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Abstract

The goal of this PhD thesis is to collect the results of the author in the study of
thin obstacle problems. We start by giving an introduction to the Signorini or thin
obstacle problem, summarizing some of the most relevant currently known results.
The next chapters correspond each to one paper by the author (and collaborators).
Thus, we start by studying the regularity of solutions for the fully nonlinear thin
obstacle problem, to then move to the study of the free boundary for general frac-
tional obstacle problems with drift, in the critical regime. This is followed by a
regularity result for minimizers of the perimeter with lower dimensional obstacles.
Finally, the last two chapters focus on the standard thin obstacle problem (and its
fractional counter-part) and fine regularity and generic regularity properties for the
free boundary.

Sommario

In questa tesi di dottorato si raccolgono i risultati dell’autore nello studio dei pro-
blemi di ostacolo sottile. Iniziamo con un’introduzione al problema di Signorini
o degli ostacoli sottili, riassumendo alcuni dei risultati più rilevanti attualmente
conosciuti. I capitoli successivi corrispondono ciascuno ad un articolo dell’autore e
dei collaboratori. Cominciamo con lo studio della regolarità delle soluzioni per il
problema degli ostacoli sottili completamente non lineari, per poi passare allo stu-
dio della frontiera libera per i problemi generali degli ostacoli frazionari con termine
di trasporto, in regime critico. Segue un risultato di regolarità per i minimi del
perimetro con ostacoli di dimensioni inferiori. Infine, gli ultimi due capitoli si con-
centrano sul problema standard dell’ostacolo sottile e la sua controparte frazionaria,
e sulle proprietà di regolarità fine e regolarità generica per la frontiera libera.
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Summary

This thesis revolves around various aspects of the thin (or fractional) obstacle pro-
blem (also known as Signorini problem). In the introduction (Chapter 1) we present
the problem and the main known results. In the following five chapters (Chapter 2
to Chapter 6) we present the contributions of the author in the field. Each chapter
corresponds to a different paper. We summarize here each of the chapters.

� Chapter 1 is a general introduction to the thin obstacle problem. It is a
self-contained survey that aims to cover the main known results regarding the
thin (or fractional) obstacle problem. We present the theory with some proofs:
from the regularity of the solution to the classification of free boundary points,
ending with generic regularity-type results for the free boundary.

� Chapter 2 corresponds to the paper [Fer16], that is,

X. Fernández-Real, C1,α estimates for the fully nonlinear Signorini problem,
Calc. Var. Partial Differential Equations (2016), 55:94.

In this chapter we study a generalization of the Signorini problem involving
more general elliptic operators of second order in place of the Laplacian. We
consider general convex fully nonlinear operators, and show the regularity of
the solution to the fully nonlinear Signorini problem. This is a generalization
of a previous result by Milakis and Silvestre, [MS08], where they showed reg-
ularity of solutions under some extra assumptions on the operators and the
solution itself.

Given a fully nonlinear operator defined on the space of n × n matrices Mn,
F :Mn → R, satisfying1

F is convex, uniformly elliptic (0.1)

with ellipticity constants 0 < λ ≤ Λ, and with F (0) = 0,

we consider the lower dimensional obstacle problem{
F (D2u) = 0 in B1 \ {xn+1 = 0}

min{−F (D2u), u− ϕ} = 0 on B1 ∩ {xn+1 = 0}. (0.2)

1Notice that, given a function w, we can express the nonlinear operator F as F (D2w(x)) =
supγ∈Γ

(
Lijγ ∂xixj

w(x) + cγ
)
, for some family of symmetric uniformly elliptic operators with ellip-

ticity constants λ and Λ, Lijγ ∂xixj
, indexed by γ ∈ Γ. See [CC95, FR20].

1



2 Contents

(Notice that the Laplacian corresponds to F (M) = trM .) Then, we show that,
if ϕ ∈ C1,1, the solution u is C1,α for some small α > 0 in either side of the
obstacle (that is, u ∈ C1,α(B1/2 ∩ {xn+1 ≥ 0})).

� Chapter 3 corresponds to the paper [FR18],

X. Fernández-Real, X.Ros-Oton The obstacle problem for the fractional
Laplacian with critical drift, Math. Ann. 371(3) (2018), 1683-1735.

Another possible generalization of the thin obstacle problem consists in chang-
ing the normal derivative condition with a directional derivative in another
(non-tangential) direction. If we denote ∇n the gradient in the first n vari-
ables, we consider the obstacle problem with oblique derivative condition{

∆u = 0 in B+
1

min{−∂xn+1u+ b · ∇nu, u− ϕ} = 0 on B1 ∩ {xn+1 = 0}, (0.3)

for some b ∈ Rn fixed (cf. (1.6)). In this case, problem (0.3) can be interpreted
as a fractional obstacle problem of the form

min
{

(−∆)sū+ b · ∇ū, ū− ϕ
}

= 0 in Rn, (0.4)

with s = 1
2
. This kind of operators appears as infinitesimal generators of Lévy

processes with jumps (see (1.18) below), and in particular, its obstacle-type
problem models optimal stopping problems for these processes. Problems of
the type (0.4) had been previously studied in [PP15, GPPS17] in the case
s > 1

2
, where, as a general intuition, the term involving the gradient can be

treated as a lower order term. No regularity results are expected for the case
s < 1

2
, but the situation where the gradient has to compete with the fractional

operator (s = 1
2
) was still open.

In this chapter we study the free boundary for solutions to (0.4) (or (0.3)) with
s = 1

2
, also considering more general nonlocal operators of order 1 (so that no

monotonicity formulas are available to be used). Given a solution ū to (0.4),
we establish the C1,α regularity of the free boundary around any regular point
x◦, with an expansion of the form

ū(x)− ϕ(x) = c◦
(
(x− x◦) · e

)1+γ̃(x◦)

+
+ o

(
|x− x◦|1+γ̃(x◦)+σ

)
,

γ̃(x◦) =
1

2
+

1

π
arctan(b · e),

where e ∈ Sn−1 is the normal vector to the free boundary, σ > 0, and c◦ > 0.
In particular, we have that the growth of the solution at free boundary points
depends on the orientation of the free boundary with respect to the vector b.

� Chapter 4 corresponds to the paper [FS20],

X. Fernández-Real, J. Serra, Regularity of minimal surfaces with lower
dimensional obstacles, J. Reine Angew. Math., to appear.
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The Signorini problem can also be interpreted as a linearization of the problem
where we want to minimize the area of a surface with prescribed boundary,
and constrained to be above a certain lower dimensional obstacle: namely, the
Plateau problem, where we restrict the set of admissible solutions to those
that contained a fixed lower dimensional smooth manifold (the thin obstacle).

In Chapter 4, we study the regularity of solutions to the minimization problem
in Rn+1

min
{
P (E;B1) : E ⊃ O, E \B1 = E◦ \B1

}
(0.5)

where P (E;B1) denotes the (variational) perimeter of E inside B1, and O :=
Φ ({xn = 0, xn+1 ≤ 0}) is the thin obstacle (which here is given by the smooth
diffeomorphism Φ of a flat thin obstacle).

Perhaps surprisingly, we show that solutions to (0.5) are C1, 1
2 at free boundary

points (in particular, they are a graph). This is opposed to classical smoothness
of minimal surfaces, which for dimensions n ≥ 8 need not be regular. Thus,
the thin obstacle is actively acting at contact points and forcing a graphical
and regular solution.

The difficulty in studying (0.5) (with respect to the same problem with a
thick obstacle) lies on the fact that near a typical point of the contact set the
hypersurface ∂E consists of two surfaces that intersect transversally on ∂O.
Therefore, ∂E is typically not flat at small scales and thus (0.5) cannot be
treated as a perturbation of the Signorini problem.

� Chapter 5 corresponds to the paper [FJ20],

X. Fernández-Real, Y. Jhaveri, On the singular set in the thin obstacle
problem: higher order blow-ups and the very thin obstacle problem, Anal.

PDE, to appear.

The set of non-regular points of the free boundary can subdivided into the
set of singular points and the set of other points. The set of singular points
corresponds to those points where the contact set has zero density (in the
thin space) and can be characterized also as those where the blow-up has even
homogeneity. It is contained in a countable union of C1 manifolds. Moreover,
under a certain non-degeneracy condition on the obstacle (∆ϕ < 0), the set
of degenerate points consists only of singular points of order 2.

In this chapter we thoroughly investigate the structure of singular points for
the Signorini problem (also with weights, s ∈ (0, 1), so to cover the fractional
obstacle problem of any order as well). In particular, we adapt the techniques
that had been introduced by Figalli and Serra in [FS18] in the context of
the classical obstacle problem to our setting. By means of GMT methods we
are able to deduce higher regularity properties for the singular set outside
of certain exceptional sets with lower dimension, and establish some higher
order expansions of the solutions around those points. As a consequence of
our study, we encounter a new fractional problem, what we call the very thin
obstacle problem: an obstacle-type problem with constrains on a co-dimension
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2 domain, which only makes sense in the setting s > 1
2
. Thus, we also study

the regularity properties of this new problem.

� Chapter 6 corresponds to the paper [FR19],

X. Fernández-Real, X. Ros-Oton, Free boundary regularity for almost every
solution to the Signorini problem, preprint arXiv (2019).

For general smooth obstacles, without any extra non-degeneracy assumption,
the set of non-regular points of the free boundary can be very big, of dimension
n− ε for any ε > 0.

Thus, while one would expect degenerate (non-regular) points to be always
small, we already know it is not true in the context of the Signorini problem.
The next natural question is to ask how frequently do these degenerate points
appear: even if they can exist, we expect them to appear in very particular
configurations, or at least, to be large in very particular configurations. This
is precisely what we show in this chapter by establishing a first result of this
kind in the context of thin obstacle problems.

In particular, we show that for almost every solution to the Signorini prob-
lem, the set of degenerate points is (n− 2)-dimensional (where “almost every
solution” needs to be understood in the context of the theory of prevalence).
That is, if we denote u0 the solution to{

∆u = 0 in B+
1

min{−∂xn+1u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0}, (0.6)

with a certain boundary condition g ∈ C0(∂B1), and we denote uλ the solution
to (0.6) with boundary data gλ = g + λ, we show that

dimH
(
Deg(uλ)

)
≤ n− 2 for a.e. λ ∈ [0, 1].

In fact, our results are more precise, and are concerned with the Hausdorff
dimension of Γ≥κ(uλ), the set of points of order greater or equal than κ. We
show that if 3 ≤ κ ≤ n + 1, then Γ≥κ(uλ) has dimension n − κ + 1, while for
κ > n + 1, then Γ≥κ(uλ) is empty for almost every λ ∈ [0, 1]. This is the first
result, in the context of the Signorini problem, that proves that regular points
are better, in some sense, than the rest of degenerate points.

We then use similar techniques in the context of the parabolic Signorini prob-
lem to show that, for almost all times, the set of non-regular points is lower-
dimensional.



Chapter 1

Introduction to the thin obstacle
problem

The Signorini problem (also known as the thin or boundary obstacle problem) is a
classical free boundary problem that was originally studied by Antonio Signorini in
connection with linear elasticity [Sig33, Sig59]. The problem was originally named
by Signorini himself problem with ambiguous boundary conditions, in the sense that
the solution of the problem at each boundary point must satisfy one of two different
possible boundary conditions, and it is not known a priori which point satisfies which
condition.

Whereas the original problem involved a system of equations, its scalar version
gained further attention in the seventies due to its connection to many other areas,
which then lead to it being widely studied by the mathematical community. Hence,
apart from elasticity, lower dimensional obstacle problems also appear in describing
osmosis through semi-permeable membranes as well as boundary heat control (see,
e.g., [DL76]). Moreover, they often are local formulations of fractional obstacle prob-
lems, another important class of obstacle problems. Fractional obstacle problems can
be found in the optimal stopping problem for Lévy processes, and can be used to
model American option prices (see [Mer76, CT04]). They also appear in the study
of anomalous diffusion, [BG90], the study of quasi-geostrophic flows, [CV10], and in
studies of the interaction energy of probability measures under singular potentials,
[CDM16]. (We refer to [Ros18] for an extensive bibliography on the applications of
obstacle-type problems.)

1.1 A problem from elastostatics

Consider an elastic body Ω ⊂ R3, anisotropic and non-homogeneous, in an equilib-
rium configuration, that must remain on one side of a frictionless surface. Let us
denote u = (u1, u2, u3) : Ω → R3 the displacement vector of the elastic body, Ω,
constrained to be on one side of a surface Π (in particular, the elastic body moves
from the Ω configuration to Ω+u(Ω)). We divide the boundary into ∂Ω = ΣD∪ΣS.
The body is free (or clamped, u ≡ 0) at ΣD, whereas ΣS represents the part of
the boundary subject to the constraint, that is, ΣS = ∂Ω ∩ Π. Alternatively, one
can interpret ΣS itself as the frictionless surface that is constraining the body Ω,

5



6 Chapter 1. Introduction to the thin obstacle problem

understanding that only a subset of ΣS is actually exerting the constraint on the
displacement. This will be more clear below.

Let us assume small displacements, so that we can consider the linearized strain
tensor

εij(u) =
1

2
(uixj + ujxi), 1 ≤ i, j ≤ 3.

Considering an elastic potential energy of the form W (ε) = aijkh(x)εijεkh, for some
functions aijhk(x) ∈ C∞(Ω) (where, from now on, we are using the Einstein notation
of implicit summation over repeated indices), then the stress tensor has the form

σij(u) = aijhk(x)εhk(u).

We also impose that aijhk are elliptic and with symmetry conditions

aijhk(x)ζijζhk ≥ λ|ζ|2 for all ζ ∈ Rn×n such that ζij = ζji,

aijhk(x) = ajihk(x) = aijkh(x), for x ∈ Ω.

Let us also assume that Ω is subject to the body forces f = (f 1, f 2, f 3), so that by
the general equilibrium equations we have

∂σij(u)

∂xj
= f i, in Ω, for i = 1, 2, 3.

From the definitions of σ(u) and εij(u) above, this is a second order system, and
from the definition of aijhk, it is elliptic. Thus, the displacement vector satisfies
an elliptic second order linear system inside Ω. We just need to impose boundary
conditions on ΣS (the conditions on ΣD are given by the problem, we can think of
u ≡ 0 there).

Let us denote by n the outward unit normal vector to x ∈ ∂Ω. Notice that,
by assumption, the stresses in the normal direction n on ΣS, σij(u)ni, must be
compressive in the normal direction, and zero in the tangential direction (due to the
frictionless surface). That is,

σij(u)ninj ≤ 0 on ΣS, (1.1)

σij(u)niτj = 0 on ΣS and for all τ ∈ Rn with τ · n = 0.

On the other hand, we have the kinematical contact condition, encoding the fact
that there exists a surface exerting a constraint and the body cannot cross it (under
small displacements, or assuming simply that Π is a plane):

u · n ≤ 0, on ΣS. (1.2)

In fact, conditions (1.1)-(1.2) are complimentary, in the sense that

(u · n) · (σij(u)ninj) = 0 on ΣS, (1.3)

and we are dividing ΣS into two regions: those where the body separates from Π
and those where it remains touching Π. That is, if there is an active normal stress
at a point x ∈ ΣS, σij(u(x))ni(x)nj(x) < 0, then it means that the elastic body
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is being constrained by ΣS (or Π) at x, and thus we are in the contact area and
there is no normal displacement, u(x) ·n(x) = 0. Alternatively, if there is a normal
displacement, u(x) ·n(x) < 0, it means that there is no active obstacle and thus no
normal stress, σij(u(x))ni(x)nj(x) = 0. This is precisely what ambiguous boundary
condition means :

For each x ∈ ΣS we have that one of the following two conditions holds

either

{
σij(u(x))ni(x)nj(x) ≤ 0

u(x) · n(x) = 0,
or

{
σij(u(x))ni(x)nj(x) = 0

u(x) · n(x) < 0,
(1.4)

and a priori, we do not know which of the condition is being fulfilled at each point.
The Signorini problem is a free boundary problem because the set ΣS can be divided
into two different sets according to which of the conditions (1.4) holds, and these
sets are, a priori, unknown. The boundary between both sets is what is known as
the free boundary.

The previous is a strong formulation of the Signorini problem, which assumed
a priori that all solutions and data are smooth. In order to prove existence and
uniqueness, however, one requires the use of variational inequalities with (convex)
constraints in the set of admissible functions.

The first one to approach the existence and uniqueness from a variational point
of view was Fichera in [Fic64]. We also refer to the work of Lions and Stampacchia
[LS67], where a general theory of variational inequalities was developed, which later
led to the scalar version of the Signorini problem, and its interpretation as a mini-
mization problem with admissible functions constrained to be above zero on certain
fixed closed sets. Later, in [DL76], Duvaut and Lions studied the problem and its
applications to mechanics and physics.

Finally, we refer to [Kin81, KO88] for more details into the strong and weak
formulation of the (system) Signorini problem and its properties.

1.2 The thin obstacle problem

In this work we will focus our attention to the scalar version of the Signorini problem
from elasticity: our function, u, would correspond to an appropriate limit in the
normal components of the displacement vector, un. Our obstacle, ϕ, adds generality
to the problem, and would correspond to the possible displacement of the frictionless
surface ∂Ω while performing u. (We refer the interested reader to [CDV19, Example
1.5] for a deduction of this fact.) As explained above, this problem also appears in
biology, physics, and even finance. Thus, from now on, functions are scalar.

Let us denote x = (x′, xn+1) ∈ Rn × R and B+
1 = B1 ∩ {xn+1 > 0}. We say that

u : B+
1 → R is a solution to the Signorini problem or thin obstacle problem with

smooth obstacle ϕ defined on B′1 := B1 ∩ {xn+1 = 0}, and with smooth boundary
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data g on ∂B1 ∩ {xn+1 > 0}, if u solves
∆u = 0 in B+

1

u = g on ∂B1 ∩ {xn+1 > 0}
∂xn+1u · (u− ϕ) = 0 on B1 ∩ {xn+1 = 0}

−∂xn+1u ≥ 0 on B1 ∩ {xn+1 = 0}
u− ϕ ≥ 0 on B1 ∩ {xn+1 = 0},

(1.5)

where we are also assuming that the compatibility condition g ≥ ϕ on ∂B1∩{xn+1 =
0} holds. Notice the analogy with the ambiguous compatibility conditions (1.1)-
(1.2)-(1.3) or (1.4): the set with Dirichlet conditions, ΣD above, is ∂B1∩{xn+1 > 0},
where u = g is imposed; whereas the set with ambiguous boundary conditions, ΣS

above, is now B′1. That is, at each point x = (x′, 0) ∈ B′1 we have that

either

{
−∂xn+1u(x) ≥ 0
u(x)− ϕ(x′) = 0,

or

{
−∂xn+1u(x) = 0
u(x)− ϕ(x′) > 0.

An alternative way to write the ambiguous boundary conditions in (1.5) is by
imposing a nonlinear condition on B′1 involving u and ∂xn+1u as{

∆u = 0 in B+
1

min{−∂xn+1u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0}, (1.6)

with u = g on ∂B1 ∩ {xn+1 > 0}. This is the strong formulation of the Signorini
problem.

In order to prove existence (and uniqueness) of solutions, we need to study the
weak formulation of the problem: a priori, we do not know any regularity for the
solution.

Consider a bounded domain Ω ⊂ Rn, and a closed set C ⊂ Ω. Let, also, φ :
C(C) → R be a continuous function. In [LS67], Lions and Stampacchia prove the
existence and uniqueness of a solution to the variational problem

min
v∈K

∫
Ω

|∇v|2 (1.7)

where K = {v ∈ H1
0 (Ω) : v ≥ φ on C}. Moreover, they also show that such solution

is the smallest supersolution.
If C = Ω, (1.7) is also known as the classical obstacle problem: finding the

function with smallest Dirichlet energy among all those which lie above a fixed
obstacle φ. This problem has been thoroughly studied in the last fifty years (see
[LS67, KN77, Caf77, CR77, Wei99, PSU12] and references therein), many times in
parallel to the thin obstacle problem, and we will sometimes refer to it also as the
thick obstacle problem.

Our problem, (1.6), corresponds to the case when C is lower dimensional, with
codimension 1. Notice that simple capacity arguments yield that, if C has codimen-
sion 2 or higher, then the restriction of functions in H1

0 to C does not have any effect
on the minimization of the Dirichlet energy, and thus we would simply be solving
the classical Laplace equation. This means that, in this case, there is in general no
minimizer.
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Thus, (1.6) are the Euler–Lagrange equations of the following variational problem

min
v∈K∗

∫
B+

1

|∇v|2, (1.8)

where

K∗ = {v ∈ H1(B+
1 ) : v = g on ∂B1 ∩ {xn+1 > 0}, v ≥ ϕ on B1 ∩ {xn+1 = 0}}.

