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Abstract. We show that any viscosity solution to a general fully nonlinear
nonlocal elliptic equation can be approximated by smooth (C∞) solutions.

1. Introduction

The regularization of solutions to elliptic equations is a fundamental tech-
nique to generalize a priori regularity estimates to full classes of solutions (see
[12, Section 7.2], [9, Section 5.3], or [10, Chapter 2]). For weak or distributional
solutions of linear and translation invariant equations this is accomplished, for
example, by convolving the solution with a smooth mollifier.

For viscosity solutions of fully nonlinear elliptic PDE,

F (D2u) = 0 in B1

(which in general, have no strong solutions), such a regularization procedure
has been done in less straight-forward ways (see [6, 7]; or [3] where the authors
use nonlocal techniques). In neither of these cases, however, the approximation
is done by solutions to equations within the same class as the limit1.

In the nonlocal case, nevertheless, there is a natural way to regularize solu-
tions of fully nonlinear nonlocal equations (see (1.6)),

I(u, x) = 0 in B1, (1.1)

by substituting the corresponding kernels of the linear operators near the origin
by that of the fractional Laplacian; see [4] (and also [5]), where Caffarelli and
Silvestre use (and prove) that solutions to translation invariant and concave
nonlocal equations (with s > 1/2 and smooth kernels) can be approximated
by strong solutions (i.e., C2,α) to equations in the same class (see also [13]
for a similar procedure for general elliptic operators with s > 1/2). In some
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settings (see [16]), however, it is sometimes necessary to approximate by even
more regular solutions (say, C4), and the results in [4]-[5] do not apply. In
fact, for nonlocal equations, the approximating procedure remains open in the
following cases:

• Approximation by smooth solutions, more regular than C2,α.
• General fully nonlinear equations.
• Non-translation invariant equations, for all s ∈ (0, 1) and in different

regularity classes.

In this work we tackle all three of the previous situations, and provide
smooth (C∞) approximations of general fully nonlinear equations. This is
a phenomenon that has no local counter-part described in the literature.

Observe that, in general, solutions to fully nonlinear nonlocal equations,
(1.6), are not better than C2s+1, and it was unclear whether smooth solutions
exist (outside of trivial settings) or how common they are. The only results
we know in this direction are due to Yu in [19, 20], who proved that certain
special classes of equations admit smooth solutions. We prove here that this
is, in fact, a common phenomenon: any solution to (1.1) can be approximated
by C∞ solutions of equations in the same class.

We expect our results to be useful in various settings. Some examples can
be seen in [13, 17, 11] to prove regularity estimates for general nonlocal fully
nonlinear equations; in [1, 16] to apply Bernstein’s technique in a nonlocal set-
ting and obtain semiconvexity estimates; and in this same manuscript, where
in subsection 4.1 we use the regularization to prove the equivalence between
distributional and viscosity solutions for linear translation invariant equations,
for any s ∈ (0, 1).

We consider the class of linear operators with kernels comparable to the one
of fractional Laplacian. Namely, we consider operators of the form

Lxu(x) = P.V.

�
Rn

(
u(x)− u(x+ y)

)
K(x, y) dy

=
1

2

�
Rn

(
2u(x)− u(x+ y)− u(x− y)

)
K(x, y) dy,

(1.2)

with
K(x, y) = K(x,−y) in Rn (1.3)

and

0 <
λ

|y|n+2s
≤ K(x, y) ≤ Λ

|y|n+2s
in Rn. (1.4)

By considering a (concave) modulus of continuity ω : R+ → R+, we will also
assume a weak form of continuity with respect to the x-variable of the kernels:�

B2r\Br
|K(x, y)−K(x′, y)| dy ≤ ω(|x− x′|)

r2s
, for any x, x′ ∈ Rn, r > 0.

(1.5)
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We thus consider the class of linear nonlocal operators given by:

Lωs (λ,Λ) :=
{
Lx : (1.2)-(1.3)-(1.4)-(1.5) holds

}
,

and the class Iωs (λ,Λ) of fully nonlinear integro-differential operators of the
form:

I(u, x) = inf
b∈B

sup
a∈A

{
− Lab,xu(x) + cab(x)

}
with Lab,x ∈ Lωs (λ,Λ) (1.6)

given by

Iωs (λ,Λ) :=

{
I :
I is of the form (1.6), I(0, x) ∈ L∞(Rn), and
(cab(x))ab have a common modulus of continuity ω

}
.

Our main goal is to prove the following, where ws ∈ L1(Rn) is the weight
ws(x) = 1

1+|x|n+2s . We refer to Remarks 1.2 to 1.6 below for a further charac-

terization of the objects involved in the statement.

Theorem 1.1. Let s ∈ (0, 1), and let I ∈ Iωs (λ,Λ). Let u ∈ C(B1) ∩ L∞(Rn)
be any viscosity solution of

I(u, x) = f(x) in B1

for some f ∈ C(B1) with modulus of continuity ω.
Then, there exist sequences of functions u(ε), fε ∈ C∞c (Rn) such that

u(ε) → u uniformly in B3/4 and in L1(Rn;ws),

fε → f uniformly in B3/4,

and a sequence of operators Iε ∈ Iωs (λ,Λ) with

Iε(0, x)→ I(0, x) uniformly in B3/4,

as ε ↓ 0, such that

Iε(uε, x) = fε(x) in B3/4.

Moreover,

‖u(ε)‖L∞(Rn) ≤ C
(
‖u‖L∞(Rn) + ‖I(0, ·)− f‖L∞(B3/4) + ω(ε)

)
for some C depending only on n, s, λ, and Λ. Finally, if I is translation
invariant (resp. concave), then Iε are translation invariant (resp. concave).

Some remarks are in order:

Remark 1.2. The new operators Iε are C∞, in the sense that for any w ∈
C∞c (Rn) we have Iε(w, x) ∈ C∞(Rn), with vanishing derivatives at infinity;
see the proof of Proposition 5.1.
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Remark 1.3. The right-hand side is fε = f ∗ ϕε, for some mollifier ϕε (see
(3.4)-(3.5)). Moreover, if u ∈ Cα(Rn), then there exists δ > 0 depending only
on α, n, s, λ, and Λ, such that

‖u(ε)‖Cδ(Rn) ≤ C
(
‖u‖Cα(Rn) + ‖I(0, ·)− f‖L∞(B3/4) + ω(ε)

)
,

for some C depending only on n, s, α, λ, and Λ.

Remark 1.4. If the operator I has higher regularity in x and y, this is also
inherited by Iε. Namely, if I ∈ Iµs (λ,Λ; θ) for some θ > 0 and µ > 0 (see the
notation in subsection 2.1 below), then Iε ∈ Iµs (λ,Λ; θ) with [Iε]xµ ≤ C[I]xµ and
[Iε]yθ ≤ C[I]yθ , and C depending only on n, s, λ, Λ, µ, and θ; see Remark 5.2.
The same conclusion also holds for pointwise norms; see Remarks 2.1 and 3.4.

Remark 1.5. The new operators have kernels that are convex combinations
of (3.6), where K denotes any kernel of I. Thus, any property that is preserved
by this operation is actually inherited by the new operators Iε(for example,
the linear operators in [11, Chapter 2]).

