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Abstract. We study viscosity solutions to the classical one-phase problem and its thin
counterpart. In low dimensions, we show that when the free boundary is the graph of a
continuous function, the solution is the half-plane solution. This answers, in the salient
dimensions, a one-phase free boundary analogue of Bernstein’s problem for minimal
surfaces.

As an application, we also classify monotone solutions of semilinear equations with a
bump-type nonlinearity.
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1. Introduction

In this work, we deal with the Bernoulli free boundary problem in both the classical
formulation, also known as the classical one-phase problem, u ≥ 0 in Ω ⊂ Rn,

∆u = 0 in {u > 0} ∩ Ω,
|∇u| = 1 on ∂{u > 0} ∩ Ω,

(1.1)

and the thin formulation, also known as the thin one-phase problem,
u ≥ 0 in Ω ⊂ Rn+1,

∆u = 0 in {u > 0} ∩ Ω,

∂
1/2
ν u = 1 on ∂{u > 0} ∩ {xn+1 = 0} ∩ Ω.

(1.2)

Here the ‘half-normal derivative’ ∂
1/2
ν u is defined as

∂1/2ν u(z) := lim
t↓0

t−1/2u(z + tν(z)),

where ν ∈ Sn ∩ {xn+1 = 0} is the inner normal vector along the free boundary,

∂Rn ({u > 0} ∩ {xn+1 = 0}) .

In each case, the solution u is a continuous function satisfying the equations in the viscosity
sense. For the precise definitions of viscosity solutions, see Definitions 2.2 and 5.2.

For the classical one-phase problem, the zero level set of the solution is sometimes
referred to as the contact set, namely,

Λ(u) := {u = 0}. (1.3)

For the thin version, the contact set is contained inside a lower-dimensional subspace,

Λ(u) := {u = 0} ∩ {xn+1 = 0}. (1.4)

Outside the contact sets, the solutions are harmonic. Along the boundary of the contact
sets, the so-called free boundaries, both the value and the rate of change of the solutions
are prescribed, leading to an overdetermined problem. As such, not every set can be
the free boundary of a solution, and to understand a solution it (essentially) suffices to
understand the free boundary.

There has been a lot of research devoted to understanding the free boundary of both
1.1 and 1.2 (see below for more details), of which one important aspect is the classification
of solutions in the entire space.

Such a classification has recently been completed for the obstacle problem (another free
boundary problem) by Eberle–Figalli–Weiss [EFW22] (see also [ESW23, EY23b]), conclud-
ing a program that lasted for more than 90 years (this classification also has implications
for the fine properties of free boundaries, c.f. [ESW22]). For the thin obstacle problem, a
partial classification has been achieved in [ERW21, EY23]. In both cases, the results state
that, under some restrictions, the space of entire solutions is finite-dimensional.

The obstacle problem and its thin counterpart arise as Euler–Lagrange equations of
convex energy functionals. The convexity of the functionals implies that viscosity solutions
are minimizers of the energy, allowing the usage of both variational and nonvariational
techniques.
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For our problems (1.1) and (1.2), however, the underlying functionals are not convex,
and the spaces of viscosity solutions are much wider than minimizers of the function-
als (see Definition 2.7 and Definition 5.7 for the definitions of minimizers). Indeed, the
original motivation for the viscosity framework is to construct non-minimizing solutions
[Caf88], which show up naturally in domain variation problems [HHP11] and fluid me-
chanics [BSS76, CG11].

This flexibility of the viscosity framework allows a wide-range of behaviors, and some
important energy-based tools are no longer available (for instance, the nondegeneracy
property may not hold for general viscosity solutions, [KW23]). As a result, even in
two dimensions, the best classification result for smooth solutions to the classical one-
phase problem requires topological restrictions [Tra14, JK16]. For the classical one-phase
problem in higher dimensions, or for the thin one-phase problem, a full classification of
entire solutions seems out of reach. This can be thought of in analogy with globally defined
minimal surfaces, for which a plethora of examples exist in R3, but there is no complete
list (see, e.g. [CM11]).

As a starting point for this classification, we propose to study solutions to (1.1) and (1.2)
with graphical free boundaries. To be precise, we study viscosity solutions whose contact
sets (see (1.3) and (1.4)) are subgraphs of continuous functions. Under this topological
assumption, we show that viscosity solutions are minimizers for the underlying energy
functionals (a result which may be of independent interest). This allows us to classify, in
low dimensions, the space of entire viscosity solutions with graphical free boundaries.

Our approach is inspired by the Bernstein conjecture for minimal surfaces, which states
that the only graphical minimal surface is the hyperplane [Ber15]. It was shown that
n-dimensional minimal graphs in Rn+1 must be hyperplanes for n ≤ 7 (see [Fle62, DeG65,
Alm66, Sim68]); while in higher dimensions, it is false by an example given in [BDG69].
Similarly, we do not expect our results to hold in higher dimensions (large enough to allow
for singular minimizers), though no analogue to the construction in [BDG69] has been
found for (1.1) or (1.2).

In the following, we describe our results in the classical regime (1.1) in subsection 1.1,
and in the thin regime (1.2) in subsection 1.3.

1.1. The classical regime. The classical one-phase problem (1.1) arises as the Euler-
Lagrange equation to the Alt–Caffarelli functional

JΩ(v) =

�
Ω
|∇v|2 + |{v > 0}|, for v ≥ 0, v ∈ H1(Ω), (1.5)

where Ω is a domain in Rn.
Motivated by models in flame propagation and jet flows [BL82, ACF82, ACF82b,

ACF83, CV95], this energy was originally studied from a mathematical point of view by
Alt and Caffarelli in [AC81]. Since then, regularity of the minimizer and its free boundary
has been extensively studied, see, for instance, [AC81, Caf87, DeS11, ESV20, FY23]. We
refer to [CS05] for a thorough introduction to the classical theory, and refer to [Vel23] for
a modern treatment of the one-phase problem and related topics.

Even homogeneous minimizers of (1.5) (also known as minimizing cones) have not
been fully classified. By the works of Caffarelli–Jerison–Kenig [CJK04] and Jerison–Savin
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[JS15], it is known that for n ≤ 4, the only homogeneous minimizer1 is, up to a rotation,
the half-plane solution

u(x) = x+n . (1.6)

While in dimension 7, De Silva-Jerison [DJ09] provides a nonflat minimizing cone.
The largest dimension in which homogeneous minimizers must be flat is currently un-

known. In this work, we denote the largest such dimension by n∗local, that is,

n∗local := max{n : minimizing cones of (1.5) in Rn are rotations of (1.6)}. (1.7)

With the aforementioned works, we have

4 ≤ n∗local ≤ 6.

Without assuming homogeneity, minimizers exhibit even richer behavior. For instance,
associated with each nonflat minimizing cone, there is a family of minimizers whose free
boundaries foliate the entire space Rn (see [DJS22, ESV23]).

Solutions to the one-phase problem (1.1) that are not minimizers of the Alt–Caffarelli
energy functional (1.5) arise naturally in problems involving domain variations [HHP11]
and fluid mechanics [BSS76, CG11]. In these contexts, the positive set, {u > 0}, of a
solution u in the entire space Rn is sometimes referred to as an exceptional domain. The
classification of exceptional domains is an important topic that so far has been successful
only for special classes of domains.

With the half-plane solution from (1.6), we see that the half-plane {xn > 0} is an
exceptional domain. The union of two half-planes, {xn > 0} ∪ {xn < −a} with a ≥ 0, is
also an exceptional domain corresponding to the solution u = x+n + (xn + a)−. By taking
a truncation of the fundamental solution, we see that the exterior of the ball Rn \ BR is
an exceptional domain if R > 0 is chosen properly. Apart from these classical examples, a
family of catenoid-like domains were discovered by Hauswirth–Hélein–Pacard [HHP11] in
the plane, and by Liu–Wang–Wei [LWW21] in general dimensions. A family of periodic
exceptional domains appeared in [BSS76].

By the work of Traizet [Tra14], we know that in the plane, these are all the exceptional
domains whose boundaries are smooth and have finitely many components. A similar
result was obtained by Khavinson–Lundberg–Teodorescu [KLT13], who also showed that
in general dimensions, the exterior of a ball is the only smooth exceptional domain with
bounded complement.

In the first part of this work, we deal with viscosity solutions to (1.1) with graphical
free boundaries. Concerning these solutions, our first main result states:

Theorem 1.1. Let u be a viscosity solution to the classical one-phase problem (1.1) in
Rn for

n ≤ n∗local + 1.

If its contact set Λ(u) is the subgraph of a continuous function, then we have

u = x+n

up to a rotation and a translation.

Recall the critical dimension n∗local and the contact set Λ(u) defined in (1.7) and (1.3)
respectively.

1The result applies to a larger class called stable solutions. They are critical points of the functional
(1.5) with nonnegative second variations.
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Remark 1.2. For smooth ∂{u > 0} in R2, Hauswirth–Hélein–Pacard showed a similar
result (substituting the assumption on the contact set with the related assumption of
monotonicity in a direction) in [HHP11] with complex variable techniques.

Remark 1.3. While we do not claim the condition requiring the graph to be continuous is
sharp, some regularity assumption is necessary on the graphical free boundary.

Indeed, taking u(x1, x2) to be any solution in R2 (for instance, the catenoid-type solution
in [HHP11]), we can extend it to R3 trivially as u(x1, x2, x3) := u(x1, x2). For such a
function, its contact set is the subgraph of a (generalized) function of the form x3 =
φ(x1, x2) with φ = −∞ in {u > 0} and φ = +∞ in {u = 0}.

To prove Theorem 1.1, the natural idea is to reduce the problem to the study of homo-
geneous solutions by a blow-down procedure. Unfortunately, due to the lack of variational
tools (monotonicity formula, nondegeneracy property, etc.), a blow-down analysis for gen-
eral viscosity solutions seems difficult.

For the class of solutions we are considering, however, we can show they are actually
minimizers of the Alt–Caffarelli energy (1.5). This is one of our main technical contribu-
tions to the classical one-phase problem and should be of independent interest (see, e.g.
the discussion in the introduction of [DJ11]):

Theorem 1.4. Suppose that u is a viscosity solution to the classical one-phase problem
(1.1) in Rn, and that its contact set Λ(u) is the subgraph of a continuous function.

Then u is a global minimizer of the Alt–Caffarelli energy (1.5).

For the definition of a global minimizer, see Definition 2.7.

Remark 1.5. See Proposition 3.5 for a localized version of this theorem.

While this theorem is inspired by a similar result for graphical minimal surfaces (or for
strictly monotone solutions to semilinear equations), in our case the proof is more delicate.

Indeed, for a graphical minimal surface, its minimizing property can be established by a
standard sliding argument. To be precise, for a function φ satisfying the minimal surface
equation in Rn, we need to show that its graph, to be denoted by Γφ, minimizes the area
over surfaces with the same boundary data. Suppose not: we find BR ⊂ Rn and a surface
M which matches Γφ along ∂BR×R and has strictly less area. Without loss of generality,
we may assume M is a minimizer of the area with given boundary data.

Now we translate Γφ vertically. With Γφ ̸=M in BR×R, there is a critical instant when
Γφ lies on one side of M but Γφ ∩M is nonempty. Since the two surfaces are translations
of one another along ∂BR×R, the point of intersection can be found in the interior of the
domain. This contradicts the strict maximum principle between minimal surfaces.

To implement a similar strategy in our context, there are several challenges.
Firstly, our problem involves not only the free boundary but also the solution. To per-

form the sliding argument, we need to translate a comparison between the free boundaries
into a comparison between the associated solutions. This is achieved by showing that the
graphicality assumption implies the monotonicity of the solution (See Proposition 3.5).

