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Abstract. We prove new boundary regularity results for minimizers to the one-
phase Alt-Caffarelli functional (also known as Bernoulli free boundary problem) in
the case of continuous and Hölder-continuous boundary data. As an application,
we use them to extend recent generic uniqueness and regularity results to families
of continuous functions.

1. Introduction

In this work, we study minimizers of the Alt–Caffarelli functional

(1.1) FΛ(u,D) :=

ˆ
D

|∇u|2dx+ Λ|{u > 0} ∩D|,

where D is an open domain in Rd, Λ a positive real constant and u ∈ H1(D).
The problem, also known as one-phase or Bernoulli problem, originates in the fun-

damental works [Caf77; AC81] and has various applications in models of flame prop-
agation [BL82] and jet flows [ACF82]. Recent development include [JS14; ESV20;
ESV24; EFY23; FY23]. We also refer to [CS05] and [Vel23] for a detailed mathe-
matical exposition.

Given an open bounded domain D ⊂ Rd and a boundary datum g ∈ H1(D) with
g ≥ 0 in D, the Alt–Caffarelli problem is the minimization:

(1.2) min{FΛ(u,D) : u ∈ H1(D) such that u− g ∈ H1
0 (D)}.

Any minimizer u is nonnegative, and splits the domain into two parts:

Ωu := {x ∈ D : u(x) > 0} and Ω0 := {x ∈ D : u(x) = 0}.

The interface between the two sets, ∂Ωu, is a priori unknown and is called the free
boundary.

Any minimizer u to (1.2) is locally Lipschitz continuous inside D (see e.g. [Vel23,
Chapter 3]). The Euler–Lagrange equation, satisfied by (classical) stationary points
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of (1.1), is given by 
u ≥ 0 in D,

∆u = 0 in Ωu,

|∇u| =
√
Λ on ∂Ωu ∩D.

For general stationary solutions, the previous equations need to be understood in
the viscosity sense. Throughout the paper, for the sake of simplicity, we will fix
Λ = 1.

Reminiscent of the classical Laplace equation with Dirichlet boundary condition1,
the main goal of this work is to establish basic regularity estimates up to the bound-
ary for solutions to (1.2). To our knowledge, up until now, the community has been
proving such estimates on a need-to-use basis (see [ESV24; FY23]). We hope that
this short note can be useful to researchers in contexts where such estimates can be
applied. In this direction, we present some examples of applications of our results,
namely a comparison principle and generic-type results for minimizers.

1.1. Main results. Our main result says that minimizers of the one-phase problem
with continuous boundary datum are continuous up to the boundary. The following
result applies, for example, to the case of C1 domains.

Theorem 1.1. Let d ≥ 2 and D ⊂ Rd be an open domain such that

• either D is convex,
• or D is a locally c-Lipschitz domain, for some c small enough depending only
on d.

Let g ∈ C(D) ∩ H1(D) with modulus of continuity ω and ∥g∥H1(D) ≤ M for some
M > 0, and let u be a minimizer to (1.2).

Then, u ∈ C(D), with a modulus of continuity depending only on ω, D, Λ, and
M . That is, for any ε > 0, there exists δ = δ(ω,D,Λ,M) such that

|x− y| < δ =⇒ |u(x)− u(y)| < ε ∀x, y ∈ D.

A priori, as for the case of harmonic functions, the modulus of continuity of u
does not need to be the same (nor comparable) to the modulus of continuity of g.

This is in contrast to the case of more regular boundary data, where for Hölder
coefficients we actually obtain Hölder regularity up to the boundary (again, as for
harmonic functions):

Proposition 1.2. Let d ≥ 2 and D ⊂ Rd be an open bounded C1,α domain. Let
g ∈ Cγ(D̄) ∩ H1(D) where 1

2
< γ < 1, and let u be a minimizer to (1.2). Then,

u ∈ Cγ(D) and
∥u∥Cγ(D) ≤ C

(
1 + ∥g∥Cγ(∂D) + ∥u∥L∞(D)

)
,

where C depends only on d, γ, Λ, α and D (in particular, through its diameter and
C1,α norm; see Definition 2.2).

The previous result is a generalization of the case for γ = 1, originally treated in
[ESV24, Appendix B].

1That is, on a sufficiently regular domainD, given a boundary datum g, the solution u “inherits”
(in some sense) the regularity of g.
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1.2. Applications to generic regularity. In the second part of the paper, we
apply the continuity up to the boundary to show how to extend the results on
generic uniqueness of minimizers from [FY23] to the case of merely continuous data.

Namely, we show:

Proposition 1.3. Let d ≥ 2, and let D ⊂ Rd be a domain as in Theorem 1.1. Let
gt ∈ C(D) ∩H1(D) for t ∈ (0, 1) with supt∈(0,1) ∥gt∥H1(D) < ∞ be such that, for all
0 < s < t < 1,

(i) gt ≥ gs ≥ 0 in D, and
(ii) any connected component of {gs > 0}∩∂D contains x0 with gt(x0) > gs(x0).