Notice that the expressions v = g on ∂B1∩{xn+1 > 0} and v ≥ ϕ on B1∩{xn+1 = 0}
must be understood in the trace sense. The existence and uniqueness of a solution,
as in [LS67], follows by classical methods: take a minimizing sequence, and by lower
semicontinuity of the Dirichlet energy, and the compactness of the trace embeddings
into H1, the limit is also an admissible function. The uniqueness follows by strict
convexity of the functional.

In some cases, the thin obstacle problem is posed in the whole ball B1, and thus
we consider

min
v∈K∗∗

∫
B1

|∇v|2, K∗∗ = {v ∈ H1(B1) : v = g on ∂B1, v ≥ ϕ on B1 ∩ {xn+1 = 0}},
(1.9)

for some function g ∈ C(∂B1). In this case, the Euler–Lagrange equations are for-
mally 

u ≥ ϕ on B1 ∩ {xn+1 = 0}
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
∆u ≤ 0 in B1,

(1.10)

with the added condition that u = g on ∂B1. Alternatively, making the parallelism
with (1.6), one could formally write{

∆u = 0 in B1 \ {xn+1 = 0}
min{−∆u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0}, (1.11)

understanding that ∆u is defined only in the distributional sense. Notice that if g
is even with respect to xn+1, the solution to (1.10) is even as well, and we recover
a problem of the form (1.6). On the other hand, for general g, one can study the
symmetrised function ū(x′, xn+1) = 1

2
(u(x′, xn+1) + u(x′,−xn+1)), which has the

same regularity and contact set as u. Thus, in order to study (1.10) one can always
assume that u is even in xn+1, and this is enough to study (1.6).

Notice, also, that in (1.10) the condition ∆u ≤ 0 needs to be understood in
the sense of distributions. In fact, ∆u is a (non-positive) measure concentrated on
{u = 0}. We can explicitly compute it by taking any test function ϕ ∈ C∞c (B1) even
in xn+1,

−〈∆u, ϕ〉 = 2

∫
B+

1

∇u · ∇ϕ = 2 lim
ε↓0

∫
B+

1 ∩{xn+1≥ε}
∇u · ∇ϕ

= −2 lim
ε↓0

∫
B+

1 ∩{xn+1=ε}
∂xn+1uϕ = −2

∫
B1∩{xn+1=0}

∂+
xn+1

uϕ.

That is,
∆u = 2∂+

xn+1
uHn (B1 ∩ {xn+1 = 0}) , (1.12)

where ∂+
xn+1

u = limε↓0 ∂xn+1u(x′, ε).
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Remark 1.1. In the derivation of (1.12), apart from (1.10), we have also used integra-
bility of ∇u, and that the trace of the normal derivative is well-defined. This follows
because, in fact, as we will show later, the solution to the thin obstacle problem is
Lipschitz, and is continuously differentiable up to the obstacle.

Remark 1.2. Problem (1.9) can be seen as a first order approximation of the Plateau
problem with a lower dimensional obstacle, originally introduced by De Giorgi
[DeG73], which has also been studied in the last years [DeA79, FoSp18b, FS20].
Indeed, the Dirichlet functional corresponds to the area functional (up to a con-
stant) for flat graphs. (See Chapter 4 for more discussions on this topic.)

Finally, let us end this section by mentioning other possible constructions of
solutions. As mentioned above, the solution to the previous minimization problem
can also be recovered as the least supersolution. That is, the minimizer u to (1.9)
equals to the pointwise infimum

u(x) = inf
{
v(x) : v ∈ C2(B1),−∆v ≥ 0 in B1, v ≥ ϕ on B1∩{xn+1 = 0},

v ≥ g on ∂B1

}
,

the least supersolution above the thin obstacle. The fact that such function satisfies
(1.10) can be proved by means of Perron’s method, analogously to the Laplace
equation.

As a final characterization of the construction of the solution, we refer to penal-
ization arguments. In this case there are two ways to penalize:

On the one hand, we can expand the obstacle, and work with the classical obstacle
problem. That is, we can consider as obstacle ϕε(x) = ϕ(x′) − ε−1x2

n+1 with ε > 0
very small, which is now defined in the whole domain B1. Then, by taking the
solutions to the thick obstacle problem with increasingly thinner obstacles ϕε (letting
ε ↓ 0), converging to our thin obstacle, we converge to the solution to our problem.
Alternatively, we can even avoid the penalization step: the solutions to the thin
obstacle problem must coincide with the solution of the thick obstacle problem,
with obstacle ϕ̄ : B+

1 → R given by the solution to ∆ϕ̄ = 0 in B+
1 , ϕ̄ = ϕ on

B1 ∩ {xn+1 = 0}, ϕ̄ = g on ∂B1 ∩ {xn+1 > 0}. Notice that ϕ̄ itself is not the
solution to the thin obstacle problem since, a priori, it is not a supersolution across
{xn+1 = 0}.

On the other hand, we can penalize (1.6) by replacing the ambiguous boundary
condition on {xn+1 = 0}, by considering solutions uε with the Neumann boundary
condition uεxn+1

= ε−1 min{0, u − ϕ} on {xn+1 = 0}. By letting ε ↓ 0, uε converges
to a solution to our problem.

1.3 Relation with the fractional obstacle problem

Let us consider the thin obstacle problem (1.6) posed in the whole Rn+1, for some
smooth obstacle ϕ : Rn → R with compact support. That is, we denote Rn+1

+ =
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Rn+1 ∩ {xn+1 > 0} and consider a solution to
∆u = 0 in Rn+1

+

u(x′, 0) ≥ ϕ(x′) for x′ ∈ Rn

∂xn+1u(x′, 0) = 0 if u(x′, 0) > ϕ(x′)
∂xn+1u(x′, 0) ≤ 0 if u(x′, 0) = ϕ(x′)

u(x) → 0 as |x| → ∞.

(1.13)

If we denote by ū : Rn → R the restriction of u to {xn+1 = 0}, then we can
simply reformulate the problem in terms of ū instead of u, given that u is just the
harmonic extension (vanishing at infinity) of ū to Rn+1

+ . That is, by means of the
Poisson kernel in the half-space,

u(x′, xn+1) = [P (xn+1, ·) ∗ u] (x′) = cn

∫
Rn

xn+1ū(y′) dy′

(x2
n+1 + |x′ − y′|2)

n+1
2

for some dimensional constant cn. Thus, after a careful computation and taking
limits xn+1 ↓ 0, one obtains

−∂xn+1u(x′, 0) = cnPV

∫
Rn

ū(x′)− ū(y′)

|x′ − y′|n+1
dy′ =: (−∆)

1
2 ū(x′),

where the integral needs to be understood in the principal value sense. We have
introduced here an integro-differential operator, acting on ū, (−∆)

1
2 , known as the

fractional Laplacian of order 1 (in the sense that (−∆)
1
2 (v̄(r·)) = r((−∆)

1
2 v̄)(r·)).

Let us very briefly justify the choice of notation (−∆)
1
2 in terms of the discussion

above. Given a smooth (say, C2) function ū, (−∆)
1
2 ū is the normal derivative of its

harmonic extension. If one repeats this procedure, and takes the harmonic extension
of (−∆)

1
2 ū, it is simply ∂xn+1u. Thus, (−∆)

1
2 (−∆)

1
2 ū = ∂2

xn+1
u = −∆x′ū, where we

are using the fact that ∆u = 0 (up to the boundary), and we denote ∆ = ∆′x+∂2
xn+1

.
In all, problem (1.13) can be rewritten in terms of ū as

ū ≥ ϕ in Rn

(−∆)
1
2 ū = 0 if u > ϕ

(−∆)
1
2 ū ≥ 0 if u = ϕ

ū(x′) → 0 as |x′| → ∞,
(1.14)

which is the formulation of the classical (or thick) global obstacle problem, with

obstacle ϕ and operator (−∆)
1
2 , also referred to as fractional obstacle problem. Notice

that now, we are considering a function ū that remains above the obstacle ϕ in the
whole domain (compared to before, where we only needed this condition imposed
on a lower dimensional manifold).

Similarly, one can consider the fractional obstacle problem in a bounded domain
Ω ⊂ Rn with a (smooth) obstacle ϕ : Ω → R by imposing exterior boundary
conditions with sufficient decay, ḡ : Rn \ Ω→ R,

ū ≥ ϕ in Ω

(−∆)
1
2 ū = 0 in Ω ∩ {u > ϕ}

(−∆)
1
2 ū ≥ 0 in Ω ∩ {u = ϕ}
ū = ḡ in Rn \ Ω.

(1.15)
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Thus, in order to study the solution to (1.15), by taking its harmonic extension ū,
it is enough to study the solutions to (1.6).

Finally, another characterization of the fractional Laplacian, (−∆)
1
2 , is via Fourier

transforms. In this way, one can also characterize (up to a constant) general frac-
tional Laplacians of order 2s, with 0 < s < 1, as

F((−∆)sū)(ξ) = |ξ|2sF(ū)(ξ),

where F denotes the Fourier transform. The operator, which now has order 2s, can
be explicitly written as

(−∆)sū(x′) = cn,sPV

∫
Rn

ū(x′)− ū(y′)

|x′ − y′|n+2s
dy′.

In this way, one can consider general obstacle problems with nonlocal operator
L = (−∆)s 

ū ≥ ϕ in Ω
Lū = 0 in Ω ∩ {u > ϕ}
Lū ≥ 0 in Ω ∩ {u = ϕ}
ū = ḡ in Rn \ Ω.

(1.16)

(See, e.g., [Sil07].) As we have seen, the fractional Laplacian (−∆)
1
2 can be recovered

as the normal derivative of the harmonic extension towards one extra dimension (cf.
(1.15)-(1.6)). Caffarelli and Silvestre showed in [CS07] that the fractional Laplacian
of order (−∆)s can also be recovered by extending through suitable operators. Thus,
if one considers the operator

Lau := div(|xn+1|a∇u), a = 1− 2s ∈ (−1, 1),

then the even a-harmonic extension of the solution ū to (1.16) (that is, u with
Lau = 0 in xn+1 > 0 and u(x′, xn+1) = u(x′,−xn+1)) solves locally a problem of the
type 

u ≥ ϕ on B1 ∩ {xn+1 = 0}
Lau = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
Lau ≤ 0 in B1,

(1.17)

that is, a thin obstacle problem with operator La, or a weighted thin obstacle problem
(cf. (1.10)) with A2-Muckenhoupt weight.

It is for this reason that many times one studies the weighted thin obstacle
problem (1.17) with a ∈ (−1, 1) (see [CS07, CSS08]). For the sake of simplicity and
readability, in this introduction we will always assume a = 0, but most of the results
mentioned generalize to any a ∈ (−1, 1) accordingly, and therefore, they also apply
to solutions to the fractional obstacle problem (1.16).

Fractional obstacle problems such as (1.16), as well as many of its variants (with
more general non-local operators, with a drift term, in the parabolic case, etc.), have
been a very prolific topic of research in the last years (see [CF13, PP15, GPPS17,
DGPT17, CRS17, BFR18b, FR18] and references therein).
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1.3.1 The fractional Laplacian and Lévy processes

Integro-differential equations arise naturally in the study of stochastic processes with
jumps, namely, Lévy processes. The research in this area is attracting an increasing
level of interest, both from an analytical and probabilistic point of view, among oth-
ers, due to its applications to multiple areas: finance, population dynamics, physical
and biological models, etc. (See [DL76, Mer76, CT04, Ros16, Ros18] and references
therein.) Infinitesimal generators of Lévy processes are integro-differential operators
of the form

Lu = b ·∇u+ tr (A ·D2u) +

∫
Rn
{u(x+ y)− u(x)− y · ∇u(x)χB1(y)} ν(dy), (1.18)

for some Lévy measure ν such that
∫

min{1, |y|2}ν(dy) < ∞. The simplest (non-
trivial) example of such infinitesimal generators is the fractional Laplacian intro-
duced above, which arises as infinitesimal generator of a stable and radially sym-
metric Lévy process.

In particular, obstacle type problems involving general integro-differential oper-
ators of the form (1.18) appear when studying the optimal stopping problem for a
Lévy process: consider a particle located at Xt at time t ≥ 0, moving according a
Lévy process inside a domain Ω, and let ϕ be a pay-off function defined in Ω, and
ḡ an exterior condition defined in Rn \ Ω. At each time we can decide to stop the
process and be paid ϕ(Xt) or wait until the particle reaches a region where ϕ has
a higher value. Moreover, if the particle suddenly jumps outside of Ω, we get paid
ḡ(Xt). The goal is to maximize the expected value of money we are being paid. We
refer the interested reader to the aforementioned references as well as [Pha97] and
the appendix of [BFR18] for the jump-diffusion optimal stopping problem, as well
as [LS09, Eva12, FR20] for the local (Brownian motion) case.

1.4 Regularity of the solution

Once existence and uniqueness is established for solutions to (1.6), the next question
that one wants to answer is:

How regular is the solution u to (1.6)?

Of course, its regularity is expected to depend on how smooth is the obstacle ϕ. We
will assume that it is as smooth as needed, so that we do not have to worry about
it at this point.

Regularity questions for solutions to the thin obstacle problem were first inves-
tigated by Lewy in [Lew68], where he showed, for the case n = 1, the continuity
of the solution of the Signorini problem. He also gave the first proof related to the
structure of the free boundary, by showing, also in n = 1, that if the obstacle ϕ is
concave, the coincidence set {u = ϕ} consists of, at most, one connected interval.

The continuity of the solution for any dimension follows from classical arguments.
One first shows that the coincidence set {u = ϕ} is closed, and then one uses the
following fact for harmonic functions: if C ⊂ Ω is closed, and ∆v = 0 in Ω \ C and v
is continuous on C, then v is continuous in Ω.
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Rather simple arguments also yield that, in fact, the solution is Lipschitz. Indeed,
if one considers the solution u to the problem (1.10), and we define h ∈ Lip(B1) as
the solution to 

∆h = 0 in B1 \ {xn+1 = 0}
h = −‖u‖L∞(B1) on ∂B1

h = ϕ on B1 ∩ {xn+1 = 0},

then u is a solution to the classical (thick) obstacle problem with h (which is Lips-
chitz) as the obstacle. In order to close the argument, we just notice that solutions
to the thick obstacle problem with Lipschitz obstacles are Lipschitz, so u is Lip-
schitz as well. This last step is not so immediate, we refer the reader to [AC04,
Theorem 1] or [Fer16, Proposition 2.1] for two different ways to conclude this rea-
soning. These first regularity properties were investigated in the early 1970’s (see
[Bei69, LS69, Kin71, BC72, GM75]).

In general, we do not expect solutions to (1.10) to be better than Lipschitz.
Indeed, across {xn+1 = 0} on contact points, we have that normal derivatives can
change sign, as seen by taking the even extension to (1.6). Nonetheless, we are
interested in the regularity of the solution in either side of the obstacle. The fact
that normal derivatives jump is artificial, in the sense that it does not come from the
equations, but from the geometry of the problem. We see that this is not observed
in (1.6), where the solution could, a priori, be better than Lipschitz, and it also does
not appear when studying the solution restricted to {xn+1 = 0}, as in the situations
with the fractional obstacle problem (1.15).

1.4.1 C1,α regularity

The first step to upgrade the regularity of solutions to (1.6) was taken by Frehse in
[Fre77] in 1977, where he proved that tangential derivatives of u are continuous up
to {xn+1 = 0}, thus showing that the solution is C1 in B+

1 , up to the boundary.
Later, in 1978 Richardson proved that solutions are C1,1/2 for n = 1 in [Ric78];

whereas, in parallel, Caffarelli showed in [Caf79] that solutions to the Signorini
problem are C1,α for some 0 < α ≤ 1

2
up to the boundary on either side (alterna-

tively, tangential derivatives are Hölder continuous). In order to do that, Caffarelli
started showing the semiconvexity of the solution in the directions parallel to the
thin obstacle. We state this result here for future convenience.

Proposition 1.1 ([Caf79]). Let u be any weak solution to (1.6), and let ϕ ∈
C1,1(B′1). Let e ∈ Sn be parallel to the thin space, e ·en+1 = 0. Then, u is semiconvex
in the e direction. That is,

inf
B1/2

∂2
eeu ≥ −C(‖u‖L2(B1) + [∇ϕ]C0,1(B′1)),

for some constant C depending only on n.

As a (not immediate) consequence, Caffarelli deduced the C1,α regularity of so-
lutions.
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Theorem 1.2 ([Caf79]). Let u be any weak solution to (1.6), and let ϕ ∈ C1,1(B′1).

Then, u ∈ C1,α(B+
1/2) and

‖u‖
C1,α(B+

1/2
)
≤ C

(
‖u‖L2(B+

1 ) + [∇ϕ]C0,1(B′1)

)
,

for some constants α > 0 and C depending only on n.

Remark 1.3. In fact, Caffarelli in [Caf79] pointed out how to deal with other smooth
operators coming from variational inequalities with smooth coefficients. Thus, in
(1.6) one could consider other divergence form operators other than the Laplacian,
with smooth and uniformly elliptic coefficients.

Remark 1.4. A posteriori, one can lower the regularity assumptions on the obstacle,
the coefficients, and the lower dimensional manifold. We refer to [RuSh17] for a
study in this direction, with C1,α obstacles, C0,α coefficients (in divergence form),
and with the thin obstacle supported on a C1,γ manifold.

The fact that the regularity cannot be better than C1,1/2 is due to the simple
counter-example,

u(x) = Re
(
(x1 + i|xn+1|)3/2

)
(1.19)

which in (x1, xn+1)-polar coordinates can be written as

ũ(r, θ) = r3/2 cos
(

3
2
θ
)
.

The function u is a solution to the Signorini problem: it is harmonic for |xn+1| > 0,
the normal derivative ∂xn+1 vanishes at θ = 0, and has the right sign at θ = π.

It was not until many years later that, in [AC04], Athanasopoulos and Caffarelli
showed the optimal C1,1/2 regularity of the solution in all dimensions. That is, in
the previous theorem α = 1

2
, and by the example above, this is optimal. We leave

the discussion of the optimal regularity for the next section, where we deal with the
classification of free boundary points.

Historically, the classification of the free boundary was performed after having
established the optimal regularity. In the next section we show that this was not
needed, and in fact one can first study the free boundary, and from that deduce the
optimal regularity of the solution.

1.5 Classification of free boundary points

The thin obstacle problem, (1.6) or (1.10), is a free boundary problem, i.e., the
unknowns of the problem are the solution itself, and the contact set

Λ(u) :=
{
x′ ∈ Rn : u(x′, 0) = ϕ(x′)

}
× {0} ⊂ Rn+1,

whose topological boundary in the relative topology of Rn, which we denote Γ(u) =
∂RnΛ(u) = ∂{x′ ∈ Rn : u(x′, 0) = ϕ(x′)} × {0}, is known as the free boundary.

After studying the regularity of the solution, the next natural step in understand-
ing the thin obstacle problem is the study of the structure and regularity of the free
boundary. This is also related to the optimal regularity question presented above,
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since one expects that the worst points in terms of regularity lie on the boundary
of the contact set.

Let us suppose, for simplicity, that we have a zero obstacle problem, ϕ ≡ 0.
Notice that, if the obstacle ϕ is analytic, we can always reduce to this case by
subtracting an even harmonic extension of ϕ to the solution1. This is not possible
under lower regularity properties (in particular, this does not include the case where
ϕ ∈ C∞, see Section 1.9).

Our problem is
u ≥ 0 on B1 ∩ {xn+1 = 0}

∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = 0})
∆u ≤ 0 in B1,

(1.20)

and the contact set is

Λ(u) = {(x′, 0) ∈ Rn+1 : u(x′, 0) = 0}.

In order to study a free boundary point, x◦ ∈ Γ(u), one considers blow-ups of
the solution u around x◦. That is, one looks at rescalings of the form

ur,x◦(x) =
u(x◦ + rx)( ∫
∂Br(x◦)

u2
) 1

2

. (1.21)

The limit of such rescalings, as r ↓ 0, gives information about the behaviour of
the solution around the free boundary point x◦. Thus, classifying possible blow-up
profiles as r ↓ 0 around free boundary points will help us better understand the
structure of the free boundary. Notice that, by construction, the blow-up sequence
(1.21) is trivially bounded in L2(∂B1). To prove (stronger) convergence results, we
need the sequence to be bounded in more restrictive spaces (say, in W 1,2), by taking
advantage of the fact that u solves problem (1.20).