Secondly, while graphical minimal surfaces instantly regularize in the interior of the do-
main, see [BG72], a similar property for graphical free boundaries (in fact, for monotone
solutions) holds when assuming the minimizing property (in fact under the weaker assump-
tion that the positivity set has some quantitative topology) [DJ11], which is what we need
to prove. This lack of regularity for free boundaries also means the comparison principle is
much weaker. Even among minimizers of the Alt–Caffarelli functional, a strict maximum
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principle has only recently been established in [ESV23]. For viscosity solutions, such a
result is not known. We overcome this difficulty by working with sup/inf-convolutions
instead of the original solution.

The last challenge we need to overcome is the ‘boundary stickiness’ phenomenon, that
is, a large portion of the positive set {u > 0} of a minimizer ‘invades’ the zero region on
the fixed boundary. For instance, suppose that u is a minimizer in the two-dimensional
domain {(x1, x2) : x1 ∈ (−1, 1), x2 ∈ (0, δ)} with u = 1 on {x2 = δ}, and u = 0 on the
remaining parts of the boundary. By choosing δ small, it can be shown that u will be
positive in the entire domain. When this happens, the free boundary is ‘stuck’ to the fixed
boundary in some sense, and the sliding argument described above could fail due to contact
points along the fixed boundary. To rule out this possibility, we need precise information
about the separation of the free boundary from the fixed boundary. Fortunately for us,
this result has recently been obtained by Chang-Lara and Savin [CS19], allowing us to
complete the proof of Theorem 1.4.

With Theorem 1.4 in hand, we can perform a blow-down analysis of the solution u to
obtain a minimizing cone u∞ in Rn. With n ≤ n∗local + 1, its free boundary has smooth
trace on the sphere Sn−1 (here is where we use the restriction on the dimension). Being
the limit of graphical solutions, this cone u∞ is also graphical. A maximum principle type
argument, applied to the directional derivatives of u∞, implies that u∞ is a half-plane
solution.

This means that our original solution u is ‘flat at large scales’. An improvement of
flatness argument as in [DeS11] gives the desired flatness of u.

1.2. Application to semilinear equations. De Giorgi conjectured in 1978, [DeG78],
that monotone solutions (critical points) u of the Ginzburg–Landau energy (alternatively,
solutions to the Allen–Cahn equation)

∆u = −u(1− u2) in Rn,

with ∥u∥L∞(Rn) ≤ 1, must have one-dimensional symmetry (alternatively, all level sets
must be hyperplanes) in Rn with n ≤ 8. This is currently known as De Giorgi’s conjecture.
It was proven to hold in a series of papers in dimensions 2 and 3, [GG98, AC00], that
culminated with the remarkable work by Savin [Sav09] for 4 ≤ n ≤ 8, where it was shown
under the additional assumption

lim
xn→±∞

u(x′, xn) = ±1, (1.8)

which ensures that solutions are minimizers to the corresponding energy. A counter-
example when n ≥ 9 was constructed in [DKW11]. The paper [Sav09] also applies to
general solutions to semilinear equations ∆u = f(u) in Rn, provided that f is the derivative
of a “double-well potential” (with wells of the “same depth”). This established a relation
between the study of minimal surfaces (and in particular, entire minimal graphs) and
solutions to semilinear equations arising from local minimizers of an energy (for f coming
from double-well potentials; in particular, f with zero integral in the range of u).

For other types of semilinear equations (namely, those where f is similar to a bump
function or a Dirac delta; alternatively, when f has nonzero and finite integral in the
range of u) the corresponding analogy is not with minimal surfaces, but instead, with the
one-phase problem (see [CS05, FR19, AS22]). In particular, under the appropriate scaling
of non-double-well potential functionals, the corresponding limits are solutions to the one-
phase problem, and hence the corresponding zero-level set converges to the free boundary
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of a one-phase problem. This relation was already observed in [CS05], and then studied in
[FR19] to classify global solutions, and more recently in [AS22] to obtain a classification
of global minimizers to semilinear equations with f of bump type.

In analogy with De Giorgi’s conjecture, we have

Problem 1.6. Let u satisfy ∆u = f(u) in Rn for some f of bump type and ∂xnu > 0 in
Rn.

If n ≤ n∗local + 1, then u is a one-dimensional solution.

Here, we say that f is of bump type if f ≥ 0, f(0) = 0, f ′(0) > 0 and
�∞
0 f = 1; these

are the types of semilinear equations studied in [FR19, AS22].
As a consequence of our previous result, and thanks to [AS22], we prove that Problem 1.6

is true under the following additional growth assumption (in analogy with (1.8)):

lim
xn→−∞

u(x′, xn) = 0 and lim
xn→+∞

u(x′, xn) = ∞. (1.9)

Thus, we have:

Corollary 1.7. Problem 1.6 holds with the additional assumption (1.9).

1.3. The thin regime. The thin one-phase problem (1.2) corresponds to the Euler–
Lagrange equation of the thin one-phase energy functional. Given a domain Ω ⊂ Rn+1

that is even in the last variable2, and denoting

x = (x′, y) ∈ Rn × R, (1.10)

we define:

J 0
Ω(v) =

�
Ω
|∇v|2 dx+ λHn ({v > 0} ∩ {y = 0} ∩ Ω) , for v ≥ 0, v ∈ H1(Ω), (1.11)

whereHn denotes the n-dimensional Hausdorff measure, and λ > 0 is a universal constant3.
This functional was introduced by Caffarelli–Roquejoffre–Sire to address certain phe-

nomena in plasma physics and semi-conductor theory that involve long-range interactions
[CRS10]. Since then, the regularity of minimizers of (1.11) as well as viscosity solutions
to (1.2) has been studied extensively. See, for instance, [DR12, DS12, DSS14, EKPSS21].

Just as in the classical case, the classification of homogeneous minimizers/ minimiz-
ing cones remains an important open question for the thin one-phase problem. For this
problem, the corresponding half-plane solution is

u(x) = U(xn, y) :=
1√
2

√
xn +

√
x2n + y2. (1.12)

This is shown to be the only minimizing cone in dimension 2 + 1, [DS15b]. If we assume
axial-symmetry of the cones, nonflat minimizing cones4 can be ruled out in dimensions
n+ 1 ≤ 6, [FR23].

2The evenness of the domain, the function and/or the boundary conditions is a natural assumption for
this problem which we will make throughout and is shared by most of the literature. We mention here
only that it comes out of a connection to a nonlocal free boundary problem in the thin-space {xn+1 = 0}
and encourage the reader to look into the introductions of [DR12, CRS10, EKPSS21] for more background
and information

3This constant is chosen so that the free boundary condition in (1.2) has value 1 as the right-hand side.
4The result in [FR23] rules out stable cones, that is, those cones with nonnegative second variation for

(1.11).
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The half-plane solution is expected to be the only minimizing cone in low dimensions.
However, it is currently unknown what the critical dimension is. In this work, we denote
it by n∗thin, that is,

n∗thin := max{n : minimizing cones of (1.11) are rotations of (1.12) in Rn+1}. (1.13)

For the classification of entire viscosity solutions, even less is known. To the knowledge
of the authors, the only result available is in [DS15b, Proposition 6.4]. That result states
that for a homogeneous viscosity solution u, if its contact set Λ(u) (see (1.4)) is the
subgraph of a Lipschitz function, then u must be a half-plane solution.

In dimensions lower than n∗local + 1, our main result in the thin case removes the as-
sumption on homogeneity and Lipschitz regularity of the free boundary:

Theorem 1.8. Let u be a viscosity solution to the thin one-phase problem (1.2) in Rn+1

with
n ≤ n∗thin + 1.

If its contact set Λ(u) is the subgraph of a continuous function on {xn+1 = 0}, then

u =
1√
2

√
xn +

√
x2n + y2

up to a rotation and a translation.

Similar to the classical case, it remains to be seen what the sharp assumption on the
regularity of the free boundary is, see Remark 1.3.

The key ingredient in the proof of Theorem 1.8 is again the variational structure pro-
vided by the graphicality assumption, namely,

Theorem 1.9. Let u be a viscosity solution to the thin one-phase problem (1.2) in Rn+1

whose contact set Λ(u) is the subgraph of a continuous function on {xn+1 = 0}.
Then u is a global minimizer of the thin one-phase energy (1.11).

See Definition 5.7 for the definition of a global minimizer.

Remark 1.10. See Proposition 6.5 for a localized version of this result.

Remark 1.11. See also [CEF22], where the authors prove, by constructing a new nonlocal
calibration functional, that strictly monotone (bounded) solutions to semilinear nonlocal
equations are minimizers of the corresponding functional.

The challenges we described after Theorem 1.4 are still present for the thin case, and
most can be overcome with similar strategies. The issue of ‘boundary stickiness’, however,
requires new ideas, as the boundary behavior of minimizers, in the sense of Chang-Lara
and Savin [CS19], has not been studied in the thin case. We address this in the following
theorem, which may be of independent interest:

Theorem 1.12. Let w be a minimizer of the thin one-phase energy (1.11) in

Ω = B1 ∩ {x1 ≥ 0} ⊂ Rn+1

with
w = ψ on B1 ∩ {x1 = 0}.

If we assume that

ψ ∈ C1/2({x1 = 0}) and ψ = 0 on {y = 0},
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then we have w ∈ C1/2(B1/2 ∩ {x1 ≥ 0}) with

∥w∥C1/2(B1/2∩{x1≥0}) ≤ C
(
∥ψ∥C1/2(B1∩{x1=0}) + ∥w∥L∞(B1∩{x1≥0}) + 1

)
for some C depending only on n.

If we further assume that

ψ ≤ ω(|y|)|y|1/2 on {x1 = 0}

for some modulus of continuity ω, then for each x ∈ B1/2 ∩ {y = 0} ∩ {w > 0} and
r ∈ (0, 1/2), we have

sup
Br(x)∩{x1≥0}

w ≥ cr1/2

for some c depending only on n and ω.

Recall our convention for the coordinate system in Rn+1 from (1.10).
With Theorem 1.12, we establish Theorem 1.9, which allows us to use tools based on

the variational structure of the problem (monotonicity formula and nondegeneracy, etc).
This reduces the problem to the study of homogeneous minimizers, and finally gives our
classification of graphical viscosity solutions in low dimensions as in Theorem 1.8.

1.4. Structure of the paper. In Sections 2 to 4, we study the classical one-phase prob-
lem (1.1). In Section 2, we recall some preliminary results and introduce some notations.
In Section 3, we show that graphical solutions are minimizers as stated in Theorem 1.4.
In Section 4, we complete the classification of graphical solutions in low dimensions and
prove Theorem 1.1.

We deal with the thin one-phase problem (1.2) in Sections 5 to 8. Our structure par-
allels the classical treatment. Section 5 is devoted to some preliminaries and notations.
In Section 6, we show that monotone solutions are minimizers, as stated in Theorem 1.9,
assuming Theorem 1.12. Section 7 is devoted to the blow-down analysis and the classifi-
cation of graphical minimizing solutions in low dimensions. Finally, in Section 8, we prove
Theorem 1.12.
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2. Preliminaries and notations: the classical regime

In this section, we collect some preliminary facts about solutions to the classical one-
phase problem (1.1).

We begin with the definition of viscosity solutions to (1.1) as in Caffarelli–Salsa [CS05]
(cf. also with [Caf89]). To do that, we first introduce comparison solutions, that will work
as test functions:

Definition 2.1. Let u ∈ C(Ω) for some domain Ω ⊂ Rn, u ≥ 0 in Ω.
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(i) We say that u is a (strict) comparison subsolution to the classical one-phase problem
(1.1) if

u ∈ C2({u > 0}), ∆u ≥ 0 in {u > 0},
the free boundary ∂{u > 0} is a C2 manifold, and for any x◦ ∈ ∂{u > 0} we have

uν(x◦) := ν · ∇u(x◦) > 1,

where ν ∈ Sn−1 is the inward normal to ∂{u > 0} at x◦, ν = ∇u
|∇u|(x◦).

(ii) We say that u is a (strict) comparison supersolution to the classical one-phase prob-
lem (1.1) if

u ∈ C2({u > 0}), ∆u ≤ 0 in {u > 0},

the free boundary ∂{u > 0} is a C2 manifold. and for any x◦ ∈ ∂{u > 0} we have

uν(x◦) < 1,

where ν ∈ Sn−1 is the inward normal to ∂{u > 0} at x◦, ν = ∇u
|∇u|(x◦).

