κ+ 1) = W̃m(κ)− τ Ṽ m(κ)(ξ̃mκ)>Ũm(κ)>,

Ṽ m(κ+ 1) = Ṽ m(κ)− τm−1W̃m(κ)Ũm(κ)ξ̃mκ .

3For instance, mini-batch SGD is obtained by defining ρκ as the (random) empirical distribution
of samples chosen in the mini-batch at time step κ.

4In our context, there is no feature learning per se since the predictor is linear, but we will see
that the dynamics remains non-linear in the parameters in the limit (in contrast to NTP).

6 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

where we have denoted ξ̃mκ :=
∫
L′(h̃mκ,τ (x), y)x dρκ(x, y) ∈ Rd,

2.2. Scale-free parameterization. In the theory, it will appear convenient to deal
with objects with a scale that is independent of m. To this end, we let

Zm :=
√
mW̃m(0)

(which is a m×m matrix with independent N (0, 1) entries) and we define:

Um(κ) := Ũm(κ),

Wm(κ) := m
(
W̃m(κ)− W̃m(0)

)
= mW̃m(κ)−

√
mZm,

V m(κ) := mṼ m(κ)

(2.3)

where the scaling factors are adjusted so that these matrices/vectors have entries
of order 1, as the theory will verify. By definition, Um(0) and V m(0) are random
arrays with entries N (0, 1) and Wm(0) is the zero matrix:

Umj` (0) ∼ N (0, 1) , Wm
ij (0) = 0, V m

i (0) ∼ N (0, 1) . (2.4)

The neural network in these new variables becomes

y = hm(x,Um,Wm,V m) =

〈
1

m
V m,

(
1√
m
Zm +

1

m
Wm

)
Umx

〉
.

The evolution of (Um(κ),Wm(κ),V m(κ))κ∈N can be also interpreted as GD (with
layer-wise learning rates) on the objective function

Fm(Um,Wm,V m) :=

∫
Rd×R

L (hm(x,Um,Wm,V m), y) dρ(x, y).

We do not explicitly include Z in the variables as it is fixed during the training (i.e.,
we interpret Fm as a random function). All in all, we have

Um(κ+ 1) = Um(κ)− τ
[

1√
m
Zm +

1

m
Wm(κ)

]>
V m(κ)(ξmκ,τ)>,

Wm(κ+ 1) = Wm(κ)− τV m(κ)(ξmκ,τ)>(Um(κ))>,

V m(κ+ 1) = V m(κ)− τ
[

1√
m
Zm +

1

m
Wm(κ)

]
Um(κ)ξmκ,τ ,

(2.5)

where we have denoted ξmκ,τ =
∫
xL′(hmκ,τ (x), y)dρκ(x, y) ∈ Rd as above, with

hmκ,τ (x) = hm(x,Um(κ),Wm(κ),V m(κ)).

2.3. Limit dynamics. Our main result is that, when m → ∞, the training dy-
namics converge, in a sense detailed below, to some dynamics which are obtained by
running the same gradient-based algorithm (i.e., GD or SGD) on an infinitely wide
three-layer linear neural network

χ(x,A,B,G) = B>
(
Λ +G)Ax, (2.6)

where the variables

A ∈ `2(N× {1, . . . , d}) ⊂ R∞×d, G ∈ `2(N× N) ⊂ R∞×∞, B ∈ `2(N) ⊂ R∞

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 7

are initialized with

A(0) =

Idd

0d×1

0d×1
...

 =

A1(0)
...

Ad(0)
Ad+1(0)
Ad+2(0)

...

∈ R∞×d, B(0) =

1
0
0
...

 ∈ R∞×1, (2.7)

where Ai(0) ∈ R1×d for i ∈ N and

(G)ij(0) = 0 ∀(i, j) ∈ N2. (2.8)

Also Λ is fixed (not trained) and represents the initialization of the intermediate
layer. It is given by

Λ =

d︷ ︸︸ ︷
0 . . . 0 1 0 0 . . .

1 0 . . . 0 1 0
. . .

0 1 0 . . . 0 1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .

 ∈ R∞×∞, (2.9)

i.e., Λ = (Λij)ij where

Λij =

{
1 if i+ d = j or j + 1 = i,
0 otherwise.

The dynamics are therefore given by the following recursion
A(κ+ 1) = A(κ)− τ [Λ +G(κ)]>B(κ)ξ>κ,τ ,

G(κ+ 1) = G(κ)− τB(κ)ξ>κ,τ (A(κ))>,
B(κ+ 1) = B(κ)− τ [Λ +G(κ)]A(κ)ξκ,τ ,

(2.10)

with

χκ,τ (x) = χ(x,A(κ),G(κ),B(κ)) and ξκ,τ =

∫
xL′(χκ,τ (x), y)dρκ(x, y) ∈ Rd.

When ρκ = ρ for all κ ∈ N, this recursion is exactly the GD on the (deterministic)
objective function E defined by

E(A,G,B) =

∫
L(B>(Λ +G)Ax, y)dρ(x, y). (2.11)

2.4. Main statements. Let us consider two families of independent infinite Gauss-
ian vectors

(Γ1,Γ2, . . .) and (Γ̃1, Γ̃2, . . .), (2.12)

8 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

where the entries of Γk, Γ̃k ∈ RN are all independent N (0, 1) random vectors. We
define

U∞(κ) =
∑
i≥1

ΓiAi(κ),

W∞(κ) =
∑
i,j≥1

Γ̃iΓj
>Gij(κ),

V ∞(κ) =
∑
i≥1

Γ̃iBi(κ).

(2.13)

We shall prove the convergence in distribution, as m → ∞, of the finite dimen-
sional time-discretized dynamics to the infinite one (see Definition 3.1 for the precise
definition of convergence that we use). The proof of convergence will rely on the
method of moments: we will prove that the moments of our random variables con-
verge to the ones of the limit as m→∞, and this implies convergence in distribution.
Our main theorem is the following:

Theorem 2.2 (Infinite-width limit). Let τ > 0 be fixed, let L be such that L′′ is
bounded, and let us suppose that (2.2) holds.

Let (Um(κ),Wm(κ),V m(κ))κ∈N be the solution to (2.5) with initialization (2.4),
and let (U∞(κ),W∞(κ),V ∞(κ))κ∈N be given by (2.13) (see (2.7)-(2.8)-(2.10)).
Then, for any stopping time κ∗ ∈ N,(

(Um(0),Wm(0),V m(0)), . . . , (Um(κ∗),W
m(κ∗),V

m(κ∗))
)

↓ d.(
(U∞(0),W∞(0),V ∞(0)), . . . , (U∞(κ∗),W

∞(κ∗),V
∞(κ∗))

)
as m → ∞. Moreover, the vectors in Rd that represent the linear predictors of the
neural network,

λm(κ) = Um(κ)>(m−1/2Zm +m−1Wm(κ))>(m−1V m(κ))

λ∞(κ) = A(κ)>(Λ +G(κ))>B(κ),

satisfy λm(κ)
a.s.→ λ∞(κ) for every κ ∈ N (with the quantitative estimate (2.14)

below).

We can make the following remarks :

(i) Since (U∞j (κ),W∞
i,j(κ),V ∞i (κ))κ

∗
κ=1 is a separately exchangeable R3κ∗-valued

random array, the dependency structure between its entries that we obtain
in Theorem 2.2 is consistent, as it should, with the Aldous-Hover represen-
tation of infinite exchangeable arrays [1, Thm. 1.4], which is a generalization
of De Finetti’s theorem. See [36] for a study of gradient flows with a similar
dependency structure.

(ii) A perhaps counter-intuitive consequence of this theorem is that, even if this
parametrization µP preserves feature-learning in the limit, the evolution of the
entries of the intermediate layer W̃m

i,j(κ)−W̃m
i,j(0) (of order 1/m) is negligible

in front of their magnitude at initialization W̃m
i,j(0) (of order 1/

√
m). Still,

these small variations collectively create a significant variation of the output.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 9

(iii) In the proof of this theorem, the convergence of the predictor is quantified as

E
[
‖λm(κ)− λ∞(κ)‖2

]
≤ Cε,κm−1+ε, (2.14)

for any ε > 0 and for some Cε,κ depending on ε > 0 and κ, but independent
of m. As can be seen from numerical experiments (see Figure 2.1-(C)) this
convergence is expected to be (almost) optimal, which is also consistent with
the fact that it comes from a Central Limit Theorem.

(iv) Our proofs are based on universality properties and only use that Zm has
i.i.d. subgaussian entries with zero mean and unit variance. In particular, the
previous statement is also true for these more general initializations of the W̃m

weights.
(v) If we want to take more general subgaussian initializations Um(0) and V m(0)

we can also do it, provided that in the previous statement (more precisely, in

(2.12)) we change Γ1 and Γ̃1 by U∞(0) and V ∞(0); see Figure 2.3.

Our second statement studies the behavior of the limit model, which is an infinitely
wide linear neural network with a particular deterministic initialization. For the sake
of simplicity, we consider the continuous-time limit τ → 0 of the dynamics, that
is, the gradient flow of the functional F∞ and the corresponding linear predictor
(λ∞(t))t≥0.

Theorem 2.3. Consider the square loss L(ŷ, y) = 1
2 |y − ŷ|

2 and assume that ρ has
finite second moments. Then λ∞(t) converges at an exponential rate to the minimal
`2-norm minimizer of the risk λ 7→ 1

2

∫
|λ>x− y|2dρ(x, y).

Note that this implicit bias towards min-`2 norm solutions is not a particularly
impressive property as such, since just the basic gradient flow on the square-loss
initialized from 0, i.e.,

λgf(0) = 0 λ′gf(t) = −
∫
x(λgf(t)

>x− y)dρ(x, y), (2.15)

satisfies the same statement (notice, however, that our dynamics are truly non-
linear, see Figure 2.2). This result is mostly intended to highlight the fact that
our characterization of the infinite-width dynamics is precise enough to obtain such
properties.

2.5. Numerical illustrations. We consider GD for the finite-width and infinite-
width models, with input dimension d = 10, the square loss, a data distribution
given by x ∼ N (0, Idd) and y = x>λ∗ for some λ∗ ∈ Rd that is randomly drawn
from N (0, Idd). The code to reproduce the experiments is available online5.

Figure 2.1 illustrates the convergence to the limit model as the width m → ∞,
with a step-size τ = 0.2. In (A), we show the path of (λm(κ))κ≥0 projected on
two first coordinates of Rd. We observe that, as the width increases, they follow a
trajectory approaching that of the limit (λ∞(κ))κ≥0, which starts at λ∞(0) = 0 and
converges to the min-`2 norm predictor λ∗ shown as a red diamond, and computed
via the pseudo-inverse formula. In (B) we represent the rate of convergence in m of
the predictor as a function of the width, at both initialisation and large time. As it

5https://github.com/lchizat/2022-wide-linear-NN

https://github.com/lchizat/2022-wide-linear-NN

10 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

(a) Convergence in predictor space (b) Rate of convergence of the predictor

(c) Convergence in parameter space

Figure 2.1. Convergence to the limit model (A) Trajectory of the
predictor λm(t), projection on the two first coordinates (bullets rep-
resent λm(0)). (B) Rate of convergence of the predictor as a function
of the width m, at initialization κ = 0 and large time κ = 1000
(shaded area represent standard deviation over 50 repetitions). (C)
Evolution of the average square of an entry of V m and in the limit.

can be seen, it corresponds to (2.14) with ε = 0. Finally, in (C), we represent the
mean square of the entries of V m(κ), computed as vκ = 1

m

∑m
i=1 V j(κ)2 (which is

also a proxy for the variance of V m
j (κ) for 1 ≤ j ≤ m since the entries of V m(κ) are

asymptotically independent) and its limit which is ‖B(κ)‖22 by (2.13). This is just
a simple example of a statistics described by our limit model.

In Figure 2.2, we take a small step-size to approximate the gradient flow τ = 0.001
and explore the behavior of the limit model. It can be seen from the GD equations
that at κ steps, only the first d · κ rows of A(κ) and of B(κ) are non-zero. Thus
the infinite model can be trained exactly for a bounded number of steps6. We
also introduce a fixed scale parameter s > 0 that multiplies the predictor, which
is equivalent to scaling the standard deviation of the initialization by s1/3 at each

6We also noticed that truncating the limit model (2.6) below this size introduces an error that

decays exponentially in the width, instead of the m−1/2 rate for the randomly initialized model.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 11

(a) Trajectory of GD (projection) (b) Evolution of the objective function

Figure 2.2. Behavior of the limit model and effect of the scale pa-
rameter s. (left) Projection of λm(t) on the two first coordinates.
(right) Evolution of the loss.

layer. By [12] and since λ∞(0) = 0, we know that as s→∞, the dynamics converges
to the linear dynamics (2.15). This illustration confirms that the dynamics of λ∞ is
non-linear (unless s→∞), although it has the same endpoints at t = 0 and t =∞
as the linear dynamics. For small scales, s� 1, we observe on the right plot that the
objective function starts with a plateau; this is reflected by our convergence analysis
in Proposition 5.5, which is a two-phase analysis: a first phase to escape from the
initialization (which is close to a stationary point when s� 1) and a second phase
with exponential convergence. We note that the convergence speeds in this plot are
not directly comparable because we did not attempt to find the best step-size τ for
various values of s.