In order to do that, a very powerful tool is Almgren’s frequency function. If we
consider a solution u to the Signorini problem (1.20) and take the odd extension
(with respect to xn+1), we end up with a two-valued map that is harmonic on
the thin space (and has two branches). Almgren studied in [Alm00] precisely the
monotonicity of the frequency function for multi-valued harmonic functions (in fact,
Dirichlet energy minimizers), and thus, it is not surprising that such tool is also
available in this setting.

Let us define, for a free boundary point x◦ ∈ Γ(u),

N(r, u, x◦) :=
r
∫
Br(x◦)

|∇u|2∫
∂Br(x◦)

u2
.

We will often denote N(r, u) whenever we take x◦ = 0. Notice that N(ρ, ur) =
N(rρ, u), where ur := ur,0 (see (1.21)). Then, we have the following.

1If the obstacle ϕ is analytic, then ϕ has a harmonic extension to B+
1 , and its even extension

in the whole B1 is harmonic as well. Thus, the function u− ϕ solves a thin obstacle problem with
zero obstacle. This is no longer true if ϕ is not analytic (not even when ϕ ∈ C∞), and in such
situation one needs to adapt the arguments. However, the ideas are the same.
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Lemma 1.3. Let u be a solution to (1.20), and let us assume 0 ∈ Γ(u). Then,
Almgren’s frequency function

r 7→ N(r, u) =
r
∫
Br
|∇u|2∫

∂Br
u2

is nondecreasing. Moreover, N(r, u) is constant if and only if u is homogeneous.

Proof. We very briefly sketch the proof. By scaling (N(ρ, ur) = N(rρ, u)) it is enough
to show that N ′(1, u) ≥ 0. Let us denote

D(r, u) =
1

rn+1

∫
Br

|∇u|2 = r2

∫
B1

|∇u(r·)|2, H(r, u) =
1

rn

∫
∂Br

u2 =

∫
∂B1

u(r·)2,

so that N(r, u) = D(r,u)
H(r,u)

and N ′(1, u) = D(1,u)
H(1,u)

(
D′(1,u)
D(1,u)

− H′(1,u)
H(1,u)

)
. Now notice that

D′(1, u) = 2

∫
B1

∇u · ∇(x · ∇u) dx = 2

∫
∂B1

u2
ν − 2

∫
B1

∆u(x · ∇u) dx,

where uν denotes the outward normal derivative to B1. Since u is a solution to the
Signorini problem, either ∆u = 0 or u = 0 and ∆u > 0 (in which case, x ·∇u = 0 by
C1 regularity of the solution). Thus, the second term above vanishes. On the other
hand, we have that

H ′(1, u) = 2

∫
∂B1

uuν and D(1, u) =

∫
B1

|∇u|2 =

∫
∂B1

uuν ,

where in the last equality we have used again that u solves the Signorini problem,
u∆u ≡ 0. Thus,

N ′(1, u) = 2
D(1, u)

H(1, u)

( ∫
∂B1

u2
ν∫

∂B1
uuν
−
∫
∂B1

uuν∫
∂B1

u2

)
≥ 0,

by Cauchy-Schwarz inequality. Equality holds if and only if u is proportional to uν
on ∂Br for every r (that is, u is homogeneous).

And from Lemma 1.3 we have the following.

Lemma 1.4. Let u be a solution to (1.20), and let us assume 0 ∈ Γ(u). Let λ :=
N(0+, u), and let

ϕ(r) :=

∫
∂Br

u2.

Then, the function r 7→ r−2λϕ(r) is nondecreasing. Moreover, for every ε > 0 there
exists some r◦ = r◦(ε) such that if r < ρr ≤ r◦(ε) ≤ 1,

ϕ(ρr) ≤ ρ2(λ+ε)ϕ(r).
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Proof. Notice that by Lemma 1.3, λ is well-defined. By differentiating

d

dr

(
r−2λϕ(r)

)
= 2r−2λ−n−1

{
r

∫
Br

|∇u|2 − λ
∫
∂Br

u2

}
≥ 0,

where we are also using the monotonicity of N(r, u) from Lemma 1.3.
On the other hand, choose r◦(ε) such that N(r◦, u) ≤ λ+ ε. Then, just noticing

that

N(r, u) =
r

2

d

dr
logϕ(r) ≤ λ+ ε (1.22)

for r < ρr ≤ r◦ and integrating in (r, ρr) we get the desired result.

As a consequence of Almgren’s monotonicity formula we get the existence of
a (homogeneous) blow-up limit around free boundary points, u0. Notice that we
are not claiming the uniqueness of such blow-up, but its degree of homogeneity is
independent of the sequence.

Corollary 1.5. Let u be a solution to (1.20), and let us assume 0 ∈ Γ(u). Let us
denote

ur(x) =
u(rx)( ∫
∂Br

u2
)1/2

.

Then, for any sequence rk ↓ 0 there exists a subsequence rkj ↓ 0 such that

urkj → u0 strongly in L2
loc(Rn+1), (1.23)

∇urkj ⇀ ∇u0 weakly in L2
loc(Rn+1), (1.24)

urkj → u0 strongly in C1
loc(Rn+1

+ ), (1.25)

for some N(0+, u)-homogeneous global solution u0 to the thin obstacle problem with
zero obstacle, (1.20), and ‖u0‖L2(∂B1) = cn, for some dimensional constant cn > 0.

Proof. The proof of the strong convergence in L2 and weak convergence in W 1,2 is a
consequence of Lemma 1.3, which shows that the sequence urk is uniformly bounded
in W 1,2(B1). Indeed, take any ball centered at the origin, BR ⊂ Rn. Then, using the
notation from Lemma 1.4,∫

BR

|∇ur|2 =
r1−n

ϕ(r)

∫
BrR

|∇u|2 ≤ Rn−1ϕ(Rr)

ϕ(r)
N(1, u) ≤ C(R)N(1, u),

where in the last step we are using that r is small enough together with the second
part of Lemma 1.4 with ε = 1. Also notice that ‖ur‖L2(∂B1) = cn, so ur is bounded
in W 1,2 for every compact set (again, by Lemma 1.4).

The homogeneity of u0 comes from the fact that

N(ρ, u0) = lim
r↓0

N(ρ, ur) = lim
r↓0

N(rρ, u) = N(0+, u),

and Lemma 1.3.
Finally, the strong convergence in C1 follows from the C1,α regularity estimates

for the solution, Theorem 1.2.
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Hence, we obtain the following result, describing the structure of blow-ups at
free boundary points.

Theorem 1.6. Let u be a solution to (1.20), and let us assume 0 ∈ Γ(u). Let u0

denote any blow-up at 0. Then, u0 satisfies u0 ∈ C1,α
loc ({xn+1 ≥ 0})

u0 solves the thin obstacle problem (1.20) in Rn+1

u0 is λ-homogeneous, with λ ∈
{

3
2

}
∪ [2,∞).

(1.26)

Moreover, if λ = 3
2
, then u0 is (after a rotation) of the form (1.19).

Proof. The fact that u0 ∈ C1,α
loc ({xn+1 ≥ 0}) solves the thin obstacle problem (1.20)

in Rn+1 comes directly from the strong convergence (1.25). Also, from Corollary 1.5,
u0 is a λ := N(0+, u) homogeneous function. We just need to determine the possible
values λ can take when λ < 2.

Thus, from now on, let us assume that λ < 2. We separate the rest of the proof
into two steps.

Step 1: Convexity of u0. Let us start by showing that u0 is convex in the directions
parallel to the thin space, and thus, in particular, the restriction u0|{xn+1=0} is convex.
We do so by means of the semiconvexity estimates from Proposition 1.1 applied to
u0. Indeed, by rescaling Proposition 1.1 to a ball of radius R ≥ 1 we get

R2 inf
BR/2

∂eeu0 ≥ −CR−
n
2 ‖u0‖L2(BR) = −CRλ‖u0‖L2(B1),

for some dimensional constant C, and for e · en+1 = 0, where in the last equality we
are using the λ-homogeneity of u0. That is, by letting R→∞,

inf
BR/2

∂eeu0 ≥ −CRλ−2‖u0‖L2(B1) → 0, as R→∞.

Hence, u0 is convex in the tangential directions to the thin space.

Step 2: Degree of homogeneity of u0. From the C1 convergence of the blow-ups, it
is clear that λ > 1. Let us now consider Λ(u0) ⊂ {xn+1 = 0} the contact set for u0,
which is a convex cone, from the convexity and homogeneity of u0.

If Λ(u0) has empty interior (restricted to the thin space), then ∂xn+1u0 is a
harmonic function in {xn+1 > 0}, identically zero on the thin space, and (λ −
1)-homogeneous. In particular, from the sublinear growth at infinity, ∂xn+1u0 ≡ 0
everywhere, and thus u0 ≡ 0, a contradiction. Hence, Λ(u0) has non-empty interior
on the thin space.

Let us denote e ∈ Sn−1 a direction contained in the interior of Λ(u0) (in particu-
lar, e ·en+1 = 0). Let us define, w1 := ∂−eu0 and w2 := −|∂xn+1u0|, which are (λ−1)
homogeneous functions, harmonic in {xn+1 6= 0}.

Notice that w1 = 0 in Λ(u0). In particular, for any x◦ ∈ {xn+1 = 0}, x◦ + te ∈
Λ(u0) for t ∈ R large enough (since Λ(u0) is a cone with non-empty interior and e is
a direction contained in it). Thus, from the convexity of u0, w1 has to be monotone
along x◦ + te, and thus w1 ≥ 0 on the thin space. Since w1 is (λ− 1)-homogeneous
(i.e., it has sublinear growth), and is non-negative on the thin space, there is a
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unique (λ − 1)-homogeneous harmonic extension that coincides with w1 (by the
Poisson kernel), and it is non-negative as well. Hence, w1 ≥ 0 in Rn+1.

In addition, w2 ≥ 0 on the thin space as well (since u0 solves the thin obstacle
problem), and it has sublinear growth at infinity. That is, its harmonic extension is
itself, and thus w2 ≥ 0 in Rn+1. Moreover, notice that w2 = 0 in {xn+1 = 0} \Λ(u0)
(in particular, w1w2 ≡ 0 on {xn+1 = 0}).

On the one hand, we have that the restriction of w1 to the unit sphere must be
the first eigenfunction of the Dirichlet problem for the spherical Laplacian with zero
data on ∂B1∩Λ(u0) (since it is non-negative), and it has homogeneity λ−1. On the
other hand, the restriction of w2 to the unit sphere must be the first eigenfunction
with zero data on ∂B1 ∩ ({xn+1 = 0} \ Λ(u0)), and it has the same homogeneity
λ− 1. Since Λ(u0) is a (convex) cone, it is contained in a half-space (of {xn+1 = 0}),
and therefore, {xn+1 = 0} \ Λ(u0) contains a half-space. Since the corresponding
homogeneities are the same (i.e., λ−1), by monotonicity of eigenvalues with respect
to the domain we must have that, after a rotation, Λ(u0) and its complement are
equal, and hence, they are half-spaces themselves. The homogeneity for the half-
space in this situation is 1

2
, so λ = 3

2
, and the corresponding eigenfunction is

u0(x) = Re
(
(x1 + i|xn+1|)3/2

)
,

as we wanted to see.

As a consequence of the previous result, we have a dichotomy for free boundary
points.

Proposition 1.7 (Classification of free boundary points). Let u be a solution to
(1.20). Then, the free boundary can be divided into two sets,

Γ(u) = Reg(u) ∪Deg(u).

The set of regular points,

Reg(u) :=
{
x◦ ∈ Γ(u) : N(0+, u, x◦) = 3

2

}
,

and the set of degenerate points,

Deg(u) :=
{
x◦ ∈ Γ(u) : N(0+, u, x◦) ≥ 2

}
.

Moreover, u ∈ C1,1/2(B+
1 ) with

‖u‖
C1,1/2(B+

1/2
)
≤ C‖u‖L∞(B1) (1.27)

for some C depending only on n, and the set of regular points is open (in the relative
topology of the free boundary).

Proof. The classification result is an immediate consequence of Corollary 1.5 and
Theorem 1.6.

For the optimal regularity, we observe that by Corollary 1.5, since the sequence
ur is uniformly bounded in r, for x◦ ∈ Γ(u),

‖u‖L∞(Br)(x◦) ≤ C

( ∫
∂Br(x◦)

u2

) 1
2

≤ C‖u‖L∞(B1)r
3
2 , (1.28)
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where in the last inequality we are using Lemma 1.4, together with the fact that,
by Theorem 1.6, N(0+, u, x◦) ≥ 3

2
. This establishes a uniform growth of the solution

around free boundary points. Combined with interior estimates for harmonic func-
tions, this yields that u is C1,1/2 on the thin space, and thus u ∈ C1,1/2(B+

1 ) with
estimates in B+

1/2.

Indeed, take y ∈ {xn+1 = 0} ∩ {u > 0}, and let r = dist(y,Γ(u)). Then u is
harmonic in Br(y), and by harmonic estimates together with (1.28)

‖∇x′u‖L∞(Br/2(y)) ≤ Cr−1‖u‖L∞(Br(y)) ≤ C‖u‖L∞(B1)r
1
2 .

In particular
‖∇x′u‖L∞(Br(x◦)) ≤ C‖u‖L∞(B1)r

1
2 (1.29)

for x◦ ∈ Γ(u), since ∇x′u ≡ 0 on the contact set {xn+1 = 0} ∩ {u = 0}. Take now
y1, y2 ∈ {xn+1 = 0}, so that we want to obtain the bound

|∇x′u(y1)−∇x′u(y2)| ≤ C‖u‖L∞(B1)|y1 − y2|
1
2 (1.30)

to get C1,1/2 regularity of u on the thin space. Notice that, since ∇x′u = 0 on
{xn+1 = 0} ∩ {u = 0}, we can assume that y1, y2 ∈ {xn+1 = 0} ∩ {u > 0}.

Let us suppose r = dist(y1,Γ(u)) ≥ dist(y2,Γ(u)). Then, if dist(y1, y2) ≤ r
2
, and

since u is harmonic in Br(y1), by harmonic estimates we have

|∇x′u(y1)−∇x′u(y2)|
|y1 − y2|1/2

≤ [∇x′u]C1/2(Br/2(y1) ≤ Cr−1/2‖∇x′u‖L∞(Br(y1)) ≤ C‖u‖L∞(B1)

where in the last step we have used (1.29). On the other hand, if dist(y1, y2) ≥ r
2
,

from (1.29) and dist(y2,Γ(u)) ≤ r,

|∇x′u(y1)−∇x′u(y2)| ≤ |∇x′u(y1)|+ |∇x′u(y2)|
≤ C‖u‖L∞(B1)r

1/2 ≤ C‖u‖L∞(B1)|y1 − y2|1/2.

In all, (1.30) always holds, and u is C1,1/2 on {xn+1 = 0}. By standard harmonic
estimates, its harmonic extension to B+

1 is also C1,1/2 with estimates up to the
boundary {xn+1 = 0}, which gives (1.27).

Finally, we note that Γ(u) 3 x 7→ N(r, u, x) is continuous for every r > 0,
and is monotone nondecreasing. Thus, N(0+, u, x) = infr>0N(r, u, x) is the infimum
of a family of continuous functions, and therefore, it is upper semi-continuous. In
particular, if Deg(u) 3 xk → x◦, then N(0+, u, x◦) ≥ lim supk→∞N(0+, u, xk) ≥ 2,
and thus x◦ ∈ Deg(u). The set of degenerate points closed, and the set of regular
points is open (in the relative topology of the free boundary).

1.6 Regular points

We have shown that the free boundary can be divided into two different sets: regular
points, and degenerate points, according to the value of the frequency.

As we will show next, the set of regular points received this name because we
can show smoothness of the free boundary around them, [ACS08].
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Let 0 be a regular free boundary point, and consider the rescalings

ur(x) =
u(rx)( ∫
∂Br

u2
) 1

2

.

Since 0 is a regular point, by Theorem 1.6, there exists some sequence rj ↓ 0 such
that, up to a rotation,

urj → u0 := Re
(
(x1 + i|xn+1|)3/2

)
strongly in C1(B+

1/2). (1.31)

Notice that, on the thin space, u0 is a half-space solution of the form u0(x′, 0) =

c(x1)
3/2
+ . In particular, the free boundary is a hyperplane (in {xn+1 = 0}) and thus

smooth. We want to show that the smoothness of the free boundary in the limit is
inherited by the approximating sequence, urj , for j large enough.

Let us start by showing that the free boundary is Lipschitz. In the following
proposition, C(e1, θ) denotes a cone with axis e1 an opening θ > 0, in the tangential
directions,

C(e1, θ) :=
{
τ ∈ Rn+1 : τn+1 = 0, τ · e1 ≥ cos(θ)‖τ‖

}
.

Proposition 1.8. Let u be a solution to (1.20), and let us suppose that the origin
is a regular free boundary point, 0 ∈ Reg(u). Suppose, also, that (1.31) holds.

Then, for any fixed θ◦ > 0, there exists some ρ > 0 such that

∂τu ≥ 0 in Bρ, for all τ ∈ C(e1, θ◦). (1.32)

In particular, the free boundary is Lipschitz around regular points. That is, for
some neighbourhood of the origin, Γ(u) is the graph of a Lipschitz function x1 =
f(x2, . . . , xn) in {xn+1 = 0}.

Proof. We use that ∂τurj is converging to ∂τu0 uniformly in B1/2. Notice that, by
assumption, ∂τu0 ≥ 0, and in fact, ∂τu0 ≥ c(θ◦, σ) > 0 in {|xn+1| > σ}.

Thus, from the uniform convergence, for any σ > 0 there exists some r◦ =
r◦(θ◦, σ) such that, if rj ≤ r◦,

∂τurj ≥ 0 in B3/4 \ {|xn+1| ≥ σ}
∂τurj ≥ c(θ◦) > 0 in B3/4 \

{
|xn+1| ≥ 1

2

}
.

(1.33)

Moreover, from the optimal C1, 1
2 regularity of solutions,

∂τurj ≥ −cσ
1
2 in B3/4 ∩ {|xn+1 ≤ σ}. (1.34)

Combining (1.33)-(1.34) with the fact that ∆(∂τurj) = 0 in B1 \ Λ(urj), and
∂τurj = 0 on Λ(urj), by standard comparison principle arguments (see [ACS08,
Lemma 5]) we deduce that there exist some σ◦ = σ◦(θ◦) such that if σ < σ◦,
∂τurj ≥ 0 in B1/2. In particular, there exists some ρ (depending only on θ◦, but also
depending on the regular point) such that ∂τuρ ≥ 0 in B1. Thus, (1.32) holds.
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We finish by showing that (1.32) implies that the free boundary is Lipschitz. We
do so by considering the two (half) cones

Σ± := ±C(e1, θ◦) ∩Bρ/2.

Notice that, since 0 ∈ Γ(u), u(0) = 0, and from u ≥ 0 on {xn+1 = 0} together
with (1.32) we must have u ≡ 0 on Σ−, so Σ− ⊂ {u = 0}.

On the other hand, suppose that y◦ ∈ Σ+ is such that u(y◦) = 0. Again, by (1.32)
and the non-negativity of u on the thin space, we have u ≡ 0 on y◦ − C(e1, θ◦). But
notice that, since y◦ ∈ Σ+, 0 ∈ y◦−C(e1, θ◦), that is, 0 is not a free boundary point.
A contradiction. Therefore, we have that u(y◦) > 0, so Σ+ ⊂ {u > 0}.

Thus, the free boundary at 0 has a cone touching from above and below, and
therefore, it is Lipschitz at the origin. We can do the same at the other points around
it, so that the free boundary is Lipschitz.

In fact, the previous proof not only shows that the free boundary is Lipschitz,
but letting θ◦ ↓ 0 we are showing that it is basically C1. In order to upgrade the
regularity of the free boundary around regular points we use the boundary Harnack
principle.

Theorem 1.9 (Boundary Harnack Principle, [ACS08, DS19]). Let Ω ⊂ {xn+1 =
0} ∩ B1 be a Lipschitz domain on the thin space, and let v1, v2 ∈ C(B1) satisfying
∆v1 = ∆v2 = 0 in B1 \ Ω. Assume, moreover, that v1 and v2 vanish continuously
on Ω, and v2 > 0 in B1 \Ω. Then, there exists some α > 0 such that v1

v2
is α-Hölder

continuous in B1/2 \ Ω up to Ω.