By means of the previous definition, we can introduce the notion of a viscosity solution:

Definition 2.2. Let u ∈ C(Ω) for some domain Ω ⊂ Rn, u ≥ 0 in Ω. We say that u is a
viscosity solution to the classical one-phase problem (1.1) if

∆u = 0 in {u > 0} ∩ Ω,

and any strict comparison subsolution (resp. supersolution) cannot touch u from below
(resp. from above) at a free boundary point x◦ ∈ ∂{u > 0}.

In the previous definition, we say that a strict comparison subsolution v touches from
below u at a free boundary point x◦ ∈ ∂{u > 0} if x◦ ∈ ∂{v > 0} and v ≤ u in a
neighborhood of x◦.

Unless otherwise specified, solutions should always be understood in the viscosity sense
in the remaining part of the paper. In general, singularities are inevitable on the free
boundary of a viscosity solution. To use various comparison principles, it is often neces-
sary to regularize the free boundary first. To this end, sup/inf-convolutions are powerful
technical tools.

Definition 2.3. For a domain Ω ⊂ Rn and t > 0, define

Ωt := {x ∈ Ω : dist(x,Ωc) > t}.

For u ∈ C(Ω), its t-sup-convolution is defined as

ut(x) := sup
Bt(x)

u for x ∈ Ωt.

Its t-inf-convolution is defined as

ut(x) := inf
Bt(x)

u for x ∈ Ωt.

The following lemma motivates the use of sup/inf-convolutions. We refer to Section 2.3
of [CS05].

Lemma 2.4. Let u ∈ C(Ω) be a viscosity solution to the classical one-phase problem
(1.1) in Ω. For t > 0, let ut and ut denote its sup-convolution and inf-convolution as in
Definition 2.3. Then:
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• ut satisfies ∆ut ≥ 0 in {ut > 0} ∩Ωt and, for each x◦ ∈ ∂{ut > 0} ∩Ωt, there is a
point p such that

Bt(p) ⊂ {ut > 0} and x◦ ∈ ∂Bt(p),

and

ut(x) ≥ ⟨x− x◦, ν⟩+ + o(|x− x◦|)
near x◦, where ν := 1

t (p− x◦).
• ut satisfies ∆ut ≤ 0 in {ut > 0} ∩Ωt and, for each x◦ ∈ ∂{ut > 0} ∩Ωt, there is a
point p such that

Bt(p) ⊂ {ut = 0} and x◦ ∈ ∂Bt(p),

and

ut(x) ≤ ⟨x− x◦, ν⟩+ + o(|x− x◦|)
near x◦, where ν := 1

t (x◦ − p).

We now turn to some well known results regarding the regularity of viscosity solutions.
First we recall that, viscosity solutions in the entire space Rn have a dimensional gradient
bound:

Lemma 2.5. Let u be a viscosity solution in Rn to the classical one-phase problem. Then,
there is a dimensional constant C such that

|∇u| ≤ C in Rn.

For a proof, see, for instance, Lemma 11.19 of [CS05].
A fundamental tool in the study of the one-phase problem is the following improvement-

of-flatness lemma from [DeS11]. We will use it at large scales to classify entire solutions
in low dimensions.

Lemma 2.6. Suppose that u is a solution to the classical one-phase problem (1.1) in B1

with 0 ∈ ∂Λ(u) and

(xn − ε)+ ≤ u ≤ (xn + ε)+ in B1.

There are dimensional constants ε̄, r, and C such that if ε < ε̄, then we can find e ∈ Sn−1

satisfying

|e− en| ≤ Cε2,

and

(x · e− εr/2)+ ≤ u(x) ≤ (x · e+ εr/2)+ in Br.

A special class of solutions to the classical one-phase problem (1.1) arises as the mini-
mizers of the Alt–Caffarelli functional (1.5).

Definition 2.7. For Ω ⊂ Rn and u ∈ H1(Ω), we say that u is a minimizer of the Alt–
Caffarelli functional (1.5) in Ω if u ≥ 0 in Ω, and

JΩ(u) ≤ JΩ(v) for all v ≥ 0, v − u ∈ H1
0 (Ω).

For u ∈ H1
loc(Rn) with u ≥ 0, we say that it is a global minimizer in Rn if it is a

minimizer in BR for every R > 0.

Compared with viscosity solutions, minimizers are particularly nice since we can apply
variational tools. This allows us to perform the following blow-down argument.
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Lemma 2.8. Let u be a global minimizer of the Alt–Caffarelli functional in Rn. For a
sequence ri ↑ ∞, define

ui(x) :=
u(rix)

ri
.

Then, perhaps passing to a subsequence, we can find a nonzero one-homogeneous global
minimizer u∞ such that

ui → u∞ locally uniformly in Rn

with

Λ(ui) → Λ(u∞) in L1
loc,

and

∂Λ(ui) → ∂Λ(u∞) locally in the Hausdorff distance sense.

Proof. The convergence to a nonzero global minimizer follows from the Lipschitz and non-
degeneracy estimates for minimizers in [AC81] (see also [DT15]; this is written explicitly
in [EE19, Theorem 1.3]). Using the Weiss monotonicity formula and arguing as in [Wei99],
the one-homogeneity of u∞ follows as long as

lim
ri↑∞

W (u, ri) <∞,

where W is the Weiss energy functional.
Towards this end, we note

W (u,R) ≤ 1

Rn

�
BR

|∇u|2 + χ{u>0} ≤ C,

for a dimensional constant C, where we used the universal gradient bound from Lemma
2.5. □

Homogeneous minimizers have smooth free boundaries on the sphere in low dimensions.
Recall the critical dimension n∗local defined in (1.7).

Lemma 2.9. Let u be a homogeneous minimizer in Rn with

n ≤ n∗local + 1.

Then ∂Λ(u) ∩ Sn−1 is smooth.

Remark 2.10. This is the only place where we require the restriction of dimensions.

Proof. Suppose not; then we find a singularity on ∂Λ(u) ∩ Sn−1, say, at point e1.
Then we perform a blow-up analysis as in [Wei99] and end up with a minimizer v, which

is independent of the variable x1 and has a line of singularities on the free boundary.
By restricting v to the variables (x2, x3, . . . , xn), we get a homogeneous minimizer in

Rn−1 with a singularity at 0. This contradicts the definition of n∗local as in (1.7). □

As mentioned in the introduction, one important tool we use to address the ‘boundary
stickiness’ phenomenon is the following theorem on boundary regularity of minimizers as
in [CS19]. See Figure 2.1 for a graphical representation of this setting.

Theorem 2.11. Let Ω ⊂ Rn be a domain with C2 boundary, and let Z ⊂ ∂Ω be open
with respect to the topology of ∂Ω. Let u : Ω → [0,∞) be a minimizer of the Alt–Caffarelli
functional in Ω such that

u = 0 on Z.
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Then u solves (in the viscosity sense), ∆u = 0 in Ω+ := {u > 0} ∩ Ω,
|∇u| ≥ 1 on ∂Ω+ ∩ Z,
|∇u| = 1 on ∂Ω+ ∩ Ω.

Furthermore, ∂Ω+ is C1 in a neighborhood of every x◦ ∈ ∂Ω+ ∩ Z.

{u = 0}

∂Ω+ ∩ {u = 0}
{Z

Ω+

x◦

Figure 2.1. Theorem 2.11 says that this is the only way in which the
free boundary can detach from the fixed boundary (from the interior of
the zero level set on the fixed boundary). In particular, there is always a
well-defined normal at x◦.

.

3. Graphical solutions are minimizers: the classical regime

In this section, we introduce the class of solutions we are interested in, namely, viscosity
solutions to (1.1) with graphical free boundaries. Under the mild assumption that the
contact set is the subgraph of a continuous function, we show that solutions in this class
are actually minimizers of the Alt–Caffarelli functional (1.5). This, in turn, allows us to
use the variational structure of the problem. In particular, we consider Proposition 3.5 to
be our main contribution in the classical setting and of independent interest.

We begin by formally introducing the class of solutions with graphical free boundaries:

Definition 3.1. Suppose that u is a solution to the classical one-phase problem in Rn as
in Definition 2.2, and that e ∈ Sn−1.

We say that u is a graphical solution in direction e, and write

u ∈ G(e),
if

Λ(u) + τe ⊃ Λ(u) for all τ > 0.

Recall that the contact set Λ(u) is defined in (1.3).

Remark 3.2. This definition gives a very weak notion of graphical free boundaries. Indeed,
it says that we can see the free boundary ∂{u > 0} as a graph of a “generalized function”
over the hyperplane {e · x = 0}; such a function does not need to be defined everywhere;
we only require that the intersection of ∂{u > 0} with each line perpendicular to the
hyperplane {e · x = 0} is connected.
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By definition, if a solution is monotone in the direction e, then it has graphical free
boundaries. We see now that the converse is true. This will be useful in turning geometric
comparison of the free boundaries into analytic comparison between the solutions.

Lemma 3.3. Let u ∈ G(en). Then u is monotone nondecreasing in the direction en.

Proof. We assume Λ(u) ̸= ∅, otherwise u is constant. Let us argue by contradiction, and
let us assume that we have (with the universal gradient bound as in Lemma 2.5),

γ := − inf
Rn\Λ(u)

∂nu > 0.

Consider a sequence xi ∈ {u > 0} such that

∂nu(xi) → −γ as i→ ∞
and let yi ∈ Λ(u) be such that

ri := |xi − yi| = dist(xi,Λ(u)).

If we rescale the solution as

wi(x) :=
u(rix+ xi)

ri
,

then {
∆wi = 0 in B1,
wi ≥ 0 in B1.

With |∇wi| ≤ C in Rn by Lemma 2.5, and

wi(yi) = 0 where yi :=
yi − xi
ri

∈ Sn−1, (3.1)

we have, up to a subsequence,

wi → w locally uniformly in Rn, and in C1
loc(B1)

for some harmonic function w. In particular, we have

w ≥ 0 and |∇w| ≤ C in Rn, (3.2)

and
∂nw(0) = −γ and ∂nw ≥ −γ in B1.

Strong maximum principle, applied to ∂nw, implies that ∂nw ≡ −γ in B1, and we can
write

w(x′, xn) = −γxn + g(x′) in B1

for some Lipschitz function g depending on x′ ∈ Rn−1. Moreover, with w ≥ 0, we have
g(x′) ≥ γ|xn| ≥ 0 for any (x′, xn) ∈ B1. Restricting to ∂B1, we have

g(x′) ≥ γ
√

1− |x′|2 ≥ 0 for any |x′| ≤ 1. (3.3)

Up to a subsequence, the points yi from (3.1) converge to some y ∈ Sn−1. The condition
that each wi ∈ G(en) implies that ȳi ·en ≤ 0 and so y ·en ≤ 0. If y ·en < 0, then w(y) = 0
and ∂nw = −γ < 0 implies w(y+ ten) < 0 for small t > 0, contradicting (3.2). Therefore,
we have

y · en = 0 and |y′| = 1.

As a result, we have g(y′) = w(y) = 0. Now we take p ∈ Sn−1, then (3.3) implies that

g(p′)− g(y′) = g(p′) ≥ γ
√
1− |p′|2 ≥ 1

2
γ
√

|y′ − p′|,

contradicting the Lipschitz regularity of g for p′ close to y′. □
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A useful corollary is the stability of the class G(e):

Corollary 3.4. If ui ∈ G(e) and ui → u∞ locally uniformly, then u∞ ∈ G(e).

The following proposition establishes the variational structure behind monotone viscos-
ity solutions. For this proposition, it is more convenient to use the cylindrical coordinates.
For R,L > 0, we denote by

B′
R := {x = (x′, xn) ∈ Rn : xn = 0, |x′| < R}.