Finally, in Figure 2.3 (A) we plot the distribution of the weights at large times with
non-Gaussian initialization (in blue). As discussed above (remark (v)) the weights
are never Gaussian in this case (not even in the large time limit) since in general
the first coefficient in the basis (e.g. B1(κ)) does not necessarily vanish at κ = ∞.
However, the analysis described in Theorem 2.2 still works and the non-gaussianity
of the weights is only due to the interference of this first element of the basis: the
other elements are still Gaussian. In the figure, this can be seen by subtracting the
first element from the distribution of weights, where we recover a Gaussian profile
(in orange). In any case, we still expect a rate of convergence to the minimizer given
by the rate of the Central Limit Theorem (Figure 2.3 (B)).

3. An independent family of Gaussian vectors

3.1. Notation. We denote vectors and matrices with bolded symbols (except for
x ∈ Rd), and scalars with plain symbols. Given an element M ∈ Rm×n with
m,n ∈ N ∪ {∞}, we denote

‖M‖2 :=
m∑
i=1

n∑
j=1

|Mij |2.

12 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

(a) Distribution of V (κ = 20). (b) Rate of convergence of the predictor

Figure 2.3. Illustration for a non-Gaussian initialization (centered
uniform distribution with the same variance as in the Gaussian case).
(A) The distribution of parameters is non-Gaussian at all times, but
its exact shape can be computed using the limit model (see remark (v)
after Theorem 2.2) (B) The convergence of the predictor to the limit
model happens at the same rate as in the Gaussian case.

More generally, for any p ≥ 1, we denote

‖M‖pp :=

m∑
i=1

n∑
j=1

|Mij |p.

When M is a random array in a probability space (Ω,F ,P), we still denote
M ∈ Rm×n where now it is implicitly evaluated at an element of the sample space
ω ∈ Ω. In particular, ‖M‖2 = ‖M(ω)‖2 where the evaluation will be implicit
whenever there is no ambiguity. It must not be confused with E[‖M‖2], which is
given by

E[‖M‖2] =

∫
Ω
‖M(ω)‖2dP(ω).

Finally, let us give the following definition on the convergence in law/distribution
for arrays of increasing size:

Definition 3.1. Given a family of random vectors (Xm
i)i∈N with Xm

i ∈ Rm, we say
that they converge in distribution to a family of infinite-dimensional random vectors
(X∞i)i∈N with X∞i ∈ R∞ if for every fixed M,N ∈ N, the family ((Xm

i)1..N)1≤i≤M
converges in distribution to ((X∞i)1..N)1≤i≤M (where we have denoted, for X ∈ Rm,
X1..N its first N components; which is always well defined, for m large enough).

3.2. The Gaussian bases. For the sake of readability, we first construct the inde-
pendent family that will act as a basis of our evolution in the unidimensional input
case. We refer to Section 3.5 below for the statements in the multi-dimensional input
case, where the proofs are essentially the same.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 13

Let U and V be two infinite random vectors,

U :=

U1

U2
...

 , V :=

V1

V2
...

 , (3.1)

with entries (Ui)i∈N and (Vi)i∈N that are independent random variables with Ui, Vi ∼
N (0, 1) for i ∈ N.

Let Z be an infinite random matrix,

Z :=

Z11 Z12 . . .
Z21 Z22 . . .

...
...

. . .

 ,

whose entries (Zij)i,j∈N are independent random variables Zij ∼ N (0, 1) for all
i, j ∈ N, and also independent from (Ui)i∈N and (Vi)i∈N.

Let us denote by Um the restriction of U to the first m entries, Um ∈ Rm,
with Umi = Ui for 1 ≤ i ≤ m (respectively V m). Similarly, we denote by Zm

the restriction of Z to the first m × m entries, Zm ∈ Rm×m, with Zmij = Zij for
1 ≤ i, j ≤ m.

Let us denote by Ξm
i (k) the set of bipartite (directed) k-chains between two equal

sets of indices I0 = I1 = {1, . . . ,m} that start in I1 and end at i, where i ∈ I0 if k
is odd, and i ∈ I1 if k is even. Namely,

Ξm
i (k) := { ((i2, i1), (i2, i3), (i4, i3), (i4, i5), . . . , (ik−1, ik), (i, ik)) :

i, i2j ∈ I0 for 1 ≤ j ≤ (k − 1)/2, i2j−1 ∈ I1 for 1 ≤ j ≤ (k + 1)/2}

if k ∈ N is odd, and

Ξm
i (k) := { ((i2, i1), (i2, i3), (i4, i3), (i4, i5), . . . , (ik, ik−1), (ik, i)) :

i2j ∈ I0 for 1 ≤ j ≤ k/2, i, i2j−1 ∈ I1 for 1 ≤ j ≤ k/2}

if k ∈ N is even. In particular, an element Ξ ∈ Ξm
i (k) is of the form Ξ = (Ξ1, . . . ,Ξk)

where Ξ` = ((Ξ`)1, (Ξ`)2) with (Ξ`)1 ∈ I0 and (Ξ`)2 ∈ I1, for 1 ≤ ` ≤ k,

Ξ` = (i`, i`+1) if ` is even, Ξ` = (i`+1, i`) if ` is odd, and ik+1 = i.

We think of each Ξ` for 1 ≤ ` ≤ k as possible indices of a matrix m×m. In this
way, if Ξ ∈ Ξm

i (k) we denote Ξ> := (Ξ>1 , . . . ,Ξ
>
K) where Ξ>` := ((Ξ`)2, (Ξ`)1) (that

is, transposing every matrix; or alternatively, reflecting the bipartite chain).
We can use the previous definitions to compute iterative multiplications of (Zm)>

and Zm against Um. That is, (using (Ξ1)2 = i1 in the notation above)

(
Zm[(Zm)>(Zm)]

k−1
2 Um

)
i

=
(k︷ ︸︸ ︷
Zm(Zm)> . . .ZmUm

)
i

=

m∑
i1,...,ik=1

Zi,ik . . . Zi2,i3Zi2,i1Ui1 =
∑

Ξ∈Ξmi (k)

(
k∏
`=1

ZΞ`

)
U(Ξ1)2

(3.2)

14 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

if k ∈ N is odd, and

(
[(Zm)>(Zm)]

k
2Um

)
i

=
(k︷ ︸︸ ︷

(Zm)>Zm . . .ZmUm
)
i

=
m∑

i1,...,ik=1

Zik,i . . . Zi2,i3Zi2,i1Ui1 =
∑

Ξ∈Ξmi (k)

(
k∏
`=1

ZΞ`

)
U(Ξ1)2

(3.3)

if k ∈ N is even.
Let us denote by #v(Ξ) with Ξ ∈ Ξm

i (k) the number of vertices seen by the
k-chain Ξ, namely,7

#v(Ξ) = | {i2, i4, . . . , ik−1, i} |+ | {i1, i3, . . . , ik} |,
where Ξ = ((i2, i1), (i2, i3), . . . , (ik−1, ik), (i, ik)) ∈ Ξm

i (k)

if k ∈ N is odd, and

#v(Ξ) = | {i2, i4, . . . , ik} |+ | {i1, i3, . . . , ik−1, i} |,
where Ξ = ((i2, i1), (i2, i3), . . . , (ik, ik−1), (ik, i)) ∈ Ξm

i (k)

if k ∈ N is even.
Let us define Ξ̃

m
i (k) to be the subset of Ξm

i (k) with chains that contain no loops
(alternatively, chains that visit each vertex at most once),

Ξ̃
m
i (k) := {Ξ ∈ Ξm

i (k) : #v(Ξ) = k + 1} ⊂ Ξm
i (k).

Finally, we define (cf. (3.2)-(3.3)),

Jmk,i :=
1

mk/2

∑
Ξ∈Ξ̃mi (k)

(
k∏
`=1

ZΞ`

)
U(Ξ1)2

,

Km
k,i =

1

mk/2

∑
Ξ∈Ξ̃mi (k)

(
k∏
`=1

ZΞ>`

)
V(Ξ1)2

,

(3.4)

namely, we consider the product in (3.2)-(3.3) (both against U and V) but we
keep only those elements of the sum that have no loops (and we rescale by the

appropriate size, where the size-preserving objects are m−1/2Zm). Notice that in the
multiplication against V we are considering matrices Z> instead of Z. In particular,
we could alternatively think of Km

k,i as the (renormalized) sum over loopless chains
starting from the set I0 and ending at i and with length k, where now i ∈ I0 if k is
even and i ∈ I1 if k is odd (the opposite from before).

We define the vectors

Jmk :=

Jmk,1
Jmk,2

...
Jmk,m

 and Km
k :=

Km
k,1

Km
k,2
...

Km
k,m

 , with Jmk,i and Km
k,i given by (3.4).

(3.5)

7Here and in the sequel, given a finite set A, we denote by |A| its cardinality.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 15

(We denote Jm0 = Um and Km
0 = V m.) Let us also define, for k ∈ N, {Jk}k∈N and

{Kk}k∈N families of independent, identically distributed (infinite) random vectors

Jk :=

Jk,1Jk,2
...

 and Kk :=

Kk,1

Kk,2
...

 . (3.6)

with Jk,i,Kk,i ∼ N (0, 1) and all independent between them.

3.3. Convergence of the family. Let us now prove that the family of vectors
{(Jmk ,Km

k)}k∈N converges in distribution to the family of i.i.d. Gaussian vectors.
We will in fact prove convergence of all the moments.

Theorem 3.2. The family of vectors {(Jmk ,Km
k)}k∈N defined in (3.5) converges, in

distribution, to the family {(Jk,Kk)}k∈N (according to Definition 3.1).

This statement says that products of the form (3.2)-(3.3) have a simple asymptotic
structure provided that we remove all the chains of indices with loops. The chains
with loops add correlations, which are described in the next proposition on the
recursion property for this family.

Proof. We will show that, for each NJ , NK ∈ N and every fixed families of pairs of
indices (k1, i1), . . . , (kNJ , iNJ) and (`1, j1), . . . , (`NK , jNK), we have

(Jmk1,i1 , . . . J
m
kNJ ,iNJ

,Km
`1,j1 , . . .K

m
`NK ,jNK

)
d.−→ (Jk1,i1 , . . . JkNJ ,iNJ ,K`1,j1 , . . .K`NK ,jNK

)

as m→∞.
We use the method of moments. Let us fix the indices (k1, i1), . . . , (kNJ , iNJ) and

(`1, j1), . . . , (`NK , jNK), and the powers p1, . . . , pNJ , q1, . . . , qNK ∈ N, and let

Em := E
[
(Jmk1,i1)p1 . . . (JmkNJ ,iNJ

)pNJ (Km
`1,j1)q1 . . . (Km

`NK ,jNK
)qNK

]
(3.7)

where we assume that Jmk1,i1
, . . . , JmkNJ ,iNJ

,Km
`1,j1

, . . . ,Km
`NK ,jNK

are all different. We

will show that

Em
m→∞−−−−→ µp1 . . . µpNJ µq1 . . . µqNK ,

where µk denotes the k-th plain moments of a normal distribution N (0, 1),

µk =

{
0 if k ∈ N is odd,
(k − 1)!! if k ∈ N is even,

with (k − 1)!! = (k − 1) · (k − 3) · · · · 5 · 3 · 1 being the double factorial. This will
directly give the desired result.

Recall that each element Jmk1,i1
, . . . , JmkNJ ,iNJ

,Km
`1,j1

, . . . ,Km
`NK ,jNK

can be thought

of as a sum over bipartite loopless chains between I0 and I1, starting at I1 for
Jmkα,iα , starting at I0 for Km

kα′ ,iα′
, and ending at i1, . . . , iNJ , j1, . . . , jNk with length

k1, . . . , kNJ , `1, . . . , `NK , respectively; also, each ending vertex belongs to either I0

or I1 depending on the parity of the length (kα or `α′). We denote by #vend the

16 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

number of different such ending vertices,

#vend :=

∣∣∣∣∣∣∣∣
NJ⋃
α=1

kα≡1 mod 2

{iα} ∪
NK⋃
α′=1

`α′≡0 mod 2

{jα′}

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
NJ⋃
α=1

kα≡0 mod 2

{iα} ∪
NK⋃
α′=1

`α′≡1 mod 2

{jα′}

∣∣∣∣∣∣∣∣ .
Let us define by G the family of bipartite graphs (each graph is seen as a disjoint

union of edges) connecting the sets of vertices I0 and I1 appearing in the expansion
of the definition of Em. Namely, any graph G ∈ G is a set of edges between I0 and
I1 given by the (disjoint) union of p1 elements in Ξ̃m

i1 (k1), p2 elements in Ξ̃m
i2 (k2),

. . . , and qNK elements in Ξ̃m
jNK

(`NK):

G :=

{
G : G =

NJ⊔
α=1

pα⊔
β=1

Ξβ,α t
NK⊔
α′=1

qα′⊔
β′=1

Θβ′,α′ , for some Ξβ,α ∈ Ξ̃m
iα(kα)

and Θβ′,α′ ∈ Ξ̃m
jα′

(`α′) with 1 ≤ α ≤ NJ , 1 ≤ α′ ≤ NK

}
.