Remark 1.6. In Theorem 1.1, one could take instead u ∈ C(B1) with controlled
growth at infinity, |u(x)| ≤ C(1 + |x|2s−τ ) in Rn for some τ > 0.

If one wants to take u ∈ C(B1) ∩ L1(Rn;ws), however, it can be done
provided that the continuity assumption in (1.5) is understood in a pointwise
sense, |K(x, y)−K(x′, y)| ≤ ω(|x− x′|)|y|−2s−n. In the same way, the results
in Remark 1.4 would be true for pointwise estimates in x and y as well (like
those in Remark 2.1).

1.1. Outline of the proof. After introducing some preliminary notation and
results in Section 2, the proof is then divided into three parts.

In the first part, Section 3, we use the ideas from [4] (and [13, 17]) to obtain a
detailed version of [4, Lemma 2.1] in this more general setting, Proposition 3.1,
where we approximate solutions to fully nonlinear equations by solutions to
more regular equations, and we believe that this is a result of independent
interest.

In Section 4 we then use the ideas of the previous section to construct a
sequence of strong solutions, globally Hölder and compactly supported, to
general fully nonlinear translation invariant equations.

Finally, in Section 5 we prove our main result, Theorem 1.1, by regularizing
the inf sup structure of the fully nonlinear operators. In the local setting,
F (D2u) = 0, this would be accomplished by directly regularizing F . In the
nonlocal setting, the analogue of F would be defined on an infinite dimensional
space (the space of kernels), and one needs to be more careful about such
regularization.
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2. Preliminary steps

In this section we introduce the notation used throughout the work, as well
as some preliminary results that will be useful in the following proofs.

2.1. Notation. We will use kernels that have higher-order regularity in both
x and y. Let us introduce the corresponding spaces.

Regarding the regularity in x, an analogous condition to (1.5) can also be
considered for any power. Thus, in general, for a given µ > 0 with dµ−1e = m,
we can impose�

B2r\Br
|Dm

x K(x, y)−Dm
x K(x′, y)| dy ≤ C◦

|x− x′|µ−m

r2s
,

for any x, x′ ∈ Rn, r > 0.

(2.1)

We can then define the corresponding semi-norm as the best possible constant
C◦ satisfying such conditions for µ > 0:

[K]xµ := inf {C◦ > 0 : (2.1) holds.} . (2.2)

On the other hand, we can also impose a higher-order regularity in the y
variable. In this case, the analogous condition we will require is that, for a
given µ > 0 with dµ− 1e = m,�
B2r\Br

∣∣Dm
y K(x, z − y)−Dm

y K(x, z′ − y)
∣∣ dy ≤ C◦

|z − z′|µ−m

r2s+µ

for all r > 0, z, z′ ∈ Br/2, x ∈ Rn.
(2.3)

We denote

[K]yµ := inf {C◦ > 0 : (2.3) holds.} . (2.4)

If Lx is an operator of the form (1.2) with kernel K = K(x, y), we denote

[Lx]yµ := [K]yµ. (2.5)

Remark 2.1. The previous conditions are satisfied when the kernels are Hölder
continuous with an appropriate scaling. Namely, for condition (2.1) to hold
it is enough to ask [K]Cµx (B2r\Br) ≤ Cr−2s−n for all r > 0, and in the case of
condition (2.3) it is enough to have [K]Cµy (B2r\Br) ≤ Cr−2s−n−µ for all r > 0.
These are the type of pointwise norms used, e.g., in [4, 5].

We then define the classes Lωs (λ,Λ;µ) and Lµs (λ,Λ) for µ > 0 as follows:

Definition 2.2. Let s ∈ (0, 1), 0 < λ ≤ Λ, and let ω : R+ → R+ be a modulus
of continuity. We define, for µ > 0,

Lωs (λ,Λ;µ) :=
{
Lx ∈ Lωs (λ,Λ) : [Lx]yµ <∞

}
.

We also denote Lωs (λ,Λ; 0) := Lωs (λ,Λ).
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On the other hand we define, for a given µ > 0,

Lµs (λ,Λ) :=
{
Lx : (1.2)-(1.3)-(1.4) holds, and [Lx]xµ <∞

}}
,

and we denote L∞s (λ,Λ) =
⋂
µ>0 L

µ
s (λ,Λ).

Of course, we also have the corresponding regular classes of fully nonlinear
operators of the form (1.6), Iωs (λ,Λ;µ) and Iµs (λ,Λ):

Definition 2.3. Let s ∈ (0, 1), 0 < λ ≤ Λ, and let ω : R+ → R+ be a modulus
of continuity. We define, for µ > 0,

Iωs (λ,Λ;µ) :=
{
I ∈ Iωs (λ,Λ) : [I]yµ < +∞

}
.

where for I ∈ Iωs (λ,Λ) we denote

[I]yµ := sup
(a,b)∈A×B

[Lab,x]yµ.

In particular, in the expression (1.6) we have that Lab,x ∈ Lωs (λ,Λ;µ) for all
(a, b) ∈ A× B. When µ = 0, we denote furthermore Iωs (λ,Λ; 0) := Iωs (λ,Λ).

We also define, given µ > 0,

Iµs (λ,Λ;µ) :=
{
I ∈ Iωs (λ,Λ) : [I]xµ < +∞

}
.

where for I ∈ Iωs (λ,Λ) we denote

[I]xµ := sup
(a,b)∈A×B

[Lab,x]xµ,

and I∞s (λ,Λ) =
⋂
µ>0 I

µ
s (λ,Λ).

The extremal operators corresponding to the class Lωs (λ,Λ) have a relatively
simple closed expression:

M+
s,λ,Λu(x) =

1

2

�
Rn

{
Λ
(
u(x+ y) + u(x− y)− 2u(x)

)
+

− λ
(
u(x+ y) + u(x− y)− 2u(x)

)
−

}
dy

|y|n+2s
,

(2.6)

and

M−
s,λ,Λu(x) =

1

2

�
Rn

{
λ
(
u(x+ y) + u(x− y)− 2u(x)

)
+

− Λ
(
u(x+ y) + u(x− y)− 2u(x)

)
−

}
dy

|y|n+2s
.

(2.7)

Throughout this paper we will denote

M+ :=M+
s,λ,Λ and M− :=M−

s,λ,Λ. (2.8)

The class Iωs (λ,Λ) is uniformly elliptic with respect to Lωs (λ,Λ), that is,

M−v(x) ≤ I(u+ v, x)− I(u, x) ≤M+v(x).
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2.2. Preliminary results. The following are well-known results that we re-
write here for the convenience of the reader. The first is a result regarding the
regularity of Lxu when u is regular.

Lemma 2.4. Let s ∈ (0, 1) and let µ with µ 6∈ N. Then, if Lx ∈ Lµs (λ,Λ), for
any u ∈ C2s+µ(B1) ∩ Cµ(Rn) we have Lxu ∈ Cµ

loc(B1) and

‖Lxu‖Cµ(B1/2) ≤ CΛ
(
‖u‖C2s+µ(B1) + ‖u‖Cµ(Rn)

)
,

with C depending only on n, s, [Lx]xµ, and µ.

Proof. The proof of this result is standard. We briefly sketch the main steps
for completeness, and refer to [11] for more details.