Then, there exists a countable subset J ⊂ (0, 1) such that for every t ∈ (0, 1)\J ,
there is a unique minimizer of FΛ(·, D) with boundary datum given by gt.

Lastly, we also show a generic regularity result for the free boundary. By [Wei99],
it is already known that up to a certain critical dimension d∗ (4 ≤ d∗ ≤ 6, see
[JS14]) the free boundary of u is always smooth, i.e. its set of singular points,
denoted Sing(u), is empty (and in general dimension, it has Hausdorff dimension
d − d∗ − 1). Thanks to [FY23], generically this dimension can be increased by one
if one takes minimizers with Lipschitz boundary data. We generalize the result to a
wider class of boundary data:

Theorem 1.4. Let d ≥ 2, and let D ⊂ Rd be a domain as in Theorem 1.1. Let
gt ∈ C(D) ∩H1(D) with gt ≥ 0 for t ∈ (0, 1), supt∈(0,1) ∥gt∥H1(D) < ∞, and

gt − gs ≥ t− s in D for all 0 < s < t < 1.

Let ut denote any minimizer of FΛ(·, D) with boundary datum gt. Then:

• If d = d∗ + 1, there exists a countable subset J ⊂ (0, 1) such that

Sing(ut) = ∅ for every t ∈ (0, 1)\J.

• If d ≥ d∗ + 2,

dimH Sing(ut) ≤ d− d∗ − 2 for almost every t ∈ (0, 1),

where dimH denotes the Hausdorff dimension of a set.

Remark 1.5. As an example, the family {g+λ}λ∈(0,1) with g : ∂D → R nonnegative
and continuous, satisfies the assumptions of Proposition 1.3 and Theorem1.4.

Remark 1.6. Contrary to [FY23], where the family gt is required to be equi-
Lipschitz continuous, any assumption on equicontinuity becomes redundant and
only uniform boundedness of the family gt and monotonicity are required.

We finally also refer to Lemma 3.1 for a comparison principle between minimizers
with continuous boundary data.
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1.3. Structure of the paper. We start by proving, in Subsection 2.1 and by
means of a barrier and compactness argument, the quantitative continuity up to
the boundary, Theorem 1.1. In Subsection 2.2, we then show Proposition 1.2: for
Hölder continuous boundary datum, the minimizer is also Hölder continuous (with
the same exponent) up to the boundary. For that, we use a modified version of the
arguments in [ESV24, Lemma B.1].

Finally, in Section 3, we apply our results by first proving a general comparison
lemma for continuous minimizers, and then to show generic uniqueness (Proposi-
tion 1.3 in Subsection 3.1) and generic regularity (Theorem 1.4 in Subsection 3.2).
There we show how to modify the arguments from [FY23], and how to work around
the equicontinuity of the boundary data.

2. Boundary regularity

This section introduces the two new boundary regularity results. Note that the
regularity of the ambient domain is crucial as well, however here we are not concerned
with necessary conditions (Wiener-type criterioa) and assume sufficient regularity
of ∂D as needed. We recall that the hypograph of a function f : Rd → R is given as

hyp(f) := {(x, y) ∈ Rd+1 : f(x) ≥ y}.
We also state some standard definitions here for the reader’s convenience.

Definition 2.1. A domainD ⊂ Rd is c-Lipschitz for some c > 0, if for each x0 ∈ ∂D,
up to a rotation, ∂D is the graph of a c-Lipschitz function φ in B1(x0).

Definition 2.2. A domain D ⊂ Rd is a C1,α domain for some α ∈ (0, 1], if for each
x0 ∈ ∂D, up to a rotation, ∂D is the graph of a C1,α function φ in B1(x0). The
maximum C1,α norm of such function among all x0 ∈ ∂D is what we call the C1,α

norm of the domain D.

Remark 2.3. Up to a rescaling, any bounded domain that is locally Lipschitz/C1,α

is a Lipschitz/C1,α domain respectively.

2.1. Continuous boundary datum. The first result we prove concerns the reg-
ularity of minimizers with merely continuous datum. We recall the well-known
solution on an annulus. Remember that we are fixing Λ = 1.

Proposition 2.4. [Vel23, Proposition 2.15] Let d ≥ 2. There exists R = R(d) ∈
(1, 2) such that

v1(x) :=

1− log |x|
logR

if d = 2,

|x|2−d−R2−d

1−R2−d if d ≥ 3,

is the unique solution of (1.2) on A = BR\B1 with g|∂B1 = 1 and g|∂BR
= 0.