Proposition 3.5. For L > H > 0, let u be a viscosity solution to the classical one-phase
problem (1.1) in Ω = B′

2 × (−2L−H, 2L+H) with

∂nu ≥ 0 in Ω.

If its contact set is a subgraph

Λ(u) = {(x′, xn) : xn ≤ f(x′)}
for a continuous function f satisfying

−H < f < H in B′
2,

then u is the unique minimizer of the Alt–Caffarelli functional (1.5) in D = B′
1× (−L,L).

Remark 3.6. With Lemma 3.3, Proposition 3.5 implies Theorem 1.4.

Remark 3.7. This is the only reason why we require the free boundary to be continuous
in the main results.

Proposition 3.5 follows from the following two lemmata, where we show, respectively,
that u is no less than any minimizer, and that u is no larger than any minimizer in D.

Lemma 3.8. Under the same assumptions as in Proposition 3.5, let w be a minimizer of
the Alt–Caffarelli functional (1.5) in D with w = u on ∂D.

Then u ≥ w in D.

Proof. Suppose not; then, there exist some x◦ ∈ D and η◦ > 0 such that

w(x◦) > u(x◦) + η◦.

For τ ∈ R, define the translation of u as

uτ (x
′, xn) := u(x′, xn + τ).

Fix s > 0 small such that

w(x◦) > us(x◦) +
1

2
η◦.

Step 1: Setting up the inf-convolution.
By monotonicity of u and the uniform continuity of the free boundary in D, there is a

set E such that

{u > 0} ∩D ⋐ E ⋐ {us > 0},
(see Figure 3.2). By strict maximum principle in the interior of E, we have

inf
E
∂nus > 0,

which gives δ > 0 such that

us ≥ u+ δ in {u > 0} ∩D. (3.4)



16 MAX ENGELSTEIN, XAVIER FERNÁNDEZ-REAL, AND HUI YU

D

E

{u > 0}

{us > 0}s
2L ρ

{vs > 0}

Figure 3.2. Setting in the proof of Lemma 3.8
.

For ρ > 0 small denote the inf-convolution of uτ , as in Definition 2.3,

vτ (x) := inf
Bρ(x)

uτ .

By the monotonicity of u, we have

vs+t ≥ vs, ∀t ≥ 0.

Moreover, if we pick ρ > 0 small enough (depending on δ and the modulus of continuity
for u), we have (in light of (3.4)) that

vs(x) ≥ u(x) for all x ∈ D, and w(x◦) > vs(x◦) +
1

4
η◦. (3.5)

Step 2: Initializing the sliding argument.
By the upper bound on f as in Proposition 3.5, we see that if t is large enough such

that t > ρ+H + L− s, then vs+t > 0 in D. With Lemma 2.4, this implies

∆vs+t ≤ 0 in D.

On the other hand, we know that for all t ≥ 0, vs+t ≥ u = w on ∂D. Since ∆w ≥ 0 in D,
we have

vs+t ≥ w in D (3.6)

if t > ρ+H + L− s.
Let us define now the critical contact time

t∗ = inf{t ≥ 0 : vs+t ≥ w in D}.
From (3.5), t∗ > 0.

Step 3: The contact point in the sliding argument.
Let x ∈ {w > 0} ∩D be such that

vs+t∗(x) = w(x).

Note that such a touching point must exist, otherwise the nonnegativity and monotonicity
of u would imply that vs+t∗−ε ≥ w for some small ε, contradicting the definition of t∗.
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With (3.4), if we take ρ small, then we can assume

vs+t∗ ≥ vs ≥ u+
δ

2
= w +

δ

2
on {u > 0} ∩ ∂D. (3.7)

Thus x /∈ {w > 0}∩∂D.Meanwhille, in {w > 0}∩D, we have ∆vs+t∗ ≤ 0 = ∆w. Combined
with vs+t∗ ≥ w, this tells us that vs+t∗ > w in {w > 0}∩D and that x /∈ {w > 0}∩D. As
a result, we must have

vs+t∗(x̄) = w(x̄) = 0.

Step 4: The contradiction.
There are two possibilities to consider, depending on whether this touching point lies

on ∂D or inside D.
If x̄ ∈ ∂{w > 0} ∩D, then we have x̄ ∈ ∂{vs+t∗ > 0}. With the existence of a tangent

ball as in Lemma 2.4, the point x̄ is a regular point of ∂{w > 0} (see, e.g. [AC81, Theorem
8.1]).

Since w is a minimizer, we have

w(x) = ⟨x− x̄, ν⟩+ + o(|x− x̄|)

where ν is the inner unit normal of ∂{u > 0} at x. On the other hand, the supersolution
property in Lemma 2.4 implies

vs+t∗(x) ≤ ⟨x− x̄, ν⟩+ + o(|x− x̄|).

These contradict Hopf’s lemma for the nonnegative harmonic function vs+t∗ − w at x.
Consequently, we must have

x̄ ∈ ∂({w > 0} ∩D) ∩ {w = 0} ∩ ∂D.

With vs+t∗(x) = 0 and (3.7), we have x̄ /∈ ∂{u > 0}∩ ∂D and thus, there is a neighbor-
hood Z ⊂ ∂D of x̄ where

w = u = 0 on Z.

In particular, we are in the situation of Theorem 2.11, which means that ∂({w > 0}∩D)∩
{w = 0} is C1 around x̄, and ∇w is well-defined at x̄ (since the normal is well-defined)
with |∇w(x̄)| ≥ 1. Proceeding as in the previous setting, we get again a contradiction
with Hopf’s Lemma at x̄. □

Lemma 3.9. Under the same assumptions as in Proposition 3.5, let w be a minimizer of
the Alt–Caffarelli functional (1.5) in D with w = u on ∂D.

Then u ≤ w in D.

Proof. Suppose not; we find x◦ ∈ D and η◦ such that

u(x◦) > w(x◦) + η◦.

With the same notation for the translation as in the previous proof, we fix s > 0 small
such that u−s(x◦) > w(x◦) +

1
2η◦.

As before, there exists some δ > 0 small such that

u ≥ u−s + δ in {u−s > 0} ∩D, (3.8)

and some ρ small enough such that

ṽ−s(x) := sup
Bρ(x)

u−s ≤ u(x) for all x ∈ D, and ṽ−s(x◦) > w(x◦) +
1

4
η◦. (3.9)
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With the assumption on the lower bound on f as in Proposition 3.5, we have

ṽ−s−t ≡ 0 ≤ w in D

if t+ s > L+H + ρ. Also, from (3.8) (taking ρ smaller if necessary)

ṽ−s−t ≤ w − δ

2
on {ṽ−s > 0} ∩ ∂D ⊃ {ṽ−s−t > 0} ∩ ∂D. (3.10)

We define
t∗ = inf{t ≥ 0 : ṽ−s−t ≤ w in D}.

Arguing as before, we have t∗ > 0, and there exists some x̄ ∈ {ṽ−s−t∗ > 0} ∩D such that

ṽ−s−t∗(x̄) = w(x̄).

Moreover, we have x̄ /∈ {ṽ−s−t∗ > 0} ∩ D by the maximum principle, and x̄ /∈ ∂D by
(3.10).

As a result, we have
x̄ ∈ ∂{ṽ−s−t∗ > 0} ∩D.

With the asymptotic expansion of w and v−s−t∗ from Definition 2.2 and Lemma 2.4, this
again contradicts Hopf’s Lemma. □

Thus, as a consequence of the previous two lemmata, we obtain:

Proof of Proposition 3.5. It is a combination of Lemmas 3.8 and 3.9. □

We finally have:

Proof of Theorem 1.4. It follows from Lemma 3.3 and Proposition 3.5 □

4. Flatness of graphical solutions: the classical regime

In this section we prove our main result in the classical regime, namely, Theorem 1.1.
With Theorem 1.4 (see also Lemma 3.3 and Proposition 3.5), it suffices to consider global
minimizers.

We start with the following technical lemma, which says that if u is monotone in the
direction e and has smooth free boundary, then either e is never tangent to the free
boundary or the solution is independent of the direction e.

Lemma 4.1. Let u be a viscosity solution in the sense to (1.1) in B1 with ∂Λ(u) ∩ B1

being C2-submanifold with inward pointing unit normal ν. Also assume that {u > 0}∩B1

is connected.
If, for some e ∈ Sn−1,

∂eu ≥ 0 in B1,

then, either ν(x) · e > 0 for all x ∈ ∂{u > 0} ∩B1, or ∂eu ≡ 0 in B1.

Proof. Suppose not; we have
∂eu ̸≡ 0 in B1,

but
ν(x◦) · e = 0 for some x◦ ∈ ∂{u > 0} ∩B1.

As such ∂eu(x◦) = e · ν(x◦) = 0.
Since ∂eu ̸≡ 0 and ∂eu ≥ 0, we can apply Hopf’s Lemma to deduce that

∂e∂ν(x◦)u(x◦) = ∂ν(x◦)∂eu(x◦) > 0.
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On the other hand, the function ∂{u > 0} ∋ x 7→ ∂ν(x◦)u(x) has a maximum at x0. As e
is tangent to ∂{u > 0} at x0 we get ∂e∂ν(x◦)u(x◦) = 0, the desired contradiction. □

With this lemma, we show that graphical cones are flat in low dimensions. Recall the
critical dimension n∗local defined in (1.7) and the notion of global minimizers from Definition
2.7.

Proposition 4.2. Let u ∈ G(en) in Rn with

n ≤ n∗local + 1.

If u is a homogeneous minimizer, then

u = (x · e)+
for some e · en ≥ 0.

Proof. Lemma 2.9 implies that for each x ∈ ∂{u > 0} ∩ Sn−1, the unit normal ν(x) to
∂{u > 0} (outward with respect to {u = 0}) exists and is a continuous function of x. The
assumption u ∈ G(en) implies that en ·ν(p) ≥ 0 for all p ∈ ∂{u > 0}∩Sn−1. By continuity
there exists a direction

e◦ ∈ argmin
ē∈Sn−1

{
ē · en : ē · ν(x) ≥ 0, ∀x ∈ ∂{u > 0} ∩ Sn−1

}
.

We claim that there is a point p◦ ∈ ∂{u > 0} ∩ Sn−1 such that e◦ · ν(p◦) = 0. If not,
then by compactness there is a δ > 0 such that e◦ · ν(p) ≥ δ for all p ∈ ∂{u > 0} ∩ Sn−1.
This implies that for any ē ∈ Sn−1 with ∥ē− e◦∥ < δ/2 we have ē · ν(p) ≥ δ/2 > 0 for all
p ∈ ∂{u > 0} ∩ Sn−1, contradicting the minimality of e◦.

If en = e◦, let p◦ ∈ ∂{u > 0} ∩ Sn−1 be such that ν(p◦) · en = 0. Recall that for every
globally defined minimizer u, {u > 0} is connected (see, e.g. [DET19, Theorem 2.2] or
[ESV23, Theorem 2.3]). Hence, we can apply Lemma 4.1 to the connected component
of B1/2(p◦) ∩ {u > 0} with p◦ on its boundary (u is monotone in the en direction, by
Lemma 3.3), to conclude that u is invariant in the direction en in all of Rn (by analyticity
and connectedness of {u > 0}). As a result, the restriction of u into the space perpindicular
to en is a minimizing cone in Rn−1. The criticality of n∗local implies that u is a half-plane
solution.

So we may assume en ·ν(p) > 0 for all p ∈ ∂{u > 0}∩Sn−1 and thus en ̸= e◦. If we can
show that u ∈ G(e◦), we may argue as above around the point p◦ (where e◦ · ν(p◦) = 0) to
conclude that u is a half-plane solution. In order to prove that u ∈ G(e◦), we first note that
because en · ν(p) > 0, by homogeneity, and by Lemma 2.9, we have that ∂{u > 0} is the
graph of a Lipschitz function in the en direction (and in fact, ∂{u > 0} \ {0} is a smooth
graph). A simple computation shows that for any δ > 0, we have (e◦ + δen) · ν(x) > 0
for all x ∈ ∂{u > 0} ∩ Sn−1. So by the implicit function theorem, ∂{u > 0} ∩ Sn−1 is the
graph of a smooth function over the equator perpendicular to e◦+δen

∥e◦+δen∥ . By homogeneity

this implies that u ∈ G( e◦+δen
∥e◦+δen∥) for all δ > 0. Sending δ ↓ 0 and invoking Corollary 3.4

we are done. □

We then have, by a blow-down argument:

Corollary 4.3. Let u ∈ G(en) be a global minimizer to the Alt–Caffarelli functional in
Rn with

n ≤ n∗local + 1.