Let us assume first that Lx = L is translation invariant, with kernel K(y)
satisfying |K(y)| ≤ Λ|y|−n−2s in Rn. We fix a cut-off function η ∈ C∞c (Rn)
such that η ≥ 0, η ≡ 0 in Rn \B3/4 and η ≡ 1 in B2/3, and define

u1 := ηu and u2 := (1− η)u,

and we bound separately the regularity of Lu1 and Lu2.
To bound ‖Lu1‖Cµ(B1/2) we use u1 ∈ C2s+µ(Rn) with ‖u1‖C2s+µ(Rn) ≤ C.

Then, if µ < 1, a direct computation shows that

|u1(x+ y) + u1(x− y)− 2u1(x)| ≤ C|y|2s+µ,
|u1(x) + u1(−x)− 2u1(0)| ≤ C|x|2s+µ,

|u1(x± y) + u1(−x± y)− 2u1(±y)| ≤ C|x|2s+µ.

for 2s+ µ ≤ 2, and∣∣u1(x+ y) + u1(x− y)− 2u1(x)− u1(y)− u1(−y) + 2u1(0)
∣∣ ≤ |y|2|x|2s+µ−2,∣∣u1(x+ y) + u1(−x+ y)− 2u1(y)− u1(x)− u1(−x) + 2u1(0)
∣∣ ≤ |x|2|y|2s+µ−2

if 2 < 2s+ µ < 3. Together with the bounds on the kernel, this directly yields∣∣Lu1(x) + Lu1(−x)− 2Lu1(0)
∣∣ ≤ CΛ|x|µ, (2.9)

which is what we wanted (repeating around every point in B1/2). On the other
hand, if µ = k + β with k ∈ N, β ∈ (0, 1), we take k derivatives of Lu1 and
repeat the arguments above, to obtain [DkLu1]Cβ(B1/2) ≤ C.

For the bound on ‖Lu2‖Cµ(B1/2) (with µ = k + β as above), we have∣∣DkLu2(x)−DkLu2(0)
∣∣ =

∣∣LDku2(x)− LDku2(0)
∣∣ ≤ C|x|β,

using that Dku2 ∈ Cβ and the fact that u2 ≡ 0 in B2/3.
Finally, to do the general non-translation invariant case, given a fixed point

xi we denote Lxi the translation invariant operator with kernel K(xi, y). Thus,
if µ < 1 we can write for x1, x2 ∈ B1/2,

|Lx1u(x1)− Lx2u(x2)| ≤ |Lx1u(x1)− Lx1u(x2)|+ |Lx1u(x2)− Lx2u(x2)|,
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where the first term can be bounded as before, and the second term is bounded
thanks to (2.1) and the fact that u is C2s+µ around x2. If µ > 1, we use the
same reasoning, by taking the derivatives of Lxu(x) and using the bound (2.1)
again. �

The following, is a direct consequence of the comparison principle for the
extremal operators:

Lemma 2.5. Let s ∈ (0, 1) andM± be given by (2.8). Let u ∈ C(B1)∩L∞(Rn)
be a viscosity solution of{

M+u ≥ −C◦ in B1,
M−u ≤ C◦ in B1.

(2.10)

Then,

‖u‖L∞(B1) ≤ ‖u‖L∞(Rn\B1) + CC◦,

for some constant C depending only on n, s, λ, and Λ.

Proof. The proof is standard, by applying the maximum principle to the func-
tions u± CC◦χB2 . �

The next result is on the interior regularity of solutions to non-divergence-
form equations with bounded measurable coefficients:

Theorem 2.6 ([18, 2]). Let s ∈ (0, 1) and let M± be given by (2.8). Let u ∈
C(B1) ∩ L∞(Rn) be any viscosity solution to a non-divergence-form equation
with bounded measurable coefficients, i.e.,{

M+u ≥ −C◦ in B1

M−u ≤ C◦ in B1,

for some C◦ ≥ 0. Then u ∈ Cγ
loc(B1) with

‖u‖Cγ(B1/2) ≤ C
(
‖u‖L∞(Rn) + C◦

)
,

where C and γ > 0 depend only on n, s, λ, and Λ.

And the corresponding result regarding the regularity up to the boundary:

Lemma 2.7 ([5]). Let s ∈ (0, 1), and let g ∈ L∞(Rn) ∩ Cα(B2) for some
α > 0. Let M± be given by (2.8), and let u ∈ C(Ω) ∩ L∞(Rn) be a viscosity
solution of  M

+u ≥ −C◦ in B1,
M−u ≤ C◦ in B1,

u = g in Rn \B1.

Then, u ∈ Cδ(B1) for some δ > 0 depending only on α, n, s, λ, and Λ.

We will also make use of the notion of weak convergence of nonlocal opera-
tors, in particular to study limits of viscosity solutions; see [5, Lemma 4.3].
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Definition 2.8 (Weak convergence of operators). Let s ∈ (0, 1). Let (Ik)k∈N
be a sequence of operators with Ik ∈ Iωs (λ,Λ) and let I ∈ Iωs (λ,Λ). We say
that Ik weakly converges to I in Ω, and we denote it

Ik ⇀ I in Rn,

if for every x◦ ∈ Ω and every function v ∈ L∞(Rn) such that v is C2 in
Br(x◦) ⊂ Ω, we have Ik(v, x)→ I(v, x) uniformly in Br/2(x◦).

Finally, we also recall the following classical result on the interior regularity
of solutions to equations with the fractional Laplacian (see, for example, [15]):

Proposition 2.9 (Interior estimates for viscosity solutions of (−∆)s). Let
s ∈ (0, 1), and let f ∈ Cθ(B1) for some θ ∈ [0, 1). Let u ∈ C(B1) ∩ L∞(Rn)
satisfy

(−∆)su = f in B1

in the viscosity sense. Then, if 2s+ θ /∈ N, u ∈ C2s+θ
loc (B1) with

‖u‖C2s+θ(B1/2) ≤ C
(
‖u‖L∞(Rn) + ‖f‖Cθ(B1)

)
,

for some C depending only on n, s, and θ. If θ = 0 and s = 1
2
, then u ∈

C1−δ(B1) for any δ > 0.

3. Approximation of equations with regular kernels

We start with a first approximation result in the case of regular kernels. We
consider operators of the form

I(u, x) = inf
b∈B

sup
a∈A

{
− Lab,xu(x) + cab(x)

}
, Lab,x ∈ Ls(λ,Λ; θ), (3.1)

from which we define its regularized version as

Iε(u, x) = inf
b∈B

sup
a∈A

{
−L(ε)

ab,xu(x) + cab(x)
}
, L(ε)

ab,x ∈ Ls(λ,Λ; θ), (3.2)

where the cab are the same as above. The first regularization or approximation
result is then the following:

Proposition 3.1. Let s ∈ (0, 1), and let I ∈ Iωs (λ,Λ; θ) with θ ∈ [0, 1) be of
the form (3.1). Let us assume, moreover, that

sup
(a,b)∈A×B

[cab]Cθ(Rn) <∞,

where we denote [ · ]C0 = osc( · ).
Let u ∈ C(B1) ∩ L∞(Rn) be any viscosity solution of

I(u, x) = 0 in B1.