Using the previous explicit solution as a barrier, we are able to prove quantitatively
that the minimizer u is continuous up to the boundary (Theorem 1.1). The modulus
of continuity of the solution u is not necessarily the same as for the boundary datum,
but depends on it (as well as the domain and the modulus of the boundary datum
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a) D is convex b) D is c-Lipschitz

Figure 1. The set-up for the proof of Theorem 1.1

itself). We start with a lemma, stating that minimizers are positive close to positive
boundary data:

Lemma 2.5. Let d ≥ 2, and let D be an open domain such that

• either D is convex,
• or D is c-Lipschitz, for some c small enough depending only on d.

Let us assume, moreover, that 0 ∈ ∂D, and that u ≥ 2 > 0 on ∂D ∩B2. Then,

u > 0 in D ∩Bρ,

for some ρ > 0 depending only on d.

Proof. We proceed with a barrier argument (see Figure 1 for a sketch of the setting
in the two types of domain). Take the annulus A from Proposition 2.4. We now
consider the two cases:

• D is convex: Up to a rigid motion, we assume that D ⊂ H, where H =
{(x′, xd) : xd ≤ 0}. Set

E := A(ed) ∩D, ∂E = E1 ∪ E2

where

E1 := ∂D ∩ A(ed) ⊂ ∂D ∩B1, E2 := ∂BR(ed) ∩D.

Let v1 be the (unique) solution from Proposition 2.4 in the annulus A.
Then for v(x) := v1(x+ ed), on E1,

v(x) ≤ 1 < 2 ≤ u(x) on E1,

and v(x) = 0 on E2. In particular, we get that

v ≤ u on ∂E.
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• ∂D is c-Lipschitz: Without loss of generality (up to rotation and rescaling),
we assume that D is the subgraph/hypograph of a c-Lipschitz function f :
Bd−1

2 → R in the ed direction and f(0) = 0 (denote here by Bd−1
2 the (d−1)-

dimensional ball of radius 2). Since f is c-Lipschitz, we have that for any
0 < h < 1 the graph of f lies within Bd−1

h × [−ch, ch].
Then (recall R ∈ (1, 2) is given by Proposition 2.4, so R+1

2
∈ (1, R)), we

have

graph(f) ∩ A

(
R + 1

2
ed

)
⊂ Bd−1

2 × [−2c, 2c].

Set now E to be the connected component of

hyp(f) ∩ A

(
R + 1

2
ed

)
containing the origin. As long as c ≤ R−1

2
, ∂E = E1 ∪ E2 with

E1 ⊂ graph(f) and E2 ⊂ ∂BR

(
R + 1

2
ed

)
.

Let v1 be the solution on the annulus A, for

v(x) := v1

(
x+

(R + 1)

2
ed

)
we have

v(x) ≤ 1 < 2 ≤ u(x) on E1

and v(x) = 0 on E2. In particular, we get again that

v ≤ u on ∂E.

In both cases, we have constructed a set E where the boundary consists of two parts
E1 and E2, and u|E1 > v|E1 and u|E2 ≥ v|E2 = 0. Also v|E and u|E are minimizers
on E for their own boundary datum, i.e.

FΛ(v, E) ≤ FΛ(min(v, u), E) and FΛ(u,E) ≤ FΛ(max(v, u), E).

From the cut-and-paste lemma for minimizers to the one-phase problem (see [Vel23,
Lemma 2.5]),

FΛ(min(v, u), E) + FΛ(max(v, u), E) = FΛ(v, E) + FΛ(u,E),

thus FΛ(v, E) = FΛ(min(v, u), E). Since v as a minimizer is unique, we have v =
min(v, u), i.e. u ≥ v with v vanishing only on a subset of ∂E. Hence, there exists
some small ρ > 0 such that on Bρ ∩D the function u is strictly positive as was to
be shown. □

As a consequence we obtain the proof of the regularity up to the boundary:

Proof of Theorem 1.1. Assume by contradiction that it is not true. Then there exists
ε̄ > 0 and a sequence {gk}k∈N with gk ∈ C(D) ∩H1(D) having a uniform modulus
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of continuity ω and ∥gk∥H1(D) ≤ M < ∞ such that for some minimizers uk to (1.2)

with uk − gk = H1
0 (D), there exist xk, yk ∈ D such that

(2.1) |xk − yk| ≤
1

k
→ 0 but |uk(xk)− uk(yk)| ≥ ε̄ > 0, for k ∈ N.

By the uniformity of the modulus of continuity ω and the boundedness of the
H1-norm of gk, again up to a subsequence gk → g∞ for some g∞ with the same
modulus of continuity ω and ∥g∞∥H1(D) ≤ M . Note also that uk → u∞ in H1

loc(D)
with u∞ being a minimizer of (1.2) with boundary datum g∞ by [Vel23, Lemma 6.3].
Both, uk and u∞ are locally Lipschitz continuous in D independently of k.