As a consequence, we can show that the Lipschitz part of the free boundary is,
in fact, C1,α.

Theorem 1.10 (C1,α regularity of the free boundary around regular points). Let
u be a solution to (1.20). Then, the set of regular points, Reg(u), is locally a C1,α

(n− 1)-dimensional manifold.

Proof. We just need to apply Theorem 1.9 to the right functions. Notice that, by
Proposition 1.8 we already know that around regular points, the free boundary is a
Lipschitz (n− 1)-dimensional manifold.

Let us suppose 0 is a regular point. Take τ̄ = 1√
2

(e1 + ei) with i ∈ {2, . . . , n}, and

notice that in Bρ such that (1.32) holds (with θ◦ = π/4) we have that v1 := ∂e1u and
v2 := ∂τ̄u are positive harmonic functions, vanishing continuously on Ω := Λ(u)∩Bρ,
by Proposition 1.8. Thus, v1/v2 is Hölder continuous, which implies that ∂eiu/∂e1u
is Hölder continuous, up to Λ(u), in Bρ.

We finish by noticing that, if we take x ∈ {xn+1 = 0} such that u(x) = t, then
ν(x) denotes the unit normal vector to the level set {u = t} on the thin space, where

νi(x) :=
∂eiu

|(∂e1u, . . . , ∂enu)| =
∂eiu/∂e1u

(1 +
∑n

i=2(∂eiu/∂e1u)2)
1/2
.

Thus, ν = (ν1, . . . , νn) is Hölder continuous. In particular, letting t ↓ 0 we obtain
that the normal vector to the free boundary is Hölder continuous, and therefore, the
free boundary is C1,α in Bρ/2.
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It is possible to keep iterating a higher order boundary Harnack principle to
obtain higher order free boundary regularity estimates around regular points. Hence,
Theorem 1.9 also has a higher order analogy.

Proposition 1.11 (Higher order Boundary Harnack Principle, [DS15]). Let Ω ⊂
{xn+1 = 0}∩B1 be a Ck,α domain on the thin space for k ≥ 1, and let v1, v2 ∈ C(B1)
satisfying ∆v1 = ∆v2 = 0 in B1 \ Ω. Assume, moreover, that v1 and v2 vanish
continuously on Ω, and v2 > 0 in B1 \ Ω. Then, v1

v2
is Ck,α in B1/2 \ Ω up to Ω.

Moreover, if U0(x′) =
√

dist(x′,Ω), and v1 is even in xn+1, then v1

U0
is Ck−1,α in

B′1/2 \ Ω up to Ω.

And from the higher order Boundary Harnack Principle we can deduce higher
order regularity of the free boundary (at regular points).

Corollary 1.12 (C∞ regularity of the free boundary around regular points). Let
u be a solution to (1.20). Then, the set of regular points, Reg(u), is locally a C∞

(n− 1)-dimensional manifold.

Proof. Follows analogously to the proof of Theorem 1.10 by using Proposition 1.11
instead of Theorem 1.9.

As a consequence of the previous argumentation we also get an expansion around
regular points, proving that, up to lower order terms, the solution behaves like the
half-space solution. In particular, this next theorem proves the uniqueness of blow-
ups.

Theorem 1.13 (Expansion around regular points). Let u be a solution to (1.20),
and let us assume 0 ∈ Reg(u). Then, there exists some c > 0 and some α > 0
(possibly depending on everything) such that

u(x) = cu0(x) + o
(
|x| 32 +α

)
,

where u0 is the blow-up of u at 0 (i.e., u0(x) = Re
(
(x1 + i|xn+1|)3/2

)
up to a rotation

in the thin space).

Proof. We here use the second part of Proposition 1.11. By taking τ ∈ Sn∩{xn+1 =
0} and v2 = ∂τu (a tangential derivative to the thin space), by Proposition 1.11 we
have

∂τu

U0

∈ Cα

in the thin space, for some α > 0 (coming from the regularity of the free boundary),
outside of the contact set and up to the free boundary. In particular,∣∣∣∣∂τuU0

(x′)− c0

∣∣∣∣ ≤ C|x′|α =⇒ |∂τu(x′)− c0U0(x′)| ≤ CU0(x′)|x′|α ≤ C|x′| 12 +α,

for some constant c0 = ∂τu
U0

(0). We recall that U0(x′) =
√

dist(x′,Ω). By the C1,α re-

gularity of the free boundary, there exists some cτ such that U0−cτ∂τu0 = o
(
|x| 12 +α′

)
for some α′ > 0, where u0 is the blow-up at 0. Thus, we have that

|∂eiu(x′)− ci∂eiũ0(x′)| ≤ C|x′| 12 +α′ .
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From the local uniform convergence ∂τur → ∂τ ũ0 we must have ci = c ≥ 0 for all
i = 1, . . . , n in the previous expression, where

c = lim
r↓0

r−
3
2

( ∫
∂Br

u2

) 1
2

.

Thus,

|∇x′u(x′)− c∇x′u0(x′)| ≤ C|x′| 12 +α′ .

Since ∇x′u(0) = ∇x′u0(0) = 0, by integrating the previous expression we deduce

|u(x′)− cu0(x′)| ≤ C|x′| 32 +α′ .

By harmonic estimates, such inequality also holds outside of the thin space. Now, if
c = 0, it means that the frequency at 0 is at least 3

2
+ α′. This contradicts 0 being

a regular point, and thus, c > 0. This concludes the proof.

We finish by noticing the uniqueness of blow-ups at regular points.

Corollary 1.14 (Uniqueness of blow-ups at regular points). Let u be a solution to
(1.20), and let us assume 0 ∈ Reg(u). Then, up to a rotation,

u(r ·)
r

3
2

→ cu0 as r ↓ 0,

locally uniformly, for some c > 0. Here, u0(x) = Re
(
(x1 + i|xn+1|)3/2

)
.

Proof. This is a direct consequence of Theorem 1.13.

1.7 Singular points

In the classical (or thick) obstacle problem, all points of the free boundary have
frequency 2, and thus the classification of free boundary points must be performed
differently: regular points are those such that the contact set has positive density,
whereas singular points are those where the contact set has zero density.

This motivates the definition of singular point. Whereas it is not true that all
points of positive density belong to the set Reg(u) as defined above, one can char-
acterize the points with zero density.

Let us start defining the set of singular points, which was originally studied by
Garofalo and Petrosyan in [GP09]. Let u denote a solution to the thin obstacle
problem, (1.20), then we define

Sing(u) :=

{
x ∈ Γ(u) : lim inf

r↓0

Hn(Λ(u) ∩Br(x))

Hn(Br(x) ∩ {xn+1 = 0}) = 0

}
, (1.35)

where we recall that Λ(u) denotes the contact set, and Hn(E) denotes the n-
dimensional Hausdorff measure of a set E.

The first result in this direction involves the characterization of such points.
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Proposition 1.15 (Characterization of singular points, [GP09]). Let u be a solution
to (1.20). Then, the set of singular points (1.35) can be equivalently characterized
by

Sing(u) =
{
x ∈ Γ(u) : N(0+, u, x) = 2m, m ∈ N

}
.

That is, singular points are those with even frequency.

Proof. Let us suppose that 0 ∈ Sing(u) according to definition (1.35), and take a
sequence rj ↓ 0 such that

Hn(Λ(u) ∩Brj)

Hn(Brj ∩ {xn+1 = 0}) → 0. (1.36)

Consider the sequence urj , and after taking a subsequence if necessary, let us
assume urj → u0 uniformly in B1. Notice that ∆urj is a non-positive measure sup-
ported on Λ(urj). By assumption, Hn(Λ(urj) ∩ B1) → 0. Thus, since urj converges
uniformly to u0, u0 has Laplacian concentrated on a set with zero harmonic capacity,
and thus, it is harmonic.

By Theorem 1.6, u0 is a global homogeneous solution to the thin obstacle prob-
lem, with homogeneity κ := N(0+, u). In particular, being homogeneous and har-
monic, it must be a polynomial. Moreover, since ur is even with respect to {xn+1 =
0}, so is u0. Thus, u0 is a non-zero, harmonic polynomial, even with respect to
{xn+1 = 0} and non-negative on the thin space. Its homogeneity must be even, and
thus κ = 2m for some m ∈ N.

Suppose now that 0 ∈ Γ(u) is such that N(0+, u) = 2m for some m ∈ N. Take
any blow-up of u at zero, u0. Then u0 is a global solution to the thin obstacle
problem, with homogeneity 2m. As a consequence u0 must be harmonic everywhere,
and thus, an homogeneous harmonic polynomial (we refer to [Mon09, Lemma 7.6]
or [GP09, Lemma 1.3.4] for a proof of this fact).

Now, since u0 is non-zero even homogeneous harmonic polynomial, and is non-
zero on the thin space (by Cauchy-Kovalevskaya), Hn({u0 = 0} ∩ {xn+1 = 0}) = 0.
Thus, from the uniform convergence urj → u0, we must have that (1.36) holds.

Thus, the set of singular points consists of those points with even homogeneity.
It is then natural to define

Γλ(u) := {x ∈ Γ(u) : N(0+, u, x) = λ},

so that
Sing(u) =

⋃
m∈N

Γ2m(u) =: Γeven(u).

In fact, singular points present a particularly good structure. At singular points
of order 2m, the solution to the thin obstacle problem is 2m times differentiable (in
the sense (1.37)) and in particular, the blow-up is unique, and belongs to the set

P2m := {p : ∆p = 0, x · ∇p = 2mp, p(x′, 0) ≥ 0, p(x′, xn+1) = p(x′,−xn+1)},

2m-homogeneous, harmonic polynomials, non-negative on the thin space. That is,
the following result from [GP09], which we will not prove, holds.
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Theorem 1.16 (Uniqueness of blow-ups at singular points, [GP09]). Let u be a
solution to (1.20). Let x◦ ∈ Γ2m(u) for some m ∈ N. Then, there exists a non-zero
polynomial px◦ ∈ P2m such that

u(x) = px◦(x− x◦) + o(|x− x◦|2m). (1.37)

In particular, the blow-up at 0 is unique. Moreover, the map x◦ 3 Γ2m(u) 7→ px◦ is
continuous.

The proof of the previous theorem is based on a Monneau-type monotonicity
formula, saying that if u has a singular points of order 2m at the origin, the following
function is non-decreasing,

r 7→Mk(r, u, p2m) =
1

rn+2m

∫
∂Br

(u− p2m)2,

for all p ∈ P2m and 0 < r < 1. From here, in [GP09] they establish first non-
degeneracy at singular points, and then the uniqueness of a blow-up. The continuity
with respect to the point then follows by a compactness argument.

Theorem 1.16 establishes a connection between singular points and their blow-
ups. This also allows to separate between different singular points according to “how
big” the contact set is around them. We already know it has zero Hn-density. In
fact, the contact set around singular points has the same “size” as the translation
invariant set of the blow-up. Thus, we can establish a further stratification within
the set of singular points, according to the size of the translation invariant set (which
is a subspace) of the blow-up.

Given a solution to the thin obstacle problem, (1.20), u, and given x ∈ Γ(u), let
us denote by px any blow-up of u at x. In particular, if x is a singular free boundary
point, px ∈ P2m is uniquely determined by the result above.

Let us denote by L(p) the translation invariant set for p, where p is a blow-up,

L(p) :=
{
ξ ∈ Rn+1 : p(x+ ξ) = p(x) for all x ∈ Rn+1

}
=
{
ξ ∈ Rn+1 : ξ · ∇p(x) = 0 for all x ∈ Rn+1

}
,

where we recall that blow-ups p are homogeneous. Then, if we denote

Γ`2m := {x ∈ Γ2m : dimL(px) = `}, ` ∈ {0, . . . , n− 1}, (1.38)

we have

Sing(u) = Γeven(u) =
⋃
m∈N

Γ2m =
⋃
m∈N

n−1⋃
`=0

Γ`2m.

As a consequence of Theorem 1.16, combined with Whitney’s extension theorem
and the implicit function theorem, one can prove the following result regarding the
structure of the singular set.

Theorem 1.17 ([GP09]). Let u be a solution to (1.20). Then, the set Γ`2m(u) (see
(1.38)) for ` ∈ {0, . . . , n− 1}, is contained in a countable union of C1 `-dimension
manifolds.
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Notice that the fact that each stratum of the singular set is contained in countable
union of manifolds (rather than a single manifold) is unavoidable: there could be
accumulation of lower-order points (say, of order 2) to higher order points (say, of
order 4).

On the other hand, the previous result can also be applied to the whole singular
set: Sing(u) can be covered by a countable union of C1 (n−1)-dimensional manifolds.
The fact that the manifold id C1 is due to the expansion of the solution (1.37). In
[FJ20], Jhvaeri and the author show higher order expansions at singular points
x◦ ∈ Γ2m(u), analogous to (1.37), as

u(x) = px◦(x− x◦) + qx◦(x− x◦) + o(|x− x◦|2m+1) (1.39)

for some (2m + 1)-homogeneous, harmonic polynomial qx◦ . Expansion of the form
(1.39) hold at almost every singular point, and thus, analogously to the previous
case we obtain a structure result, that holds for all singular points up to a lower
dimensional set:

Theorem 1.18 ([FJ20]). Let u be a solution to (1.20). Then, there exists a set
E ⊂ Sing(u) of Hausdorff dimension at most n−2 such that Sing(u)\E is contained
in a countable union of C2 (n− 1)-dimensional manifolds.

1.7.1 The non-degenerate case

So far we have been studying the thin obstacle problem with zero obstacle. When
solving for an (even) boundary datum

g ∈ C0(∂B1), g(x′, xn+1) = g(x′,−xn+1)

the problem looks like
u ≥ 0 on B1 ∩ {xn+1 = 0}

∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = 0})
∆u ≤ 0 in B1

u = g on ∂B1,

(1.40)

We had reduced to this problem from (1.6) by subtracting the harmonic even
extension of the analytic obstacle ϕ. Alternatively, from (1.40) we can reduce to the
case of zero boundary data by subtracting the harmonic extension of g to the unit
ball. Thus, we obtain a problem of the form

v ≥ ϕ on B1 ∩ {xn+1 = 0}
∆v = 0 in B1 \ ({xn+1 = 0} ∩ {v = ϕ})
∆v ≤ 0 in B1

v = 0 on ∂B1,

(1.41)

that is, a thin obstacle problem with obstacle ϕ. Problems (1.40) and (1.41) are the
same when {

∆ϕ = 0 in B1

ϕ = −g on ∂B1.
and v = u+ ϕ. (1.42)
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In this setting, we say that problem (1.41) with ϕ ∈ C3,1(B1 ∩ {xn+1 = 0}) is
non-degenerate if

∆x′ϕ ≤ −c◦ < 0 in B1 ∩ {xn+1 = 0} ∩ {ϕ > 0}, ∅ 6= {ϕ > 0}, (1.43)

where ∆x′ denotes the Laplacian in the first n coordinates (Laplacian along the thin
space). The last condition above is to avoid having a non-active obstacle. Alterna-
tively, in terms of problem (1.40) we have

(1.40) is non-degenerate
def.⇐⇒ ϕg :

{
∆ϕg = 0 in B1

ϕg = −g on ∂B1.
satisfies (1.43). (1.44)

In particular, when we deal with concave obstacles, we say that our problem is
non-degenerate. In [BFR18], Barrios, Figalli, and Ros-Oton show that, under a non-
degeneracy assumption, we have a better characterization of free boundary points.

Theorem 1.19 ([BFR18]). Let u be a solution to (1.40), and suppose that the non-
degeneracy condition holds, (1.43). Then, there exists a constant c̄ (depending on c◦)
such that for any x◦ ∈ Γ(u) ∩B1/2,

sup
Br(x◦)

u ≥ c̄ r2,

for all r ∈ (0, 1
4
). In particular, if (1.43) holds, then

Γ(u) = Reg(u) ∪ Γ2(u),

i.e., the free boundary consists only of regular points and singular points of order 2.

Proof. We prove it for v satisfying (1.41) and the proof follows by the transformation
(1.42) with ϕ = ϕg as in (1.43).

Let us define for x̄ = (x̄′, 0) ∈ B1/2 ∩ {xn+1 = 0} ∩ {u > ϕ},

wx̄(x
′, xn+1) = v(x′, xn+1)− ϕ(x′)− c◦

2n+ 2

(
|x′ − x̄′|2 + x2

n+1

)
,

where c◦ is the constant in (1.43). Notice that, since ∆v = 0 in outside of the contact
set Λ(v),

∆wx̄ = −∆x′ϕ− c◦ ≥ 0, in Br(x̄) \ Λ(v).

On the other hand, wx̄(x̄
′, 0) > 0 and w < 0 on Λ(v). By maximum principle, we

must have sup∂Br(x̄) wx̄ > 0. Letting x̄→ x◦ ∈ Γ(u) we deduce

sup
∂Br(x◦)

wx◦ ≥ 0,

which implies the desired result.
Finally, since the growth at the free boundary is at least quadratic, there cannot

be any blow-up at a free boundary point with homogeneity greater than 2.

In this case, therefore, the non-regular part of the free boundary consists, exclu-
sively, of singular points of order 2. In particular, in Theorem 1.17 we have instead a
single C1 `-dimensional manifold covering the whole of Γ`2m(u). We can also establish
a more refined version of Theorem 1.18,
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Theorem 1.20 ([FJ20]). Let u be a solution to (1.20), and suppose that the non-
degenerate condition (1.43) holds. Then,

(i) Σ0
2(u) is isolated in Sing(u) = Γ0

2(u) ∪ · · · ∪ Γn−1
2 (u).

(ii) There exists an at most countable set E1 ⊂ Γ1
2(u) such that Γ1

2(u)\E1 is locally
contained in a single one-dimensional C2 manifold.

(iii) For each ` ∈ {2, . . . , n − 1}, there exists a set Em ⊂ Γ`2(u) of Hausdorff
dimension at most ` − 1 such that Γ`2(u) \ E` is locally contained in a single
`-dimensional C2 manifold.

1.8 Other points

The free boundary contains, in general, other points different from regular and
singular. Even in two dimensions (n = 1) one can perform the simple (see [FoSp18,
Proposition A.1]) task of manually classifying all the possible homogeneities that an
homogeneous solution to the thin obstacle problem (with zero obstacle) can present.

Indeed, for n = 1 homogeneous solutions to the thin obstacle problem must have
homogeneity belonging to the set{

2m, 2m− 1

2
, 2m+ 1

}
m∈N

.

Solutions with homogeneity 2m are harmonic quadratic polynomials, non-negative
on the thin space. On the other hand, homogeneous solutions with homogeneity
2m− 1

2
or 2m+ 1 are of the form

Re
(

(x1 + i|x2|)2m− 1
2

)
and Im

(
(x1 + i|x2|)2m+1

)
, for m ∈ N.

Notice that when the homogeneity is 2m− 1
2

we have half-space solutions on the thin
space. Indeed, in this case, restricting to x2 = 0, solutions are of the form u(x1, 0) =

(x1)
2m− 1

2
+ . On the other hand, solutions with odd homogeneity are identically zero on

the thin space (in particular, this type of homogeneous solution is not an example
of a free boundary point with odd homogeneity, and in fact, they do not exist in
dimension n = 1).

Given that no other homogeneities can appear in dimension 2, one can show that,
in any dimension, the previous homogeneities comprise all of the free boundary,
up to a lower dimensional set. It is for this reason that we separate the possible
homogeneities of the free boundary as

Γ(u) = Γ3/2(u) ∪ Γeven(u) ∪ Γodd(u) ∪ Γhalf(u) ∪ Γ∗(u), (1.45)

where Γ3/2(u) = Reg(u) are regular points; Γeven(u) = Sing(u) are singular points;
Γodd(u) denotes the set of points with odd homogeneity, 2m+ 1 for m ∈ N; Γhalf(u)
are the points with homogeneity 2m+ 3

2
for m ∈ N; and Γ∗(u) are the rest of possible

free boundary points (in particular, Γ∗(u) = ∅ if n = 1, dimH(Γ∗(u)) ≤ n − 2 in
general).
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1.8.1 The set Γodd(u)

The free boundary points belonging to Γodd(u) are those with odd homogeneity,
2m+ 1 for m ∈ N. They are analogous to the singular set, in the sense that in this
case, points belonging to Γodd(u) can also be characterized via the density of the
contact set: these points have density 1.