(3.8)

Observe that each element G ∈ G contains #e(G) edges (with multiplicity), where

#e(G) = k1p1 + · · ·+ kNJpNJ + `1q1 + · · ·+ `NKqNK =: N, (3.9)

which is independent of the element G ∈ G chosen.
Also, given a fixed element

G 3 G =

NJ⊔
α=1

pα⊔
β=1

Ξβ,α t
NK⊔
α′=1

qα′⊔
β′=1

Θβ′,α′ ,

we denote by

U(G) =

NJ∏
α=1

pα∏
β=1

U
(Ξβ,α1)2

and V (G) =

NK∏
α′=1

qα′∏
β′=1

V
(Θβ
′,α′

1)2
.

(Recall that (Ξβ,α1)2 and (Θβ′,α′

1)2 denote the starting vertex of the chains Ξβ,α and

Θβ′,α′ respectively.) Then, we can rewrite (3.7) in terms of G by expanding the
products as

Em = m−
N
2 E

[∑
G∈G

(∏
e∈G

Ze

)
U(G)V (G)

]
.

(Recall (3.9).) By denoting multG(e) the multiplicity of an edge e in G, we can
define

G2 := {G ∈ G : multG(e) ≥ 2 for all e ∈ G},
that is, the subset of G whose graphs have edges all with multiplicity 2 or higher.
By linearity of the expected value, and the fact that all Zij , Ui, Vj are independent
between them and with average zero, we immediately have that, in fact, we can sum
only over G2,

Em = m−
N
2 E

∑
G∈G2

(∏
e∈G

Ze

)
U(G)V (G)

 .

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 17

Let us denote, for any G ∈ G2, #v(G) the number of different vertices seen by
the edges in G. In particular, since each edge appears twice for G ∈ G2, we have
that

#v(G) ≤ #vend +
N

2
, (3.10)

where we are using that the last #vend vertices are fixed, that we can add edges
(from the end) in such a way that they always see at most one new vertex (since G
is connected), and that each edge appears at least twice.

Notice that we have equality in (3.10) only if each edge in G has multiplicity
exactly 2 (otherwise, we would be seeing less vertices than the maximum possible;
at some point adding one edge on G would neither contribute to a new vertex nor
be a first time repetition):

#v(G) = #vend +
N

2
⇒ for all e ∈ G, multG(e) = 2. (3.11)

Let us define GM as the subset of graphs in G2 that see the maximum number of
vertices,

GM :=

{
G ∈ G2 : #v(G) = #vend +

N

2

}
,

and let us compute |G2 \ GM |. The elements in G2 \ GM are all bipartite graphs
G between I0 and I1 with #v(G) < #vend + N

2 vertices. Since the last #vend

vertices are fixed, the number of elements in G2 \GM will be upper bounded by the
number of ways to choose the remaining #v(G) −#vend vertices (among 2m, that

is, (2m−#vend) · (2m−#vend − 1) · · · · · (2m−#v(G) + 1) ≤ Cm#v(G)−#vend). We
are also using that, for each configuration of vertices, there is a bounded number
of possible graphs with such vertices that is independent of m (but may depend on
NJ , NK , etc.). In all, since #v(G)−#vend ≤ N

2 − 1,

|G2 \GM | ≤ Cm
N
2
−1

for some C independent of m. Using that all the elements Zij , Ui, Vj , have finite
moments, we obtain that∣∣∣∣∣∣Em −m−N2 E

 ∑
G∈GM

(∏
e∈G

Ze

)
U(G)V (G)

∣∣∣∣∣∣ ≤ C

m
(3.12)

for some C independent of m.
Let now G ∈ GM be fixed, a graph with maximal number of vertices, (3.11), with

N edges each with multiplicity two. Let us count the edges from the vertices to
obtain a further characterization of G:

The last #vend vertices are the ending points of the p+ q := p1 + · · ·+ pNJ + q1 +
· · ·+ qNK chains, and as such, they are connected to at least p+ q edges. From the

remaining N
2 vertices, let us denote by #vE(G) the ones that see exactly two edges

(which must be the same edge, repeated twice). Then, #vE(G) ≤ 1
2(p+ q). Indeed,

since chains have no loops, the same edge cannot be repeated inside a chain, and
elements of vE(G) are necessarily reached by two different chains (and hence they
are a starting point for each one). Thus, these starting points see 2#vE(G) ≤ p+ q
edges (counting with multiplicity).

18 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

Finally, the remaining #v(G) −#vend −#vE(G) = N
2 −#vE(G) vertices see at

least four edges each one, so that the total amount of edges as seen from the vertices
(i.e., the sum over vertices of the number of edges seen by each vertex) is:

2N = 2#e(G) ≥ p+ q + 2#vE(G) + 4(#v(G)−#vend −#vE(G))

= p+ q − 2#vE(G) + 2N ≥ 2N,

where we are also using that each edge is seen from two vertices. In particular, all
the previous inequalities are, in fact, equalities, and there are exactly p + q edges
connected to #vend, exactly 1

2(p + q) vertices that are starting points (seeing only
two edges each), and all the remaining vertices see four edges (two edges, each with
multiplicity two).

At the level of G ∈ GM this implies that each chain in its definition is repeated
exactly identically twice, and that they never share vertices (except for the final
ones). In particular, there is an even number of chains ending at each vertex: if
GM 6= ∅ then all p1, . . . , pNJ , q1, . . . , qNK are even. Observe, also, that this implies
that

E

[(∏
e∈G

Ze

)
U(G)V (G)

]
= 1 for all G ∈ GM ,

where we are using E[Z2
ij] = E[U2

i] = E[V 2
j] = 1.

A short combinatorial argument combined with (3.12) now gives the desired result:
we need to count in how many ways we can produce graphs in G ∈ GM with the
definition (3.8) in such a way that each chain is repeated identically twice and they
never share non-ending vertices. We choose first the chains, which can be done in

m
N
2 ways at leading order (for each chain we choose the previous vertex starting

from the end, so there is always m − r possibilities, where r is a bounded number
independent of m; and we do so for each of the N edges, each of which is repeated
twice). For each family of pα chains ending at iα we now have multiple ways to
produce the same graph G ∈ GM : for each pα (and qα′) we need to count the
number of ways in which a family of pα (and qα′) elements can be divided into
couples, and then do the same for each α and α′.

In all, given a family of 2n elements with n ∈ N, there are (2n)!
2nn! ways to split it into

couples: there are (2n)! ways to arrange them in a line and we now split them in order
into couples. Since we can change the order within each pair, and we can change the
order of the pairs, we are actually generating each possible configuration 2nn! times.

The number of ways to split 2n elements into couples is then (2n)!
2nn! = (2n− 1)!!.

Thus, given a fixed graph G ∈ GM , we have
∏NJ
α′ (pα − 1)!!

∏NK
α′ (qα′ − 1)!! ways

to produce the same graph with the previous constructions. Combined with (3.12)

and the fact that there are m
N
2 possible configurations (at leading order) we have∣∣∣Em − µp1 . . . µpNJ µq1 . . . µqNK

∣∣∣ ≤ C

m

for some C independent of m. �

3.4. A recursion property. We next show a recursion property for the family (3.5)
that will be crucial in the following section (recall the notation from subsection 3.1).

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 19

Proposition 3.3. The random vectors Jmk and Km
k satisfy,

m−
1
2ZmJmk = Jmk+1 + Jmk−1 +Rm

k , if k ∈ N is even,

m−
1
2 (Zm)>Jmk = Jmk+1 + Jmk−1 +Rm

k , if k ∈ N is odd,

m−
1
2 (Zm)>Km

k = Km
k+1 +Km

k−1 + Smk , if k ∈ N is even,

m−
1
2ZmKm

k = Km
k+1 +Km

k−1 + Smk , if k ∈ N is odd,

for some random vectors Rm
k and Smk with

E
[
‖Rm

k ‖
2p
2p

]
+ E

[
‖Smk ‖

2p
2p

]
≤ Cp < +∞,

for any p ∈ N, and for some C independent of m (but it might depend on k and p).

Proof. Let us do the first equality, the others follow by analogy. Thus, we assume
k ∈ N is even and we deal with Jmk .

(m−
1
2ZmJmk)j = m−

k+1
2

m∑
i=1

Zj,i
∑

Ξ∈Ξ̃mi (k)

(
k∏
`=1

ZΞ`

)
U(Ξ1)2

= m−
k+1

2

∑
Ξ∈Ξ̊mj (k+1)

(
k+1∏
`=1

ZΞ`

)
U(Ξ1)2

,

where we are denoting

Ξ̊
m
j (k + 1) :=

{
Ξ ∪ {(j, i)} : Ξ ∈ Ξ̃m

i (k) for some 1 ≤ i ≤ m
}
.

That is, we are taking loopless chains starting in I1 and with length k, and adding
an extra edge towards j at the end. In particular, we can divide:

Ξ̊
m
j (k + 1) = Ξ̃

m
j (k + 1) ∪ Ξ̊

m
j,∗(k + 1) ∪ Ξ̊

m
j,r(k + 1),

where

Ξ̊
m
j,∗(k + 1) :=

{
Ξ ∈ Ξ̊

m
j (k + 1) such that Ξk+1 = Ξk

}
,

namely, the added edge was already part of the chain (and since we are adding it to
a loopless chain, it must be the last edge); and

Ξ̊
m
j,r(k + 1) := Ξ̊

m
j (k + 1) \

(
Ξ̃
m
j (k + 1) ∪ Ξ̊

m
j,∗(k + 1)

)
those chains where the extra edge is not adding a new vertex, but is not a repeated
edge either. Thus,

(m−
1
2ZmJmk)j = Jmk+1,j +Amk+1,j +Bm

k+1,j , (3.13)

20 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

where, if we denote v1(Ξ) for Ξ ∈ Ξm
j (k − 1) the set of vertices in Ξ from I1,

Amk+1,j = m−
k+1

2

∑
Ξ∈Ξ̊mj,∗(k+1)

(
k+1∏
`=1

ZΞ`

)
U(Ξ1)2

= m−
k+1

2

∑
Ξ∈Ξ̃mj (k−1)

∑
i/∈v1(Ξ)

Z2
j,i

(
k−1∏
`=1

ZΞ`

)
U(Ξ1)2

,

Bm
k+1,j = m−

k+1
2

∑
Ξ∈Ξ̊mj,r(k+1)

(
k+1∏
`=1

ZΞ`

)
U(Ξ1)2

.

Observe now that, on the one hand, using the same arguments as in Theorem 3.2,
we can directly compute

E
[
(Bm

k+1,j)
2p
]
≤ Cp
m
, (3.14)

for any p ∈ N, and for some C independent of m. (We are using here that in the sum
we are only considering elements that do not see the maximal number of vertices.)

On the other hand, we can rewrite

Amk+1,j = Jmk−1,j +Dm
k+1,j + D̃

m
k+1,j , (3.15)

with

Dm
k+1,j = m−

k+1
2

∑
Ξ∈Ξ̃mj (k−1)

∑
i/∈v1(Ξ)

(Z2
j,i − 1)

(
k−1∏
`=1

ZΞ`

)
U(Ξ1)2

,

D̃m
k+1,j = m−

k+1
2

∑
Ξ∈Ξ̃mj (k−1)

|v1(Ξ)|

(
k−1∏
`=1

ZΞ`

)
U(Ξ1)2

.

From the same arguments as in Theorem 3.2 (since |v1(Ξ)| is bounded independent
of m) we get on the one hand that

E
[
(D̃m

k+1,j)
2p
]
≤ Cp
m2

(3.16)

for any p ∈ N, and on the other hand, since Z2
j,i−1 has average zero and is indepen-

dent of all the other elements in each term of the sum (since i /∈ v1(Ξ)), the same
type of reasoning done in Theorem 3.2 also gives

E
[
(Dm

k+1,j)
2p
]
≤ Cp
m

(3.17)

for any p ∈ N.
In all, joining (3.13)-(3.14)-(3.15)-(3.16)-(3.17),

(m−
1
2ZmJmk)j = Jmk+1,j + Jmk−1,j +Rmk,j ,

with E
[
(Rmk,j)

2p
]
≤ Cp

m for any p ∈ N, and for some C independent of m. Using the

symmetry of the problem, we get the desired result. �

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 21

3.5. Multi-dimensional input. More generally, we can take d ∈ N i.i.d. copies of
U , denoted U (1), . . .U (d) (also independent of V) and define

U (1...d) :=
(
U (1) . . . U (d)

)
=

U
(1)
1 . . . U

(d)
1

U
(1)
2 . . . U

(d)
2

...
. . .

...

 . (3.18)

Similarly, we denote U (ζ),m ∈ Rm for 1 ≤ ζ ≤ d, and

J
(ζ),m
k :=

J

(ζ),m
k,1

J
(ζ),m
k,2

...

J
(ζ),m
k,m

 with 1 ≤ ζ ≤ d, (3.19)

where

J
(ζ),m
k,i :=

1

mk/2

∑
Ξ∈Ξ̃mi (k)

(
k∏
`=1

ZΞ`

)
U

(ζ)
(Ξ1)2

, with 1 ≤ ζ ≤ d (3.20)

(cf. (3.5)). Finally, we also consider, for k ∈ N, families of independent, identically

distributed (infinite) random vectors {J (1)
k }k∈N,...,{J (d)

k }k∈N and {Kk}k∈N

J
(1)
k :=

J

(1)
k,1

J
(1)
k,2
...