Moreover, by compactness of D, xk and yk converge, up to a subsequence, to
x0 ∈ D. We now separate between three cases:

Case x0 ∈ D: For sufficiently large k, xk, yk, and x0 are inside some D′ ⊂⊂ D.
By the interior uniform (Lipschitz) continuity of uk and u∞ we get a contradiction
with (2.1).

Case x0 ∈ ∂D ∩ {g∞ = 0}: Since gk → g∞, gk(x0) → 0 as well. Consider now the
solution to the Dirichlet problem,{

∆ūk = 0 in D
ūk = gk on ∂D.

By the classical theory ([GT77, Lemma 2.13]), the ūk’s have the same modulus of
continuity ω̄, depending only on ω, d, D and M . Thus

|ūk(xk)| ≤ |ūk(xk)− ūk(x0)|+ |gk(x0)| ≤ ω̄(|xk − x0|) + |gk(x0)|,

which vanishes as k → ∞. Hence ūk(xk), ūk(yk) → 0. On the other hand, from the
subharmonicity of uk , by the comparison principle for weak (sub)solutions we have

|uk(xk)− uk(yk)| ≤ uk(xk) + uk(yk) ≤ ūk(xk) + ūk(yk) → 0,

again a contradiction with (2.1).

Case x0 ∈ ∂D ∩ {g∞ > 0}: We proceed by using the barrier argument from
Lemma 2.5. Without loss of generality, up to a translation, we assume x0 = 0 and
observe that for some ρ > 0 and for any k sufficiently large, uk > 0 in Bρ ∩D, and
therefore, the uk’s are harmonic there.

Indeed, for k sufficiently large, and up to a rescaling by r, uk(rx)
r

(independent of

k), we can assume that gk
r

≥ g∞(0)
2r

in B2 ∩ ∂D, so that, up to taking r smaller if

necessary (such that g∞(0)
2r

≥ 2), we are in the setting of Lemma 2.5. Thus, there is a
small ρ > 0 (independent of k) such that uk > 0 in D∩Bρ, and thereby the uk’s are
harmonic there. We apply [GT77, Lemma 2.13] to get uk continuous in Bρ/2 ∩D
with a common modulus of continuity ω̄, depending only on ω, d, ρ, and D.

Thus

|uk(xk)− uk(x0)| ≤ ω̄(|xk − x0|), |uk(yk)− uk(x0)| ≤ ω̄(|yk − x0|)
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and therefore, as k → ∞, by the triangle inequality

|uk(xk)− uk(yk)| ≤ ω̄(|xk − x0|) + ω̄(|yk − x0|) → 0,

again a contradiction to (2.1). This finishes the proof. □

2.2. Hölder continuous boundary datum. For the case with Hölder continuous
boundary datum, we show that the Hölder regularity is preserved. We do so by
following [ESV24]. First we state a well-known technical tool, the Morrey Lemma
[Vel23, Lemma 3.12].

Lemma 2.6. Let Ω ⊂ Rd, u ∈ H1(Ω) and for C > 0, γ ∈ (−1, 1) 
Br(x0)

|∇u|2dx ≤ C2r2(γ−1) ∀x0 ∈ BR/8 ∀r ≤ R

2
.

Then u ∈ C0,γ(BR/8) with

∥u∥C0,γ(BR/8) ≤ C

(
2d +

2

γ

)
.

We now can prove the local version of Proposition 1.2:

Proposition 2.7. Let D be an open bounded C1,α domain in B1, given by the
subgraph of a function with C1,α norm bounded by 1. Let u be a minimizer of (1.2)
on D with boundary datum g ∈ Cγ(D̄) ∩H1(D) with 1 > γ > 1

2
, and 0 ∈ ∂{u > 0}.

Then,

∥u∥Cγ(B1/2∩D) ≤ C
(
∥u∥Cγ(B1∩∂D) + ∥u∥L∞(B1∩D) + 1

)
,

for some constant C depending only on d, γ, and α.

Proof. Let ∂D be the graph of a C1,α function ϕ in B1, i.e. ∂D ∩B1 = {(x′, ϕ(x′)) :
x′ ∈ Rd−1}. It suffices to show γ-Hölder continuity in a small ball B1/8. Denote the
positive and negative half spaces by H+ and H−.
First, we extend ∇u : B1 ∩ D → Rd to ∇u : B1 → Rd. In order to do so, let

Φ : B1 → Rd be the C1,α function

Φ(x′, xd) := (x′, xd + g(x′)).

Up to translation and rotation, we assume Φ(0) = 0 and DΦ(0) = Id×d. Let

π : (y′, yd) 7→ (y′,−yd),

we define the extension

∇u(x) =

{
∇u(x) if x ∈ D ∩B1,

∇u(Φ ◦ π ◦ Φ−1(x)) if x ∈ Dc ∩B1.