Then, there exist a sequence of functions,

u(ε) ∈ C2s+θ
loc (B3/4) ∩ C(B1) ∩ L∞(Rn) if 2s+ θ /∈ N,
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or u(ε) ∈ C1−δ
loc (B3/4) ∩ C(B1) ∩ L∞(Rn) for any δ > 0 if θ = 0 and s = 1

2
;

and a sequence of operators Iε ∈ Iωs (λ,Λ; θ) of the form (3.2) and satisfying
[Iε]yθ ≤ C1[I]yθ if θ > 0, with C1 depending only on n, s, λ, Λ, and θ, such that,{

Iε(u(ε), x) = 0 in B3/4

u(ε) = u in Rn \B3/4,

and
u(ε) → u locally uniformly in B3/4.

Moreover, we have

‖u(ε)‖L∞(B3/4) ≤ C
(
‖u‖L∞(Rn) + ‖I(0, x)‖L∞(B3/4)

)
(3.3)

for some C depending only on n, s, λ, and Λ.

Let us start with the construction of Iε. Let ψ : [0,∞)→ [0,∞) be a given
fixed cut-off function such that

ψ ∈ C∞c ([0,∞)),
ψ = 1 in [0, 1/2],
ψ = 0 in [1,∞),
ψ is monotone nonincreasing.

We also fix a mollifier ϕ such that

ϕ ∈ C∞c (B1) is radial, with ϕ ≥ 0 and
�
B1
ϕ = 1, (3.4)

and we consider the rescalings

ϕε(x) :=
1

εn
ϕ
(x
ε

)
∈ C∞c (Bε). (3.5)

Given Lx ∈ Lωs (λ,Λ) with kernel K (which satisfies (1.4)-(1.5)) and ε > 0,

we define L(ε)
x to be the operator that has kernel Kε given by

Kε(x, y) =
(
1− ψ(|y|/ε)

)
(K(·, y) ∗ ϕε)(x) + ψ(|y|/ε)|y|−n−2s. (3.6)

Notice that with this definition we still have L(ε)
x ∈ Lωs (λ,Λ). Moreover, we

have:

Lemma 3.2. Let s ∈ (0, 1). If Lx ∈ Lωs (λ,Λ; θ) for some θ > 0, then L(ε)
x ∈

Lωs (λ,Λ; θ) as well, with [
L(ε)
x

]y
θ
≤ C[Lx]yθ

for some constant C depending only on n, s, θ, λ, and Λ.

Proof. Let us define, for a kernel J(x, y) with dθ − 1e = m,

[J ]θ;r := sup
x∈Rn

sup
z,z′∈Br/2

�
B2r\Br

|DmJ(x, z − y)−DmJ(x, z′ − y)|
|z − z′|θ

dy,

(cf. (2.3)).
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By the triangle inequality, we have

[Kε]θ;r ≤ [K ∗x ϕε]θ;r + C(Λ + 1)r−n−2s
[
ψ(|y|/ε)

]
θ;r

+
[
|y|−n−2s

]
θ;r

≤ C
(

[K]yθ + r−n+θεn−θ[ψ]θ;r/ε +
[
|y|−n−2s

]
θ;1

)
r−2s−θ,

which, since ψ is fixed and [ψ]θ;r/ε = 0 for r > 100ε or r < ε/100, directly
implies

[Kε]θ;r ≤ C([K]yθ + 1)r−2s−θ,

and hence

[Kε]
y
θ ≤ C([K]yθ + 1).

Since [Lx]yθ ≥ c > 0 for all Lx ∈ Lωs (λ,Λ; θ), the result follows. �

Remark 3.3. Notice that, in fact, the new operators L(ε)
x are regularizing in x,

so L(ε)
x ∈ Lωs (λ,Λ) ∩ L∞s (λ,Λ) with bounds independent of (a, b) ∈ A× B.

Remark 3.4. The same proof would also yield that the operators preserve
pointwise norms, like the ones in Remark 2.1.

Let now I ∈ Iωs (λ,Λ; θ) for some θ > 0, i.e., of the form (3.1). We define Iε
as (3.2) with L(ε)

ab,x given by (3.6). By Lemma 3.2 we immediately have that

Iε ∈ Iωs (λ,Λ; θ)

as well, with [Iε]yθ ≤ C[I]yθ if θ > 0. Furthermore, Iε weakly converges to I as
ε ↓ 0:

Lemma 3.5. Let s ∈ (0, 1), and let I, Iε ∈ Iωs (λ,Λ) be as above. Then

Iε ⇀ I in Rn, as ε ↓ 0,

in the sense of Definition 2.8.

Proof. Let x◦ ∈ Rn, and let v ∈ L∞(Rn) such that it is C2 in Br(x◦) for some
r > 0. Let us compute, for any x ∈ Br/2(x◦) and Lx ∈ Iωs (λ,Λ) with kernel K,

L(ε)v(x)−Lv(x) =
1

2

�
Rn

(
2v(x)− v(x+ y)− v(x− y)

)(
Kε(x, y)−K(x, y)

)
dy.

Since

Kε(x, y)−K(x, y) = ψ(|y|/ε)
(
|y|−n−2s −K(x, y)

)
+(K(·, y)∗ϕε)(x)−K(x, y)

we can bound the right-hand side by∣∣L(ε)v(x)− Lv(x)
∣∣ ≤ I + II

where, directly using that |K(x, y)| ≤ Λ|y|−n−2s, we have

I := C

�
Bε

∣∣2v(x)− v(x+ y)− v(x− y)
∣∣|y|−n−2s dy,
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and

II :=

�
Bε

�
Rn

∣∣2v(x)− v(x+ y)− v(x− y)
∣∣∣∣K(x− z, y)−K(x, y)

∣∣ dy ϕε(z) dz.

Now, since v is C2 in Br(x◦) and taking ε < r/4 we can bound I by

I ≤ C‖v‖C2(B3r/4(x◦))

�
Bε

|y|−n−2s+2 dy ≤ C‖v‖C2(B3r/4(x◦))ε
2−2s.

On the other hand, thanks to (1.5) we also have�
Rn

∣∣2v(x)− v(x+ y)− v(x− y)
∣∣∣∣K(x− z, y)−K(x, y)

∣∣ dy
≤ C

(
‖v‖C2(B3r/4(x◦)) + ‖v‖L∞(Rn)

)
ω(|z|),

and therefore

II ≤ C
(
‖v‖C2(B3r/4(x◦)) + ‖v‖L∞(Rn)

)
ω(ε).

Hence, we can bound

Iε(v, x) = inf
b∈B

sup
a∈A

{
−L(ε)

ab,xu(x) + cab(x)
}

≤ I(v, x) + C
(
‖v‖C2(B3r/4(x◦)) + ‖v‖L∞(Rn)

) (
ε2−2s + ω(ε)

)
On the other hand, we also get similarly,

Iε(v, x) ≥ I(v, x)− C
(
‖v‖C2(B3r/4(x◦)) + ‖v‖L∞(Rn)

) (
ε2−2s + ω(ε)

)
.