Then u = (x · e)+ for some e · en ≥ 0.
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Proof. Consider the rescalings

uR(x) =
u(Rx)

R
as R→ ∞. By Lemma 2.8, we have

uRi → v locally uniformly

along a subsequence Ri ↑ ∞, where v is some homogeneous minimizer to the one-phase
problem. With Corollary 3.4 and Proposition 4.2, we have

v = (x · e′)+
for some e′ ∈ Sn−1.

Given small ε > 0, we have

∥uRi − v∥L∞(B1) < ε for i large enough.

From here, we iterate Lemma 2.6 to conclude |uRi − vk| ≤ ( r02 )
kε in Brk0

where each vk

is a half-plane solution. That is, |u − vk| ≤ Ri(
r0
2 )

kε in BRirk0
. Choosing Ri and k large

enough, we conclude
∥u− vk∥L∞(B1) ≤ ε.

Since ε is arbitrary and the set of half-plane solutions compact, we conclude u is a half-
plane solution in B1. A similar argument can be used to show that u is a half-plane
solution in any compact subset of Rn. That e · en ≥ 0 follows immediately the fact that
u ∈ G(en). □

Combining the previous results we directly get Theorem 1.1:

Proof of Theorem 1.1. Thanks to Theorem 1.4, u is a global minimizer. We are now done
by Corollary 4.3. □

And we also get Corollary 1.7:

Proof of Corollary 1.7. Suppose that u is a solution to ∆u = f(u). The condition (1.9)
and ∂xnu > 0 implies that u is a minimizer of the corresponding energy functional. This
can be proven by constructing a foliation. In fact, the same proof used in [CP18, Theorem
2.4] works in this context, where the condition (1.9) ensures that (large) translations of u
are completely above or below a potential minimizing competitor on a given compact set
K (see also the proof of [AAC01, Theorem 4.4]).

The result is now a consequence of [AS22]. We use [AS22, Proposition 5.1] to obtain
that an appropriate rescaling is arbitrarily close to a global solution to the one-phase
problem. Since the graphicality condition in Definition 3.1 passes well to the limit (see
also [AS22, Lemma 5.2]), thanks to our classification result in Corollary 4.3 we are done
by applying [AS22, Theorem 1.4]. □

5. Preliminaries and notations: the thin case

In this section, we collect some preliminary facts about solutions to the thin one-phase
problem (1.2).

We begin with the definition of viscosity solutions to (1.2), see, e.g. [DR12] or [DS15b],
which parallels the classical definition (recall Definitions 2.1 and 2.2).

In the following, we denote by F (u) the free boundary of u ≥ 0 in Ω, which is the
boundary of a set in {xn+1 = 0} (with respect to its relative topology):

F (u) := ∂Rn ({u > 0} ∩ {xn+1 = 0}) ∩ Ω,
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and we also denote

Sn0 := {e ∈ Sn : en+1 = 0} = {e = (e′, en+1) ∈ Rn × R : |e′| = 1, en+1 = 0}.

Finally, recall from (1.12) the one-phase solution:

U(xn, y) :=
1√
2

√
xn +

√
x2n + y2.

Definition 5.1. Let u ∈ C(Ω) for some domain Ω ⊂ Rn+1, u ≥ 0 in Ω, even with respect
to the plane {xn+1 = 0}:

(i) We say that u is a (strict) comparison subsolution to the thin one-phase problem
(1.2) if

u ∈ C2({u > 0}), ∆u ≥ 0 in {u > 0},
the free boundary F (u) is a C2 manifold, and for any x◦ ∈ F (u) there exists a
α(x◦) > 1 such that, denoting z = (z′, zn+1) ∈ Rn × R,

u(x◦ + z) = α(x◦)U(z′ · ν, zn+1) + o(|z|1/2),

where ν ∈ Sn0 is the inward normal to F (u) at x◦, and U(xn, y) is given by (1.12).
(ii) We say that u is a (strict) comparison supersolution to the thin one-phase problem

(1.2) if

u ∈ C2({u > 0}), ∆u ≤ 0 in {u > 0},
the free boundary F (u) is a C2 manifold, and for any x◦ ∈ F (u) there exists a
α(x◦) < 1 such that, denoting z = (z′, zn+1) ∈ Rn × R,

u(x◦ + z) = α(x◦)U(z′ · ν, zn+1) + o(|z|1/2),

where ν ∈ Sn0 is the inward normal to F (u) at x◦, and U(xn, y) is given by (1.12).

As in the classical case, we use these comparison solutions as test functions to define a
viscosity solution:

Definition 5.2. Let u ∈ C(Ω) for some domain Ω ⊂ Rn+1, u ≥ 0 in Ω, even with respect
to the plane {xn+1 = 0}. We say that u is a viscosity solution to the thin one-phase
problem (1.2) if

∆u = 0 in {u > 0} ∩ Ω,

and any strict comparison subsolution (resp. supersolution) cannot touch u from below
(resp. from above) at a free boundary point x◦ ∈ F (u).

In the previous definition, we say that a strict comparison subsolution v touches from
below u at a free boundary point x◦ ∈ F (u) if x◦ ∈ F (v) and v ≤ u in a neighborhood of
x◦.

As in the classical case we want to define the sup/inf-convolutions. Note that in this
setting the neighborhoods over which we are taking the supremum and infimum are “thin”,

Definition 5.3. For a domain Ω ⊂ Rn+1 (even with respect to {xn+1 = 0}) and t > 0,
define

Ωt,thin := {(x′, y) ∈ Ω : (x′, y + τ) ∈ Ω for all τ ∈ (−t, t)}.
For u ∈ C(Ω), its t-sup-convolution is defined in Ωt,thin as

ut(x, y) := sup
{(x′,y):|x−x′|<t}

u(x′, y).
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Its t-inf-convolution is defined on Ωt,thin as

ut(x, y) := inf
{(x′,y):|x−x′|<t}

u(x′, y).

As in the classical case, these convolutions satisfy good comparison properties (the proof
of this lemma follows as in the classical case once one has [DS12, Lemma 7.5], see also
[DSS14, Corollary 2.9]).

Lemma 5.4. Let u ∈ C(Ω) be a viscosity solution to the thin one-phase problem (1.2) in
Ω. For t > 0, let ut and ut denote its sup-convolution and inf-convolution as in Definition
5.3. Then:

• ut satisfies ∆ut ≥ 0 in {ut > 0}∩Ωt,thin and, for each x◦ ∈ F (ut), there is a point
p = (p′, 0) such that

B′
t(p) ⊂ {ut > 0} ∩ {xn+1 = 0} and x◦ ∈ ∂Bt(p),

and

ut(x
′, 0) ≥ ⟨x′ − x′◦, ν⟩

1/2
+ + o(|x′ − x′◦|1/2)

for x′ near x′◦, where ν := 1
t (p

′ − x′◦).
• ut satisfies ∆ut ≤ 0 in {ut > 0}∩Ωt,thin and, for each x◦ ∈ F (ut), there is a point
p = (p′, 0) such that

B′
t(p) ⊂ {ut = 0} ∩ {xn+1 = 0} and x◦ ∈ ∂Bt(p),

and

ut(x
′, 0) ≤ ⟨x′ − x′◦, ν⟩

1/2
+ + o(|x′ − x′◦|1/2)

for x′ near x′◦, where ν := 1
t (x

′
◦ − p′).

We turn now to the regularity of viscosity solutions. Corresponding to Lemma 2.5, we
have the following (with an analogous proof):

Lemma 5.5. Let u be a solution in Rn+1 to the thin one-phase problem 1.2. Then, there
is a dimensional constant C such that

[u]C1/2(Rn+1) ≤ C in Rn+1.

In terms of the free boundary, we have an improvement of flatness lemma [DR12,
Theorem 7.1]:

Lemma 5.6. Let u be a viscosity solution to the thin one-phase problem (1.2) in B1, and
assume that 0 ∈ F (u) and

U(xn − ε, xn+1) ≤ u(x) ≤ U(xn + ε, xn+1), for all x ∈ B1,

where U(xn, xn+1) is given by (1.12).
There are dimensional constants ε̄ > 0 and r > 0 such that if ε ≤ ε̄, then we can find

e ∈ Sn−1 such that

U(x · e− εr/2, xn+1) ≤ u(x) ≤ U(x · e+ εr/2, xn+1), for all x ∈ Br.

A particular class of solutions to the thin problem are minimizers of an appropriate
energy functional, (1.11):
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Definition 5.7. For Ω ⊂ Rn+1 and u ∈ H1(Ω), both even with respect to {xn+1 = 0},
we say that u is a minimizer of the thin Alt–Caffarelli functional (1.11) in Ω if u ≥ 0 in
Ω, and

J 0
Ω(u) ≤ J 0

Ω(v) for all v ≥ 0, v − u ∈ H1
0 (Ω).

For u ∈ H1
loc(Rn+1) with u ≥ 0 and even with respect to {xn+1 = 0}, we say that it is

a global minimizer in Rn+1 if it is a minimizer in BR for every R > 0.

As in the classical setting, minimizers have nondegeneracy and compactness properties
that allow for additional arguments. In particular, we can execute a blow-down argument
using a Weiss-type monotonicity formula (see, e.g. [All12]):

Lemma 5.8. Let u be a global minimizer of the thin Alt–Caffarelli functional in Rn+1.
For a sequence ri ↑ ∞, define

ui(x) :=
u(rix)

r
1/2
i

.

Then, perhaps passing to a subsequence, we can find a nonzero 1/2-homogeneous global
minimizer u∞ such that

ui → u∞ locally uniformly in Rn+1

with
χ{ui=0}∩{xn+1=0} → χ{u∞=0}∩{xn+1=0} in L1

loc({xn+1 = 0}),
and

F (ui) → F (u∞) locally in the Hausdorff distance sense.

Proof. The proof is the same as the local setting (Lemma 2.8) using the Weiss-type mono-
tonicity formula adapted to the thin case in [All12] and the compactness properties of
minimizers to the thin functional (see, e.g. [EKPSS21, Lemma 3.4]). □

Finally, in analogy to the classical setting, homogeneous minimizers have smooth free
boundaries on the sphere in low dimensions. Recall the critical dimension n∗thin defined in
(1.13).

Lemma 5.9. Suppose that u is a homogeneous minimizer in Rn+1 with

n ≤ n∗thin + 1.

Then F (u) ∩ Sn0 is smooth.

Remark 5.10. For the thin one-phase problem, this is the only place where we require the
restriction on dimension.

Proof. The proof proceeds exactly as in the classical case (Lemma 2.9). □

6. Graphical solutions are minimizers: the thin case

As in the classical case, we first show that graphical solutions are minimizers to the thin
one-phase functional. The first step is adapting the definition of graphical free boundaries,
Definition 3.1, to the thin setting:

Definition 6.1. Let u be a solution to the thin one-phase problem in Rn+1 as in Definition
5.2, and that e ∈ Sn0 .

We say that u is a graphical solution in direction e, and write

u ∈ Gs(e),
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if

Λ(u) + τe ⊃ Λ(u) for all τ > 0.

Recall that the contact set Λ(u) is defined in (1.4).

By definition, if a solution is monotone in the direction e, then it has a graphical free
boundary in that direction. As in the classical case, the converse is also true in the thin
setting.

Actually, the statement in the thin case is more general as it does not involve the
free boundary condition (see Remark 6.3 for a direct proof that uses the free boundary
condition). This is, in part, due to the fact that we can apply the boundary Harnack
inequality in any slit domain [DS20].