The idea is to arrive at an estimate for u of the form

(2.2) ∀x̄ ∈ B1/8,∀r ≤
1

2
:

ˆ
Br(x̄)

|∇u|2 ≤ Crd+2(γ−1),
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and then use the Morrey Lemma [Vel23, Lemma 3.12], which gives directly γ-Hölder
regularity in B1/8. As in [ESV24], it suffices to show the estimate on the boundary,
i.e. for a fixed r > 0 small enough and x0 ∈ ∂D ∩B1/8,

(2.3)

ˆ
Br(x0)

|∇u|2 ≤ Crd+2(γ−1).

By a translation, we assume that x0 = 0. Performing the change of variable,

x = Φ(y), dx = |DΦ(y)|dy,

we have

ˆ
Br

|∇u(x)|2dx =

ˆ
Φ(Br)

|∇u(x)|2dx =

ˆ
Br

|∇u(Φ(y))|2|DΦ(y)|dy

=

ˆ
Br∩H+

|∇u(Φ(y))|2|DΦ(y)|dy +
ˆ
Br∩H−

|∇u(Φ ◦ π ◦ Φ−1(Φ(y)))|2|DΦ(y)|dy

= 2

ˆ
Br∩H+

|∇u(Φ(y))|2|DΦ(y)|dy = 2

ˆ
Φ(H+∩Br)

|∇u(x)|2dx.

Step 1: Let hg : H
+ ∩B1 → R such that{

∆hg = 0 in H+ ∩B1,
hg = g ◦ Φ on ∂(H+ ∩B1),

which is in Cγ(H̄+ ∩ B1/2) by [MS06, Proposition 2.1] (u is continuous in D by
Theorem 1.1) with

∥hg∥Cγ(H+∩B1/2) ≤ Cd,γ

(
∥g ◦ Φ∥Cγ(H+∩B1) + ∥hg∥L∞(∂H+∩B1)

)
≤ C

(
∥g∥Cγ(∂D) + ∥g∥L∞(H+∩B1)

)
,

for C depending on d, γ and the C1,α norm of D. We now claim that inside H+∩B1/2

|∇hg(x)| ≤ Cd∥hg∥Cγ(H+∩B1/2) dist(x, ∂H
+)γ−1.

For a fixed x, Take x1 ∈ ∂H+ such that |x− x1| = dist(x, ∂H+) =: δ(x) and let

v(x) := hg(x)− hg(x1).

By γ-Hölder regularity of v, from the definition, for x ∈ H+ ∩B1/2

v(x) = v(x1) +R(x) = R(x) with |R(x)| ≤ 2∥hg∥Cγ(H+∩B1/2)|x− x1|γ.
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By standard harmonic estimates,

|∇hg(x)| = |∇v(x)| ≤ sup
Bδ(x)/4(x)

|∇v(y)|

≤ d

δ(x)
sup

Bδ(x)/2(x)

|v(y)|

≤ d

δ(x)
sup

Bδ(x)/2(x)

|R(y)|

≤
2d∥hg∥Cγ(H+∩B1/2)

δ(x)
sup

Bδ(x)/2(x)

|y − x1|γ

≤ 4d∥hg∥Cγ(H+∩B1/2)δ(x)
γ−1,

proving the claim. In the co-area formula [Fed69, Theorem 3.2.22], take f(x) = δ(x)
and g(x) = δ(x)2(α−1). Since ∂H+ = {xd = 0} we have |∇f(x)| = 1. Hence, as

f−1(t) = {x ∈ H+ ∩Br : δ(x) = t},
we estimate for r < 1

2
,ˆ

H+∩Br

|∇hg|2dx ≤ Cd∥hg∥2Cγ(H+∩B1/2)

ˆ
H+∩Br

δ(x)2(γ−1)dx

= Cd∥hg∥2Cγ(H+∩B1/2)

ˆ
H+∩Br

δ(x)2(γ−1)|∇f |dx

= Cd∥hg∥2Cγ(H+∩B1/2)

ˆ
R

ˆ
{x∈H+∩Br:δ(x)=t}

δ(x)2(γ−1)dHd−1(x)dt

= Cd∥hg∥2Cγ(H+∩B1/2)

ˆ
R
t2(γ−1)Hd−1({x ∈ H+ ∩Br : δ(x) = t})dt

= Cd∥hg∥2Cγ(H+∩B1/2)

ˆ r

0

t2(γ−1)Hd−1({x ∈ H+ ∩Br : δ(x) = t})dt

≤ Cd∥hg∥2Cγ(H+∩B1/2)
rd−1

ˆ r

0

t2(γ−1)dt

= Cd∥hg∥2Cγ(H+∩B1/2)
rd+2(γ−1).