They are not known to exist (no single example has been constructed so far).
Notice that the homogeneous solutions presented above are vanishing identically on
the thin space, and thus they do not have a free boundary.

In fact, in dimension n = 1, if such a point existed its blow-up would be of the
form

Im
(
(x1 + i|x2|)2m+1

)
, for m ∈ N. (1.46)

(Think, for example, of the x2-even extension of the harmonic polynomial x3
2 −

3x2
1x2 for x2 ≥ 0.) However, solutions of the form (1.46) have non-vanishing normal

derivative on the thin space, whereas a free boundary point can be approximated
by points with vanishing normal derivative. From the C1 convergence of blow-ups,
we reach a contradiction: free boundary points with odd homogeneity do not exist
in dimension n = 1.

The set of points belonging to Γodd(u) has been studied in a recent work by
Figalli, Ros-Oton, and Serra [FRS19, Appendix B].

Proposition 1.21 (Characterization of points in Γodd(u), [FRS19]). Let u be a
solution to (1.20). Then, the set of points with odd homogeneity, Γodd(u), can be
equivalently characterized by

Γodd(u) :=

{
x ∈ Γ(u) : lim sup

r↓0

Hn(Λ(u) ∩Br(x))

Hn(Br(x) ∩ {xn+1 = 0}) = 1

}
, (1.47)

That is, points with odd homegeneity are those where the contact set has density 1.

Proof. Let us suppose that 0 ∈ Γ(u) fulfills definition (1.47), that is, we can take a
sequence rj ↓ 0 such that

Hn(Λ(u) ∩Brj)

Hn(Brj ∩ {xn+1 = 0}) → 1. (1.48)

Consider the sequence urj , and after taking a subsequence if necessary, let us
assume urj → u0 uniformly in B1. In particular, u0 vanishes identically on the thin
space. Since it is homogeneous, and harmonic on xn+1 > 0, it must be a polyno-
mial. It cannot have even homogeneity, since by the discussion on singular points it
would have zero density. Thus, it is an homogeneous harmonic polynomial with odd
homogeneity in xn+1 ≥ 0 (and extend evenly in the whole space). Notice also that
it cannot be linear (on each side) because the minimum possible homogeneity is 3

2
.

On the other hand, suppose that 0 ∈ Γ(u) is such that N(0+, u) = 2m + 1
for some m ∈ N. Take any blow-up of u at zero, u0. Then u0 is a global solution
to the thin obstacle problem, with homogeneity 2m + 1. Let us define the global
(homogeneous) solution to the thin obstacle problem given by P ,

P (x) =
n∑
i=1

Im
(
(xi + i|xn+1|

)2m+1
,
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so that ∂+
xn+1

P < 0 in {xn+1 = 0} \ {0}. Using (1.12), we obtain that for any test
function Ψ = Ψ(|x|) (so that ∇Ψ = Ψ′(|x|) x

|x|),

2

∫
{xn+1=0}

∂+
xn+1

P Ψu0 =

∫
∆PΨu0 = −

∫
(∇P · ∇u0Ψ +∇P · ∇Ψu0)

=

∫
(P∆u0Ψ + P∇u0 · ∇Ψ− u0∇P · ∇Ψ)

=

∫ (
P∇u0 · x

Ψ′(|x|)
|x| − u0∇P · x

Ψ′(|x|)
|x|

)
= 0,

where we have used that P∆u0 ≡ 0 everywhere, and ∇u0 ·x = (2m+1)u0, ∇P ·x =
(2m+ 1)P . Since u0 ≥ 0 on the thin space, and ∂+

xn+1
P < 0 outside of the origin on

the thin space, we deduce u0 ≡ 0 on the thin space.
As a consequence u0 must be harmonic everywhere, vanishing on the thin space.

Thus, it is an homogeneous harmonic polynomial with degree 2m+ 1. In particular,
∂xn+1u0 is a non-zero 2m-homogeneous polynomial on Rn+1

+ . From the C1 conver-
gence of urj → u0 (that is, the uniform convergence of ∂xn+1urj to ∂xn+1u0) we deduce
(1.47).

We also have a result analogous to Theorem 1.16 at odd-frequency points. Let
us start by defining for m ≥ 1

Q2m+1 :=
{
q : q solves the thin obstacle problem (1.20) in Rn+1,

x · ∇q = (2m+ 1)q, q(x′, xn+1) = q(x′,−xn+1)
}
,

namely, the set of (2m+1)-homogeneous even solutions to the thin obstacle problem
(notice that by the proof of Proposition 1.21, in particular, q(x′, 0) ≡ 0). Then, we
have

Theorem 1.22 (Uniqueness of blow-ups at odd-frequency points, [FRS19]). Let u
be a solution to (1.20). Let x◦ ∈ Γ2m+1(u) for some m ∈ N. Then, there exists a
non-zero qx◦ ∈ Q2m+1 such that

u(x) = qx◦(x− x◦) + o(|x− x◦|2m+1). (1.49)

In particular, the blow-up at 0 is unique. Moreover, the set Γ2m+1(u) is (n − 2)-
rectifiable.

1.8.2 The set Γhalf(u)

The free boundary points belonging to Γhalf(u) are those with homogeneity 2m+ 3
2

for m ∈ N.
They do exist: the homogeneous solutions are themselves examples of solutions to

the thin obstacle problem with free boundary points belonging to Γhalf(u). Whereas
they are currently not very well understood, they seem to exhibit a similar behaviour
to regular points. However, the fact that they are not an open set (in the free
boundary), makes it harder to study regularity properties of the free boundary



33

around them (there could even be, a priori, singular points of order 2 converging to
a point of order 7

2
).

The following proposition shows that points in Γhalf(u) can present a behaviour
similar to that of regular points.

Proposition 1.23 ([FR19]). Given a C∞ domain Ω ⊂ B1∩{xn+1 = 0}, and m ∈ N,
there exists ϕ ∈ C∞, and g ∈ C0(∂B1), such that the solution u to the thin obstacle
problem (1.10) with obstacle ϕ and boundary data g has contact set Λ(u) = Ω, and
all the points of the free boundary Γ(u) have frequency 2m+ 3

2
.

The proof of this proposition is an explicit computation based on a previous
result by Grubb, [Gru15].

1.8.3 The set Γ∗(u)

We call Γ∗(u) the rest of free boundary points. That is, points with homogeneity
not belonging to the set {2m, 2m+ 1, 2m− 1

2
}m∈N,

Γ∗(u) :=

{
x◦ ∈ Γ(u) : N(0+, u, x◦) ∈ (2,∞) \

⋃
m∈N

{
2m, 2m+ 1, 2m− 1

2

}}
.

(1.50)
It is currently not known whether such points exist. Nowadays, the only result in

this direction is the following by Colombo, Spolaor, and Velichkov, saying that points
with order close to 2m do not exist (except for singular points themselves). Apart
from this result, the possible existence (or not) of points with these homogeneities
is still an open problem.

Theorem 1.24 ([CSV19]). Let u be a solution to the thin obstacle problem with
zero obstacle, 

u ≥ 0 on B1 ∩ {xn+1 = 0}
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = 0})
∆u ≤ 0 in B1

u = g on ∂B1,

(1.51)

Let Γλ(u) denote the points of order λ > 0. Then,

Γλ(u) = ∅ for every λ ∈
⋃
m∈N

(
(2m− cm, 2m+ cm) \ {2m}

)
,

for some constants cm depending only on m and n.

The goal of the rest of the subsection is to prove that, if the set Γ∗(u) existed,
then it would be lower dimensional. That is, we will show the following proposition,
stating that points of order κ ∈ (2,∞)\{2m, 2m+1, 2m+ 3

2
}m∈N are n−2 dimensional

for general solutions to the thin or fractional obstacle problem. We do that through
a dimension reduction argument due to White, [Whi97].
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Proposition 1.25. Let u be a solution to the thin obstacle problem with zero obsta-
cle, (1.51). Let us define Γ∗(u) ⊂ Γ(u) by (1.50). Then

dimH Γ∗(u) ≤ n− 2.

Moreover, if n = 2, Γ∗(u) is discrete.

In this proposition, dimH denotes the Hausdorff dimension of a set.
In order to prove this result, we will need two lemmas. We will use the notation

ux◦(x) for x◦ ∈ Γ(u) to denote translations. That is, we denote

ux◦(x) = u(x′ + x′◦, xn+1),

so that, in particular, N(r, u, x◦) = N(r, ux◦).

Lemma 1.26. Let u be a solution to the thin obstacle problem (1.51). Let Γ∗(u) as
in (1.50).

Let y◦ ∈ Γ∗(u). Then, for every ε > 0 there exists some δ > 0 such that for every
ρ ∈ (0, δ], there exists an (n− 2)-dimensional linear subspace Ly◦,ρ of Rn×{0} such
that{
x ∈ Bρ(y◦)∩{xn+1 = 0} : N(0+, ux) ≥ N(0+, uy◦)−δ

}
⊂ {x : dist(x, y◦+Ly◦,ρ) < ερ}.

Proof. Let us denote η = N(0+, uy◦) ∈ (2,∞) \ {2m, 2m + 1, 2m + 3
2
}m∈N. Let us

proceed by contradiction. Suppose that there exist ε > 0, and sequences δk ↓ 0 and
ρk ↓ 0 such that

{x ∈ Bρk(y◦)∩{xn+1 = 0} : N(0+, ux) ≥ η−δk} 6⊂ {x : dist(x, y◦+L) < ερk} (1.52)

for every (n− 2)-dimensional linear subspace L of Rn × {0}.
In particular, if we denote uy◦r = uy◦(r ·) and dr = r−n/2‖ux◦‖L2(∂Br), then uy◦ρk/dρk

converges, up to subsequences, to some v◦ a global solution to the thin obstacle prob-
lem with zero obstacle, homogeneous of degree η. Let us denote L(v◦) the invariant
set in Rn×{0} of v◦. In particular, it is a subspace of dimension at most n− 2 (this
follows since two dimensional homogeneous solutions to the thin obstacle problem
have homogeneity belonging to {2m, 2m+ 1, 2m− 1

2
}m∈N). As an abuse of notation,

let us take as L(v◦) any (n− 2)-dimensional plane containing the invariant set.
Now, by assumption (1.52) and choosing L = L(v◦), for every k ∈ N there exists

some xk ∈ Bρk(y◦) ∩ {xn+1 = 0} with N(0+, uxk) ≥ η − δk such that dist(xk, y◦ +
L(v◦)) ≥ ερk.

Let us denote zk = ρ−1
k (xk − y◦) ∈ B1(0), and notice that dist(zk, L(v◦)) ≥ ε. By

scaling, we know that

N(0+, uxk) = N(0+, uy◦ρk( ·+ zk)).

Moreover,
d−1
ρk
uy◦ρk → v◦ uniformly in compact sets as k →∞.

Thus,

η − δk = N(0+, uxk) = N(0+, uy◦ρk( ·+ zk)) = N(0+, d−1
ρk
uy◦ρk( ·+ zk)),
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and by the upper semi-continuity of the frequency function (and after taking a
subsequence such that zk → z ∈ B1(0)) we get that

N(0+, v◦( ·+ z)) ≥ η,

for some z ∈ B1(0) such that dist(z, L(v◦)) ≥ ε. Since v◦ is η-homogeneous,N(0+, v◦( ·+
z)) ≥ η implies that z belongs to the invariant set of v◦ (see, for instance, [FoSp18,
Lemma 5.2]). This contradicts dist(z, L(v◦)) ≥ ε, and we are done.

The following is a very general and standard lemma. We give the proof for
completeness. We thank B. Krummel, from whom we learned this proof.

Lemma 1.27. There exists β : (0,∞) → (0,∞) with β(t) → 0 as t ↓ 0, such that
the following holds true.

Let ε > 0. Let A ⊆ Rn such that for each y ∈ A and ρ ∈ (0, ρ◦) there exists a
j-dimensional linear subspace Ly,ρ of Rn for which

A ∩Bρ(y) ⊂ {x : dist(x, y + Ly,ρ) < ερ}.

(Note that we do not claim that Ly,ρ is unique.) Then Hj+β(ε)(A) = 0.

Proof. Let β(t) = n + 1 − j for t ≥ 1/8 and observe that Hn+1(A) = 0. Thus it
suffices to consider ε ∈ (0, 1/8).

By a covering argument, after rescaling and translating, we may assume that
A ⊆ B1(0) and 0 ∈ A. By assumption, there exists a subspace L0,1 such that

A ∩B1(0) ⊂ {x : dist(x, y + L0,1) < ε}.

Cover L0,1 by a finite collection of balls {B2ε(zk)}k=1,2,...,N where zk ∈ L0,1 for each k
and N ≤ C(j)ε−j. Observe that {B2ε(zk)}k=1,2,...,N covers {x : dist(x, y + L0,1) < ε}
and thus covers A ∩ B1(0). Throw away the balls B2ε(zk) that do not intersect
A. For the remaining balls, let yk ∈ A ∩ B2ε(zk). Now {B4ε(yk)}k=1,2,...,N covers
A ∩B1(0), yk ∈ A, N ≤ C(j)ε−j, and N(4ε)j+β ≤ C(j)εβ. Choose β = β(ε) so that
C(j)εβ ≤ 1/2.

Now observe that we can repeat this argument with B4ε(yk) in place of B1(0) to
get a new covering {B(4ε)2(yk,l)}l=1,2,...,Nk of A∩B4ε(yk) with Nk(4ε)

j+β < 1/2. Thus

{B(4ε)2(yk,l)}k=1,2,...,N, l=1,2,...,Nk covers A with yk,l ∈ A and
∑N

k=1Nk(4ε)
2·(j+β) <

(1/2)2. Repeating this argument for a total of p times, we get a finite covering of
A by M balls with centers on A, radii = (4ε)p, and M(4ε)p(j+β) < (1/2)p. Thus
Hj+β

(4ε)p(A) ≤ ωj+β(1/2)p for every integer p = 1, 2, 3, . . .. Letting p → ∞, we get

Hj+β(ε)(A) = 0.

Thus, we can directly prove Proposition 1.25.

Proof of Proposition 1.25. We want to show that Γ∗(u) has Hausdorff dimension
at most n − 2. Let ε > 0 and define, for i ∈ N, Gi to be the set of all points
x◦ ∈ Γ∗(u) such that the conclusion of Lemma 1.26 holds true with δ = 1/i, so that
Γ∗(u) =

⋃
iGi. For each q ∈ N, define

Gi,q = {x◦ ∈ Gi : (q − 1)/i < N(0+, ux◦) ≤ q/i}.
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Observe that Γ∗(u) =
⋃
i,q Gi,q, and for every x◦ ∈ Gi,q,

Gi,q ⊂ {y : N(0+, uy) > N(0+, ux◦)− 1/i}

so that, by Lemma 1.26, for every ρ ∈ (0, 1/i] there exists a (n − 2)-dimensional
linear subspace Lx◦,ρ of Rn × {0} such that

Gi,q ∩Bρ(x◦) ⊂ {x : dist(x, x◦ + Lx◦,ρ) < ερ}.

Now, thanks to Lemma 1.27 with A = Gi,q (taking ρ◦ = 1/i uniform on Si,q),
Hn−2+β(ε)(Gi,q) = 0. Hence Hn−2+β(ε)(Γ∗(u)) = 0. Since ε is arbitrary, for all β > 0
we have Hn−2+β(Γ∗(u)) = 0, and thus Γ∗(u) has Hausdorff dimension at most n− 2.

The fact that for n = 2, Γ∗(u) is discrete, follows by similar arguments in a
standard way.

1.9 C∞ obstacles

Let us suppose now that the obstacle ϕ ∈ C∞(B′1), and therefore, we cannot reduce
the the zero obstacle situation. Our problem is then

u ≥ ϕ on B1 ∩ {xn+1 = 0}
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
∆u ≤ 0 in B1,

(1.53)

where, as before, we are assuming that our solution is even in the xn+1-variable.
Let us assume that 0 is a free boundary point, 0 ∈ ∂Rn{u = ϕ}. Given τ ∈ N≥2,

let us consider the τ -order expansion of ϕ(x′) at 0, given by Qτ (x
′). In particular,

(ϕ−Qτ )(x
′) = O(|x′|τ+1). Let Qh

τ (x
′, xn+1) be the unique even harmonic extension

of Qτ to B1. Let us now define

ū(x′, xn+1) := u(x′, xn+1)− ϕ(x′) +Qτ (x
′)−Qh

τ (x
′, xn+1).

Then, ū solves the zero thin obstacle problem with a right-hand side,
ū ≥ 0 on B1 ∩ {xn+1 = 0}

∆ū = f in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
−∆ū ≥ f in B1,

where
f(x) = ∆x′(Qτ (x

′)− ϕ(x′)) = O(|x′|τ−1).

Since |f | ≤ M |x′|τ−1 and ‖∇u‖L∞(B1/2) ≤ M for some constant M > 0, we can
consider the generalized frequency formula,

Φτ (r, ū) := (r + CMr
2)
d

dr
log max

{
H(r), rn+2τ

}
, where H(r) :=

∫
∂Br

ū2,

(cf. (1.22)) and the constant CM depends only on the dimension and M . Then,
there exists some rM > 0 such that Φτ (r, ū) is non-decreasing for 0 < r < rM . In
particular, Φτ (0

+, ū) is well-defined and

n+ 3 ≤ Φτ (0
+, ū) ≤ n+ 2τ
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(see [CSS08, GP09]). We say that the origin is a free boundary point of order κ < τ
if Φτ (0

+, ū) = n + 2κ (in particular, as before, κ ≥ 3
2
). If κ = τ , we say that the

origin is a free boundary point of order at least τ . At this point, all the theory
developed above for regular free boundary points and singular points, also applies
to the situation where there are non-analytic (i.e., non-zero) obstacles, by using the
new generalized frequency formula. Notice that this theory can be developed even
if the obstacle ϕ has lower regularity than C∞.

Finally, we say that the origin is a free boundary point of infinite order if it is of
order at least τ for all τ ∈ N≥2. Notice that this set of free boundary points has not
appeared until now, it did not exist in the zero obstacle case.

Intuitively, in the thin obstacle problem (1.53) a point is of order κ when the
solution u detaches from the obstacle at order κ on the thin space.

Thus, the free boundary for solutions to the thin obstacle problem with ϕ ∈
C∞(B′1), (1.53), can be split as

Γ(u) = Γ3/2(u) ∪ Γeven(u) ∪ Γodd(u) ∪ Γhalf(u) ∪ Γ∗(u) ∪ Γ∞(u),

(cf. (1.45)), where the new set Γ∞(u) denotes the set of free boundary points with
infinite order.

The set of points in Γ∞(u) can be very wild. In fact, the following holds.

Proposition 1.28 ([FR19]). Let C ⊂ B′1/2 ⊂ Rn be any closed set. Then, there

exists an an obstacle ϕ ∈ C∞(B′1) and non-trivial solution u to (1.53) such that
Λ(u) ∩B1/2 = {u = ϕ} ∩B1/2 = C.

Proof. Take any obstacle ψ ∈ C∞(Rn) such that suppψ ⊂⊂ B1/8(3
4
e1), with ψ > 0

somewhere, and take the non-trivial solution to (1.53) with obstacle ψ.
Notice that u > ψ in B′1/2 (in particular, u ∈ C∞(B1/2)). Let fC : B′1 → R be

any C∞ function such that 0 ≤ fC ≤ 1 and C = {fC = 0}.
Now let η ∈ C∞c (B′5/8) such that η ≥ 0 and η ≡ 1 in B′1/2. Consider, as new

obstacle, ϕ = ψ+ η(u−ψ)(1− fC) ∈ C∞(B′1/2). Notice that u−ϕ ≥ 0. Notice, also,

that for x′ ∈ B1/2, (u − ϕ)(x′) = 0 if and only if x′ ∈ C. Thus, u with obstacle ϕ
gives the desired result.

That is, the contact set can, a priori, be any closed set. In particular, the free
boundary can have arbitrary Hausdorff dimension (n− ε for any ε > 0). It is worth
mentioning that the points constructed like this are not really acting as an obstacle
(the Laplacian around them vanishes).

1.10 Generic regularity

We have seen that, in general, the non-regular (or degenerate) part of the free
boundary can be of the same size (or even larger, in the case of C∞ obstacles) than
the regular part. This is not completely satisfactory, since we only know how to
prove smoothness of the free boundary around regular points.