 , . . . ,J
(d)
k :=

J

(d)
k,1

J
(d)
k,2
...

 , and Kk :=

Kk,1

Kk,2
...

 . (3.21)

with J
(1)
k,i , . . . , J

(d)
k,i ,Kk,i ∼ N (0, 1) and all independent between them.

Then, Theorem 3.2 also holds for this family as well. That is:

Proposition 3.4. The family of random vectors {(J (1),m
k , . . . ,J

(d),m
k ,Km

k)}k∈N de-

fined by (3.21) converges, in distribution, to the family {(J (1)
k , . . . ,J

(d)
k ,Kk)}k∈N

(see Definition 3.1).

Proof. We can follow the same ideas as in the proof of Theorem 3.2, by interpreting
(3.7) in this context. We get again that each chain must be repeated twice, and
we are only interested in configurations that see a maximal amount of vertices.
Now, however, chains can be repeated coming from different elements of the family,

namely, J
(ζ),m
k,i and J

(ζ′),m
k,i might share a chain for ζ 6= ζ ′, and still see the maximum

number of vertices. Those repetitions, however, do not contribute to the expected

value (3.7), since they contain a single term U
(ζ)
s U

(ζ′)
s for some 1 ≤ s ≤ m, and

E[U
(ζ)
s U

(ζ′)
s] = 0 for ζ 6= ζ ′. �

We also see the recurrence in Proposition 3.3:

Proposition 3.5. The random vectors J
(ζ),m
k satisfy,

m−
1
2ZmJ

(ζ),m
k = J

(ζ),m
k+1 + J

(ζ),m
k−1 +R

(ζ),m
k , if k ∈ N is even,

m−
1
2 (Zm)>J

(ζ),m
k = J

(ζ),m
k+1 + J

(ζ),m
k−1 +R

(ζ),m
k , if k ∈ N is odd,

22 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

for some random vectors R
(ζ),m
k with

E
[
‖R(ζ),m

k ‖2p2p
]
≤ Cp < +∞,

for any p ∈ N, and for any 1 ≤ ζ ≤ m, and for some C independent of m (but it
might depend on k and p).

Proof. Follows by Proposition 3.3 applied to each ζ ∈ {1, . . . , d}. �

For notational convenience, we will denote

Jmk = (J
(1),m
k , . . . ,J

(d),m
k) ∈ Rm×d. (3.22)

Proposition 3.6 (Almost-Orthonormality property). The family of random vectors
{(Jmk ,Km

k)}k∈N defined by (3.21)-(3.22) satisfies

E
[
‖Om

JJ(k1, k2)‖2p2p + ‖Om
JK(k1, k2)‖2p2p + ‖OmKK(k1, k2)‖2p2p

]
≤ Cp
m
,

for any p ∈ N, and for some C depending only on max{k1, k2}, d, and p, where8

Rd×d 3 Om
JJ(k1, k2) =

1

m
(Jmk1

)>Jmk2
− δk1,k2Idd

Rd×1 3 Om
JK(k1, k2) =

1

m
(Jmk1

)>Km
k2

R 3 OmKK(k1, k2) =
1

m
Km

k1
·Km

k2
− δk1,k2 ,

for all k1, k2 ∈ {1, . . . ,m}.
Proof. Let us show

E

[(
1

m
Km

k ·Km
k − 1

)2
]
≤ C

m
,

and the rest follow by analogy. We develop the square to obtain

E

[(
1

m
Km

k ·Km
k − 1

)2
]

=
1

m2

m∑
i,j=1

E
[
(Km

k,i)
2(Km

k,j)
2
]

+ 1− 2

m

m∑
i=1

E
[
(Km

k,i)
2
]

=
m(m− 1)

m2

(
E
[
(Km

k,1)2
])2

+
1

m
E
[
(Km

k,1)4
]

+ 1− 2E
[
(Km

k,1)2
]
,

where we are using the symmetry in the definition of Kk,i.
From the proof of Theorem 3.2 we have that if k > 0∣∣E [(Km

k,1)2
]
− 1
∣∣ ≤ C

m
, and

∣∣E [(Km
k,1)4

]
− 3
∣∣ ≤ C

m
,

from which the first result now follows. In general, again using the proof of Theo-
rem 3.2 we have

E

[(
1

m
Km

k ·Km
k − 1

)2p
]
≤ Cp
m
,

for any p ∈ N, which gives the desired result. �

8Here, δk1,k2 is the Kronecker delta: δk1,k2 = 1 if k1 = k2, and δk1,k2 = 0 if k1 6= k2.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 23

4. Proof of the main result

Let us now proceed with the proof of our main result. Before doing so, we show
an intermediary lemma on the possible growth of exchangeable vectors after multi-
plication by a random matrix.

For that, we need the following result on random matrices with Gaussian entries,
which can be found, for example, in [42, Theorem 4.4.5].

Theorem 4.1. Let A be a random m × m matrix with subgaussian independent
entries with mean zero. Then there exists a universal constant C > 0 such that, for
any t > 0,

‖A‖M := sup
x∈Sm−1

〈Ax, x〉 ≤ CK(
√
m+ t)

with probability at least 1 − 2e−t
2
. Here K = maxi,j ‖Ai,j‖ψ2, where ‖X‖ψ2 =

inf
{
t > 0 : E

(
eX

2/t2
)
≤ 2
}

.

Thanks to Theorem 4.1 we can prove the following, where we recall that Z denotes
a random matrix with i.i.d. entries of N (0, 1) (in this case, of size m×m).

Lemma 4.2. Suppose that U ∈ Rm×d is a random exchangeable array that satisfies

E
[
‖U‖2

]
≤ C◦mα, and E [‖U‖%] ≤ C◦mβ,

for some % > 2, C◦ ≥ 1, and some α, β > 0. We define

U′ :=
1√
m
ZU.

Then, if we let δ > 0 such that % > 2 + δ, we have

E
[
‖U′‖2

]
≤ C◦C%mα, and E

[
‖U′‖%−δ

]
≤ C

ρ−δ
ρ
◦ C%,δm

β %−δ
% ,

for some constants C%, C%,δ > 0 independent of m, but that might depend on %, α,
and β (and also on δ in the case of C%,δ).

Proof. We implicitly consider the random elements in a probability space (Ω,F ,P).
We define, for any i ∈ N ∪ {0},

Ωi :=
{
ω ∈ Ω : (i+ 1) ‖U(ω)‖22 ≥

∥∥U′(ω)
∥∥2

2
≥ i ‖U(ω)‖22

}
.

By Theorem 4.1, for some C independent of m and i,

P(Ωi) ≤ P
(
‖Z‖2M ≥ im

)
= P

(
‖Z‖M ≥ CK

(√
m+

(√
i(CK)−1 − 1

)√
m
))
≤ Ce−cim,

(4.1)

for some universal constants C and c. Now observe that, by Hölder’s inequality,

E
[∥∥U′∥∥2

]
=

∫
Ω

∥∥U′(ω)
∥∥2
dP(ω) ≤

∑
i≥0

(i+ 1)

∫
Ωi

‖U(ω)‖2 dP(ω)

≤
∫

Ω0

‖U(ω)‖2 dP(ω) +
∑
i≥1

(i+ 1)

(∫
Ωi

‖U(ω)‖% dP(ω)

) 2
%

(P(Ωi))
%−2
% .

24 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

Using the previous estimate, (4.1),

E
[∥∥U′∥∥2

]
≤ E

[
‖U‖2

]
+ C

∑
i≥1

(i+ 1)E [‖U‖%]
2
% e
−cim %−2

% .

From our assumptions, and for some C% that depends on %,

E
[∥∥U′∥∥2

]
≤ C◦mα +C(C◦m

β)
2
%

∑
i≥1

(i+ 1)e
−cim %−2

% = C◦

(
mα + C%m

2β
% e
−cm %−2

%

)
,

and hence
E
[∥∥U′∥∥2

]
≤ C◦C%mα,

for some possibly different C%.
On the other hand, following the same strategy we get:

E
[∥∥U′∥∥%−δ] ≤ C∑

i≥0

(i+ 1)E
[∥∥U′∥∥%] %−δ% e

−cim δ
% .

From the assumptions again,

E
[∥∥U′∥∥%−δ] ≤ C ρ−δ

ρ
◦ C%,δm

β %−δ
%

∑
i≥0

(i+ 1)e
−cim δ

% ≤ C
ρ−δ
ρ
◦ C%,δm

β %−δ
% ,

so we get the desired result. �

We can now prove the main result, Theorem 2.2:

Proof of Theorem 2.2. We use the notation from Section 3.2, in particular, the ran-

dom arrays (J
(1),m
k , . . . ,J

(d),m
k) and Km

k , defined by (3.1)-(3.4)-(3.5)-(3.18)-(3.19)-

(3.20), with U (1...d) and V taken to be U(0) and V (0).
We divide the proof into seven steps.

Step 1: The structure. For notational convenience, we drop the subscript τ > 0
and the superscript m, which will be implicit in the following variables; also, we

denote by Jk = (J
(1),m
k , . . . ,J

(d),m
k) ∈ Rm×d. We show by induction that we can

write

U(κ) = Ů(κ) + U(κ)

W (κ) = W̊ (κ) + W(κ)

V (κ) = V̊ (κ) + V(κ),

(4.2)

with

Ů(κ) =
∑
k≥0

(Jkαk(κ) +Kkαk(κ))

W̊ (κ) =
∑
i,j≥0

(
J iγij(κ)J>j +Kiγij(κ)K>j + J iγ̂ij(κ)K>j +Ki ˆ̂γij(κ)J>j

)
V̊ (κ) =

∑
k≥0

(
Jkβk(κ) +Kkβk(κ)

)
,

(4.3)

and where
U(κ) ∈ Rm×d,W(κ) ∈ Rm×m,V(κ) ∈ Rm (4.4)

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 25

satisfy

E
[
‖U(κ)‖2 +

1

m
‖W(κ)‖2 + ‖V(κ)‖2

]
≤ Cm

1
2 , (4.5)

for some C depending on κ but independent of m ∈ N. Moreover,

αk(κ) ∈ Rd×d, αk(κ) = 0 if k is odd,

αk(κ) ∈ R1×d, αk(κ) = 0 if k is even,

βk(κ) ∈ Rd×1, βk(κ) = 0 if k is even,

βk(κ) ∈ R, βk(κ) = 0 if k is odd,

γij(κ) ∈ Rd×d, γij(κ) = 0 if i is even or j is odd,

γij(κ) ∈ R, γij(κ) = 0 if i is odd or j is even,

γ̂ij(κ) ∈ Rd×1, γ̂ij(κ) = 0 if i is even or j is even,

ˆ̂γij(κ) ∈ R1×d, ˆ̂γij(κ) = 0 if i is odd or j is odd.

(4.6)

Step 2: Computing the update. Let us compute (U(κ+1),W (κ+1),V (κ+1))
in terms of (4.2)-(4.3), by using (2.5). By the inductive assumption, we will assume
that (4.6) holds at time κ.

We compute first hκ(x), by expanding:

p(κ) :=

[
1√
m
Z +

1

m
W (κ)

]
U(κ).

On the one hand, thanks to (4.2)-(4.3)-(4.6) and the recursion property in Propo-
sition 3.5, we have

1√
m
ZU(κ) =

∑
k≥0

([Jk+1 + Jk−1]αk(κ) + [Kk+1 +Kk−1]αk(κ)) + E1(κ),

where

E1(κ) =
∑
k≥0

(Rkαk(κ) + Skαk(κ)) +
1√
m
ZU(κ),

and where from now on we assume that whenever an index is negative, the cor-
responding object is identically zero (e.g. J−1 ≡ 0 and K−1 ≡ 0), and we have

denoted (from Proposition 3.5), Rk = (R
(1),m
k , . . . ,R

(d),m
k).

On the other hand, also from (4.2)-(4.3), we can compute the other term in p by
using the orthonormality property in Proposition 3.6,

1

m
W (κ)U(κ) =

∑
i,j≥0

(
J iγij(κ)αj(κ) +Kiγij(κ)αj(κ)

)
+
∑
i,j≥0

(
J iγ̂ij(κ)αj(κ) +Ki ˆ̂γij(κ)αj(κ)

)
+ E2(κ)

26 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

where

E2(κ) =
1

m

(
W(κ)Ů(κ) + W̊ (κ)U(κ) + W(κ)U(κ)

)
+

+
∑
i,j,k≥0

[
J iγij(κ) +Ki ˆ̂γij(κ)

]
[OJJ(j, k)αk(κ) +OJK(j, k)αk(κ)]

+
∑
i,j,k≥0

[
J iγ̂ij(κ) +Kiγij(κ)

] [
(OJK(k, j))>αk(κ) +OKK(j, k)αk(κ)

]
,

and thus

p(κ) = p̊(κ) + Ep(κ) := p̊(κ) + E1(κ) + E2(κ),

where

p̊(κ) =
∑
k≥0

Jk

(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + γ̂kj(κ)αj(κ)

])

+
∑
k≥0

Kk

(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + ˆ̂γkj(κ)αj(κ)

])
.