The rest of the proof follows exactly as in [ESV24], with the constant only depending
on d, γ and the C1,α norm of D, but not on the Hölder norm of g. (We remark that
g here is named φ in [Vel23].) We thereby conclude that (2.2) is satisfied sinceˆ

Br(x0)

|∇u|2 ≤ C∥hg∥2Cγ(H+∩B1/2)
rd+2(γ−1),

and thus by Lemma 2.6, the analogous interior regularity estimate, and the bound
for ∥hg∥Cγ(H+∩B1/2), we have that u is locally Cγ Hölder continuous with

∥u∥Cγ(B1/8∩D) ≤ C
(
∥u∥Cγ(B1(x0)∩∂D) + ∥u∥L∞(B1(x0)∩D)) + 1

)
,

as we wanted to show. □
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As a consequence, we obtain directly Proposition 1.2.

Proof of Proposition 1.2. Since D is bounded and a C1,α domain, up to a rescaling
we can pick x1, ..., xN ∈ ∂D such that ∂D ⊂

⋃N
i=1B1/2(xi) =: S and inside each

B1(xi) we are in the setting of Proposition 2.7. Thus by Proposition 2.7,

∥u∥Cγ(S) ≤
N∑
i=1

∥u∥Cγ(B1/2(xi)∩D)

≤
N∑
i=1

C
(
∥u∥Cγ(B1(xi)∩∂D) + ∥u∥L∞(B1(xi)∩D)) + 1

)
≤ C

(
∥g∥Cγ(∂D) + ∥u∥L∞(D) + 1

)
.

Since u is Lipschitz continuous on D\S ⊂⊂ D with

∥∇u∥L∞(D\S) ≤ C

(
1 +

∥u∥L∞(D)

distd+1(D\S, ∂D)

)
,

the result follows. □

Remark 2.8. For γ < 1
2
, it is not a priori given that the boundary datum g is the

trace of a function in H1(D). For γ ≤ 1
2
and g ∈ Cγ(D̄)∩H1(D), the previous proof

does not work, since we crucially use the minimality if u.

Remark 2.9. If γ = 1 (i.e. the datum is Lipschitz), then using the same argument
as above we recover the result from [ESV24], as expected,

∀x0 ∈ Ω ∩B1/2, r ≤
1

2
:

 
Br(x0)

|∇u|2 ≤ Crd+2(γ−1), ∀γ < 1.

This implies local γ-Hölder regularity for any γ < 1, but not Lipschitz regular-
ity, in the exact same fashion as for the Laplace equation with Dirichlet boundary
condition. It remains open whether this result could be improved to show e.g. log-
Lipschitz continuity of the solution,

|u(x)− u(y)| ≤ C| log |x− y|| · |x− y| ∀x, y ∈ D.

3. Applications of boundary regularity

3.1. Generic uniqueness of minimizers. Since the functional FΛ is not convex,
in general, there is no reason to expect uniqueness of minimizers. Already in one
dimension it is possible to construct a boundary datum g giving two nonidentical
minimizers. However, the cases with several minimizers are rare and we expect “al-
most everywhere” a unique minimizer. We start with a general comparison principle,
which can be applied to many different contexts.

Lemma 3.1. Let D be a bounded open domain of Rd, and let g, g′ ∈ C(D)∩H1(D)
with g′ ≥ g ≥ 0 in D and g′(z) > g(z) > 0 at some z in each connected component
of ∂D ∩ {g > 0}. Then for corresponding minimizers to (1.2), ug and ug′, we have
ug′ ≥ ug on D.
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Proof. Since on {ug = 0} the result holds trivially, consider the open set Ωug =
{ug > 0} ∩D.

Define ũ(x) := max {ug′(x), ug(x)}. Since by a computation ([Vel23, Lemma 2.5])

FΛ(max{ug′ , ug}, D) + FΛ(min{ug′ , ug}, D) = FΛ(ug′ , D) + FΛ(ug, D),

we have that ũ is also a minimizer with ∆ũ = 0 in Ωug ⊂ Ωũ. Suppose for contradic-
tion that there exists x0 ∈ Ωug such that ug(x0) > ug′(x0), that is ũ(x0) = ug(x0).
Let C be the connected component of Ωug containing x0.
Set h(x) := ũ(x) − ug(x) ≥ 0, then on C, ∆h = 0 and as its minimum value of 0

is attained at x0 ∈ C, by the strong maximum principle h ≡ 0 and ũ = ug on C.
We now show for the sake of contradiction that C contains boundary points where

ũ > ug > 0. If ∂C ⊂ {ug = 0}, then by the maximum principle, u ≡ 0 in C,
contradicting C ⊂ Ωug . Hence ∂C ∩ Ωug ̸= ∅. Let x1 ∈ ∂C ∩ Ωug , if x1 ∈ int(D),
then by interior Lipschitz continuity x1 cannot be a point in ∂C, i.e. x1 ∈ ∂D with
g(x1) > 0. Now the whole component ∂D ∩ {g > 0} containing x1 is contained in
∂C by continuity from Theorem 1.1. But by assumption we have z ∈ C̄ with

ũ(z) ≥ ug′(z) = g′(z) > g(z) = ug(z),

a contradiction to the fact that ũ = ug on C, finishing the proof. □

We are now able to prove the generic uniqueness for the one-phase problem, using
the argument from [FY23, Proposition 1.2], but for a wider class of boundary data.