It is for this reason that generic regularity results are interesting: even if there
exist solutions where degenerate points are larger than regular points, this is not
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true for a generic solution. That is, for almost every solution, the free boundary is
smooth up to a lower dimensional set. Let us start by defining what we mean by
“almost every” solution.

Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even with respect to xn+1. Let λ ∈ [0, 1],
and let uλ be the solution to

uλ ≥ ϕ on B1 ∩ {xn+1 = 0}
∆uλ = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
∆uλ ≤ 0 in B1

uλ = g + λ on ∂B1.

(1.54)

That is, we consider the set of solutions {uλ}λ∈[0,1] with a fixed obstacle ϕ by
raising the boundary datum by λ. Alternatively, we could raise (or lower) the ob-
stacle, or just make small perturbations (monotone) of the boundary value. We say
that a property holds for almost every solution if it holds for a.e. λ ∈ [0, 1] for any
such construction of solutions.

Now notice that since points of order κ are detaching from the obstacle with
power κ, when raising the boundary datum, the larger κ is, the faster the free
boundary is disappearing (and thus, the less common is that type of point). As a
consequence, establishing a quantitative characterization of this fact together with
a GMT lemma (coming from [FRS19]), one can show the following proposition. We
recall that given a solution v to a thin obstacle problem, (1.53), we denote by Γ≥κ(v)
the set of free boundary points of order greater or equal than κ.

Proposition 1.29 ([FR19]). Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even with respect
to xn+1. Let {uλ}λ∈[0,1] the family of solutions to the thin obstacle problem (1.54).
Then,

� If 3 ≤ κ ≤ n+ 1, the set Γ≥κ(uλ) has Hausdorff dimension at most n− κ+ 1
for almost every λ ∈ [0, 1].

� If κ > n + 1, the set Γ≥κ(uλ) is empty for all λ ∈ [0, 1] \ Eκ, where Eκ has
Hausdorff dimension at most n

κ−1
.

� The set Γ∞(uλ) is empty for all λ ∈ [0, 1]\E, where E has Minkowski dimension
equal to 0.

On the other hand, by means of a Monneau-type monotonicity formula one can
also show that the set

⋃
λ∈[0,1] Γ2(uλ) (union of singular points of order 2 for all

λ ∈ [0, 1]) is contained in a countable union of (n − 1)-dimensional C1 manifolds.
As a consequence,

Proposition 1.30 ([FR19]). Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even with respect
to xn+1. Let {uλ}λ∈[0,1] the family of solutions to the thin obstacle problem (1.54).
Then Γ2(uλ) has dimension at most n− 3 for a.e. λ ∈ [0, 1].

And finally, combining Proposition 1.29, Proposition 1.30, and Proposition 1.25,
we get the generic regularity theorem we wanted:
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Theorem 1.31 ([FR19]). Let ϕ ∈ C∞(B′1) and let g ∈ C0(∂B1) even with respect
to xn+1. Let {uλ}λ∈[0,1] the family of solutions to the thin obstacle problem (1.54).
Then, the set Deg(uλ) has Hausdorff dimension at most n− 2 for a.e. λ ∈ [0, 1].

In particular, the free boundary is smooth up to a lower dimensional set, for
almost every solution.

The previous theorem also holds true for obstacles with lower regularity. Namely,
in the proof of the result, only C3,1 regularity of the obstacle is really used.

1.11 Summary

Let us finish with a summary of the known results for the solutions to the thin
obstacle problem.

Let ϕ ∈ C∞(B′1) and consider an even solution to the thin obstacle problem,
with obstacle ϕ, 

u ≥ ϕ on B1 ∩ {xn+1 = 0}
∆u = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
∆u ≤ 0 in B1.

(1.55)

Then, the solution u is C1,1/2 on either side of the obstacle. That is, there exists
a constant C depending only on n such that

‖u‖C1,1/2(B+
1/2

) + ‖u‖C1,1/2(B−
1/2

) ≤ C
(
‖ϕ‖C1,1(B′1) + ‖u‖L∞(B1)

)
.

Moreover, if we denote Λ(u) := {u = ϕ} the contact set, the boundary of Λ(u)
in the relative topology of Rn, ∂RnΛ(u), is the free boundary, and can be divided
into two sets

Γ(u) = Reg(u) ∪Deg(u),

the set of regular points,

Reg(u) :=

{
x = (x′, 0) ∈ Γ(u) : 0 < cr3/2 ≤ sup

B′r(x
′)

(u− ϕ) ≤ Cr3/2, ∀r ∈ (0, r◦)

}
,

and the set of non-regular points or degenerate points

Deg(u) :=

{
x = (x′, 0) ∈ Γ(u) : 0 ≤ sup

B′r(x
′)

(u− ϕ) ≤ Cr2, ∀r ∈ (0, r◦)

}
,

Alternatively, each of the subsets can be defined according to the order of the
blow-up (the frequency) at that point. Namely, the set of regular points are those
whose blow-up is of order 3

2
, and the set of degenerate points are those whose blow-up

is of order κ for some κ ∈ [2,∞].
The free boundary can be further stratified as

Γ(u) = Γ3/2 ∪ Γeven ∪ Γodd ∪ Γhalf ∪ Γ∗ ∪ Γ∞, (1.56)

where:
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� Γ3/2 = Reg(u) is the set of regular points. They are an open (n− 1)-dimensional
subset of Γ(u), and it is C∞ (see [ACS08, KPS15, DS16]).

� Γeven =
⋃
m≥1 Γ2m(u) denotes the set of points whose blow-ups have even homo-

geneity. Equivalently, they can also be characterised as those points of the free
boundary where the contact set has zero density, and they are often called singu-
lar points. They are contained in the countable union of C1 (n− 1)-dimensional
manifolds; see [GP09]. Generically, however, points in Γ2(u) have dimension at
most n− 3, and points in Γ2m(u) have dimension at most n− 2m for m ≥ 2; see
[FR19].

� Γodd =
⋃
m≥1 Γ2m+1(u) is, a priori, at most (n− 1)-dimensional and it is (n− 1)-

rectifiable (see [FoSp18, KW13, FoSp19]), although it is not known whether it
exists. Generically, Γ2m+1(u) has dimension at most n− 2m; see [FR19].

� Γhalf =
⋃
m≥1 Γ2m+3/2(u) corresponds to those points with blow-ups of order 7

2
,

11
2

, etc. They are much less understood than regular points, although in some
situations they have a similar behaviour. The set Γhalf is an (n− 1)-dimensional
subset of the free boundary and it is a (n−1)-rectifiable set (see [FoSp18, KW13,
FoSp19]). Generically, the set Γ2m+3/2(u) has dimension at most n− 2m− 1/2.

� Γ∗ is the set of all points with homogeneities κ ∈ (2,∞), with κ /∈ N and
κ /∈ 2N− 1

2
. This set has Hausdorff dimension at most n−2, so it is always small,

see [FoSp18, KW13, FoSp19].

� Γ∞ is the set of points with infinite order (namely, those points at which u − ϕ
vanishes at infinite order). For general C∞ obstacles it could be a huge set, even
a fractal set of infinite perimeter with dimension exceeding n − 1. When ϕ is
analytic, instead, Γ∞ is empty. Generically, this set is empty; see [FR19].



Chapter 2

C1,α estimates for the fully
nonlinear Signorini problem

We study the regularity of solutions to the fully nonlinear thin obstacle problem. We
establish local C1,α estimates on each side of the smooth obstacle, for some small
α > 0.

Our results extend those of Milakis-Silvestre [MS08] in two ways: first, we do
not assume solutions nor operators to be symmetric, and second, our estimates are
local, in the sense that do not rely on the boundary data.

As a consequence, we prove C1,α regularity even when the problem is posed in
general Lipschitz domains.

2.1 Introduction

The aim of this work is to study the regularity of the solutions to the Signorini or
thin obstacle problem for fully nonlinear operators.

Given a domain D ⊂ Rn, the thin obstacle problem involves a function u : D →
R, an obstacle ϕ : S → R defined on a (n− 1)-dimensional manifold S, a Dirichlet
boundary condition given by g : ∂D → R, and a second order elliptic operator L,

Lu = 0 in D \ {x ∈ S : u(x) = ϕ(x)}
Lu ≤ 0 in D
u ≥ ϕ on S
u = g on ∂D.

(2.1)

Intuitively, one can think of it as finding the shape of a membrane with pre-
scribed boundary conditions considering that there is a very thin obstacle forcing
the membrane to be above it.

When L is the Laplacian, the C1,α regularity of solutions was first proved in 1979
by Caffarelli in [Caf79]. Later, the optimal value of α was found by Athanasopoulos

and Caffarelli in [AC04], where solutions were proved to be in C1, 1
2 on either side

of the obstacle. More recently, this has been extended to linear operators with x
dependence L =

∑
aij(x)∂iju in [Gui09, GS14, KRS16].

Here, we study a nonlinear version of problem (2.1). More precisely, we study
(2.1) with Lu = F (D2u), a convex fully nonlinear uniformly elliptic operator. Since

41
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all of our estimates are of local character, we consider the problem in B1,
F (D2u) = 0 in B1 \ {u = ϕ}
F (D2u) ≤ 0 in B1

u ≥ ϕ on B1 ∩ {xn = 0}.
(2.2)

Here, ϕ : B1 ∩ {xn = 0} → R is the obstacle, and we assume that it is C1,1. We
study the regularity of solutions on either side of the obstacle.

We assume that

F is convex, uniformly elliptic (2.3)

with ellipticity constants 0 < λ ≤ Λ, and with F (0) = 0.

When u is symmetric, this problem was studied by Milakis and Silvestre in
[MS08], and is equivalent to{

F (D2u) = 0 in B+
1

max{uxn , ϕ− u} = 0 on B1 ∩ {xn = 0}. (2.4)

Moreover, they also implicitly assume a symmetry condition on the operator F , in
particular, that F (A) = F (Ã), where Ãin = Ãni = −Ain = −Ani for i < n and
Ãij = Aij otherwise. Under this assumption, they proved interior C1,α regularity up
to the obstacle on either side by also assuming that u ≥ ϕ + ε on ∂B1 ∩ {xn = 0},
for some ε > 0. Equivalently, they assume that the coincidence set is contained in
some ball B1−δ for some δ > 0. This assumption is important in [MS08] to prove
semiconvexity of solutions.

Our main result, Theorem 2.1 below, extends the result of [MS08] in two ways.
First, we do not assume anything on the boundary data, so that we give a local
estimate. Second, we consider also non-symmetric solutions u to (2.2) with operators
not necessarily satisfying any symmetry assumption, and prove C1,α regularity for
such solutions.

In the linear case, one can symmetrise solutions to (2.2), and then the study of
such solutions reduces to problem (2.4). However, in the present nonlinear setting
an estimate for (2.4) does not imply one for (2.2).

Our main result is the following, stating that any solution to (2.2) is C1,α on
either side of the obstacle, for some small α > 0.

Theorem 2.1. Let F be a nonlinear operator satisfying (2.3) and let u be any

viscosity solution to (2.2) with ϕ ∈ C1,1. Then, u ∈ C1,α(B+
1/2) ∩ C1,α(B−1/2) and,

‖u‖
C1,α(B+

1/2
)
+ ‖u‖

C1,α(B−
1/2

)
≤ C

(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B1∩{xn=0})

)
for some constants α > 0 and C depending only on n, λ, and Λ.

Our proof of the semiconvexity of solutions is completely different from the one
done in [MS08] and follows by means of a Bernstein’s technique. On the other hand,
to prove the C1,α regularity in the non symmetric case we follow [Caf79, MS08], but
new ideas are needed. We define a symmetrised solution to the problem and follow
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the steps in [Caf79] and [MS08] using appropriate inequalities satisfied by the sym-
metrised solution. This yields the regularity of the symmetrised normal derivative
at free boundary points. Then, we show that this implies the C1,α regularity of the
original function u at free boundary points, by using the ideas from [Caf89]. Finally,
we show that the regularity of u at free boundary points yields the regularity of
the symmetrized normal derivative at all points on xn = 0, and that this yields the
regularity of u on either side of the obstacle.

As an immediate corollary it follows an estimate when the thin obstacle problem
is posed in a bounded Lipschitz domain D ⊂ Rn.

Corollary 2.2. Let D ⊂ Rn be a bounded Lipschitz domain, and let K b D. Let
F be a nonlinear operator satisfying (2.3). Let ϕ : D ∩ {xn = 0} → R be a C1,1

function, and let u be the solution to
F (D2u) = 0 in D \ {u = ϕ}
F (D2u) ≤ 0 in D

u ≥ ϕ on D ∩ {xn = 0}
u = g on ∂D,

(2.5)

for some g ∈ C0(∂D). Let K+ := K ∩ {xn > 0} and K− := K ∩ {xn < 0}. Then,
u ∈ C1,α(K+) ∩ C1,α(K−), with

‖u‖C1,α(K+) + ‖u‖C1,α(K−) ≤ C
(
‖g‖L∞(∂D) + ‖ϕ‖C1,1(D∩{xn=0})

)
for some constant α > 0 depending only on n, λ, and Λ, and C depending only on
n, λ, Λ, D, and K.

Let us introduce the notation that will be used throughout the work. We denote
x = (x′, xn) ∈ Rn and

B∗1 := {x′ ∈ Rn−1 : (x′, 0) ∈ B1}.

The obstacle ϕ is defined on B∗1 seen as a subset of Rn, and problem (2.2) is written
as 

F (D2u) = 0 in B1 \ {(x′, 0) : u(x′, 0) = ϕ(x′)}
F (D2u) ≤ 0 in B1

u(x′, 0) ≥ ϕ(x′) for x′ ∈ B∗1 .
We also denote

B+
1 := {(x′, xn) ∈ B1 : xn > 0}, (∂B1)+ = ∂B1 ∩ {xn > 0},

and analogously we define B−1 and (∂B1)−. On the other hand, we call the coinci-
dence set

∆∗ = {x ∈ B∗1 : u(x′, 0) = ϕ(x′)}, ∆ = ∆∗ × {0},
and its complement in B∗1 is denoted by

Ω∗ = B∗1 \∆∗, Ω = Ω∗ × {0}.

Our work is organised as follows. In Section 2.2 we give a Lipschitz bound and
prove semiconvexity of solutions. Then, in Section 2.3 we prove Theorem 2.1.
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2.2 Lipschitz estimate and semiconvexity

2.2.1 Lipschitz estimate

We begin with a proposition showing that any solution to (2.2) is Lipschitz, as long
as the obstacle is C1,1.

Proposition 2.3. Let u be any solution to (2.2) with F satisfying (2.3) and ϕ ∈
C1,1. Then u is Lipschitz in B1/2 with,

‖u‖Lip(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
, (2.6)

for some C depending only on n and the ellipticity constants λ and Λ.

Proof. We will extend the obstacle ϕ to a function h defined in the whole B1, and we
treat u as a solution to a classical “thick” obstacle problem. We define h separately
in B+

1 and B−1 , as the solution to
F (D2h) = 0 in B+

1

h = −‖u‖L∞(B1) in (∂B1)+

h(x′, 0) = ϕ(x′) for x′ ∈ B∗1 ,
(2.7)

and analogously 
F (D2h) = 0 in B−1

h = −‖u‖L∞(B1) in (∂B1)−

h(x′, 0) = ϕ(x′) for x′ ∈ B∗1 .
(2.8)

Notice that h is Lipschitz in B7/8; see [MS06, Proposition 2.2]. By denoting

K0 := ‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 ),

we have
‖h‖Lip(B7/8) ≤ CK0,

and by the maximum principle u ≥ h. Moreover, u is a solution to a classical obstacle
problem in B1 with h as the obstacle. We show next that this implies u is Lipschitz,
with a quantitative estimate.

To begin with, since h is Lipschitz, fixed any x0 ∈ B1/2 and 0 < r < 1/4, there
exists some C0 depending only on n, λ, and Λ such that

sup
Br(x0)

|h(x)− h(x0)| ≤ C0K0r. (2.9)

Notice that, by the strong maximum principle, the coincidence set {u = h} is
∆, the coincidence set of the thin obstacle problem. Suppose then that x0 ∈ ∆, i.e.,
u(x0) = h(x0). Since u ≥ h, in particular we have that

inf
Br(x0)

(u(x)− u(x0)) ≥ −C0K0r. (2.10)

because h is Lipschitz. Now let

q(x) = u(x)− u(x0) + C0K0r.
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We already know q ≥ 0 in Br(x0). On the other hand, from (2.9),

q(x) ≤ 2C0K0r on Br(x0) ∩∆.

Moreover, q is a supersolution,

F (D2q) = F (D2u) ≤ 0 in Br(x0).

Let q̄ be the viscosity solution to F (D2q̄) = 0 in Br(x0) with q̄ = q on ∂Br(x0).
We have q̄ ≤ q in Br(x0) and by the non-negativity of q̄ on the boundary, q̄ ≥ 0 in
Br(x0).

Thus, q < q̄+2C0K0r on ∂Br(x0), and q ≤ q̄+2C0K0r in Br(x0)∩∆. Therefore,

q ≤ q̄ + 2C0K0r in Br(x0).

On the other hand, we know 0 ≤ q̄(x0) ≤ q(x0) = C0K0r, and by the Harnack
inequality, q̄ ≤ CC0K0r in Br/2(x0). Putting all together we obtain that u(x) −
u(x0) ≤ CC0K0r for some constant C > 0. Thus, combining this with (2.10),

sup
Br(x0)

|u(x)− u(x0)| ≤ C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
r, (2.11)

for some constant C depending only on n, λ, and Λ.
We have obtained that the solution is Lipschitz on points of the coincidence set.

Let us use interior estimates to deduce Lipschitz regularity inside B1/2.
Take any points x, y ∈ B1/2, and let r = |x− y|. Define

ρ := min{dist(x,∆), dist(y,∆)},

and let x∗, y∗ ∈ ∆, x∗ = (x′, 0), y∗ = (y′, 0) for x′, y′ ∈ ∆∗, be such that dist(x,∆) =
|x− x∗| and dist(y,∆) = |y − y∗|. We now separate two cases:
• If ρ ≤ 4r, then

|u(x)− u(y)| ≤ |u(x)− u(x∗)|+ |u(y)− u(y∗)|+ |ϕ(x′)− ϕ(y′)|
≤ Cρ+ C(r + ρ) + 2C(r + ρ) ≤ Cr

for some constant C. We are using here that ϕ is Lipschitz and that if |x− x∗| = ρ,
then |y − y∗| ≤ r + ρ and |x∗ − y∗| ≤ 2(r + ρ).
• If ρ > 4r, we can use interior estimates. Suppose x is such that dist(x,∆) = ρ,

and notice Bρ/2(x) ⊂ B1 \∆, so that in Bρ/2(x), F (D2u) = 0. We can now use the
interior Lipschitz estimates (see, for example, [CC95, Chapter 5]),

[u]Lip(Bρ/4) ≤
C

ρ
oscBρ/2(x)u ≤ C

for some constant C. We are using here that the supremum and the infimum of u
in Bρ/2(x) are controlled respectively by Cρ+ ϕ(x∗) and −Cρ+ ϕ(x∗).

Thus, we have proved that the solution is Lipschitz in B1/2, with the estimate
(2.6).
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2.2.2 Preliminary consideration

Before continuing to prove the semiconvexity and semiconcavity result, we introduce
a change of variables that will be useful in this section and the next one. Notice that,
given a function w, we can express the nonlinear operator F as

F (D2w(x)) = sup
γ∈Γ

(
Lijγ ∂xixjw(x) + cγ

)
,

for some family of symmetric uniformly elliptic operators with ellipticity constants
λ and Λ, Lijγ ∂xixj , indexed by γ ∈ Γ. Since F (0) = 0, there is some symmetric

uniformly elliptic operator from this family given by a matrix L̂ such that

tr(L̂D2w(x)) = L̂ij∂xixjw(x) ≤ F (D2w(x)).

We now change coordinates in such a way that the matrix of this operator in the
new coordinates, denoted L̂A, fulfils L̂inA = L̂niA = 0 for i < n. More precisely, if we
denote L̂′ the matrix in Symn−1 given by the n− 1 first indices of L̂, and we denote

L̂′n = (L̂in)1≤i≤n−1 the vector of Rn−1, we change variables as

x 7→ y = Ax,

where A is the matrix given by

A :=

 Idn−1 −ā

0 . . . 0 1

 ,

and ā = (L̂′)−1 · L̂′n is a vector in Rn−1. We define the new nonlinear operator F̃ as

F̃ (N) = F (ATNA), for all N ∈ Symn,

so that it is consistent with the change of variables, in the sense that if w̃(y) =
w(A−1y), then F (D2w(x)) = F̃ (D2w̃(y)).