In all, we have proved that

‖Iε(v, ·)− I(v, ·)‖L∞(Br/2(x◦)) ↓ 0

as ε ↓ 0, that is, Iε ⇀ I. �

We want to use the previous operators Iε to construct a series of regular
solutions approximating a given solution. That is, let I ∈ Iωs (λ,Λ; θ) for some
θ ∈ [0, 1), and let u ∈ C(B1) ∩ L∞(Rn) be such that

I(u, x) = 0 in B1. (3.7)

We then define u(ε) to be the unique solution (see, for example, [17, 14]){
Iε(u(ε), x) = 0 in B3/4

u(ε) = u in Rn \B3/4.
(3.8)

Lemma 3.6. Let s ∈ (0, 1) and I ∈ Iωs (λ,Λ). Let u ∈ C(B1) ∩ L∞(Rn) be
any viscosity solution of (3.7), and let u(ε) ∈ C(B3/4) ∩ L∞(Rn) be the unique
solution of (3.8). Let γ > 0 be given by Theorem 2.6. Then

‖u(ε)‖L∞(B3/4) + ‖u(ε)‖Cγ(B1/2) ≤ C
(
‖u‖L∞(Rn) + ‖I(0, x)‖L∞(B3/4)

)
,
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for some C depending only on n, s, λ, and Λ.

Proof. Observe that,

M+v ≥ Iε(v, x)− Iε(0, x) ≥M−v,

and since Iε(0, x) = I(0, x), the bound on ‖u(ε)‖L∞(B3/4) directly follows from

the comparison principle in Lemma 2.5, while the bound on [u(ε)]Cγ(B1/2) is a

consequence of Theorem 2.6 and the bound on ‖u(ε)‖L∞(B3/4). �

We now want to show that the solutions u(ε) are qualitatively regular (that
is, strong solutions) in the interior of B3/4. In order to do it, we use the
structure of the operator Iε, which behaves like a fractional Laplacian. Thus,
we need the interior estimates for viscosity solutions of equations with the
fractional Laplacian, Proposition 2.9. The following is the qualitative result
on the regularity of u(ε):

Lemma 3.7. Let s ∈ (0, 1). Let u(ε) be defined as above, (3.8), for a fixed
I ∈ Iωs (λ,Λ; θ) with θ ∈ [0, 1) of the form (3.1). Let us assume, moreover,
that

sup
(a,b)∈A×B

[cab]Cθ(Rn) ≤ C◦ <∞,

where we denote [ · ]C0 = osc( · ). Then, if 2s + θ /∈ N, u(ε) ∈ C2s+θ
loc (B3/4). If

θ = 0 and s = 1
2
, we have u(ε) ∈ C1−δ

loc (B3/4) for any δ > 0.

Proof. For the sake of readability, let us denote v = u(ε). Notice that, by
Lemma 3.6 and a covering argument (or directly by Theorem 2.6), we already
know that v is Cγ inside B3/4.

We express now the operator Iε as follows:

Iε(v, x) = −c−1
n,s(−∆)sv(x) + inf

b∈B
sup
a∈A

{
L̃(ε)
ab,xv(x) + cab(x)

}
= −c−1

n,s(−∆)sv(x) + fε(x),
(3.9)

where we have denoted,

L̃(ε)
ab,xv(x) =

(
c−1
n,s(−∆)s − L(ε)

ab,x

)
v(x)

=
1

2

�
Rn

(
2v(x)− v(x+ y)− v(x− y)

)
K̃ε(x, y) dy

=

�
Bc
ε/2

(
v(x)− v(x+ y)

)
K̃ε(x, y) dy,

with

K̃ε(x, y) =
(
1− ψ(|y|/ε)

) (
|y|−n−2s − (Kab(·, y) ∗ ϕε)(x)

)
∈ L1(Rn),
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where cn,s is the constant of the fractional Laplacian, (−∆)s, and Kab(x, y) is
the kernel of the operator Lab,x. In particular,

L̃(ε)
ab,xv(x) = v(x)

�
Bc
ε/2

K̃ε(x, y) dy −
�
Bc
ε/2

(x)

v(z)K̃ε(x, z − x) dz. (3.10)

Let now x ∈ B3/4 fixed, and let

ρ = min

{
ε

4
,
1

2
dist(x, ∂B3/4)

}
= min

{
ε

4
,
1

2

(
3

4
− |x|

)}
> 0. (3.11)

Let us bound, for h ∈ Bρ,

|L̃(ε)
ab,xv(x+ h)− L̃(ε)

ab,xv(x)| ≤ I + II + III,

where, for any µ ∈ (0, 1) we have

I = |v(x+ h)− v(x)|
�
Bc
ε/2

K̃ε(x+ h, y) dy ≤ Cρ[v]Cµ(Bρ(x))|h|µ,

as well as (since v is bounded)

II = |v(x)|
�
Bc
ε/2

|K̃ε(x+ h, y)− K̃ε(x, y)| dy

≤ |v(x)|
�
Bc
ε/2

|(Kab(·, y) ∗ ϕε)(x+ h)− (Kab(·, y) ∗ ϕε)(x)| dy

≤ Cρ|h|,
(where we used that the regularized kernels (Kab(·, y) ∗ ϕε)(x) are uniformly
Lipschitz in (a, b) ∈ A× B, but not in ε as ε ↓ 0), and

III ≤
�
Bc
ε/4

(x)

|v(z)||K̃ε(x, z − x)− K̃ε(x, z − x− h)| dz

≤ Cρ

�
Bc
ε/4

(x)

|K̃ε(x, z − x)− K̃ε(x, z − x− h)| dz ≤ Cρ|h|θ,

since I ∈ Iωs (λ,Λ; θ).
Thanks to the previous bounds we have

[L̃(ε)
ab,xv]Cµ(Bρ(x)) ≤ Cρ

(
‖v‖Cµ(Bρ(x)) + ‖v‖L∞(Rn)

)
,

where Cε is independent of (a, b) ∈ A × B. In (3.9) we can therefore bound
the Hölder semi-norms of fε (being the inf sup of Hölder functions) as

[fε]Cµ(Bρ(x)) ≤ Cρ
(
‖v‖Cµ(Bρ(x)) + ‖v‖L∞(Rn) + C◦

)
.

Thus, we obtain that

v ∈ Cµ
loc(B3/4) and 0 ≤ µ ≤ θ =⇒ fε ∈ Cµ

loc(B3/4), (3.12)

in a qualitative way.
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Moreover, v satisfies, by assumption

(−∆)sv = fε in B3/4.

Hence, we can now use interior estimates for viscosity solutions with the
fractional Laplacian, Proposition 2.9 together with a bootstrap argument to
conclude: to begin with, we already know that v ∈ Cγ(B3/4), hence by
(3.12) we have fε ∈ Cγ(B3/4) and by the interior estimates in Proposition 2.9

v ∈ C2s+min{γ,θ}(B3/4). If θ > γ, we can iteratively repeat this until γ+ms > θ
for some m ∈ N, at which point we have to stop when we reach Cθ regularity
of fε. A final application of interior estimates implies C2s+θ regularity of v. If
θ = 0, we only apply the iteration once. �

We can finally prove the regularization result:

Proof of Proposition 3.1. We construct Iε and u(ε) as (3.2) and (3.8). Then,
Lemma 3.5 gives the weak convergence of Iε to I, and Lemma 3.6 and a cov-
ering argument give the locally uniform convergence of u(ε) in B3/4 (by Arzelà-
Ascoli, up to taking subsequences), towards some function ũ ∈ C(B3/4) ∩
L∞(Rn). Hence we are in a situation where we can apply [5, Lemma 4.3] to
deduce that ũ ∈ C(B3/4) ∩ L∞(Rn) satisfies{

I(ũ, x) = 0 in B3/4

ũ = u in Rn \B3/4.