Proof of Proposition 1.3. During the proof we again use the Lipschitz continuity of
minimizers, and we recall that we are taking Λ = 1. By Lemma 3.1, minimizers are
ordered with respect to the boundary datum, i.e. t′ > t > 0 implies that ut′ ≥ ut.
Let t be such that there are at least two distinct minimizers u1

t , u
2
t . Let u+

t =
max{u1

t , u
2
t} and u−

t = min{u1
t , u

2
t}, then

FΛ(u
+
t ) + FΛ(u

−
t ) =

ˆ
D∩{u1

t≥u2
t }
|∇u1

t |2 +
ˆ
D∩{u1

t<u2
t }
|∇u2

t |2

+ |({u1
t > 0} ∪ {u2

t > 0}) ∩D|

+

ˆ
D∩{u1

t≥u2
t }
|∇u2

t |2 +
ˆ
D∩{u1

t<u2
t }
|∇u1

t |2

+ |{u1
t > 0} ∩ {u2

t > 0} ∩D|
= FΛ(u

1
t ) + FΛ(u

2
t ).

As u1
t and u2

t are minimizers, so are u+
t and u−

t . Now let x0 be a point where u1
t and

u2
t differ, i.e. without loss of generality u1

t (x0)−u2
t (x0) = ε. By Lipschitz continuity,

there exists Br(x0) where u1
t (x0) − u2

t (x0) > ε/2. Thus for ρ = min{ε/3, r}, there
exists a d+ 1 dimensional ball Bρ such that Bρ ⊂ epi(u2

t )\epi(u1
t ).

Repeating the argument for any t with non-unique minimizers gives a collection
of disjoint (as minimizers are ordered with respect to the boundary datum) balls.
Since there can be at most countably many disjoint open balls in Rd, the proof is
finished. □
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3.2. Generic regularity of the free boundary. We now prove a slightly weaker
version of Theorem 1.4, namely, the case where the boundary data is equicontinuous.
The main part is already done in [FY23, Section 4], it remains only to prove [FY23,
Lemma 4.3] for the larger class of boundary data (i.e. equicontinuous, which then
implies the result for continuous data, see Lemma 3.3) instead of equi-Lipschitz).

Proposition 3.2. Theorem 1.4 holds under the added assumption that the family
gt is equicontinuous.

Proof. For simplicity of the exposition, we assume that D = B1. Fix τ ∈ (0, 1) and
let x0 be a free boundary point, x0 ∈ B1/2 ∩ ∂Ωut0

. for some t0 ∈ [τ, 1). In view of
[FY23, Lemma 4.3], we need to show that there exists κ = κ(τ, d, ω,M) > 0 (with
ω the common modulus of continuity of {gt} and M its uniform H1 bound), such
that

sup
Bκ(t−t0)

(x)

ut0 ≤ ut(x) for x ∈ B3/4 and t ∈ [t0, 1).

By the assumptions on {gt}, we have

gt0 ≥ τ > 0 on ∂B1.

Applying now Theorem 1.1 (ut0 is continuous up to the boundary with modulus of
continuity ω̄(d, ω,M)), gives δ = δ(τ, d, ω,M) < 1/16 such that

ut0 > 0 in U := B1\B1−8δ.

Using now the comparison lemma, Lemma 3.1, gives ut ≥ ut0 for t ≥ t0 and as
U ⊂ Ωut0

⊂ Ωut ,

∆(ut − ut0) = 0 in U.

The rest of the proof follows analogously to [FY23, Lemma 4.3]. □

We set out to remove the assumption of equicontinuity in the previous statement.
The rough idea is to partition a family of continuous (not necessarily equicontinuous)
functions into countable subfamilies of equicontinuous functions, apply Theorem 3.2
on each subfamily and then show that the size of the set of functions not falling into
any equicontinuous subfamily is small. This is due to the separability of continuous
functions.

Lemma 3.3. Let d ≥ 1 and D ⊂ Rd a bounded Lipschitz domain. Let {gt}t∈(0,1) be
a monotone family of continuous functions in D, i.e.

t ≥ s =⇒ gt ≥ gs in D.