We trivially have that F̃ is convex and F̃ (0) = 0. In the new coordinates we still
have that L̂ijA∂yiyj is a symmetric uniformly elliptic operator, but now the ellipticity
constants λ and Λ have changed depending only on n, λ, and Λ. The same occurs
with all the operators in the family defining F , so that after changing coordinates,
F is still a convex uniformly elliptic operator with ellipticity constants depending
only on n, λ, and Λ. Indeed, for any matrices N,NP ∈ Symn−1 with NP ≥ 0 we have
that (using the definition of uniform ellipticity in [CC95, Chapter 2] and noticing
that ATNPA ≥ 0),

‖A−1‖−2‖NP‖ ≤ λ‖ATNPA‖ ≤ F̃ (N +NP )− F̃ (N) ≤ Λ‖ATNPA‖ ≤ Λ‖A‖2‖NP‖,

and it is easy to bound ‖A−1‖ and ‖A‖ from the definition of A, depending only on
n, λ and Λ.

After changing variables, the regularity of the solution remains the same up to
multiplicative constants in the bounds depending only on n, λ, and Λ.
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As an abuse of notation we will call the new variables (x′, xn), the new operator
F , and the new ellipticity constants λ and Λ, understanding that they might depend
on the original ellipticity constants and the dimension, n. This will not be a problem,
since in all the statements of the present work n, λ, and Λ appear together in the
dependence of the constants.

Thus, throughout the paper we will assume that there exists a fixed symmetric
uniformly elliptic operator L̂ such that

L̂ij∂xixjw ≤ F (D2w), and L̂in = L̂ni = 0 for i < n. (2.12)

This change of variables is useful because, for any function w,

L̂ij∂xixj(w(x′,−xn)) = L̂ij(∂xixjw)(x′,−xn),

which will allow us to symmetrise the solution and still have a supersolution for the
Pucci extremal operator M−. We also use it to prove a semiconcavity result from
semiconvexity in the following proof of Proposition 2.4.

2.2.3 Semiconvexity and semiconcavity estimates

We next prove the semiconvexity of solutions in the directions parallel to the domain
of the obstacle. To do it, we use a Bernstein’s technique in the spirit of [AC04].

Proposition 2.4. Let u be the solution to (2.2). Then

(a) (Semiconvexity) If τ = (τ ∗, 0), with τ ∗ a unit vector in Rn−1,

inf
B3/4

uττ ≥ −C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
,

for some constant C depending only on n, λ, and Λ.

(b) (Semiconcavity) Similarly, in the direction normal to B∗1 × {0},

sup
B3/4

uxnxn ≤ C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
,

for some constant C depending only on n, λ, and Λ.

Proof. The second part, (b), follows from (a) using the definition of uniformly elliptic
operator and the fact that we changed variables (in the previous subsection) in order
to have matrix L̂ fulfilling (2.12). We denote by L̂′ and D2

n−1u the square matrices

corresponding to the n− 1 first indices of L̂ and D2u respectively. Now, from

L̂ij∂xixju(x) ≤ 0, L̂in = L̂ni = 0 for i < n,

and
D2
n−1u ≥ −C

(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
Idn−1,

we directly obtain that

L̂nn∂xnxnu ≤ −
n−1∑
i,j=1

L̂ij∂xixju ≤ C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
trL̂′.
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The desired bound follows because L̂nn is bounded below by λ and tr(L̂′) is bounded
above by (n− 1)Λ.

Let us prove (a). As in the proof of Proposition 2.3, we define h as the solution
to

F (D2h) = 0 in B+
1

h = −‖u‖L∞(B1) in (∂B1)+

h(x′, 0) = ϕ(x′) x′ ∈ B∗1


F (D2h) = 0 in B−1

h = −‖u‖L∞(B1) in (∂B1)−

h(x′, 0) = ϕ(x′) x′ ∈ B∗1 .
(2.13)

Recall that h is Lipschitz and that, by the strong maximum principle, u > h in B+
1/2

and B−1/2.
Define now, for ε > 0,

h̄ε(x
′, xn) := ϕ(x′)− x2

n

ε

and

hε(x
′, xn) := max

{
h(x′, xn), h̄ε(x

′, xn)
}
.

Since, h is Lipschitz continuous and h(x′, 0) = h̄ε(x
′, 0), this implies that there exists

a constant C > 0 depending only on n, λ, and Λ such that

h(x′, xn) > h̄ε(x
′, xn) for |xn| > CK0ε, (2.14)

where we define

K0 := ‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 ).

In particular, hε is Lipschitz continuous in B7/8, uniformly on ε.
Let uε be the solution to the “thick” obstacle problem with obstacle hε,

F (D2uε) = 0 in B1 \ {uε = hε}
F (D2uε) ≤ 0 in B1

uε = max{u, h̄ε} on ∂(B+
1 )

uε ≥ hε in B+
1 ,

(2.15)

and the analogous expression in B−1 . By (2.14), the coincidence set satisfies

{uε = hε} ⊂ {h̄ε > h} ⊂ {(x′, xn) ∈ B1 : |xn| ≤ CK0ε}

for some C > 0. We want to bound ∂ττuε from below independently of ε.
Notice that D2(uε − hε) ≥ 0 in the coincidence set, and since uε ≥ hε, this also

occurs along the free boundary. By the definition of h̄ε and recalling that hε = h̄ε
in the coincidence set, this implies ∂ττuε ≥ −CK0 in {uε = hε} ∩ B7/8, for some
constant C depending only on n, λ, and Λ. Thus, it is enough to check that ∂ττuε
is uniformly bounded from below outside the coincidence set. We proceed by means
of a Bernstein’s technique.

Let η ∈ C∞c (B7/8) be a smooth, cutoff function, with 0 ≤ η ≤ 1 and η ≡ 1 in
B3/4. Define

fε(x) = η(x)∂ττuε(x)− µ|∇uε(x)|2
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for some constant µ to be determined later. Notice that, since hε is Lipschitz con-
tinuous independently of ε in B7/8, then |∇uε(x)| is bounded independently of ε in
B7/8. If the minimum x0 in B7/8 is attained in the coincidence set, then ∂ττuε(x0) ≥
−CK0 and we get that for every x ∈ B3/4,

∂ττuε(x) ≥ −CK0 − µ|∇uε(x0)|2 + µ|∇uε(x)|2 ≥ −CK0 − µ‖∇uε‖2
L∞(B7/8). (2.16)

If the minimum x0 is attained at the boundary, ∂B7/8, then for every x ∈ B3/4,

∂ττuε(x) ≥ −µ|∇uε(x0)|2 + µ|∇uε(x)|2 ≥ −µ‖∇uε‖2
L∞(B7/8). (2.17)

Let us assume now that the minimum x0 of fε in B7/8 is attained at some interior
point x0 outside the coincidence set {uε = hε}.

Let us also assume that the operator F not only is convex, but also F ∈ C∞, so
that solutions are C4 outside the coincidence set (see the end of the proof for the
general case F Lipschitz). In this case, the linearised operator of F at x0,

L0v = aijvij := Fij(D
2uε(x0))vij,

is uniformly elliptic with ellipticity constants λ and Λ. Moreover, for any ρ ∈ Sn−1,

L0uε(x0) ≥ 0, L0∂ρuε(x0) = 0, L0∂ρρuε(x0) ≤ 0. (2.18)

This is a standard result, which can be found in [CC95, Lemma 9.2].
For simplicity in the following computations we denote w = uε. If x0 is an interior

minimum of fε (which is a C2 function) in B7/8, then

0 = ∇fε(x0) = (∇ηwττ + η∇wττ − 2µwi∇wi)(x0), (2.19)

and by (2.18) and the fact that (aij) is elliptic,

0 ≤ aijfε,ij(x0) ≤ (aijηijwττ + 2aijηiwττ,j − 2µaijwkjwki) (x0). (2.20)

Combining (2.19) and (2.20), we find

0 ≤
((

aijηij − 2
aijηiηj
η

)
wττ − 2µaijwkjwki + 4

µaijηiwkjwk
η

)
(x0). (2.21)

Observe that |∇η|2 ≤ Cη (since
√
η is Lipschitz). Therefore, for some constants C0

and C1 depending only on n and Λ,

0 ≤
(
C0|wττ |+ µC1|D2w||∇w| − 2µaijwkjwki

)
(x0).

Using |wττ (x0)| ≤ |D2w(x0)| and the uniform ellipticity of (aij),

aijwkiwkj ≥ λC(n)|D2w|2,

we obtain

|D2w(x0)| ≤ C0

µ
+ C1|∇w(x0)|,
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for some constants C0 and C1 depending now also on λ. Now, since x0 is a minimum
in B7/8, for any x ∈ B3/4,

wττ (x) ≥ η(x0)wττ (x0)− µ|∇uε(x0)|2 + µ|∇uε(x)|2
≥ −|D2w(x0)| − µ‖∇uε‖2

L∞(B7/8) (2.22)

≥ −C0

µ
− C1‖∇uε‖L∞(B7/8) − µ‖∇uε‖2

L∞(B7/8).

We now fix µ = ‖∇uε‖−1
L∞(B7/8). Notice that, in all three cases (2.16), (2.17), and

(2.22), we reach that for some constant C depending only on n, λ, and Λ,

inf
B3/4

∂ττuε ≥ −C
(

sup
B7/8

|∇uε|+K0

)
.

We had already seen that uε is Lipschitz continuous independently of ε > 0 and
controlled by the Lipschitz norm of u, so that by Proposition (2.3),

inf
B3/4

∂ττuε ≥ −C
(
‖u‖Lip(B7/8) + ‖ϕ‖C1,1(B∗1 ) +K0

)
≥ −C

(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
.

(2.23)
If F is not smooth, then it can be regularised convoluting with a mollifier in the

space of symmetric matrices, so that it can be approximated uniformly in compact
sets by a sequence {Fk}k∈N of convex smooth uniformly elliptic operators with el-
lipticity constants λ and Λ; also, by subtracting Fk(0), we can assume Fk(0) = 0.
Note that, in B7/8 and for every ε > 0 we have uniform C1,γ estimates in k for the
solutions to (2.15) with operators Fk, since the obstacle h is in C1,1 in a neighbour-
hood of the free boundary. By Arzelà-Ascoli there exists a subsequence converging
uniformly, and therefore, the estimate (2.23) can be extended to solutions of (2.15)
with operators not necessarily smooth. Thus, (2.23) follows for any F not necessarily
C∞.

Note that uε converges uniformly to u, since for all δ > 0, there exists some ε > 0
small enough such that u+ δ > uε ≥ u in B1.

Since the right-hand side of (2.23) is independent of ε, and uε converges uniformly
to u in B7/8 as ε ↓ 0, we finally obtain

inf
B3/4

uττ ≥ −C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
, (2.24)

as desired.

2.3 C1,α estimate

2.3.1 A symmetrised solution

By the results in the previous section we know that ∇u is bounded in the interior
of B1. Moreover, uxnxn is bounded from above inside B1. In particular, the following
limit exists

σ(x′) = lim
xn↓0+

uxn(x′, xn)− lim
xn↑0−

uxn(x′, xn) = lim
xn↓0+

(
uxn(x′, xn)− uxn(x′,−xn)

)
.

(2.25)
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A main step towards Theorem 2.1 consists of proving that σ ∈ Cα(B∗1/2) for some
α > 0. We will prove this in this section.

We begin by noticing that σ(x′) = 0 for x′ ∈ Ω∗ (by the C2,α interior estimates),
where we recall that Ω∗ := {x′ ∈ B∗1 : u(x′, 0) > ϕ(x′)}. In general, however, we
have the following:

Lemma 2.5. The function σ defined by (2.25) is non-positive, i.e., σ ≤ 0 in B∗1 .

Proof. Suppose it is not true, and there exists some x̄′ ∈ B∗1 such that σ(x̄′) > 0.
Let δ > 0 be such that B∗δ (x̄

′) ⊂ B∗1 , so that by the semiconcavity in Proposition 2.4
applied to Bδ/2((x̄′, 0)), uxnxn(x̄′, 0) ≤ C for some constant C, that now depends
also on δ. However,

σ(x̄′) = lim
xn↓0+

(uxn(x̄′, xn)− uxn(x̄′,−xn)) > 0,

which means
uxn(x̄′, xn)− uxn(x̄′,−xn)

2xn
→ +∞, as xn ↓ 0+,

a contradiction with the bound in uxnxn .

We will now adapt the ideas of [Caf79] to our non-symmetric setting. For this,
we use a symmetrised solution, defined as follows

v(x′, xn) :=
u(x′, xn) + u(x′,−xn)

2
, for (x′, xn) ∈ B1. (2.26)

Here u is any solution to (2.2).
Notice that

σ(x′) = 2 lim
xn↓0+

vxn(x′, xn) ≤ 0 (2.27)

is well defined, and in particular, we have that

σ(x′) = 2vxn(x′, 0) = 0, for x′ ∈ Ω∗. (2.28)

The following result follows from the results in the previous section. We will
use the notation M+ and M− to refer to the Pucci’s extremal operators with the
implicit ellipticity constants λ and Λ (see [CC95, Chapter 2] for the definition and
basic properties of such operators).

Lemma 2.6. Let u be a solution to the nonlinear thin obstacle problem (2.2), and

let v be defined by (2.26). Then v is Lipschitz in B+
1/2 and satisfies{

M−(D2v) ≤ 0 in B1,
max{vxn(x′, 0), ϕ(x′)− v(x′, 0)} = 0 for x′ ∈ B∗1 .

(2.29)

Moreover,

(a) (Semiconvexity) If τ = (τ ∗, 0), with τ ∗ a unit vector in Rn−1,

inf
B3/4

vττ ≥ −C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
,

for some constant C depending only on n, λ, and Λ.



52 Chapter 2. C1,α estimates for the fully nonlinear Signorini problem

(b) (Semiconcavity) In the direction normal to B∗1 × {0},

sup
B3/4

vxnxn ≤ C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
,

for some constant C depending only on n, λ, and Λ.

Proof. The Lipschitz regularity comes from the Lipschitz regularity in u, proved in
Proposition 2.3.

In (2.29) the first inequality follows thanks to the change of variables introduced
in Subsection 2.2.2. Indeed, there exists some operator given by a matrix L̂ as in
(2.12) uniformly elliptic with ellipticity constants λ and Λ such that

L̂ij∂xixj(u(x′,−xn)) = L̂ij(∂xixju)(x′,−xn) ≤ F ((D2u)(x′,−xn)) ≤ 0,

so that
M−(D2v) ≤ L̂ij∂xixjv ≤ 0,

as we wanted.
The second expression in (2.29) follows from equations (2.27)-(2.28), Lemma 2.5

and the fact that v(x′, 0) = u(x′, 0) for x′ ∈ B∗1 .
Finally, the semiconvexity and semiconcavity follow from Proposition 2.4.

2.3.2 Regularity for σ on free boundary points

The next steps are very similar to those in [Caf79] (and [MS08]), but we adapt them
to the symmetrised solution v instead of u. For completeness, we provide all the
details. We begin with the following lemma, corresponding to [Caf79, Lemma 2] (or
[MS08, Lemma 3.3]).

In the next result, we call ϕ the extension of the obstacle to B1, i.e. ϕ(x′, xn) :=
ϕ(x′).

Lemma 2.7. Let v be the symmetrised solution (2.26). Let κ be a constant such
that κ > sup |ϕττ | for any τ a unit vector in Rn−1 × {0}. Let x0 ∈ Ω fixed and ψx0

denote the function

ψx0 = ϕ(x0) +∇ϕ(x0) · (x− x0) + κ|x− x0|2 − κ(n− 1)
Λ

λ
x2
n.

Then, for any open set Ux0 such that x0 ∈ Ux0 ⊂ B1,

sup
∂Ux0∩{xn>0}

(v − ψx0) ≥ 0.

Proof. Define w = v − ψx0 and notice that by definition of ψx0 and the fact that v
is a supersolution for M−, we have w(x0) ≥ 0 and M−(D2w) ≤ 0. Therefore, we
can apply the maximum principle on Ux0 \∆ (recall ∆ is the coincidence set) and
use the symmetry of w to obtain that

sup
∂(Ux0\∆)∩{xn≥0}

(v − ψx0) ≥ 0.
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Now notice that on the set {v = u = ϕ} we have that ψx0 > ϕ, since x0 ∈ Ω and
κ > sup |ϕττ |. Thus, v − ψx0 < 0 on this set, so that

sup
∂(Ux0\∆)∩{xn≥0}

(v − ψx0) = sup
∂Ux0∩{xn>0}

(v − ψx0) ≥ 0,

and we are done.

We now proceed with the following lemma, corresponding to [Caf79, Lemma 2]
(or [MS08, Lemma 3.4]).

Lemma 2.8. Let v be the symmetrised solution as defined in (2.26), and let σ as
defined in (2.25)-(2.27). Let x0 = (x′0, 0) ∈ Ω and define Sγ = {x′ : σ(x′) > −γ}.
Then, for suitable positive constants C, C, and γ0 and for all γ ∈ (0, γ0) there exists
a ball B∗Cγ(x̄

′) for x̄′ ∈ B∗1 such that

B∗Cγ(x̄
′) ⊂ B∗

Cγ
(x′0) ∩ Sγ.

The constants C, C̄, and γ0 depend only on n, λ, Λ, ‖ϕ‖C1,1(B∗1 ), and ‖u‖L∞(B1).

Proof. We apply Lemma 2.7 with Ux0 = BC1γ(x0)× (−C2γ, C2γ) for some constants
to be chosen C1 � C2, and study two cases.
• Assume sup(v − ψx0) is attained at a point (x′1, y1) (for x′1 ∈ Rn−1, y ∈ R)

on the lateral face of the cylinder Ux0 , i.e. with |x′1 − x′0| = C1γ and 0 ≤ y1 ≤ C2γ.
Then we have

ψx0(x′1, y1)− ϕ(x′1) ≥ (κ− sup |φττ |) |x′1 − x′0|2 − κ(n− 1)
Λ

λ
y2

1

≥ (κ− sup |φττ |)C2
1γ

2 − κ(n− 1)
Λ

λ
C2

2γ
2 ≥ C3γ

2,

provided that C1 � C2. The positive constant C3 depends only on κ, n, the ellipticity
constants, C1, and C2. Thus,

v(x′1, y1) ≥ ψx0(x′1, y1) ≥ ϕ(x′1) + C3γ
2.

Now pick a x′2 ∈ B∗C4γ
(x′1) for some positive constant C4 to be chosen and (x′2 −

x′1) · ∇x′(v − ϕ)(x′1, y1) ≥ 0. We are considering here ϕ in the whole B1 by simply

putting ϕ(x′, y) = ϕ(x′). Take τ =
(
x′2−x′1
|x′2−x′1|

, 0
)

, and use the semiconvexity from

Lemma 2.6 together with the fact that ϕ ∈ C1,1 to get

(v − ϕ)(x′2, y1) =

= (v − ϕ)(x′1, y1) + (x′2 − x′1) · ∇x′(v − ϕ)(x′1, y1) +

∫∫
[(x′1,y1),(x′2,y1)]

(v − ϕ)ττ

≥ C3γ
2 − C|x′2 − x′1|2 ≥ (C3 − CC4)γ2 > 0,

if C4 is chosen appropriately, small enough depending only on C3, ‖ϕ‖C1,1 and the
semiconvexity constant of Lemma 2.6. Here, and in the next steps,

∫∫
[a,b]

denotes

the double integral over the segment between the points a and b,∫∫
[a,b]

w :=

∫ |b−a|
0

[∫ s

0

w

(
a+

b− a
|b− a|t

)
dt

]
ds.
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To get a contradiction, now suppose that x′2 /∈ Sγ. In particular, this means
v(x′2, 0) = ϕ(x′2), and from (2.27) and the semiconcavity in Lemma 2.6 we get

(v − ϕ)(x′2, y1) = (v − ϕ)(x′2, 0) + y1
σ(x′2)

2
+

∫∫
[(x′2,0),(x′2,y1)]

vxnxn

≤ −y1
γ

2
+ Cy2

1 ≤ y1γ

(
CC2 −

1

2

)
≤ 0

if C2 is small enough depending only on the semiconcavity constant of Lemma 2.6.
Thus, we have reached a contradiction.
• Assume now that sup(v − ψx0) is attained at a point (x′1, y1) in the base of

the cylinder Ux0 , i.e. with |x′1 − x′0| ≤ C1γ and y1 = C2γ. Then, from κ > sup |ϕττ |,
we deduce

v(x′1, y1) ≥ ψx0(x′1, y1) ≥ ϕ(x′1)− κ(n− 1)
Λ

λ
C2

2γ
2.