From here, using again the orthonormality property in Proposition 3.6, we can
compute:

hκ(x) =
1

m
(V (κ))>p(κ)x = h̊κ(x) + Eh(κ)x

with

h̊κ(x) :=
∑
k≥0

(βk)
>
(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + γ̂kj(κ)αj(κ)

])
x

+
∑
k≥0

βk

(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + ˆ̂γkj(κ)αj(κ)

])
x

and

Eh(κ) =
1

m
(V̊ (κ))>Ep(κ) +

1

m
(V(κ))>p̊(κ) +

1

m
(V(κ))>Ep(κ)

+
∑
i,k≥0

[
(βi(κ))>OJJ(i, k) + βi(κ)(OJK(k, i))>

]
·

·
(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + γ̂kj(κ)αj(κ)

])
+
∑
i,k≥0

[
(βi(κ))>OJK(i, k) + βi(κ)OKK(i, k)

]
·

·
(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + ˆ̂γkj(κ)αj(κ)

])
.

At this point it is important to notice that the expression for h̊κ(x) is independent
of the basis, and thus, if m is large enough and κ is fixed, it is independent of m.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 27

We can also write an expression for V (κ + 1) using (2.5) directly, where it is
easy to check that V (κ+ 1) can be written in the form (4.2)-(4.3) with coefficients
satisfying (4.6) by induction.

Using a similar procedure (thanks to Propositions 3.6 and 3.5) we find the ex-
pression for

q(κ) :=

[
1√
m
Z +

1

m
W (κ)

]>
V (κ) = q̊(κ) + Eq(κ) := q̊(κ) + E3(κ) + E4(κ),

where

q̊(κ) :=
∑
k≥0

Jk

(
βk+1(κ) + βk−1(κ) +

∑
j≥0

[
(γjk(κ))>βj(κ) + (ˆ̂γjk(κ))>βj(κ)

])

+
∑
k≥0

Kk

(
βk+1(κ) + βk−1(κ) +

∑
j≥0

[
γjk(κ)βj(κ) + (γ̂jk(κ))>βj(κ)

])
,

and, as before, we have

E3(κ) =
∑
k≥0

(
Rkβk(κ) + Skβk(κ)

)
+

1√
m
Z>V(κ),

and

E4(κ) =
1

m

(
(W(κ))>V̊ (κ) + (W̊ (κ))>V(κ) + (W(κ))>V(κ)

)
+

+
∑
i,j,k≥0

[
J i(γji(κ))> +Ki(γ̂ji(κ))>

] [
OJJ(j, k)βk(κ) +OJK(j, k)βk(κ)

]
+
∑
i,j,k≥0

[
J i(ˆ̂γji(κ))> +Kiγji(κ)

] [
(OJK(k, j))>βk(κ) +OKK(j, k)βk(κ)

]
.

Step 3: The evolution. We can now use the expressions for p(κ), q(κ), and
V (κ)x>(U(κ))> to derive an evolution for the coefficients (4.6) from (2.5). In order
to do that, let us observe that we can denote

Rd 3 ξκ =

∫
xL′(hκ(x), y)dρκ(x, y) = ξ̊κ + Eξ(κ),

with

ξ̊κ :=

∫
xL′(̊hκ(x), y)dρκ(x, y)

and

Eξ(κ) :=

∫
x
(
L′(hκ(x), y)− L′(̊hκ(x), y))

)
dρκ(x, y),

so that, since L′ is Lipschitz and (2.2) holds,

|Eξ(κ)| ≤ C‖Eh(κ)‖
∫
|x|2 dρκ(x, y) ≤ C‖Eh(κ)‖.

If we now denote

δαk(κ) :=
1

τ
(αk(κ+ 1)−αk(κ))

28 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

(analogously for αk,βk, βk,γij , γij , γ̂ij , ˆ̂γij) we get, on the one hand,9

δαk(κ) = −
(
βk+1(κ) + βk−1(κ) +

∑
j≥0

[
(γjk(κ))>βj(κ) + (ˆ̂γjk(κ))>βj(κ)

])
ξ̊
>
κ ,

δαk(κ) = −
(
βk+1(κ) + βk−1(κ) +

∑
j≥0

[
γjk(κ)βj(κ) + (γ̂jk(κ))>βj(κ)

])
ξ̊
>
κ ,

δβk(κ) = −
(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + γ̂kj(κ)αj(κ)

])
ξ̊κ,

δβk(κ) = −
(
αk+1(κ) +αk−1(κ) +

∑
j≥0

[
γkj(κ)αj(κ) + ˆ̂γkj(κ)αj(κ)

])
ξ̊κ,

(4.7)

and on the other hand, from (2.5) and (4.2)-(4.3) we immediately have

δγij(κ) = −βi(κ)̊ξ
>
καj(κ)>, δγ̂ij(κ) = −βi(κ)(̊ξκ)>(αj(κ))>,

δγij(κ) = −βi(κ)̊ξ
>
κ (αj(κ))>, δ ˆ̂γij(κ) = −βi(κ)̊ξ

>
κ (αj(κ))>,

(4.8)

and

δU(κ) = −Eq(κ)̊ξ
>
κ − q̊(κ)E>ξ (κ)−Eq(κ)E>ξ (κ)

δW(κ) = −V (κ)ξ>κ (U(κ))> + V̊ (κ)̊ξ
>
κ (Ů(κ))>

δV(κ) = −Ep(κ)̊ξκ − p̊(κ)Eξ(κ)−Ep(κ)Eξ(κ).

(4.9)

It is now a simple check that (4.7)-(4.8) imply that, if the relations in (4.6) hold
at time κ, they also hold at time κ+ 1.

Step 4: Initial conditions and boundedness of coefficients. We are consid-
ering the vectors Jk and Kk to be the ones constructed in subsection 3.2 where U
and V are the initializations U(0) and V (0). Thus, by construction,

α0(0) = Idd, αk(0) = 0d×d for k ≥ 1,
αk(0) = 01×d, for k ≥ 0,
βk(0) = 0d×1, for k ≥ 0,

β0(0) = 1, βk(0) = 0 for k ≥ 1,

(4.10)

and all γ, γ, γ̂, and ˆ̂γ are initialized at 0. From the update (4.7), we immediately
get that

‖αk(κ)‖ = ‖αk(κ)‖ = ‖βk(κ)‖ = ‖βk(κ)‖ = 0 if k ≥ κ+ 1, (4.11)

and

‖γij(κ)‖ = ‖γij(κ)‖ = ‖γ̂ij(κ)‖ = ‖ ˆ̂γij(κ)‖ = 0 if i ≥ κ+ 1 or j ≥ κ+ 1,
(4.12)

9Observe that the evolution of the system is “mostly” independent of m, and hence for m very
large we have a trivial limit: the only problem is when all the elements in the corresponding arrays
are non-zero, due to a boundary effect at k = m, but this is avoided for m large enough and after
a fixed number of iterations thanks to the initialization (4.10).

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 29

and in particular, if m is large enough, the coefficients are all independent of m. This
is because in the evolution (4.7)-(4.8) each element in a position k is only affected
by elements in the surrounding positions (either for α, β, or γ).

Observe that, again by construction, the evolution of the coefficients (4.6) given by
(4.7)-(4.8) is deterministic, and in particular all the coefficients are always bounded
after finitely many time steps by a universal constant depending only on κ∗ by
(4.11)-(4.12) (and τ , but independent of m), and the same holds for ξ̊ and h̊:

‖αk(κ)‖+ ‖αk(κ)‖+ ‖βk(κ)‖+ ‖βk(κ)‖+

+ ‖γij(κ)‖+ ‖γij(κ)‖+ ‖γ̂ij(κ)‖+ ‖ ˆ̂γij(κ)‖+ |̊hκ|+ ‖̊ξκ‖ ≤ Cκ∗
(4.13)

for all k, i, j ∈ N, and 1 ≤ κ ≤ κ∗.
Hence, from (4.3) and by the proof of Theorem 3.2, we also have that

E[|Ůi,`(κ)|Υ + |W̊i,j(κ)|Υ + |V̊i(κ)|Υ + |p̊i,`(κ)|Υ + |̊qi(κ)|Υ] ≤ Cκ∗,Υ < +∞, (4.14)

for any Υ ≥ 2, 1 ≤ i, j ≤ m, 1 ≤ ` ≤ m, and for some Cκ∗,Υ independent of m.
In particular, we have that

E[‖Ů(κ)‖Υ + ‖V̊ (κ)‖Υ + ‖p̊(κ)‖Υ + ‖̊q(κ)‖Υ] ≤ Cκ∗,Υm
Υ
2 ,

E[‖W̊ (κ)‖Υ] ≤ Cκ∗,ΥmΥ.
(4.15)

Let us now bound the error terms. Let us assume that we have for some α ≥ 0
that will be small, and for any % ≥ 2,

E[‖U(κ)‖% + ‖V(κ)‖%] ≤ C%m
%
2
−1+α

E[‖W(κ)‖%] ≤ C%m%−1+α.
(4.16)

Then we will show that for any δ > 0

E[‖U(κ+ 1)‖% + ‖V(κ+ 1)‖%] ≤ C ′%,δm
%
2
−1+α+δ

E[‖W(κ+ 1)‖%] ≤ C ′%,δm%−1+α+δ,
(4.17)

for some new constant C ′%,δ that might depend on everything, but it is independent
of m.

In order to do that, we look at the different terms in the errors. We can always
apply the same strategy to bound them, using our hypotheses (4.16) and that we
know explicitly how the errors are being updated, (4.9). Let us for example show
how to bound a representative case that includes all possible behaviors, to obtain a
bound like (4.17) for the term Ep(κ+ 1). Namely, we will show that

E[‖Ep(κ+ 1)‖%] ≤ C ′m
%
2
−1+α+δ (4.18)

for some δ arbitrarily small.
We know that Ep(κ+ 1) = E1(κ+ 1) +E2(κ+ 1), let us control them separately.

Step 5: Bound on E1(κ+ 1). The term E1(κ+ 1) has two parts. The first part is∑
k≥0

(Rkαk(κ) + Skαk(κ)) .

30 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

In this case, we use the boundedness of coefficients (4.13) together with the fact
that, from Proposition 3.5, we also have that for k ≤ κ∗ + 1 and any Υ ≥ 2,

E[‖Rk‖Υ + ‖Sk‖Υ] ≤ Cκ∗,Υm
Υ
2
−1,

(using the equivalence between Euclidean norms, ‖x‖p ≤ m
1
p
− 1
q ‖x‖q for any x ∈ Rm

and p < q). This gives the desired result without losing any power.
For the second term in E1(κ+ 1),

1√
m
ZU(κ),

we can apply Lemma 4.2 to obtain, on the one hand,

E

[∥∥∥∥ 1√
m
ZU(κ)

∥∥∥∥2
]
≤ Cmα

and on the other hand, for any r > 2 and δ > 0,

E
[∥∥∥∥ 1√

m
ZU(κ)

∥∥∥∥r] ≤ Cm r
2
−1+ δ

r
+ r
r+δ

α ≤ Cm
r
2
−1+δ+α

where C now might depend also on δ.

Step 6: Bound on E2(κ+ 1). The term E2(κ+ 1) also has two parts. Regarding
all the terms involving the orthonormal errors coming from Proposition 3.6, we treat
them as in the previous step but using Proposition 3.6 instead of Proposition 3.5.
Let us then show how to bound the remaining term,

1

m

(
W(κ)Ů(κ) + W̊ (κ)U(κ) + W(κ)U(κ)

)
.

We do so separately, for each of the three elements. Let us start with the first
term:, by means of Cauchy–Schwarz and Hölder:

E
[∥∥∥∥ 1

m
W(κ)Ů(κ)

∥∥∥∥%] ≤ 1

m%
E
[
‖W(κ)‖%

∥∥∥Ů(κ)
∥∥∥%]

≤ 1

m%

(
E
[
‖W(κ)‖(1+ε)%

]) 1
1+ε
(
E
[∥∥∥Ů(κ)

∥∥∥η%]) 1
η
,

with ε
1+ε = 1

η . By hypothesis (4.16) and using (4.15) we obtain

E
[∥∥∥∥ 1

m
W(κ)Ů(κ)

∥∥∥∥%] ≤ C 1

m%
m%−1+ ε+α

1+εm
%
2 = Cm

%
2
−1+ ε+α

1+ε .

A similar computation works for the term 1
mW̊ (κ)U(κ). Finally,

E
[∥∥∥∥ 1

m
W(κ)U(κ)

∥∥∥∥%] ≤ 1

m%
E [‖W(κ)‖% ‖U(κ)‖%]

≤ 1

m%

(
E
[
‖W(κ)‖2%

]) 1
2
(
E
[
‖U(κ)‖2%

]) 1
2
.

Using our hypotheses in (4.16) we have

E
[∥∥∥∥ 1

m
W(κ)U(κ)

∥∥∥∥%] ≤ C 1

m%
m%+−1+α

2 m
%
2

+−1+α
2 ≤ Cm

%
2
−1+α.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 31

Thus, assuming ε < δ, we have shown that (4.18) holds.
We can do the same with all other terms in U(κ+ 1) and V(κ+ 1) to obtain the

desired result, and a completely analogous argument also works on W(κ+ 1).