By the uniqueness of continuous viscosity solutions we have ũ = u, and more-
over u ∈ C(B1). The interior regularity is due to Lemma 3.7. This completes
the proof. �

4. Approximation by strong solutions

Proposition 3.1 gives an approximating sequence to a viscosity solution by
smoother solutions, which in the case θ > 0 are strong (i.e., C2s+). Let us now
very briefly show that, with a bit more of work, also in the most general case
θ = 0 we can consider strong solutions as the approximating sequence. We
refer to [13] for a similar procedure in the case s > 1/2. We believe that part
of the appeal of the following proof lies in its simplicity.

Proposition 4.1. Let s ∈ (0, 1), and let I ∈ Iωs (λ,Λ). Let u ∈ C(B1) ∩
L∞(Rn) be any viscosity solution of

I(u, x) = 0 in B1.

Then, there exist δ > 0, a sequence of functions,

C2s+δ
loc (B3/4) ∩ Cδ

c (Rn) 3 u(ε) → u locally uniformly in B3/4 and in L1(Rn;ws),
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and a sequence of operators Îε ∈ Iωs (λ,Λ) of the form (4.2), such that

Îε(u(ε), x) = 0 in B3/4

Îε ⇀ I in the sense of Definition 2.8,

as ε ↓ 0. Moreover, we have

‖u(ε)‖L∞(Rn) ≤ C
(
‖u‖L∞(Rn) + ‖I(0, x)‖L∞(B3/4) + ω(ε)

)
(4.1)

for some C depending only on n, s, λ, and Λ.

In order to prove it, we proceed following a similar strategy to the one before.
Now, however, we need to regularize the cab(x) in the definition of I, as well
as the value of u outside of B3/4. We will do that by means of a convolution.

We define Îε analogously to (3.2) but also regularizing the terms cab(x).
That is, for any I of the form (1.6) we consider

Îε(u, x) := inf
b∈B

sup
a∈A

{
−L(ε)

ab,xu(x) + c
(ε)
ab (x)

}
, L(ε)

ab,x ∈ Lωs (λ,Λ), (4.2)

where L(ε)
ab,x are the corresponding operators to Lab,x but with kernel given by

(3.6), and where c
(ε)
ab (x) := (ϕε ∗ cab)(x) (recall (3.4)-(3.5)). Lemma 3.5 still

holds in this case:

Lemma 4.2. Let s ∈ (0, 1), and let I, Îε ∈ Iωs (λ,Λ) be as above. Then

Îε ⇀ I in Rn, as ε ↓ 0,

in the sense of Definition 2.8.

Proof. The proof is exactly the same as that of Lemma 3.5, where we now use

that since cab(x) are equicontinuous, then c
(ε)
ab (x) converges locally uniformly

to cab(x) as ε ↓ 0 independently of (a, b) ∈ A × B (that is, depending only
on ω). �

If I ∈ Iωs (λ,Λ) and u ∈ C(B1) ∩ L∞(Rn) is a viscosity solution to

I(u, x) = 0 in B1, (4.3)

we define our new functions u(ε) to be the unique solution to (given, for exam-
ple, again by [17, 14]){

Îε(u(ε), x) = 0 in B3/4

u(ε) = (uχB1/ε
) ∗ ϕε in Rn \B3/4.

(4.4)

In doing so, the following analogue of Lemma 3.6 also holds now:
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Lemma 4.3. Let s ∈ (0, 1) and I ∈ Iωs (λ,Λ). Let u ∈ C(B1) ∩ L∞(Rn) be
any viscosity solution of (4.3), and let u(ε) ∈ C(B3/4) ∩ L∞(Rn) be the unique
solution of (4.4). Let γ > 0 be given by Theorem 2.6. Then

‖u(ε)‖L∞(Rn) + ‖u(ε)‖Cγ(B1/2) ≤ C
(
‖u‖L∞(Rn) + ‖I(0, x)‖L∞(B3/4) + ω(ε)

)
,

for some C depending only on n, s, λ, and Λ.

Proof. The proof is the same as that of Lemma 3.6, by using that

‖(uχB1/ε
) ∗ ϕε‖L∞(Rn) ≤ ‖uχB1/ε

‖L∞(Rn) ≤ ‖u‖L∞(Rn).

The main difference is the appearance of ω(ε) on the right-hand side of the

estimate. This is because we now have ‖c(ε)
ab − cab‖L∞(B3/4) ≤ ω(ε), and so

‖Îε(0, x)− I(0, x)‖L∞(B3/4) ≤ ω(ε). �

By regularizing the boundary datum we have now improved the regularity
of u(ε) with respect to the previous case, Lemma 3.7:

Lemma 4.4. Let s ∈ (0, 1). Let u(ε) be defined by (4.4), for a fixed I ∈
Iωs (λ,Λ). Then, there exists δ > 0 independent of ε > 0 such that u(ε) ∈
C2s+δ

loc (B3/4) ∩ Cδ
c (Rn).

Proof. For the sake of readability, we denote v = u(ε). Observe that the exterior
datum satisfies

‖∇((uχB1/ε
) ∗ ϕε)‖L∞(Rn) ≤ Cε,

for some Cε that might blow-up as ε ↓ 0. This is enough to deduce that, from
the boundary regularity in Lemma 2.7, there exists some δ > 0 (independent
of ε > 0) such that v ∈ Cδ

c (Rn).

As in Lemma 3.7, we rewrite the operator Îε as

Îε(v, x) = −c−1
n,s(−∆)sv(x) + fε(x),

where

fε(x) := inf
b∈B

sup
a∈A

{
L̃(ε)
ab,xv(x) + c

(ε)
ab (x)

}
and (3.10) holds.

For x ∈ B3/4 fixed, we proceed as in Lemma 3.7 taking ρ as (3.11) and
bounding, for h ∈ Bρ,

|L̃(ε)
ab,xv(x+ h)− L̃(ε)

ab,xv(x)| ≤ I + II + III,

where, for any µ ∈ (0, 1) we have

I ≤ Cρ[v]Cµ(Bρ(x))|h|µ, II ≤ Cρ|h|,
and now we rewrite III as

III ≤ III i + III ii
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with

III i =

�
Bc
ε/2

|v(x+ y + h)− v(x+ h)|K̃ε(x+ h, y) dy ≤ Cρ|h|δ[v]Cδ(Rn),

and

III ii =

�
Bc
ε/2

|v(x+ y)| |(Kab(·, y) ∗ ϕε)(x+ h)− (Kab(·, y) ∗ ϕε)(x)| dy ≤ Cρ|h|

(proceeding as in the bound of II).

Together with the fact that c
(ε)
ab ∈ C∞, we get that

fε(x) ∈ Cδ
loc(B3/4)

for some δ > 0 independent of ε. By the interior estimates for viscosity solu-
tions with the fractional Laplacian, Proposition 2.9, we deduce v ∈ C2s+δ

loc (B3/4),
as wanted. �

We can finally prove Proposition 4.1:

Proof of Proposition 4.1. We proceed as in the proof of Proposition 3.1, with
the corresponding changes in this new situation.