Then, there exists a countable family of disjoint open intervals {Ik}k∈N with Ik ⊂
(0, 1) such that

• (0, 1) \
⋃

k∈N Ik is countable,
• gt are locally equicontinuous for t ∈ Ik. That is, for any K ⊂ Ik compact,
the family {gt}t∈K is equicontinuous.
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Proof. Let T ⊂ (0, 1) be the set where {gt}t∈(0,1) is locally equicontinuous, i.e.

T := {t ∈ (0, 1) : ∃η > 0 s.t. {gs}(t−η,t+η) is equicontinuous}.
Since for t0 ∈ T and t ∈ Bη/2(t0) (where η = η(t0)),

{gs}(t−η/2,t+η/2) ⊂ {gs}(t0−η,t0+η),

it follows that T is open in ({gs}(0,1), ∥ · ∥L∞(D)). Next, we show by contraposition
that for a fixed t ∈ T c, either

∃ε > 0 : inf
s>t

∥gt − gs∥L∞(D) ≥ ε or ∃ε > 0 : inf
s<t

∥gt − gs∥L∞(D) ≥ ε.

Indeed, suppose it is not true true. Since {gs}(0,1) is monotone, we have

∀ε > 0, inf
s>t

∥gt − gs∥L∞(D) < ε and ∀ε > 0, inf
s<t

∥gt − gs∥L∞(D) < ε

that is,
lim
s→t

∥gt − gs∥L∞(D) = 0.

Let ε > 0 and take η, δ > 0 such that

|s− t| < η =⇒ ∥gt − gs∥L∞(D) <
ε

3
,

|x− y| < δ =⇒ |gt(x)− gt(y)| <
ε

3
.

By the triangle inequality,

|gs(x)− gs(y)| ≤ |gs(x)− gt(x)|+ |gt(x)− gt(y)|+ |gt(y)− gs(y)| ≤ ε,

it follows that {gs}(t−η,t+η) is equicontinuous, as δ does not depend on s, giving a
contradiction.

It remains to show that T c is countable. We have

T c = {t ∈ (0, 1) : inf
s>t

∥gt − gs∥L∞(D) > 0}︸ ︷︷ ︸
=:T c

1

∪{t ∈ (0, 1) : inf
s<t

∥gt − gs∥L∞(D) > 0}︸ ︷︷ ︸
=:T c

2

.

Let
Jm := {t ∈ (0, 1) : inf

s>t
∥gt − gs∥L∞(D) ≥ 1

m
}, for m ∈ N.

Then, by definition, we have

T c
1 =

⋃
m∈N

Jm.

For any m ∈ N and t1, t2 ∈ Jm with t2 ̸= t1 we have ∥gt1 − gt2∥L∞(D) ≥ 1
m

> 0,
and so the family {gt}t∈Jm is a family of continuous functions that are pairwise at
distance 1

m
. However, C(D̄) and then also {gt}t∈Jm are separable, that is, there exists

a countable subset I ⊂ Jm such that {gt}t∈I is dense in {gt}t∈Jm . Take gt ∈ {gt}t∈Jm
and tn ∈ I ⊂ Jm with ∥gtn−gt∥L∞(D) → 0. The lower bound on the pairwise distance
implies that tn = t for all n large enough, i.e. for any t ∈ Jm, gt ∈ {gt}t∈I , thus Jm
is countable. Since m was arbitrary and countability is preserved under countable
unions, T c

1 is countable and by the same argument T c
2 is countable as well, and so

is T c.
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Since T ⊂ (0, 1) is open it can be written as a disjoint union of open intervals,
that is (0, 1) = T c ∪ T = T c ∪

⋃
k∈N Ik. Now, K ⊂⊂ Ik, {(t− ηt, t+ ηt}t∈K admits a

finite subcover; and we take as common modulus of continuity its maximum. □

We now combine Proposition 3.2 with Lemma 3.3 to obtain the generic regularity
result for a general (not necessarily equicontinuous) family of continuous boundary
data, thus proving Theorem 1.4 in its full generality.

Proof of Theorem 1.4. We first treat the case d = d∗ + 1. By Lemma 3.3, let J0 =
(0, 1) \

⋃
k∈N Ik and {gs}s locally equicontinuous for s ∈ Ik for each k. By taking a

countable compact exhaustion of Ik and applying Theorem 3.2 in each compact, we
deduce that, for each k, there is Jk countable such that Sing(ut) = ∅ on Ik\Jk. The
result follows by setting J := J0 ∪

⋃
k∈N Jk.

For the case d ≥ d∗ + 2, since the dimension estimate dimH Sing(ut) ≤ d− d∗ − 2
holds for almost every t ∈ K and every K ⊂⊂ Ik, it holds a.e. on Ik. Hence it holds
also almost everywhere on (0, 1). □
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