Step 7: Conclusion. For κ = 0, there are no error terms, and in particular (4.16)
holds with α = 0 (recall α ≥ 0). We fix δ universally as δ = 1

2κ∗
, in such a way that,

from (4.16)-(4.17) with % = 2,

E[‖U(κ)‖2 + ‖V(κ)‖2] ≤ Cm
1
2 and E[‖W(κ)‖2] ≤ Cm

3
2 ,

for all κ ≤ κ∗ (notice that taking δ smaller, we can make the powers of m arbitrarily
close to 1 and 2 respectively). In particular, by exchangeability of U, V, and W,
we have that

Ui,`(κ),Vj(κ),Wij(κ)→ 0 in L2 as m→∞,
with

E[|Ui,`(κ)|2 + |Vj(κ)|2 + |Wij(κ)|2] ≤ Cm−
1
2 → 0 as m→∞, (4.19)

for all i, j ∈ N, 1 ≤ ` ≤ d fixed.
The same analysis also yields that, for every ε > 0 there exists some Cε such that

E[‖Eh(κ)‖2] ≤ Cεm−1+ε → 0 as m→∞,

so that hκ(x) → h̊κ(x) almost surely for every x ∈ Rd, as m → ∞. This gives the
almost optimal quantitative convergence of the linear predictor, (2.14).

We finish by taking, on the one hand

A(κ) =

α0(κ)
α1(κ)
α2(κ)
α3(κ)

...

 ∈ R∞×d, B(κ) =

β0(κ)
β1(κ)

β2(κ)
β3(κ)

...

 ∈ R∞,

and

G(κ) =

ˆ̂γ00(κ) γ01(κ) ˆ̂γ02(κ) . . .
γ10(κ) γ̂11(κ) γ20(κ) . . .
ˆ̂γ20(κ) γ21(κ) ˆ̂γ22(κ) . . .

...
...

...
. . .

 ∈ R∞×∞,

which are well defined independently of m, if m is large enough for a fixed κ. On
the other hand, recovering the superscripts m in the notation, we know rom Theo-
rem 3.2 (more precisely, from Proposition 3.4), that the family of vectors (Jmk ,K

m
k)

converges, in distribution, to a family of independent, identically distributed (in-
finite) random vectors (3.6), that we denote (J∞k ,K

∞
k). Hence, we can take in

(2.12)

(Γ1,Γ2, . . .) = (J∞0 ,K
∞
1 ,J

∞
2 , . . .),

(Γ̃1, Γ̃2, . . .) = (K∞0 ,J
∞
1 ,K

∞
2 , . . .),

(notice that these equalities are not elementwise, but rather as matrices; that is,

Γ2 = J
(2),∞
0 if d ≥ 2). Thanks to Proposition 3.4 and (4.19), we are done. �

32 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

5. Properties of the infinite-width dynamics

In this section, we study the behavior of the time-continuous (τ → 0) version of
the limit system (2.13)-(2.10), as τ ↓ 0, namely the gradient flow of E (2.11) with
initialization (2.7).

5.1. A gradient flow. We start by showing that the time-continuous version of
(2.13), (5.1) below, is a gradient flow of the energy with respect to the Euclidean
norm of the parameters (in particular, in the limiting case m→∞, it is a gradient
flow in `2), and that the variation of the squared `2-norm of each layer is the same; a
property that follows from the 1-homogeneity of the output w.r.t. each layer, which
is often used in the analysis of linear NNs [4, 16]. This property is often used in
conjunction with a balanced initialization assumption [4, Eq. (7)], which does not
hold here, in particular because the middle layer has infinite `2-norm at initialization.

Proposition 5.1. Let m ∈ N ∪ {∞}. Let (A(t),G(t),B(t)) with A(t) : [0,∞) →
Rm×d, G : [0,∞) → Rm×m, and B(t) : [0,∞) → Rm be a solution to the following
ODE system

Ȧ(t) = −[Λ +G(t)]>B(t)ξ>t ,

Ġ(t) = −B(t)ξ>t A(t)>,

Ḃ(t) = −[Λ +G(t)]A(t)ξt,

(5.1)

with

ξt =

∫
xL′(ht(x), y)dρ(x, y) ∈ Rd, ht(x) = B(t)>[Λ +G(t)]A(t)x. (5.2)

and Λ ∈ Rm×m is a fixed matrix, equal to:

Rm×m 3 Λ = (Λij)ij =

{
1 if i+ d = j or j + 1 = i
0 otherwise.

Then, (5.1) is the gradient flow in the `2-norm of the energy functional

E(A,G,B) :=

∫
L(B>[Λ +G]Ax, y)dρ(x, y).

In particular, we have
d

dt

∫
L(ht(x), y)dρ(x, y) ≤ 0,

and

d

dt
‖A(t)‖2 =

d

dt
‖B(t)‖2 =

d

dt
‖Λ +G(t)‖2 = −2

∫
ht(x)L′(ht(x), y)dρ(x, y). (5.3)

Proof. Let us formally compute, using (5.1)

d

dt
‖A(t)‖2 =

d

dt
tr
{
A(t)>A(t)

}
= 2tr

{
˙A(t)>A(t)

}
= −2B(t)>[Λ +G(t)]A(t)ξt.

We can proceed similarly with Λ +G(t) and B(t) to get (5.3).
The fact that (5.1) is the gradient flow in the 2-norm of E is a direct check.

For future convenience, we explicitly compute the dissipation by first obtaining the

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 33

evolution of ht(x)

− d

dt
ht(x) = ξ>t A(t)>[Λ +G(t)]>[Λ +G(t)]A(t)x+B(t)>B(t)ξ>t A(t)>A(t)x

+B(t)>[Λ +G(t)][Λ +G(t)]>B(t)ξ>t x,
(5.4)

so that denoting E(t) := E(A(t),G(t),B(t)),

d

dt
E(t) =

∫
d

dt
ht(x)L′(ht(x), y)dρ(x, y)

= −‖[Λ +G(t)]A(t)ξt‖2 − ‖B(t)‖2‖A(t)ξt‖2 − ‖ξt‖2‖[Λ +G(t)]>B(t)‖2.

All the above computations also work if m = ∞, in which case we consider the `2

norms of the parameters. �

Remark 5.2. When m =∞, (5.3) should be paired with some initial conditions that
ensure its finiteness, and since ‖Λ‖ = +∞, the third term should be interpreted as

d

dt

(
‖Λ +G(t)‖2 − ‖Λ‖2

)
=

d

dt
tr
(
Λ>G(t) +G>(t)G(t)

)
.

5.2. Selection principle. Recall that we initialize our system (5.1) with

A(0) =

Idd

0d×1

0d×1
...

 ∈ Rm×d, B(0) =

1
0
0
...

 ∈ Rm, (5.5)

and

(G)ij(0) = 0 for 1 ≤ i, j ≤ m. (5.6)

If we denote

λt := A(t)>[Λ +G(t)]>B(t) ∈ Rd,
so that ht(x) = λ>t x, we next show that λ>t never leaves the span of our data. That
is,

λ>t v = 0 for all v ∈ span (supp((πx)#ρ))⊥ , (5.7)

where πx : Rd × R→ Rd is the projection operator (x, y) 7→ x, and (πx)#ρ denotes
the pushforward of ρ through πx.

Proposition 5.3. Under the assumptions of Proposition 5.1, let us further assume
that L′′ is bounded and that (A(t),G(t),B(t)) are initialized at (5.5) and (5.6).
Then (5.7) holds for all t ≥ 0.

Proof. Since L′ is Lipschitz we know that the evolution is globally defined in time.
Moreover, since λ0 = 0 we only need to show

d

dt
λ>t v = 0 for all t > 0,

where v ∈ span (supp((πx)#ρ))⊥ will be fixed throughout the proof.

34 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

We can compute, using (5.1),

d

dt
λ>t = −B>[Λ +G][Λ +G]>Bξ> −B>Bξ>A>A− ξ>A>[Λ +G]>[Λ +G]A,

where we have omitted the time dependence for the sake of readability, that will be

made only explicit at time 0. Observe now that, since v ∈ span (supp((πx)#ρ))⊥,

ξ>v = 0 for all t ≥ 0.

Hence, Ȧv = 0 for all t ≥ 0, which implies that Av = A0v (where A0 = A(0),
given by (5.5)). In all, we have

d

dt
λ>t v = −B>Bξ>A>A0v − ξ>A>[Λ +G]>[Λ +G]A0v. (5.8)

Let us now define the following quantities:

Mt := B>ΛA0v ∈ R, N t := G>ΛA0v ∈ Rm,
Ot := Π>A>A0v ∈ Rd, P t := GA0v ∈ Rm,

where we have denoted by Π ∈ Rd×d the projection matrix to span (supp((πx)#ρ)),
so that

Πw = w for all w ∈ span (supp((πx)#ρ)) .

In particular, we always have that ξ>Π> = ξ>. In the following, we will use that

A0v =

(
v

0m−d

)
,

and hence, since the first d× d submatrix of Λ>Λ is the identity (which is a simple
check) we have

Λ>ΛA0v = A0v. (5.9)

A computation using (5.1) and (5.9) gives then the following system of ODEs:

Ṁt = −ξ>A>[Λ +G]>ΛA0v = −ξ>Ot − ξ>A>N t

Ṅ t = −A>ξB>ΛA0v = −A>ξMt

Ȯt = −Π>ξB>[Λ +G]A0v = −Π>ξMt −Π>ξB>P t

Ṗ t = −Bξ>A>A0v = −Bξ>Ot,

(5.10)

which is initialized at

M0 = 0, N0 = 0m, O0 = 0d, P 0 = 0m. (5.11)

Here, we used that G(0) = 0, that the first element of ΛA0v is zero (and hence,

M0 = 0), that ξ>Π> = ξ>, and that A>0 A0 = Idd so O0 = Π>v = 0d. The system
(5.10) is Lipschitz in its variables, coupled with locally bounded coefficients (thanks
to (5.3)), and therefore it has a unique solution. Since the initial conditions (5.11)
all vanish, the unique solution is (Mt,N t,Ot,P t) = (0,0m,0d,0m) for t ≥ 0.

Finally, we can rewrite (5.8) in terms of (Mt,N t,Ot,P t) (recalling (5.9)) as

d

dt
λ>t v = −B>Bξ>Ot − ξ>Ot − ξ>A>N t − ξ>A>[Λ +G]>P t = 0,

which is our desired result. �

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 35

Remark 5.4. We highlight that the selection principle in Proposition 5.3 is not a
consequence of a general abstract result on gradient flows with this particular struc-
ture, but rather follows from the precise initialization that arises from the infinite
width limit, as illustrated by the following example.

By denoting e1 =
(
1 0

)>
, let us define

E(A, z) :=
1

2
〈Az, e1〉2, with R2×2 3 A =

(
A11 A12

A21 A22

)
, R2 3 z =

(
z1

z2

)
,

which is the empirical risk of a two-layer linear NN with a single sample (x1, y1) =
(e1, 0) in the training set. Consider its gradient flow:

Ȧ = −∂AE(A, z) = −〈Az, e1〉e1z
> = −(A11z1 +A12z2)

(
z1 z2

0 0

)
,

ż = −∂zE = −〈Az, e1〉A>e1 − (A11z1 +A12z2)

(
A11

A12

)
.

Then, if we denote λ := Az =
(
λ1 λ2

)>
, we can express the energy as

E(A, z) =
1

2
〈Az, e1〉2 =

1

2
λ2

1. (5.12)

It is however not true that the evolution of λ must be such that it always moves
along the span of e1. Indeed, using the previous gradient flow, we know that

λ̇ = Ȧz +Aż = −(A11z1 +A12z2)

((
z2

1 + z2
2

0

)
+

(
A2

11 +A2
12

A21A11 +A22A12

))
.

Hence, when (A11z1 + A12z2)(A21A11 + A22A12) 6= 0, the second coordinate λ is
moving. This can happen by choosing at time t = 0

A(0) :=

(
1 1
1 0

)
, z(0) :=

(
0
1

)
, so that λ(0) =

(
1
0

)
and, since λ̇2(0) 6= 0, we have that λ2(t) 6= 0 for some time t > 0, despite the fact
that the energy in (5.12) depends only on λ1.

5.3. Quantitative convergence and implicit bias. Whenever the loss function
is uniformly convex (we take the quadratic case for convenience) then we expect
exponential rate of convergence towards a minimizer.

In the following, given a measure ρ, we denote by M the covariance matrix,

M :=

∫
xx>dρ(x, y) ∈ Rd×d. (5.13)

Note that M is symmetric and positive semi-definite. In particular, if M is non-
degenerate (det(M) > 0), then there is a unique minimizer λ ∈ Rd of the quadratic
energy

E =

∫
(λ · x− y)2dρ(x, y).

Otherwise, and as we have seen in Proposition 5.3, our system will converge to a
minimizer in the span of supp((πx)#ρ) (alternatively, in ker(M)⊥ or in the row
space of M), which is unique. We prove that it will do so at an exponential rate,
depending on the lowest non-zero eigenvalue of M .