We construct Îε and u(ε) as (4.2) and (4.4), and Lemma 4.2 gives the weak

convergence of Îε to I, while Lemma 4.3 and a covering argument give the
locally uniform convergence in B3/4 and the convergence in L1(Rn;ws) of u(ε)

to some ũ ∈ C(B3/4)∩L∞(Rn). The stability of viscosity solutions under limits
(see [5, Lemma 4.3]) implies that ũ satisfies{

I(ũ, x) = 0 in B3/4

ũ = u in Rn \B3/4,

and by uniqueness, we have ũ = u, and u ∈ C(B1). The qualitative interior
regularity is due to Lemma 4.4 and this completes the proof. �

4.1. Equivalence between viscosity and distributional solutions. As a
consequence of Proposition 4.1 we obtain that, in the linear and translation
invariant case (taking operators L ∈ Lωs (λ,Λ), whose kernel does not depend
on x), the notions of viscosity and distributional solution are equivalent:

Lemma 4.5. Let s ∈ (0, 1), u ∈ L∞(Rn), f ∈ C(B1), and L be a translation
invariant operator with kernel comparable to the fractional Laplacian:

Lu(x) = P.V.

�
Rn

(
u(x)− u(x+ y)

)
K(y) dy

with

K(y) = K(−y) and 0 < λ ≤ |y|n+2sK(y) ≤ Λ in Rn.

Then, u solves Lu = f in B1 in the distributional sense if and only if it does
so in the viscosity sense.
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Proof. If u is a distributional solution, it is continuous (by [8, Theorem 3.8]),
and we can regularize it and consider (recall (3.4)-(3.5))

uε := u ∗ ϕε,
for some smooth mollifier ϕε = ε−nϕ(x/ε). Then uε satisfies

Luε = fε in B1−ε

in the strong sense, and therefore, in the viscosity sense as well. Taking the
limit ε ↓ 0, by [5, Lemma 4.3] u is a viscosity solution to Lu = f in B1.

Conversely, if u ∈ C(B1) is a viscosity solution to the equation, by Propo-
sition 4.1 it can be approximated by strong solutions (and therefore, distribu-
tional solutions) uε → u to an equation of the form

L̂εuε = fε in B3/4,

with a sequence of explicit operators L̃ε.
Then, the limit ε ↓ 0 is a distributional solution (see [8, Lemma 3.2 and

proof of Theorem 3.8]) to L∞u = f in B3/4, where by construction L∞ = L.
A covering argument, yields that Lu = f in B1 in the distributional sense. �

Remark 4.6. Lemma 4.5 may also apply to non-translation invariant kernels,
as long as they admit both definition of viscosity and distributional solutions
(which requires regularity in x).

5. Proof of main result

The goal of this section is to finally prove that we can actually approximate
viscosity solutions by C∞c (Rn) solutions, Theorem 1.1.

In order do it, we will combine the approximation by strong solutions in
Proposition 4.1 with the next result, in which we provide a way to regularize
the operator I itself.

Proposition 5.1. Let s ∈ (0, 1), and let I ∈ Iωs (λ,Λ) ∩ I∞s (λ,Λ). Let u ∈
C2s+δ

loc (B1) ∩ Cδ
c (Rn) be any solution of

I(u, x) = f(x) in B1

for some f ∈ C(B1) and δ > 0. Let (ϕε)ε>0 be given by (3.4)-(3.5).
Then, there exist Iε ∈ Iωs (λ,Λ) ∩ I∞s (λ,Λ) such that the sequence uε :=

u ∗ ϕε ∈ C∞c (Rn) satisfies

Iε(uε, x) = fε(x) in B1

for some fε ∈ C∞(B1) such that

fε → f uniformly in B3/4 as ε ↓ 0.

Moreover,

Iε(0, x)→ I(0, x) uniformly in B3/4 as ε ↓ 0.



20 XAVIER FERNÁNDEZ-REAL

Proof. We divide the proof into four steps. For the sake of readability, we
assume f = 0. The general case follows analogously by taking I(·, x)− f(x).

Step 1: We define c
(ε)
ab := cab ∗ ϕε ∈ C∞(Rn) and we consider

Îε(v, x) := inf
b∈B

sup
a∈A

{
−Lab,xv(x) + c

(ε)
ab (x)

}
, Lab,x ∈ Lωs (λ,Λ) ∩ L∞s (λ,Λ).

Notice that Lab,xuε ∈ Cδ
loc(B1) (see Lemma 2.4) with local uniform (in a, b,

and ε) estimates in B1, as well as Lab,xuε ∈ C∞(Rn) (locally uniformly in
a and b, but not in ε) with vanishing derivatives at infinity. Since cab are

equicontinuous, the family Lab,xuε(x) + c
(ε)
ab (x) is locally equicontinuous in B1.

In particular, there exists a modulus of continuity ω◦ such that Lab,xuε(x) +

c
(ε)
ab (x) is continuous with modulus ω◦ in B3/4, for all (a, b) ∈ A×B and ε ≥ 0.

Hence, in fact, (Îε(uε, x))ε≥0 is locally equicontinuous in B1, and

Îε(uε, x)→ 0 locally uniformly in B1, (5.1)

(recall f ≡ 0) as well as

Îε(0, x)→ I(0, x) locally uniformly in B1. (5.2)

Step 2: We now consider, for any ε > 0 fixed, a finite collection of points
Gε := {y1, . . . , yNε} with yi ∈ B3/4 for 1 ≤ i ≤ Nε such that dist(z,Gε) ≤ ζ
for all z ∈ B3/4, where ζ = ζ(ε) is chosen small enough so that ω◦(ζ) ≤ ε/4
(where ω◦ is the modulus of continuity of the previous step).

We want to take a finite redefinition of Îε such that its value at uε and 0 is
not altered too much. Namely, for any yi ∈ Gε, we consider bi, bNε+i ∈ B such
that if we define

Gi(v, x) := sup
a∈A

{
−Labi,xv(x) + c

(ε)
abi

(x)
}

for 1 ≤ i ≤ 2Nε

then

0 ≤ Gi(uε, yi)− Îε(uε, yi) ≤ ε/4,

0 ≤ GNε+i(0, yi)− Îε(0, yi) ≤ ε/4 for 1 ≤ i ≤ Nε.

Together with the fact that Gi(v, x) ≥ Îε(v, x) in Rn for all 1 ≤ i ≤ 2Nε, and
from the choice of ζ, we have

0 ≤ inf
1≤i≤2Nε

Gi(uε, x)− Îε(uε, x) ≤ ε/2 in B3/4,

0 ≤ inf
1≤i≤2Nε

Gi(0, x)− Îε(0, x) ≤ ε/2 in B3/4.
(5.3)

Similarly, for each 1 ≤ i ≤ 2Nε fixed, and for any yj ∈ Gε we consider
aij, ai,Nε+j ∈ A such that∣∣∣−Laijbi,yjuε(yj) + c

(ε)
ai,jbi

(yj)− Gi(uε, yj)
∣∣∣ ≤ ε/4,∣∣∣c(ε)

ai,Nε+jbi
(yj)− Gi(0, yj)

∣∣∣ ≤ ε/4 for 1 ≤ j ≤ Nε.
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In particular, again by the choice of ζ above, we have that∣∣∣∣ sup
1≤j≤2Nε

{
−Laijbi,xuε(x) + c

(ε)
aijbi

(x)
}
− Gi(uε, x)

∣∣∣∣ ≤ ε/2 in B3/4,∣∣∣∣ sup
1≤j≤2Nε

c
(ε)
aijbi

(x)− Gi(0, x)

∣∣∣∣ ≤ ε/2 in B3/4.