Proposition 6.2. Let u be a solution to ∆u = 0 in Rn+1 \ Λ
u ≥ 0 in Rn+1

u = 0 on Λ,

where Λ = {u = 0} ⊂ {y = 0}.
If there is e ∈ Sn0 such that

Λ(u) + τe ⊃ Λ(u) for all τ > 0,

then u is monotone nondecreasing in the direction e.

Proof. Let us define, for some τ > 0,

uτ (x) = u(x− τe).

We have  ∆uτ ≥ 0 in Rn+1 \ Λ
uτ ≥ 0 in Rn+1

uτ = 0 on Λ.

We have used here that ∆u ≥ 0 globally, and uτ = 0 on Λ. Thus, uτ and u are globally
defined nonnegative and continuous functions that vanish continuously on some slit domain
Λ, and u is harmonic outside of Λ, whereas uτ is subharmonic (and harmonic outside the
thin space).

Boundary Harnack inequality for slit domains [DS20, Corollary 3.4] (see also [RT21,
Theorem 1.8]) for even functions gives a constant C depending only on n such that

gτ (R)uτ ≤ Cu in BR, (6.1)

where gτ (R) denotes

gτ (R) :=
u(Ren+1)

uτ (Ren+1)
.

We comment that [DS20, Corollary 3.4] concerns two solutions whereas uτ is a subsolution.
However an inspection of the proof shows that the one sided inequality (6.1) holds when
uτ is a subsolution.

Let us start by bounding gτ (R) in terms of τ and R:

|gτ (R)− 1| = |u(Ren+1)− uτ (Ren+1)|
uτ (Ren+1)

≤ τ
∥∇u∥L∞(BR/4(Ren+1))

uτ (Ren+1)
,
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where we are taking R > 4 and τ < 1. By the interior Harnack inequality applied to uτ
(notice that ∆uτ = 0 in BR(Ren+1)), we also know that

uτ (Ren+1) ≥ c∥u∥L∞(BR/2(Ren+1)),

for some c depending only on n. Hence,

|gτ (R)− 1| ≤ Cτ
∥∇u∥L∞(BR/4(Ren+1))

∥u∥L∞(BR/2(Ren+1))
≤ C̃τ

R
(6.2)

for some constant C̃ depending only on n, where in the last inequality we are applying
gradient estimates for harmonic functions in a ball of radius R/2.

On the other hand, from (6.1) we can define a function

w := u− gτ (R)

C
uτ ,

that satisfies  ∆w ≤ 0 in Rn+1 \ Λ
w ≥ 0 in BR

w = 0 on Λ.

We can therefore apply again the boundary Harnack inequality in slit domains to deduce

Cw ≥
w
(
R
2 en+1

)
u
(
R
2 en+1

) u =

(
1− 1

C

gτ (R)

gτ (R/2)

)
u in BR/2,

for the same constant C as in (6.1). Rearranging terms with the definition of w, this
implies

gτ (R)uτ ≤
(
C +

1

C

gτ (R)

gτ (R/2)
− 1

)
u in BR/2.

Observe that, from (6.2), if R ≥ R0 for some universal R0 ≥ 8C̃, then

gτ (R)

gτ (R/2)
≤

1 + C̃τ
R

1− 2C̃τ
R

= 1 + 3
C̃τ

R− 2C̃τ
≤ 1 + 4C̃

τ

R
.

Hence we have

gτ (R)uτ ≤
(
C +

1

C
− 1 + C ′ τ

R

)
u in BR/2 (6.3)

for some constant C ′ depending only on n. Thus, we have gone from (6.1) to (6.3), where
the constant is improved (if R is large enough). Iterating the procedure, we have that

gτ (R)uτ ≤ Cku in B2−kR, (6.4)

for all k ∈ N such that 2−kR ≥ R0, and where Ck satisfy the recurrence relation:

C0 = C, Ck+1 = C +
1

C
− 1 + C ′ τ

2−k+1R
. (6.5)

Now let α > 0 be fixed, and let us consider the recurrence

xα0 = C, xαk+1 = xαk +
1

xαk
− 1 + α for k ∈ N.

Then if C > 1
1−α , x

α
k is decreasing and with limit 1

1−α . So for any 0 < α < 1
4 , assuming C

is large enough, there exists some kα such that xαk ≤ 1 + 2α for all k ≥ kα.
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Fix α ∈ (0, 1/4). The constant C > 0 comes from (6.1) and we can always take it bigger
so that C > 1

1−α . This fixes C
′ > 0 as in (6.3). Let R ≥ Rα with Rα such that

C ′

2−kα+1Rα
≤ α.

Then, from (6.5) (recall τ < 1) we know Ck ≤ xαk for k ≤ kα, and thus Ckα ≤ xαkα ≤ 1+2α.
Hence, in (6.4) we have (

1− C̃τ

R

)
uτ ≤ (1 + 2α)u in B2−kαR.

We now let first R→ ∞, and then α ↓ 0, to get

uτ = u(· − τe) ≤ u in Rn+1.

Since 0 < τ < 1 is arbitrary, this implies that u is monotone in the direction e, as we
wanted to see. □

Remark 6.3. For the thin one-phase problem (1.2), such monotonicity follows directly from
Lemma 5.5 and the scaling of the problem:

If we assume u ∈ Gs(e) with {u = 0} ̸= ∅ and define v(x) = [u(x)− u(x− τe)]/τ , then
the graphicality of the free boundary implies that ∆v− ≥ 0 in Rn+1. As a consequence,
we have

v−(0) ≤ C

( �
BR

v2
)1/2

≤ C

(
1

τ

� τ

0

[ �
BR

u2e(· − te)

]
dt

)1/2

≤ CR−1/2,

where the last inequality follows from the Caccioppoli estimate for the subharmonic func-
tion u (where its growth is controlled by Lemma 5.5).

Sending R→ ∞ gives the desired monotonicity.

As in the local case, compactness of “monotone” solutions follows immediately:

Corollary 6.4. If ui ∈ Gs(e) with ui → u∞ uniformly on compact sets, then u∞ ∈ Gs(e).

We are now ready to show, in the thin setting, that global monotone solutions are
actually minimizers of the functional (1.11). As in the local case, we believe this to be a
contribution of independent interest.

For R > 0 we define
B′′

R := {x′ ∈ Rn−1 : |x′| < R}.

Proposition 6.5. For L > H > 0, let u be a viscosity solution to the thin one-phase
problem (1.2) in Ω ≡ B′′

2 × (−2L−H, 2L+H)× (−2L, 2L) with

∂nu ≥ 0 in Ω.

If its contact set is a subgraph

Λ(u) = {(x′, xn, 0) : xn ≤ f(x′)}
for some continuous function f satisfying

−H < f(x′) < H in B′′
2 ,

then u is the unique minimizer of the thin Alt-Caffarelli functional (1.11) in D := B′′
1 ×

(−L,L)× (−L,L).

As in the classic case, we split this proposition up into two pieces:
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Lemma 6.6. Under the same assumptions and using the same notation as Proposition
6.5, if w is a minimizer to the functional (1.11) in D with w = u on ∂D then u ≥ w in
D.

The proof of this lemma follows the same scheme as its local counterpart (Lemma 3.8)
but, as mentioned in the introduction, there is no known thin analogue to the results of
Chang-Lara–Savin [CS19]. Instead, we use a growth result whose proof we defer to Section
8 (see Theorem 1.12):

Proof. We assume not, so that, for some x◦ ∈ D′ × {0} and η◦ > 0,

w(x◦) > u(x◦) + η◦.

(Observe that such an x◦ exists on {y = 0} by the maximum principle applied on the
domain D+ := B′′

1 × (−L,L)× (0, L).) We define for τ ∈ R,

uτ (x
′′, xn, y) := u(x′′, xn + τ, y),

and by the continuity of u we can pick s > 0 small and fixed such that w(x◦) > us(x◦)+
1
2η◦.

Step 1: Setting up the inf-convolution
By the monotonicity of u in the en direction (Proposition 6.2) and the uniform continuity

of the free boundary in D, there exists a set E ⊂ {y = 0} such that

{u > 0} ∩ (D′ × {0}) ⋐ E ⋐ {us > 0} ∩ {y = 0},
where the compact inclusions need to be understood in the induced topology of {y = 0}.
By the strong maximum principle,

inf
E
∂nus > 0

and there exists some δ > 0 small such that

us ≥ u+ δ on {u > 0} ∩ (D′ × {0}). (6.6)

Let ρ > 0 be small enough, to be determined later and denote the inf-convolution of uτ ,
as in Definition 5.3, by

vτ (x, y) := inf
z∈B′

ρ(x)
uτ (z, y).

By monotonicity, we have vs+t(x) ≥ vs(x) for all t ≥ 0 and x ∈ D. Picking ρ small enough,
depending on η◦ above, δ > 0 from (6.6), and the (uniform) modulus of continuity of us,
we have

vs(x) ≥ u(x) for all x ∈ D, and w(x◦) > vs(x◦) +
1

4
η◦. (6.7)

Step 2: Initializing the sliding argument
As in the local case, our vs will be a family of supersolutions which we will “slide” down

until we touch w and get a contradiction. We start by showing that for t large we have
vs+t ≥ w. Indeed, if t > ρ+H + L− s then vs+t > 0 in D and

∆vs+t ≤ 0 in D if t > ρ+H + L− s

(in the viscosity sense). On the other hand, for all t ≥ 0,

vs+t ≥ u = w on ∂D,

so that by maximum principle (since ∆w ≥ 0 in D)

vs+t ≥ w in D if t > ρ+H + L− s.
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Let us define now

t∗ := inf{t ≥ 0 : vs+t ≥ w in D} = inf{t ≥ 0 : vs+t ≥ w on D′ × {0}},

where the second equality follows from the maximum principle (applied in D ∩ {y > 0}).
By (6.7), t∗ > 0.

Step 3: The contact point in the sliding argument
From (6.6) (taking ρ smaller if necessary, depending only on s) for any t > 0

vs+t ≥ vs ≥ u+
δ

2
= w +

δ

2
on {u > 0} ∩ ∂D ∩ {y = 0}. (6.8)

By continuity and (6.8), together with the monotonicity in the en direction, there exists

a touching point x̄ ∈ {w > 0} ∩ (D′ × {0}), i.e. vs+t∗(x̄) = w(x̄).
We claim that vs+t∗(x̄) = w(x̄) = 0. Indeed if x̄ ∈ {w > 0} ∩ (D′ × {0}), then

∆vs+t∗(x̄) ≤ 0 = ∆w(x̄) with vs+t∗ ≥ w in D, contradicting the maximum principle in
{w > 0} ∩D. Furthermore, x̄ /∈ {w > 0} ∩ ∂D ∩ {y = 0}, by (6.8).

Step 4: The contradiction
This leaves us two cases to consider, either the touching point is inside D′ × {0} or on

∂D′ × {0}.
If x̄ ∈ F (w) ∩ (D′ × {0}), we can proceed as in the proof of Lemma 3.8 to say that

∂{w > 0} has an exterior touching ball at x̄ and thus x̄ is a regular point (c.f. [EKPSS21,
Proposition 5.10]).

By the free boundary condition for minimizers,

w(x, y) ≥ U((x− x̄) · ν, y) + o(|(x, y)− (x̄, 0)|
1
2 ),

where ν is the inward pointing unit normal to the ball at x̄. In the other direction, Lemma
5.4 implies

vs+t∗(x) ≤ U((x− x̄) · ν, y) + o(|(x, y)− (x̄, 0)|
1
2 )

This contradicts the nonlocal Hopf’s lemma in this interior touching ball (see [CS14,
Proposition 4.11]).

So we are left to consider the case x̄ ∈ F (w) ∩ (D′ × {0})∩(∂D′×{0}). Since vs+t∗ ≥ w
in D, we also have x̄ ∈ ∂Rn{vs+t∗ > 0}. From (6.8), x̄ /∈ F (u) and thus there is a
neighborhood, Z ⊂ ∂D′, of x̄ where u = w = 0 on Z × {0}.