36 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

Proposition 5.5. Under the assumptions of Proposition 5.1, let us further assume
that L is the quadratic loss function and that M has d′ non-zero eigenvalues, with
1 ≤ d′ ≤ d, that we denote 0 < z1 ≤ z2 ≤ · · · ≤ zd′.

Let (A(t),G(t),B(t)) denote the evolution (5.1) initialized at (5.5) and (5.6).
Then λt converges to the unique minimizer λ ∈ Rd of the energy functional,

Et :=

∫
(ht(x)− y)2dρ(x, y) =

∫
(λt · x− y)2dρ(x, y)

such that λ ∈ span (supp((πx)#ρ)) (alternatively, λ ∈ ker(M)⊥), and

Et − E∞ ≤ (E0 − E∞) e−c̃λt for t ≥ 0

for some constant c̃λ depending only on ‖λ‖, d, z1, and zd′ (and independent of m).

Proof. We divide the proof into four steps.

Step 1: The setting. We use the same notation as in Proposition 5.1 and Propo-
sition 5.3. We recall that we had denoted

λt := A(t)>[Λ +G(t)]>B(t) ∈ Rd.

(In particular, λ0 = 0d×1.) The condition on M can then be re-written as

0 < z1|w|2 ≤ w ·Mw ≤ zd′ |w|2 for all w ∈ ker(M)⊥. (5.14)

The energy is given by

Et := E(A(t),G(t),B(t)) =

∫
(ht(x)− y)2 dρ(x, y),

where we recall that ht(x) = λt · x. In particular, we can explicitly compute the
minimizer λ (with λ ∈ ker(M)⊥) and the evolution of Et in terms of λ,

λ :=

∫
yM−1x ρ(x, y) ∈ Rd, Et = (λt − λ) ·M(λt − λ) + E∞, (5.15)

where, by an abuse of notation, we denoted by M−1x the inverse restricted to
ker(M)⊥ of x ∈ supp(πx)#ρ, so that λ ∈ ker(M)⊥ as well. From (5.14) and the

fact that λt ∈ ker(M)⊥ for all t ≥ 0 (see Proposition 5.3), we have

z1‖λt − λ‖2 ≤ Et − E∞ ≤ zd′‖λt − λ‖2. (5.16)

We also have (cf. (5.4))

ξt = 2M(λt − λ) and λ̇t = −2RtM(λt − λ)

where Rt is a symmetric matrix, Rt ≥ 0, defined by

Rt = A(t)>[Λ +G(t)]>[Λ +G(t)]A(t) +B(t)>B(t)A(t)>A(t)

+B(t)>[Λ +G(t)][Λ +G(t)]>B(t)Idd×d ∈ Rd×d.
(5.17)

Thus,

Ėt = −4(λt − λ) ·MRtM(λt − λ). (5.18)

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 37

Observe also that (see the proof of Proposition 5.1)

d

dt
‖A(t)‖2 =

d

dt
‖B(t)‖2 = −4λt ·M(λt − λ)

= −4(Et − E∞)− 4λ ·M(λt − λ)

≤ 4z
1
2
d′‖λ‖

√
Et − E∞ ≤ 4zd′‖λ‖2,

(5.19)

where we used that the energy is decreasing, Cauchy-Schwarz, and (5.14). Similarly,
for any e ∈ Sd−1,

d

dt
‖A(t)e‖2 = −4(λt · e) eM(λt − λ)

≤ C‖λt − λ‖2 + ‖λ‖ ‖λt − λ‖ ≤ C‖λ‖2
(5.20)

for some constant C depending only on z1 and zd′ .

Step 2: Small times. We have Rt ≥ ‖B(t)‖2A(t)>A(t) and R0 ≥ Idd×d. In
particular, thanks to (5.19)-(5.20),

Rt ≥
1

2
Idd×d for t ≤ t◦, (5.21)

where t◦ = c◦‖λ‖−2 for some c◦ > 0 depending only on z1 and zd′ . Hence,

Ėt ≤ −c(Et − E∞) for 0 ≤ t < t◦,

for some c depending only on z1 and zd′ , thanks to (5.15)-(5.16)-(5.18)-(5.21) (we use

that if M and Rt are symmetric positive semi-definite matrices, then M
1
2RtM

1
2 is

positive semi-definite as well). In particular,

Et − E∞ ≤ (E0 − E∞)e−ct for 0 ≤ t < t◦. (5.22)

Step 3: An ODE for all times. From the previous inequality and the dissipation
of energy, we have

‖M
1
2λ‖e−

ct◦
2 ≥ ‖M

1
2 (λt − λ)‖ ≥ ‖M

1
2λ‖ − ‖M

1
2λt‖ for t ≥ t◦,

so that

‖λt‖2 ≥ C−1
ρ ‖M

1
2λt‖2 ≥ C−1

ρ

(
1− e−

ct◦
2

)2
‖M

1
2λ‖2 ≥ C−2

ρ ‖λ‖2
(

1− e−
ct◦
2

)2
=: cλ

with cλ > 0, for t ≥ t◦. In particular, by Cauchy-Schwarz and up to a dimensional
constant, from the definition of λt,

cλ ≤ ‖λt‖2 ≤ C‖A(t)‖2‖[Λ +G(t)]>B(t)‖2 for t ≥ t◦.
From (5.17) we know that for some dimensional c > 0,

Rt ≥ ‖[Λ +G(t)]>B(t)‖2 Idd×d ≥ ccλ‖A(t)‖−2 Idd×d for t ≥ t◦.
On the other hand, from (5.19), and since ‖A(0)‖2 = d,

‖A(t)‖2 ≤ d+ C‖λ‖
∫ t

0

√
Eτ − E∞ dτ,

and hence
Rt ≥

ccλ

d+ C‖λ‖
∫ t

0

√
Eτ − E∞ dτ

Idd×d for t ≥ t◦.

38 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

Combined again with (5.14)-(5.16)-(5.18) we obtain the inequality

Ėt ≤ −
ccλ(Et − E∞)

1 + ‖λ‖
∫ t

0

√
Eτ − E∞ dτ

for t ≥ t◦. (5.23)

Step 4: Bootstrap argument. Observe that∫ t

0

√
Eτ − E∞ dτ ≤ C‖λ‖t, (5.24)

since we have dissipation of the energy. Hence, from (5.23) we get

Ėt ≤ −
ccλ(Et − E∞)

1 + ‖λ‖t
for t ≥ t◦,

which implies (also using that cλ ≤ C‖λ‖2 and t◦ = c‖λ‖−2)

Et − E∞ ≤ (Et◦ − E∞)

(
1 + ‖λ‖t◦
1 + ‖λ‖t

) ccλ
‖λ‖
≤ C‖λ‖2(1 + ‖λ‖t)−

ccλ
‖λ‖ , for t ≥ t◦.

Plugging it back into (5.23), we now have that instead of (5.24) (also using (5.22)),∫ t

0

√
Eτ − E∞ dτ ≤ C

‖λ‖
1 + ‖λ‖2

+ C‖λ‖(1 + ‖λ‖t)1−ελ

where we have denoted ελ := ccλ
‖λ‖ <

1
2 (if c is sufficiently small). Again from (5.23),

Ėt
Et − E∞

≤ − ccλ
1 + ‖λ‖2(1 + ‖λ‖2)−2 + ‖λ‖2(1 + ‖λ‖t)1−ελ

for t ≥ t◦.

In particular, there exists some c̃λ depending on ‖λ‖, z1, and zd′ , such that

Et − E∞ ≤ (E0 − E∞) e−c̃λt
ελ for t ≥ 0.

Iterating again the procedure, now
∫∞

0

√
Eτ − E∞ dτ < +∞, and hence

Et − E∞ ≤ (E0 − E∞) e−c̃λt for t ≥ 0

for some (possibly different) c̃λ depending only on ‖λ‖, d, z1, and zd′ �

Finally, we have:

Proof of Theorem 2.3. If follows from Proposition 5.5. �

6. Multi-layer case

Let us now consider the multi-layer case, that is, the evolution of a neural network
with L+1 hidden layers (being the previous case, L = 1). For the sake of readability,
we do it in the case d = 1, but the same holds for d > 1. The aim of this section is
to introduce and justify all the objects, notably the limit evolution equation and the
basis in which such evolution is expressed, for the analogous of Theorem 2.2 to hold
with L+ 1 hidden layers. We remark that the following arguments are formal, and
that their rigorous justifications can be obtained by the same methods developed in
the core of the paper.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 39

Using the notation in subsection 2.2, and dropping the superscript m, we now
have U ∈ Rm, W (`) ∈ Rm×m for 1 ≤ ` ≤ L, and V ∈ Rm, initialized as

Uj(0) ∼ N (0, 1) , W
(`)
ij (0) = 0, Vi(0) ∼ N (0, 1) .

We also fix L ∈ N independent random matrices of size m × m with independent
entries N (0, 1), (Z(`))1≤`≤L. The neural network is (recall x ∈ R):

y = h(x,U , (W (`))1≤`≤L,V) =

〈
1

m
V ,

L∏
`=1

(
1√
m
Z(`) +

1

m
W (`)

)
Ux

〉
.

And the evolution (U(κ), (W (`)(κ))1≤`≤L,V (κ))κ∈N is a GD (with layer-wise learn-
ing rates) on the objective function

F (U , (W (`))1≤`≤L,V) :=

∫
Rd×R

L
(
h(x,U , (W (`))1≤`≤L,V), y

)
dρ(x, y),

given by

U(κ+ 1) = U(κ)− τ
L∏
`=1

[
1√
m
Z(`) +

1

m
W (`)(κ)

]>
V (κ)(ξκ,τ)>,

W (`)(κ+ 1) = W (`)(κ)− τ
L∏

i=`+1

[
1√
m
Z(i) +

1

m
W (i)(κ)

]>
V (κ)(ξκ,τ)>

(U(κ))>
`−1∏
i=1

[
1√
m
Z(i) +

1

m
W (i)(κ)

]>
, 1 ≤ ` ≤ L,

V (κ+ 1) = V (κ)− τ
1∏

`=L

[
1√
m
Z(`) +

1

m
W (`)(κ)

]
U(κ)ξκ,τ ,

(6.1)

with ξκ,τ =
∫
xL′(hκ,τ (x), y)dρκ(x, y) ∈ R, where we have also denoted hκ,τ (x) =

h(x,U(κ), (W (`)(κ))1≤`≤L,V (κ)), and we always assume uniformly finite second
moments, (2.2).

In analogy with the three-layer case, we expect the dynamics to be expressed,
up to errors which vanish as m gets large, in a suitable Gaussian basis with certain
orthogonality properties, and with an explicit behavior with respect to multiplication
by Z(`). The construction of such a basis (and more precisely, of one basis for each
layer `) is a nontrivial generalization of Theorem 3.2 and it is defined in subection 6.1
below. We describe now how to obtain the limit dynamics, assuming the existence
of such a basis, whose properties are detailed in (6.2) and (6.4) below.

We assume therefore the existence of L + 1 appropriate orthonormal bases, that
we denote

Ψ0,Ψ1, . . . ,ΨL, with Ψ` = (Ψ`
1,Ψ

`
2,Ψ

`
3, . . .) for any 0 ≤ ` ≤ L,

such that Ψ` ∈ Rm×∞ is a matrix formed of independent m-dimensional Gaussian
vectors (as columns), Ψ`

i ∈ Rm for all i ∈ N, with entries N (0, 1), and that are going

40 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

to act as the approximate bases for m <∞, satisfying

1

m
(Ψ`)>Ψ` = Id∞,

1

m
(Ψ`)>Ψ`′ = 0∞×∞, 0 ≤ ` 6= `′ ≤ L (6.2)

up to errors that vanish as m→∞ (cf. Theorem 3.2). Namely, we assume that we

can write, up to errors that are of order O(m−
1
2

+δ) for any δ > 0,
U(κ) = Ψ0A(κ),

W `(κ) = Ψ`G`(κ)(Ψ`−1)>, 1 ≤ ` ≤ L,
V (κ) = ΨLB(κ),

(6.3)

for some coefficients A,B ∈ R∞, G` ∈ R∞×∞ for 1 ≤ ` ≤ L, initialized as (2.7)-
(2.8) for d = 1 and all 1 ≤ ` ≤ L. Finally, we also assume the following recurrence

relationship between bases under multiplication by Z(`) (cf. subsection 3.4),

1√
m
Z(`)Ψ`−1 = Ψ`Λ`,

1√
m

(Z(`))>Ψ` = Ψ`−1Λ>` , 1 ≤ ` ≤ L,
(6.4)

for some fixed matrices Λ` ∈ R∞×∞ (cf. equation (2.9)). We can then write an
evolution for the coefficients A,B, and G`, using (6.1)-(6.2)-(6.4) and the represen-
tation (6.3):

A(κ+ 1) = A(κ)− τ
L∏
`=1

(Λ>` +G>` (κ))B(κ),

G`(κ+ 1) = G`(κ)− τ
L∏

i=`+1

(Λ>i +G>i (κ))B(κ)ξ>κ,τA
>(κ)

`−1∏
i=1

(Λ>i +G>i (κ)),

B(κ+ 1) = B(κ)− τ
1∏

`=L

(Λ` +G`(κ))A(κ)ξκ,τ ,

(6.5)
for 1 ≤ ` ≤ L, with

χκ,τ (x) = χ(x,A(κ), (G`(κ))1≤`≤L,B(κ)),

ξκ,τ =

∫
xL′(χκ,τ (x), y)dρκ(x, y) ∈ R.