Combined with (5.3) we get∣∣∣∣ inf
1≤i≤2Nε

sup
1≤j≤2Nε

{
−Laijbi,xuε(x) + c

(ε)
aijbi

(x)
}
− Îε(uε, x)

∣∣∣∣ ≤ ε in B3/4,∣∣∣∣ inf
1≤i≤2Nε

sup
1≤j≤2Nε

{
c

(ε)
aijbi

(x)
}
− Îε(0, x)

∣∣∣∣ ≤ ε in B3/4.

Thus, we can define

I∗ε (v, x) := inf
1≤i≤2Nε

sup
1≤j≤2Nε

{
−L̃ij,xv(x) + c̃

(ε)
ij (x)

}
where

L̃ij,x := Laijbi,x ∈ Lωs (λ,Λ)∩L∞s (λ,Λ) and c̃
(ε)
ij = c

(ε)
aijbi

for 1 ≤ i, j ≤ 2Nε

and we have that ∣∣I∗ε (uε, x)− Îε(uε, x)
∣∣ ≤ ε in B3/4,∣∣I∗ε (0, x)− Îε(0, x)
∣∣ ≤ ε in B3/4.

(5.4)

The key difference now is that I∗ε is a finite inf sup.
Step 3: Let us denote, for the sake of readability, N := 2Nε. We define Fε :
RN×N → R as

Fε({xij}1≤i,j≤N) = Fε


x11 x12 . . . x1N

x21 x22 . . . x2N
...

...
. . .

...
xN1 xN2 . . . xNN

 = inf
1≤i≤N

sup
1≤j≤N

xij,

so that

I∗ε (v, x) = Fε

({
−L̃ij,xv(x) + c̃

(ε)
ij (x)

}
1≤i,j≤N

)
. (5.5)

Then, Fε is a piecewise linear function with |∇Fε| = 1 a.e. and such that
for a.e. x ∈ RN×N , ∇Fε(x) ∈ {eij}1≤i,j≤N , where eij ∈ RN×N is the matrix
with (eij)ij = 1 and (eij)k` = 0 for all (k, `) 6= (i, j).

In particular, by considering a regularization F r
ε := Fε ∗ ϕε, where ϕε ∈

C∞c (Bε) with Bε ∈ RN×N (see (3.4)-(3.5)) we have that F r
ε ∈ C∞(RN×N) with

Grad(F r
ε ) :=

⋃
x∈RN×N

∇F r
ε (x) ⊂ ∂ Conv

(
{eij}1≤i,j≤N

)
,
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where Conv(A) denotes the convex hull of A ∈ RN×N . Since |∇Fε| ≤ 1,

‖Fε − F r
ε ‖L∞(RN×N ) ≤ ε, (5.6)

and we can write it as

F r
ε (x) = inf

z∈RN×N
sup

M∈Grad(F rε )

{
M · x−M · z + F r

ε (z)
}
.

(This representation formula is valid for any Lipschitz function.) We then
define

Iε(v, x) := F r
ε

({
−L̃ij,xv(x) + c̃

(ε)
ij (x)

}
1≤i,j≤N

)
, (5.7)

so that2

Iε(v, x) = inf
z∈RN×N

sup
M∈Grad(F rε )

{
N∑

i,j=1

(
−MijL̃ij,xv(x) +Mij c̃

(ε)
ij (x)

)
+ Cε

M,z

}

= inf
z∈RN×N

sup
M∈Grad(F rε )

{
−

(
N∑

i,j=1

MijL̃ij,x

)
v(x) +

(
N∑

i,j=1

Mij c̃
(ε)
ij (x) + Cε

M,z

)}
,

(5.8)

where

Cε
M,z := F r

ε (z)−M · z.

In particular, since
∑N

i,j=1Mij = 1, Mij ≥ 0, and Lωs (λ,Λ)∩L∞s (λ,Λ) is convex,

we have that Iε ∈ Iωs (λ,Λ) ∩ I∞s (λ,Λ) with

I(v, x) = inf
b∈B̂

sup
a∈Â

{
−L̂(ε)

ab,xv(x) + ĉ
(ε)
ab (x)

}
, L̂(ε)

ab ∈ Lωs (λ,Λ) ∩ L∞s (λ,Λ),

and where ĉ
(ε)
ab are equicontinuous with modulus ω (the same as for cab).

Step 4: To finish, we notice that by the chain rule, since L̃ij,xuε, c̃(ε)
ij ∈ C∞(Rn),

it follows from (5.7) that Iε(uε, x) ∈ C∞(Rn).
Moreover, thanks to (5.6)-(5.5) together with (5.4) and (5.1)-(5.2), we have

Iε(uε, x)→ 0 uniformly in B3/4

Iε(0, x)→ I(0, x) uniformly in B3/4.

This completes the proof. �

With this, we can complete the approximation result by C∞c solutions:

Proof of Theorem 1.1. By defining the operator J (·, x) := I(·, x) − f(x), we
consider first the sequence of functions u(ε) from Proposition 4.1 applied with
operator J in B5/6 (after a scaling argument), so u(ε) ∈ C2s+δ(B5/6)∩Cδ

c (Rn).

2If f 6≡ 0, we would have now Iε(v, x)−(f∗ϕε)(x) as a regularized version of I(v, x)−f(x),
since

∑
i,jMij = 1.
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Notice that this also generates a sequence of operators Ĵε(·, x) = Îε(·, x)− (f ∗
ϕε)(x). Observe, also, that J ∈ I∞s (λ,Λ) as well (see Remark 3.3).

Each u(ε) can then be regularized by applying Proposition 5.1 (rescaled to
B5/6), which together with a diagonal argument yields the desired result. The
bound on ‖uε‖L∞(Rn) is a consequence of Lemma 4.3. �

Remark 5.2. In Theorem 1.1 we have that, in fact, fε = f ∗ ϕε. Furthermore,
notice that from the proof of Proposition 5.1, and more precisely, from the
representation (5.8) together with Lemma 3.2, we have that if I ∈ Iωs (λ,Λ; θ)
for some θ > 0, then Iε ∈ Iωs (λ,Λ; θ) as well, with [Iε]yθ ≤ C[I]yθ , and C
depending only on n, s, λ, Λ, and θ (the regularity in x is also preserved, since
it is regularized with a convolution). Finally, also from (5.8), if I is of the
form (1.6), and Iε is of the form

Iε(u, x) = inf
b′∈Bε

sup
a′∈Aε

{
− L(ε)

a′b′,xu(x) + c
(ε)
a′b′(x)

}
, La′b′,x ∈ Lωs (λ,Λ),

then for any (a′, b′) ∈ Aε × Bε,

[c
(ε)
a′b′ ]Cµ(Rn) ≤ sup

(a,b)∈A×B
[cab]Cµ(Rn),

for µ > 0.
The same conclusion also holds for pointwise norms, like the ones in Re-

mark 2.1 (thanks to 3.4).
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