By our assumption that the contact set for u is the subgraph of a continuous function
in Ω ⋑ D, there is a small θ > 0 such that B′

4θ(x̄)×{0} ⊂ Λ(u)∩Ω. Using the harmonicity
of u in Ω∩{y > 0} we can assume that |u(x, y)| ≤ C2|y| in B2θ(x̄). From this we can first
conclude that w = 0 on (B′

2θ(x̄) ∩ ∂D′)× {0} and that |w| ≤ C2|y| on B2θ(x̄) ∩ ∂D so we
can invoke Theorem 8.3 to get

sup
Br(x̄)∩D

w ≥ c1r
1
2 for all r ∈ (0, θ). (6.9)

Furthermore, if φ solves the boundary value problem ∆φ = 0 in Bθ(x̄) ∩D
φ = C2|y| on Bθ(x̄) ∩ ∂D
φ = 1 on ∂Bθ(x̄) ∩D,

then w ≤ Cφ in Bθ(x̄) ∩ D by the maximum principle (recall that w is a minimizer so
∆w ≥ 0).
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Note that the values of φ are Lipschitz continuous in B3θ/4(x̄) ∩ ∂D, so we may invoke
boundary Schauder estimates for harmonic functions to conclude that for any ε > 0 there
exists cε > 0 such that

φ(x) = |φ(x)− φ(x̄)| ≤ Cε|x− x̄|1−ε in Bθ/2(x̄). (6.10)

Taking ε = 1
4 in (6.10) and invoking (6.9) we get,

c1r
1
2 ≤ sup

Br(x̄)∩D
w ≤ sup

Br(x̄)∩D
φ ≤ C 1

4
r

3
4 ,

for all r ∈ (0, θ/2), which is a contradiction. □

The bound from the other direction proceeds exactly as it does in the local case (Lemma
3.9), and as such we will simply state the thin result without proof:

Lemma 6.7. Under the same assumptions and using the same notation as Proposition
6.5 if w is a minimizer to the functional (1.11) in D with w = u on ∂D then u ≤ w in D.

Thus, we obtain:

Proof of Proposition 6.5. It is a combination of Lemmas 6.6 and 6.7. □

And:

Proof of Theorem 1.9. It follows from Proposition 6.2 and Proposition 6.5 □

7. Flatness of graphical solutions: the thin case

Let us now show an analogous result to Lemma 4.1 in the nonlocal setting. Recall that
this lemma showed that if F (u) is smooth an u is monotone in a direction then either that
direction is transverse to F (u) at every point or u is independent of that direction:

In the following lemma we consider Ω′ ⊂ Rn to be a smooth domain (i.e. C2,α), and
Ω = Ω′ × {0}. Abusing notation, we let ∂Ω denote the boundary of Ω′ inside of Rn and
denote by ν(x) ∈ Sn0 the unit outward normal vector to Ω′ at x ∈ ∂Ω. Finally, in order to
avoid the statement being empty, we assume that ∂Ω ∩B1 ∩ {y = 0} ≠ ∅.

Lemma 7.1. Let u be a viscosity solution to
∆u = 0 in B1 \ Ω
u = 0 in Ω ∩B1

limx→x◦
u

d1/2
(x) = 1 for x◦ ∈ ∂Ω ∩B1, x ∈ {y = 0} ∩ (B1 \ Ω)
u ≥ 0 in B1.

(7.1)

We assume also that, for some e ∈ Sn0 ,

∂eu ≥ 0 in B1.

Then, either ν(x) · e > 0 for all x ∈ ∂Ω ∩B1, or ∂eu ≡ 0 in B1.

Proof. By assumption, we immediately have ν(x) · e ≥ 0 for x ∈ ∂Ω. Let us argue by
contradiction, and so we may assume (up to a rotation and translation) that 0 ∈ ∂Ω and
e = e1, with ν(0) = en (so ν(0) · e = 0). Let us also suppose ∂1u ̸≡ 0 in B1.

We denote by δ = δ(x′) the signed distance to ∂Ω inside of Rn,

δ(x′) =

{
dist(x′, ∂Ω′), for any x′ ∈ B1 \ Ω′,

−dist(x′, ∂Ω′), for any x′ ∈ Ω′ ∩B1,



30 MAX ENGELSTEIN, XAVIER FERNÁNDEZ-REAL, AND HUI YU

whereas r denotes the distance to ∂Ω in B1,

r(x) = r((x′, y)) =
√
δ2(x′) + y2, for any x = (x′, y) ∈ B1.

We define

Ũ := 2−1/2(r + δ)1/2.

Then, by [DS15, Theorem 3.1] we know that a solution to (7.1) can be expanded around
a free boundary point (in this case, 0) as

u(x′, y) = Ũ(x)
(
P0(x

′, r) +O(|(x′, r)|1+α
)

= Ũ(x)
(
a(0) + a(1) · x′ + a(2)r +O(|(x′, r)|1+α)

)
,

(7.2)

for some polynomial P0 of degree 1. By the viscosity condition, we immediately have
a(0) = c∗. Moreover, by [DS15, Theorem 3.1], we know

u(x′, y)

Ũ(x)

∣∣∣∣
y=0

≡ u(x′, 0)

δ
1/2
+

(x′) =: η(x′) ∈ C1,α(B′
1 \ Ω′).

Since η ≡ c∗ on ∂Ω, ∂iη(0) = 0 for 1 ≤ i ≤ n− 1 (recall ν(0) = en), and hence in (7.2) we

get a
(1)
i = 0 for 1 ≤ i ≤ n− 1.

On the other hand, by [DS15, Theorem 3.1, eq. (3.4)], for 1 ≤ i ≤ n− 1,

∂iu(x) =
Ũ(x)

r

(
P0,i(x

′, r) +O(|(x′, r)|1+α)
)
,

with

P0,i(x
′, r) = ra

(1)
i , for 1 ≤ i ≤ n− 1.

Combining the above,

∂1u(x) =
Ũ(x)

r
O(|(x′, r)|1+α).

Let h be harmonic outside of Λ(u) with boundary values equal to ∂1u on ∂B3/4 and
equal to 0 on Λ(u). By boundary Harnack for slit domains [DS20, Corollary 3.4] there
exists a constant c > 0 such that h ≥ cu inside B1/2. On the other hand, ∂1u ≥ h in B3/4

as both are harmonic in B3/4\Λ(u) but ∂1u ≥ 0 on F (u). Using the expansion above this
yields

O(|(x′, r)|1+α) ≥ r
(
c∗ +O(|(x′, r)|)

)
,

which gives a contradiction as |(x′, r)| ↓ 0. □

As in the local setting, this tells us that homogeneous minimizers in low-dimensions are
one-dimensional.

Proposition 7.2. Let u ∈ Gs(en) in Rn+1 with

n ≤ n∗thin + 1.

If u is a homogeneous minimizer, then

u = U((x · e), y),

for some e ∈ Sn0 with e · en ≥ 0, and U given by (1.12).
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Proof. The restriction on the dimension implies, by Lemma 5.9, that ν(x) exists and is a
continuous function of x ∈ F (u)∩Sn0 . As in the classical setting, we consider e◦ ∈ Sn0 such
that

e◦ ∈ argmin
ē∈Sn0

{ē · en : ē · ν(x) ≥ 0,∀x ∈ ∂Ω ∩ Sn0} .

Arguing as in the local setting by minimality, there exists a p◦ ∈ F (u) ∩ Sn0 such that
e◦ · ν(p◦) = 0. If e◦ = en then we can invoke Lemma 7.1 (recalling that F (u) is smooth
away from 0 by Lemma 5.9) to conclude that u is invariant in the direction e◦. We do not
need to worry about connectivity in B1/2(p◦) because of the assumption that p◦ ∈ F (u).
Furthermore, the positivity set of any (nontrivial) global solution to the thin free boundary
problem is connected.

If e◦ ̸= en, then arguing as in the classical case (but invoking Corollary 6.4) we see that
u ∈ Gs(e◦) and then Proposition 6.2 implies that u is monotone in the direction e◦. We
again apply Lemma 7.1 to conclude that u is invariant in the direction e◦.

In either case, restricting u to the space perpendicular to e◦ gives a minimizing cone in
Rn. The definition of n∗thin implies that u is a one-dimensional solution. □

Finally, a blow-down argument shows us that global minimizers in low dimensions with
graphical free boundaries are one dimensional.

Corollary 7.3. Let u ∈ Gs(en) in Rn+1 with

n ≤ n∗thin + 1.

If u is a global minimizer to the thin Alt–Caffarelli functional (1.11), then

u = U(x · e, y)

for some e ∈ Sn0 with e · en ≥ 0, and U given by (1.12).

Proof. Consider the blow-down

uR(X) =
u(RX)

R1/2
,

as R ↑ ∞. By Lemma 5.8 we have

uRi → v locally uniformly

along some subsequence Ri where v is a homogeneous minimizer to the thin one-phase
problem. By Proposition 7.2 we have that v = U((x · e), y). Furthermore e · en ≥ 0 since
v ∈ Gs(en) by Corollary 6.4.

Arguing as in the proof of Corollary 4.3, we can now apply the improvement of flatness
Lemma 5.6 to conclude. □

From this result the main theorem in the thin setting follows immediately:

Proof of Theorem 1.8. By Proposition 6.5 v is a globally defined minimizer to the thin
one phase functional (1.11). The theorem then follows after invoking Corollary 7.3 □
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8. Boundary growth near the fixed boundary for minimizers to the thin
functional

This section is devoted to proving the key growth result we need to complete the proof
that all monotone viscosity solutions to the thin problem are minimizers.

Throughout this section, w is a minimizer of the thin one-phase energy J 0
Ω in the domain

Ω = B1 ∩ {x1 ≥ 0} ⊂ Rn+1. We denote by Γ its free boundary, which is the boundary of
{w > 0} in the relative topology of {y = 0}. In particular, Γ = Γ′ × {0}.

We will often use that if w is minimizer, then wr(x) := w(rx)

r1/2
is a minimizer with its

own boundary data as well.

Lemma 8.1 (Nondegeneracy). Let w and Γ as above. Let us suppose that w = 0 on
{x1 = y = 0} ∩B1. Then

w(x′, 0) ≥ cdist
1
2 (x′,Γ′) for any x′ ∈ B′

1/2 ∩ {x1 ≥ 0},

for some c depending only on n.

Proof. If we denote r(x′) := dist(x′,Γ′) and since w = 0 on {x1 = y = 0} ∩B1, we always
have that Br(x′)((x

′, 0)) ⊂ {w > 0} ∩ B1 ∩ {x1 ≥ 0} for x′ ∈ {w > 0} ∩ B′
1/2 ∩ {x1 ≥ 0}.

The proof now follows as in [CRS10, Theorem 1.2].
Indeed, after a rescaling it is enough to show that if x = (x′, 0) is at distance 1 from

the free boundary then w(x) = ε cannot be arbitrarily small. By the Harnack inequality
we know that C−1

0 ε ≤ w ≤ C0ε in B1/2(x), and by defining φ to be a smooth nonnegative
function such that φ = 0 in B1/4(x) and φ = 2C0 in B1/2(x) \B1/3(x) we have that

v = min{w, εφ}

is an admissible competitor for w in B1/2(x).
Then, �

B1/2(x)
|∇v|2 ≤

�
B1/2(x)

|∇w|2 + Cε2,

and

Hn
(
{v > 0} ∩B′

1/2(x)
)
≤ Hn

(
{w > 0} ∩B′

1/2(x)
)
−Hn

(
B′

1/4(x)
)
.

Consequently, if ε > 0 small enough depending only on n, we have

J 0
B1/2(x)

(v) < J 0
B1/2(x)

(w)

which is a contradiction with the minimality of w. □

On the other hand, we also have the following result on the optimal regularity of w.