When ρκ = ρ for all κ ∈ N, this recursion is exactly the GD on the (deterministic)
objective function E defined by

E(A, (G`)1≤`≤L,B) =

∫
L

(
B>

1∏
`=L

(Λ` +G`)Ax), y

)
dρ(x, y), (6.6)

and the linear predictor of the neural network is given by

A>
L∏
`=1

(Λ>` +G>`)B,

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 41

up to errors that disappear as m → ∞. Thus, the description of the linear neural
network in the general multi-layered case, (6.5), is reduced to finding bases such
that (6.2) and (6.4) hold, up to errors (which is precisely what we did in Section 3
above).

6.1. The choice of the bases. Given L ∈ N and 0 ≤ ` ≤ L, let us define the
following set of finite sequences:

SL(`) := {(s0, s1, s2, . . . , sM) : s0 ∈ {0, L}, sM = `, si ∈ {0, . . . , L}, |si − si−1| = 1} ,
that is, SL(`) is the set of finite sequences of numbers belonging to {0, . . . , L},
starting at 0 or L, finishing at `, and such that each element of the sequence is
obtained by adding or subtracting 1 to the previous element (in particular, if s0 = 0,
s1 = 1 necessarily). This set is going to be, for each 0 ≤ ` ≤ L, our index set for
the basis Ψ`. For example, when L = 1, the sequences in S1(0) (and analogously
in S1(1)) are just of the form 0101...0 or 1010...0, and can be identified with their
length. This is the reason why the index set in the case L = 1 is just given by the
natural numbers, which was the case in Section 3.

We therefore consider Ψ` to have as columns the elements Ψ`
s for s ∈ SL(`), and

we denote it,
Ψ` = (Ψ`

s)s∈SL(`), 0 ≤ ` ≤ L,
where we still need to define what Ψ`

s is for a given s ∈ SL(`). To do so, for

notational convenience, given the matrices Z(`) for 1 ≤ ` ≤ L, we denote

Z`−1,` := (Z(`))> and Z`,`−1 := Z(`).

Moreover, we let Ψ0
0 and ΨL

L be two fixed independent Gaussian vectors of size m
(that is, those associated to the sequences {0} and {L}).

Then, given s ∈ SL(`) of length M + 1, s = (s0, . . . , sM), we define

Ψ`
s := m−M/2

∑
(i0,...,iM)∈I(s,m)

 M∏
j=1

Z
sj ,sj−1

ij ,ij−1

 (Ψs0
s0)i0 , (6.7)

where I(s,m) is the set of indices (i0, . . . , iM) with ij ∈ {0, . . . ,m} such that
(ij , sj) 6= (ik, sk) for all 1 ≤ j 6= k ≤ M . In other words, the main novelty of
the current definition with respect to the corresponding definition (3.4) for L = 1
lies in the fact that the basis is parametrized by an element s ∈ SL(`), which iden-
tifies a fixed sequence of consecutive layers. Once the sequence is fixed, the sum in
(6.7) runs over all possible loopless choices of one element between 1, ...,m in each
of the layers signposted by s.

Formally, we obtain orthonormal bases in the sense (6.2) (as in Proposition 3.6),
and the relationships in (6.4) are of the form

1√
m
Z(`)Ψ`−1

s =

{
Ψ`

(s,`) if s = (s′, `− 2, `− 1),

Ψ`
(s′,`) + Ψ`

(s,`) if s = (s′, `, `− 1),
(6.8)

and

1√
m

(Z(`))>Ψ`
s =

{
Ψ`−1

(s,`−1) if s = (s′, `+ 1, `),

Ψ`−1
(s′,`−1) + Ψ`−1

(s,`−1) if s = (s′, `− 1, `),
(6.9)

42 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

for 1 ≤ ` ≤ L.

6.2. The case L = 2. In the case L = 2 (that is, a four layers neural network, or
a neural network with three hidden layers) we have a more explicit expression. In
this case, any element s ∈ S2(`) is of the form

(s0, 1, s2, 1, s4, 1, s6, 1, s8, 1, . . .), . . . s2i ∈ {0, 2},

and therefore, we can identify any element s in S2(0), S2(1), or S2(2), with a natural
number N(s), seeing it as a binary representation. Thus, we associate

S2(0) 3 s 7→ N0(s) := 2σ +
σ∑
i=1

2i−2s2(σ−i)

S2(1) 3 s 7→ N1(s) := 2σ+1 +
σ∑
i=0

2i−1s2(σ−i)

S2(2) 3 s 7→ N2(s) := 2σ +
σ∑
i=1

2i−2s2(σ−i)

where we have denoted σ = bM/2c for s = (s0, . . . , sM). With this indexing, we can
obtain more explicit relations (6.8)-(6.9), since we now have that Ψ0, Ψ1, and Ψ2

can be indexed by the natural numbers. That is, as an abuse of notation we denote

Ψi
j = Ψi

s if Ni(s) = j, for i = 0, 1, 2,

which is well-defined for any j ≥ 2.
The relations (6.8)-(6.9) correspond to

1√
m
Z(1)Ψ0

j = Ψ1
j + Ψ1

2j , (6.10)

1√
m

(Z(2))>Ψ2
j = Ψ1

j + Ψ1
2j+1, (6.11)

and

1√
m

(Z(1))>Ψ1
j =

{
Ψ0
j if j is odd,

Ψ0
j + Ψ0

j/2 if j is even,
(6.12)

1√
m
Z(2)Ψ1

j =

{
Ψ2
j if j is even,

Ψ2
j + Ψ2

(j−1)/2 if j is odd.
(6.13)

Thanks to (6.10)-(6.11)-(6.12)(6.13), the matrices Λ1 and Λ2 in (6.5) can be
determined, which are the only missing unknowns to be able to obtain an evolution
of the system (6.5):

(Λ1)ij =

{
1 if i = j or 2i = j,
0 otherwise,

and (Λ2)ij =

{
1 if i = j or 2j + 1 = i,
0 otherwise,

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 43

that is,

Λ1 =

1 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 . . .
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0

...
. . .

 ,

and

Λ>2 =

1 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 . . .
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1

...
. . .

 .

References

[1] David J. Aldous. Representations for partially exchangeable arrays of random variables. Journal
of Multivariate Analysis, 11(4):581–598, 1981.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019.

[3] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. In International Conference on Learning Representa-
tions, 2018.

[4] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

[5] Francis Bach and Lénäıc Chizat. Gradient descent on infinitely wide neural networks: Global
convergence and generalization. arXiv preprint arXiv:2110.08084, 2021.

[6] Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning deep
linear neural networks: Riemannian gradient flows and convergence to global minimizers. In-
formation and Inference: A Journal of the IMA, 11(1):307–353, 2022.

[7] Andrew R. Barron. Approximation and estimation bounds for artificial neural networks. Ma-
chine learning, 14(1):115–133, 1994.

[8] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with
applications to compressed sensing. IEEE Transactions on Information Theory, 57(2):764–785,
2011.

[9] Erwin Bolthausen. An iterative construction of solutions of the TAP equations for the
Sherrington–Kirkpatrick model. Communications in Mathematical Physics, 325(1):333–366,
2014.

[10] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Advances in Neural Information Processing Systems, 35:32240–32256,
2022.

[11] Lénäıc Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information Processing
Systems, 2018.

[12] Lénäıc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems, 2019.

[13] Nadav Cohen, Govind Menon, and Zsolt Veraszto. Deep linear networks for matrix comple-
tionâ€”an infinite depth limit. SIAM Journal on Applied Dynamical Systems, 22(4):3208–3232,
2023.

[14] Amit Daniely. SGD learns the conjugate kernel class of the network. Advances in Neural In-
formation Processing Systems, 30, 2017.

44 LÉNAÏC CHIZAT, MARIA COLOMBO, XAVIER FERNÁNDEZ-REAL, AND ALESSIO FIGALLI

[15] Simon Du and Wei Hu. Width provably matters in optimization for deep linear neural networks.
In International Conference on Machine Learning, pages 1655–1664. PMLR, 2019.

[16] Simon S. Du, Wei Hu, and Jason D. Lee. Algorithmic regularization in learning deep homoge-
neous models: Layers are automatically balanced. Advances in Neural Information Processing
Systems, 31, 2018.

[17] Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti Singh. Gradient descent provably opti-
mizes over-parameterized neural networks. In International Conference on Learning Represen-
tations, 2019.

[18] Weinen E, Chao Ma, Lei Wu, and Stephan Wojtowytsch. Towards a mathematical under-
standing of neural network-based machine learning: what we know and what we don’t. CSIAM
Trans. Appl. Math., 1:561–615, 2020.

[19] Armin Eftekhari. Training linear neural networks: Non-local convergence and complexity re-
sults. In International Conference on Machine Learning, pages 2836–2847. PMLR, 2020.

[20] Xavier Fernández-Real and Alessio Figalli. The continuous formulation of shallow neural net-
works as wasserstein-type gradient flows. In Arthur Avila, Michael Rassias, and Sinai Yakov,
editors, Analysis at Large. Springer, 2022.

[21] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experi-
ment, 2020(11):113301, 2020.

[22] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gra-
dient dynamics in linear neural networks. Advances in Neural Information Processing Systems,
32, 2019.

[23] Eugene Golikov. Towards a general theory of infinite-width limits of neural classifiers. In In-
ternational Conference on Machine Learning, pages 3617–3626. PMLR, 2020.

[24] Eugene Golikov and Greg Yang. Non-gaussian tensor programs. Advances in Neural Informa-
tion Processing Systems, 35, 2022.

[25] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. In Advances in Neural Information Processing Systems, pages
9461–9471, 2018.

[26] Karl Hajjar, Lénäıc Chizat, and Christophe Giraud. Training integrable parameterizations of
deep neural networks in the infinite-width limit. arXiv preprint arXiv:2110.15596, 2021.

[27] Boris Hanin and Mihai Nica. Products of many large random matrices and gradients in deep
neural networks. Communications in Mathematical Physics, 376(1):287–322, 2020.

[28] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems, pages
8571–8580, 2018.

[29] Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-
saddle dynamics in deep linear networks: Small initialization training, symmetry, and sparsity.
arXiv preprint arXiv:2106.15933, 2021.

[30] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
7th International Conference on Learning Representations, ICLR 2019, 2019.

[31] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient
descent for matrix factorization: Greedy low-rank learning. In International Conference on
Learning Representations, 2020.

[32] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, pages
2388–2464, 2019.

[33] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–
E7671, 2018.

[34] Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

[35] Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles.
arXiv preprint arXiv:1712.05438, 2017.

INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 45

[36] Sewoong Oh, Soumik Pal, Raghav Somani, and Raghav Tripathi. Gradient flows on graphons:
existence, convergence, continuity equations. arXiv preprint arXiv:2111.09459, 2021.

[37] Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information Processing
Systems, 34:29218–29230, 2021.

[38] Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable
by norms. Advances in Neural Information Processing Systems, 33:21174–21187, 2020.

[39] Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.
In Advances in Neural Information Processing Systems, 2018.

[40] Andrew M Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of seman-
tic development in deep neural networks. Proceedings of the National Academy of Sciences,
116(23):11537–11546, 2019.

[41] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law
of large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

[42] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[43] Stephan Wojtowytsch. On the convergence of gradient descent training for two-layer ReLU-
networks in the mean field regime. arXiv preprint arXiv:2005.13530, 2020.

[44] Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models.
In Conference on Learning Theory, pages 3635–3673. PMLR, 2020.

[45] Greg Yang and Edward J. Hu. Tensor programs IV: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727–11737. PMLR, 2021.

EPFL SB MATH, Institute of Mathematics, Station 8, CH-1015 Lausanne, Switzer-
land

Email address: lenaic.chizat@epfl.ch

EPFL SB MATH, Institute of Mathematics, Station 8, CH-1015 Lausanne, Switzer-
land

Email address: maria.colombo@epfl.ch

EPFL SB MATH, Institute of Mathematics, Station 8, CH-1015 Lausanne, Switzer-
land

Email address: xavier.fernandez-real@epfl.ch

ETH Zurich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzer-
land

Email address: alessio.figalli@math.ethz.ch

	1. Introduction
	1.1. Related work and other limits
	1.2. Organization of the paper

	2. Presentation of the main results
	2.1. Setting
	2.2. Scale-free parameterization
	2.3. Limit dynamics
	2.4. Main statements
	2.5. Numerical illustrations

	3. An independent family of Gaussian vectors
	3.1. Notation
	3.2. The Gaussian bases
	3.3. Convergence of the family
	3.4. A recursion property
	3.5. Multi-dimensional input

	4. Proof of the main result
	5. Properties of the infinite-width dynamics
	5.1. A gradient flow
	5.2. Selection principle
	5.3. Quantitative convergence and implicit bias

	6. Multi-layer case
	6.1. The choice of the bases
	6.2. The case L = 2

	References