Theorem 8.2 (Optimal regularity). Let w as above with w = ψ on {x1 = 0}, where

ψ ∈ C1/2({x1 = 0}) and ψ ≡ 0 on {y = 0}. Then w ∈ C1/2(B1/2 ∩ {x1 ≥ 0}) with

∥w∥C1/2(B1/2∩{x1≥0}) ≤ C
(
∥ψ∥C1/2(B1∩{x1=0}) + ∥w∥L∞(B1∩{x1≥0}) + 1

)
for some C depending only on n.

Proof. Let us denote

C◦ = ∥ψ∥C1/2(B1∩{x1=0}) + ∥w∥L∞(B1∩{x1≥0}).
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Let φ be the solution to
∆φ = 0 in B1 ∩ {x1 ≥ 0}
φ = |y|

1
2 on B1 ∩ {x1 = 0}

φ = 1 on ∂B1 ∩ {x1 ≥ 0}.
Then by the regularity up to the boundary for harmonic functions with Hölder boundary

data, we have that

φ(x) ≤ Cx
1
2
1 + y

1
2 ≤ C(x21 + y2)

1
4 in B1/2 ∩ {x1 ≥ 0},

for some C depending only on n. Since ∆w ≥ 0 (as w minimizes the energy), by comparison
principle we have that

w(x) ≤ CC◦(x
2
1 + y2)

1
4 in B1/2 ∩ {x1 ≥ 0}. (8.1)

Let us first show our estimate on the thin space:
Let z1, z2 ∈ B1/2 ∩ {y = 0} ∩ {x1 ≥ 0}, and let us denote

ri := dist(zi,Γ) = dist(zi, z̄i), ρi := (zi)1 = dist(zi, {x1 = 0}), for i = 1, 2,

where Γ is the free boundary of w on {y = 0}, and z̄1, z̄2 ∈ Γ are the corresponding
projections on the free boundary. Let us denote δ := |z1 − z2|. We split into two cases:

• If 5 r1 ≤ ρ1, then B4ρ1/5(z̄1) ⊂ {0 < x1 < 2ρ1}, and since w is a minimizer in

B4ρ1/5(z̄1) with z̄1 a free boundary point, we can invoke universal C1/2 estimates
for minimizers of the thin problem (see [EKPSS21, Remark 7.10]) to get

∥w∥C1/2(Bρ1/2
(z̄1))

≤ C,

and hence if δ ≤ ρ1/2 we get |w(z1)−w(z2)| ≤ Cδ
1
2 . On the other hand, if δ ≥ ρ1/2

we have w(z1) ≤ CC◦δ
1
2 by (8.1) and ρ2 ≤ ρ1 + δ ≤ 3δ, so that w(z2) ≤ Cρ

1
2
2 ≤

CC◦δ
1
2 again by (8.1). In all cases we get |w(z1)− w(z2)| ≤ C(1 + C◦)δ

1
2 .

• If 5 r1 ≥ ρ1, ∆w = 0 in Br1(z1)∩{x1 ≥ 0} with C
1
2 boundary datum on {x1 = 0}.

Combined with the fact that w ≤ CC◦r
1
2
1 in Br1(z1)∩{x1 ≥ 0} by (8.1), estimates

for the Laplace equation yield

∥w∥C1/2(Br1/2
(z1)∩{x1≥0}) ≤ CC◦,

and so if δ < r1/2 we are done. On the other hand, if δ ≥ r1/2 we have w(z1) ≤ Cδ
1
2

directly from (8.1), and as above we have ρ2 ≤ ρ1+δ ≤ 11δ and so w(z2) ≤ CC◦δ
1
2

thanks to (8.1).

From the estimates on the thin space we obtain our desired estimate in B1/2∩{x1 ≥ 0}
by standard techniques using boundary estimates and the fact that we have a barrier in
(8.1). Indeed, to obtain the result in {y > 0} it is enough to show

oscBr(z)w ≤ C(1 + C◦)r
1
2 for all B2r(z) ⊂ B1/2 ∩ {x1 ≥ 0} ∩ {y ≥ 0}

(see, for example, [FR22, Appendix A]). Now, given any z ∈ B1/2 ∩ {x1 ≥ 0} ∩ {y ≥ 0},
let us suppose ρ1 := z1 ≤ zn+1 (the other case is symmetric). From the above observation,
it is enough to see that ∥w∥C1/2(Bρ1/2

(z1))
≤ C(1 + C◦), and this follows from boundary

estimates for the Laplace equation together with the barrier (8.1). □

Finally thanks to the previous considerations we have a second nondegeneracy type
result:
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Theorem 8.3 (Nondegeneracy in the full space near the fixed boundary). Under the

hypotheses from Theorem 8.2, let us assume, moreover, that ψ(x) ≤ ω(y)|y|
1
2 for some

modulus of continuity ω. Let Γ be the free boundary of w. Then, for any z ∈ Γ∩B1/4∩{x1 ≥
0} we have

sup
Br(z)∩{x1≥0}

w ≥ cr
1
2 for all r ∈ (0, 1/2),

for some c > 0 depending only on n and ω.

In order to prove this estimate we first show the following lemma:

Lemma 8.4. Let u be a minimizer of the thin one-phase energy in B2Mr ∩{x1 ≥ −λ} for
some M, r > 0, λ ≥ 0, such that 0 ∈ F (u) and

∥u∥C1/2(B2Mr)∩{x1≥−λ} ≤ C∗

for some C∗ > 0. Let us suppose, moreover, that 0 ≤ u ≤ ω(y)|y|1/2 on {x1 = −λ} for
some modulus of continuity ω, and that B′

r(z) ⊂ {u > 0} ∩ {x1 ≥ −λ} for some |z| = r.
There exists r◦, δ◦, and M such that if r < r◦ then

sup
B′

Mr∩{x1≥−λ}
u ≥ (1 + δ◦)u(z),

where the constants r◦, δ◦, and M depend only on n, C∗, and ω.

Proof. The proof follows by contradiction, assuming instead that there is a sequence of
functions uk, which minimize the thin one-phase energy in B2Mkrk ∩{x1 ≥ −λk} such that
0 is a free boundary point for uk,

[uk]C1/2(B2Mkrk
)∩{x1≥−λk} ≤ C∗,

0 ≤ uk ≤ ω(y)|y|1/2 on {x1 = −λk}, B′
rk
(zk) ⊂ {uk > 0} ∩ {x1 ≥ −λk} for some |zk| = rk,

but

lim
k→∞

1

uk(zk)
sup

B′
Mkrk

∩{x1≥−λk}
uk = 1,

for some sequence Mk → ∞ and rk ↓ 0.

If we define ūk(x) :=
uk(rkx)

r
1/2
k

, then (ūk)k∈N are a minimizers in B2Mk
∩ {x1 ≥ −λkr−1

k }
with 0 a free boundary point, satisfying

[ūk]C1/2(B2Mk
)∩{x1≥−λkr

−1
k } ≤ C∗,

0 ≤ ūk ≤ ω(rky)|y|1/2 on {x1 = −λkr−1
k }, B′

1(z̄k) ⊂ {ūk > 0} ∩ {x1 ≥ −λkr−1
k } for some

|z̄k| = 1, and

lim
k→∞

1

ūk(z̄k)
sup

B′
Mk

∩{x1≥−λkr
−1
k }

ūk = 1.

In particular, thanks to Lemma 8.1 there exists some universal constant c∗ such that

ūk(z̄k) ≥ c∗ > 0.

Since ūk(0) = 0, the uniform estimates on the C1/2-seminorm in B2Mk
allows us to

apply Arzela-Ascoli to obtain that

ūk → u∞ locally uniformly in Rn+1.

Up to a subsequence, we assume z̄k → z̄∞ with |z̄∞| = 1, so that B′
1(z∞) ⊂ {u∞ > 0}

(again invoking Lemma 8.1). Furthermore, ūk(z̄k) ≥ c∗ > 0, so we know that u∞(0) = 0
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but u∞ ̸≡ 0. Up to a subsequence, we can further assume λkr
−1
k → λ∞ for some 0 ≤ λ∞ ≤

∞, so B′
1(z̄∞) ⊂ {u∞ > 0} ∩ {x1 ≥ −λ∞} (again thanks to Lemma 8.1). In particular,

u∞ is harmonic in {y ̸= 0} and in B′
1(z̄∞).

Finally, we also have u∞ = 0 on {x1 = −λ∞} and z̄∞ is a global maximum for u∞. By
taking the odd reflection of u∞ with respect to −λ∞ (if λ∞ < ∞), denoted ū∞, we have
that ū∞ is a globally defined function, harmonic in {y ̸= 0} and on {y = 0} ∩ {ū∞ ̸= 0},
with a global positive maximum at z̄∞. This contradicts the maximum principle for the

fractional Laplacian (−∆)
1
2 . □

Using the previous lemma, we can now prove Theorem 8.3:

Proof of Theorem 8.3. We follow the ideas of [BCN90] (see also [CRS10]).
Let r◦, δ◦, and M be given by Lemma 8.4 with ω given by the statement and C∗ given

by Theorem 8.2. Let z ∈ Γ∩B1/4 ∩ {x1 ≥ 0} as in the theorem statement. Translate z to

the origin and we are in a situation where, as long as 2Mr ≤ 1
2 , we can apply Lemma 8.4

with λ = −z1.
Let 0 < r < r◦ be fixed. We construct inductively starting from z0 ∈ Br/10 ∩ {w > 0}

a sequence of points (zk)k∈N with zk ∈ {w > 0} and rk := dist(zk,Γ) = dist(zk, z̄k) such
that zk+1 ∈ B′

Mrk
(z̄k) and

u(zk+1) ≥ (1 + δ◦)u(zk),

thanks to Lemma 8.4. Observe that

|zk+1 − zk| ≤ (M + 1)rk

and that u(zk) is increasing geometrically. We can do this as long as B′
Mrk

(z̄k) ⊂ B′
3/4(−z)

We denote by k◦ + 1 the first value of k ∈ N such that zk falls outside of Br. If

rk◦ >
r

10(M+1) , then u(zk◦) ≥ cr
1/2
k◦

≥ c′r1/2 by Lemma 8.1 and we are done. So we can

assume that rk◦ <
r

10(M+1) which means that |zk◦ | > r − (M + 1)rk◦ >
9r
10 . Also in this

case B′
Mrk◦

(z̄k◦) ⊂ B′
3/4(−z).

Using the estimates above

u(zk◦) ≥
∑

1≤i≤k◦

(u(zi)− u(zi−1)) ≥ δ◦
∑

0≤i≤k◦−1

u(zi).

Now, thanks to Lemma 8.1 we know u(zi) ≥ cr
1/2
i , and thus

u(zk◦) ≥
δ◦c

(M + 1)1/2

∑
0≤i≤k◦−1

|zi+1 − zi|1/2 ≥ c′

∣∣∣∣∣∣
∑

0≤i≤k◦−1

(zi+1 − zi)

∣∣∣∣∣∣
1/2

≥ c′′r1/2,

for some c′′ depending only on n and ω. That is, given 0 < r < r◦ we have found a point
zk◦ ∈ Br such that u(zk◦) ≥ c′′r1/2 for some c′′. Since r was arbitrary and r◦ and M
depend only on n and ω, we get the desired result. □
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[AC81] H. Alt, L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine
Angew. Math 325 (1981), 105-144.

[ACF82] H. Alt, L. Caffarelli, A. Friedman, Asymmetric jet flows, Comm. Pure Appl. Math. 35 (1982),
29-68.

[ACF82b] H. Alt, L. Caffarelli, A. Friedman, Jet flows with gravity, J. Reine Angew. Math. 331 (1982),
58-103.

[ACF83] H. Alt, L. Caffarelli, A. Friedman, Axially symmetric jet flows, Arch. Ration. Mech. Anal. 81
(1983), 97-149.
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[CEF22] X. Cabré, I. U. Erneta, J. C. Felipe-Navarro, A Weierstrass extremal field theory for the fractional
Laplacian Preprint arXiv: 2211.16536.
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