Now choose x′2 such that |x′2 − x′1| < C2γ and (x′2 − x′1) · ∇x′(v − ϕ)(x′1, y1) ≥ 0.
As before,

(v − ϕ)(x′2, y1) =

= (v − ϕ)(x′1, y1) + (x′2 − x′1) · ∇x′(v − ϕ)(x′1, y1) +

∫∫
[(x′1,y1),(x′2,y1)]

(v − ϕ)ττ

≥ −κ(n− 1)
Λ

λ
C2

2γ
2 − C|x′2 − x′1|2 ≥ −C2

2

(
κ(n− 1)

Λ

λ
+ C

)
γ2.

Now, if x′2 /∈ Sγ then v(x′2, 0) = ϕ(x′2),

(v − ϕ)(x′2, y1) ≤ −C2
γ2

2
+

∫∫
[(x′2,0),(x′2,y1)]

vxnxn ≤
(

1

2
CC2

2 − C2

)
γ2.

The contradiction follows if one chooses C2 small enough, depending only on κ, n,
λ, Λ, and the semiconvexity and semiconcavity constants from Lemma 2.6.

The following lemma is useful to prove the Cα regularity of σ, and can be found
in [MS08, Lemma 3.5]. It follows from an appropriate use of the strong maximum
principle for M−, the Pucci’s extremal operator.

Lemma 2.9 ([MS08]). Let w be a non-negative continuous function in B∗1 × (0, 1)
that solves

M−(D2w) ≤ 0 in B∗1 × (0, 1).

Assume
lim sup
xn↓0+

w(x′, xn) ≥ 1 for x′ ∈ B∗δ (x̄′),

for some ball B∗δ (x̄
′) ⊂ B∗1 . Then

w(x) ≥ ε > 0 for x ∈ B∗1/2 ×
[

1

4
,
3

4

]
,

for some ε depending only on δ, and the ellipticity constants λ and Λ.
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We now show the following lemma, analogous to [Caf79, Lemma 4] (or [MS08,
Lemma 3.6]).

Lemma 2.10. Let σ as defined in (2.25)-(2.27), for u the solution to the thin ob-
stacle problem (2.2). Let x′0 ∈ Ω∗, then

σ(x′) ≥ −C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 )

)
|x′ − x′0|α, for x′ ∈ B∗1

for some α > 0 and C depending only on n, λ, and Λ.

Proof. Define
K0 := ‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 ),

and notice that by taking u/K0 instead of u if necessary we can assume

‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 ) ≤ 1.

Indeed, if K0 ≥ 1 then

FK0(D2u) :=
1

K0

F (D2(K0u)),

is a convex elliptic operator with ellipticity constants λ and Λ, and u/K0 is a solution
to the nonlinear thin obstacle problem for the operator FK0 with obstacle ϕ/K0. In
this case,

‖u/K0‖L∞(B1) + ‖ϕ/K0‖C1,1(B∗1 ) = 1,

as we wanted to see. Thus, from now on we assume K0 ≤ 1.
Using Lemmas 2.5, 2.6, 2.8 and 2.9, now the proof of this lemma is very similar

to the proof of [MS08, Lemma 3.6]. We give it here for completeness.
We will show

σ(x′) ≥ −C|x′ − x′0|α, (2.30)

with C and α > 0 depending only on n, λ, and Λ.
Recall that σ(x′) = 2 limxn↓0+ vxn(x′, xn), and that from Lemma 2.6, vxn is

bounded and vxnxn ≤ C. Moreover, σ is non-positive by Lemma 2.5, so that vxn ≤
Cxn for xn > 0.

In order to reach (2.30) we will prove vxn(x) ≥ −θk for x ∈ B∗
γk

(x′0) × (0, γk).
Assume this has been already proved for some k with 0 < γ � θ < 1, and consider
the function

w :=
vxn + θk

θk − Cµγk in B∗µγk(x
′
0)× (0, µγk)

for µ small enough. Notice that w fulfils the hypotheses of Lemma 2.9, so that using
it together with Lemma 2.8 we get

vxn(x) ≥ −θk + ε(θk − Cµγk) ≥ −θk +
1

2
εθk

for x ∈ B∗
µγk/2

(x′0) × (µγk/4, 3µγk/4), since γ � θ. Now, by means of Lemma 2.6,

vxnxn ≤ C, and therefore, for any y = (y′, yn) ∈ B∗
µγk/2

(x′0)× (0, µγk/4],

vxn(y) ≥ −
∫ µγk/4

yn

vxnxn(y′, s)ds+ vxnxn(y′, µγk/4)

≥ −C
(
µγk

4
− yn

)
− θk +

1

2
εθk,
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so that we obtain

vxn(x) ≥ −θk +
1

2
εθk − 1

4
µCγk

for x ∈ B∗
µγk/2

(x′0)× (0, 3µγk/4). To end the inductive argument we must see

θk+1 ≥ θk − 1

2
εθk +

1

4
µCγk.

For this, we pick γ � θ so that the right-hand side is smaller than (1 − 1
4
ε)θk,

with θ larger than 1 − 1
4
ε. Then, the inductive argument is completed, and (2.30)

follows.

2.3.3 Proof of Theorem 2.1

Before proving our main result, let us show the following compactness lemma.

Lemma 2.11. Let F be a nonlinear operator satisfying (2.3), and let w be a con-
tinuous function defined on B1. Suppose that w satisfies the problem

F (D2w) = 0 in B+
1 ∪B−1 , (2.31)

and that
‖w‖L∞(B1) = 1, [w]Lip(B1) ≤ 1.

Let ψ be the solution to{
F (D2ψ) = 0 in B1

ψ = w on ∂B1,
(2.32)

and let us define the following operator

σ̃(w) := lim
hn↓0

((∂xnw)(x′, hn)− (∂xnw)(x′,−hn)) .

Then, for every ε > 0 there exists some η = η(ε, n, λ,Λ) > 0 such that if

‖σ̃(w)‖L∞(B∗1 ) < η

then
‖ψ − w‖L∞(B1) < ε,

i.e., ψ approximates w as η goes to 0.

Proof. Let us argue by contradiction. Suppose that there exists some fixed ε > 0,
a sequence of functions wk and a sequence of convex nonlinear operators uniformly
elliptic with ellipticity constants λ and Λ, Fk, with Fk(0) = 0, such that

Fk(D
2wk) = 0 in B+

1 ∪B−1 (2.33)

and
‖wk‖L∞(B1) = 1, [wk]Lip(B1) ≤ 1,
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with
‖σ̃(wk)‖L∞(B∗1 ) < ηk (2.34)

for some sequence ηk → 0, but such that

‖ψk − wk‖L∞(B1) ≥ ε, (2.35)

for all k, where ψk is the solution to{
Fk(D

2ψk) = 0 in B1

ψk = wk on ∂B1.
(2.36)

By Arzelà-Ascoli, up to a subsequence, wk converges to some function w̄ uni-
formly in B1, with ‖w̄‖L∞(B1) = 1. On the other hand, since Fk(0) = 0 and they
are uniformly elliptic and convex, they converge up to subsequences, uniformly over
compact sets, to some convex nonlinear operator F̄ uniformly elliptic with ellipticity
constants λ and Λ such that F̄ (0) = 0. Notice also that ψk converges uniformly to
the solution ψ̄ to {

F̄ (D2ψ̄) = 0 in B1

ψ̄ = w̄ on ∂B1.
(2.37)

and in the limit we obtain, from (2.35),

‖ψ̄ − w̄‖L∞(B1) ≥ ε > 0. (2.38)

Now consider the function wk + ηk|xn| on B1. From (2.34), wk + ηk|xn| now has
a wedge pointing down in the set B1 ∪ {xn = 0}, i.e.,

σ̃(wk + ηk|xn|) ≥ ηk > 0, in B∗1 .

Therefore, since Fk(D
2wk) = 0 in B+

1 ∪B−1 , we have that, in the viscosity sense,

Fk(D
2(wk + ηk|xn|)) ≥ 0, in B1.

Now, passing to the limit, noticing that wk+ηk|xn| converges uniformly to w̄ and
using [CC95, Proposition 2.9], we immediately reach that, in the viscosity sense,

F̄ (D2w̄) ≥ 0, in B1.

Repeating the same argument for wk−ηk|xn| we reach F̄ (D2w̄) ≤ 0 in B1, to finally
obtain

F̄ (D2w̄) = 0, in B1.

This implies w̄ = ψ̄ in B1, which is a contradiction with (2.38).

Using the previous results, we now give the proof of Theorem 2.1.

Proof of Theorem 2.1. We separate the proof into three steps. In the first step we
prove that the solution u is C1,α around points in Ω∗ by means of Lemmas 2.10 and
2.11. In the second step, we use the result from the first step to deduce that σ is Cα

in B∗2/3, to finally complete the proof in the third step.
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As in the proof of Lemma 2.10 we assume

‖u‖L∞(B1) + ‖ϕ‖C1,1(B∗1 ) ≤ 1,

to avoid having this constant on each estimate throughout the proof.

Step 1: Let us suppose that the origin is a free boundary point. Under these cir-
cumstances we will prove that there exist some affine function L = a + b · x such
that

‖u− L‖L∞(Br) ≤ Cr1+α, for all r ≥ 0, (2.39)

for some constants C and α > 0 depending only on n, λ, and Λ. To do so, we proceed
in the spirit of the proof of [Caf89, Theorem 2].

Notice that from Lemma 2.10 we know that there exists η > 0 such that

|σ(x′)| ≤ η|x′|α, for all x′ ∈ B∗1 . (2.40)

Up to replacing from the beginning u(x) by u(r0x) with r0 � 1, we can make η as
small as necessary. The choice of the value of r0, and consequently the magnitude
in which the constant η is made small, will depend only on n, λ, and Λ.

Let us show now that there exists ρ = ρ(α, n, λ,Λ) < 1 and a sequence of affine
functions

Lk(x) = ak + bk · x (2.41)

such that

‖u− Lk‖L∞(B
ρk

) ≤ ρk(1+α), (2.42)

and

|ak − ak−1| ≤ Cρk(1+α), |bk − bk−1| ≤ Cρkα (2.43)

for some constant C depending only on n, λ, and Λ.
We proceed by induction, taking L0 = 0. Suppose that the k-th step is true, and

consider

wk(x) =
(u− Lk)(ρkx)

ρk(1+α)
, for x ∈ B1.

Begin by noticing that

Fk(D
2wk) = 0 in B+

1 ∪B−1

for some operator Fk of the form (2.3). On the other hand, from the induction
hypothesis,

‖wk‖B1 ≤ 1.

Moreover, if we define

σk(x
′) = lim

h↓0
(∂xnwk(x

′, h)− ∂xnwk(x′,−h)) , for x′ ∈ B∗1 ,

then one can check that, from (2.40),

|σk(x′)| ≤ η|x′|α.



59

We apply now Lemma 2.11. That is, given ε > 0 small, we can choose η small
enough such that

‖vk − wk‖L∞(B1) ≤ ε,

where vk is the solution to{
Fk(D

2vk) = 0 in B1

vk = wk on ∂B1.
(2.44)

Notice that, by interior estimates, vk is C2,α in B1/2 with estimates depending
only on n, λ, and Λ. Then, let lk be the linearisation of vk around 0, so that up to
choosing ρ,

‖wk − lk‖L∞(Bρ) ≤ ‖wk − vk‖L∞(Bρ) + ‖vk − lk‖L∞(Bρ)

≤ ε+ Cρ2 ≤ ρ1+α,

where C depends only on n, λ, and Λ, ρ is chosen small enough depending only
on α, n, λ, and Λ so that Cρ2 ≤ 1

2
ρ1+α, and η is chosen so that ε ≤ 1

2
ρ1+α. It is

important to remark that the choice of η depends only on n, λ, and Λ.
Now, recalling the definition of wk, we reach∥∥∥∥u− Lk − ρk(1+α)lk

( ·
ρk

)∥∥∥∥
L∞(B

ρk+1 )

≤ ρ(k+1)(1+α),

so that the inductive step is concluded by taking

Lk+1(x) = Lk(x) + ρk(1+α)lk

(
x

ρk

)
.

By noticing that there are bounds on the coefficients of the linearisation of vk
depending only on n, λ, and Λ, the inequalities in (2.43) are obtained.

Once one has (2.41), (2.42), and (2.43), define L as the limit of Lk as k → ∞
(which exists, by (2.43)), and notice that, given any 0 < r = ρk for some k ∈ N,
then

‖u− L‖L∞(Br) ≤ ‖u− Lk‖L∞(Br) +
∑
j≥k

‖Lj+1 − Lj‖L∞(Br) ≤ Cr1+α

for some C depending only on n, λ, and Λ; as we wanted.

Step 2: In this step we prove that the function σ defined in (2.25)-(2.27) is Cα(B∗2/3)

for some α = α(n, λ,Λ) > 0, and

‖σ‖Cα(B∗
2/3

) ≤ C, (2.45)

for some constant C depending only on n, λ, and Λ.
We already know σ is regular in the interior of ∆∗ (by boundary estimates) and

Ω∗; respectively the coincidence set and its complement in B∗1 . In particular, from
the interior estimates σ ≡ 0 in Ω∗. From Lemma 2.10 we also obtain Cα regularity
at points in ∂∆∗. Namely, we have that given (x′0, 0) = x0 ∈ ∂∆∗,

|σ(x′)| ≤ C|x′ − x′0|α, for x′ ∈ B∗1 , (2.46)
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for some constant C depending only on n, λ, and Λ.
Therefore, we only need to check that given x, y ∈ ∆, x = (x′, 0), y = (y′, 0),

then there exists some C depending only on n, λ, and Λ such that, if |x− y| = r,

|σ(x′)− σ(y′)| ≤ Crα.

Let R := dist(x,Ω) and suppose that dist(x,Ω) ≤ dist(y,Ω). Let z = (z′, 0), z′ ∈
∂∆∗, be such that dist(x, z) = dist(x,Ω), and assume that limxn↓0+ ∇u(z′, xn) = 0
and ∇x′ϕ(z′) = 0 by subtracting an affine function if necessary. Notice that we can
do so because we already know from the first step that u has a C1,α estimate around
z′. Let us then separate two cases:
• If R < 4r, then using (2.45)

|σ(x′)− σ(y′)| ≤ |σ(x′)− σ(z′)|+ |σ(y′)− σ(z′)|
≤ C (Rα + (R + r)α)

≤ Crα.

• In the case R ≥ 4r we need to use known boundary estimates for this fully
nonlinear problem and the previous step of the proof. Notice that x′, y′ ∈ B∗R/2(x′) ⊂
B∗R(x′) ⊂ ∆∗, and u restricted to B∗R(x′) is thus a C1,1 function, since u = ϕ there.
In particular, we use that under these hypotheses

R1+α[u]
C1,α(B+

R/2
(x))
≤ C

(
oscB+

R(x)u+R2[ϕ]C1,1(B∗R(x′))

)
;

see, for example, [MS06, Proposition 2.2]. Now, remember that the gradient of u at
z is 0, so that from the previous step using the bound (2.39) around z,

|u(p)− ϕ(z′)| ≤ C|p− z|1+α ≤ CR1+α for p ∈ B+
R(x). (2.47)

In particular, oscB+
R(x)u ≤ CR1+α, and thus, this yields

[u]
C1,α(B+

R/2
(x))
≤ C,

from which (2.45) is proved.

Step 3: Our conclusion now follows by repeating Step 1 around every point on B∗1 .
Notice that in the first step we only used that the origin was a free boundary point
to be able to apply Lemma 2.10 in (2.40).

Now, given any point z′ ∈ B∗1/2, we can consider the function uz given by

uz(x) := u(x)− σ(z′)(xn)+,

where (xn)+ denotes the positive part of xn.
Note that this function fulfils the hypotheses of Step 1, in particular,

|σz(x′)| :=
∣∣∣∣limh↓0 (∂xnuz(x

′, h)− ∂xnuz(x′,−h))

∣∣∣∣ ≤ C|x′ − z′|α, for x′ ∈ B∗1 ,

for some constant C depending only on n, λ, and Λ.
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By repeating the exact same procedure as in Step 1, we reach that for every point
z ∈ B1/2∪{xn = 0}, and for every x ∈ B+

1 there exists some L+
z affine function such

that
|u(x)− L+

z | ≤ C|x− z|1+α,

and the same occurs in B−1 for a possibly different affine function L−z . Therefore, in
particular,

‖u‖C1,α(B∗
1/2

) ≤ C

for some C depending only on n, λ, and Λ.
To finish the proof, we could now repeat a procedure like the one done in Step 2,

or directly notice that solutions to the nonlinear problem with C1,α boundary data
are C1,α up to the boundary (see, for example, [MS06, Proposition 2.2]).

We finally give the:

Proof of Corollary 2.2. It is an immediate consequence of Theorem 2.1. Indeed, con-
sider balls of radius R0 := dist(K, ∂D) around points on K ∩ {xn = 0} and apply
Theorem 2.1. To cover the rest of K we use interior estimates, and the result follows
by noticing that ‖u‖L∞(D) ≤ ‖g‖L∞(∂D) + ‖ϕ‖L∞ by the maximum principle.
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Chapter 3

The obstacle problem for the
fractional Laplacian with critical
drift

We study the obstacle problem for the fractional Laplacian with drift,

min {(−∆)su+ b · ∇u, u− ϕ} = 0 in Rn,

in the critical regime s = 1
2
.

Our main result establishes the C1,α regularity of the free boundary around any
regular point x0, with an expansion of the form

u(x)− ϕ(x) = c0

(
(x− x0) · e

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
,

γ̃(x0) =
1

2
+

1

π
arctan(b · e),

where e ∈ Sn−1 is the normal vector to the free boundary, σ > 0, and c0 > 0.
We also establish an analogous result for more general nonlocal operators of order

1. In this case, the exponent γ̃(x0) also depends on the operator.

3.1 Introduction

We consider the obstacle problem for the fractional Laplacian with drift,

min
{

(−∆)su+ b · ∇u, u− ϕ
}

= 0 in Rn, (3.1)

where b ∈ Rn, and ϕ : Rn → R is a smooth obstacle.
Problem (3.1) appears when considering optimal stopping problems for Lévy pro-

cesses with jumps. In particular, this kind of obstacle problems are used to model
prices of (perpetual) American options; see for example [CF13, BFR18] and refer-
ences therein for more details. See also [Sal12] and [KKP16] for further references
and motivation on the fractional obstacle problem.

We study the regularity of solutions and the corresponding free boundaries for
problem (3.1). Note that the value of s ∈ (0, 1) plays an essential role. Indeed, if
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s > 1
2
, then the gradient term is of lower order with respect to (−∆)s, and thus

one expects solutions to behave as in the case b ≡ 0. When s < 1
2

the leading term
is b · ∇u and thus one does not expect regularity results for (3.1). Finally, in the
borderline case s = 1

2
there is an interplay between b ·∇u and (−∆)1/2, and one may

still expect some regularity, but it becomes a delicate issue.
In this work we study this critical regime, s = 1

2
. As explained in detail below,

we establish the C1,α regularity of the free boundary near regular points, with a fine
description of the solution at such points.

It is important to remark that, when s = 1
2
, problem (3.1) is equivalent to the

thin obstacle problem in Rn+1
+ with an oblique derivative condition on {xn+1 = 0}.

Thus, our results yield in particular the regularity of the free boundary for such
problem, too.

3.1.1 Known results

The regularity of solutions and free boundaries for (3.1) was first studied in [Sil07,
CSS08] when b = 0. In [CSS08], Caffarelli, Salsa, and Silvestre established the op-
timal C1,s regularity for the solutions and C1,α regularity of the free boundary
around regular points. More precisely, they proved that given any free boundary
point x0 ∈ ∂{u = ϕ}, then

(i) either
0 < cr1+s ≤ sup

Br(x0)

(u− ϕ) ≤ Cr1+s

(ii) or
0 ≤ sup

Br(x0)

(u− ϕ) ≤ Cr2.

The set of points satisfying (i) is called the set of regular points, and it was proved
in [CSS08] that this set is open and C1,α.

Later, the singular set — those points at which the contact set has zero density
— was studied in [GP09] in the case s = 1

2
. More recently, the regular set was proved

to be C∞ in [JN17, KRS19]; see also [KPS15, DS16]. The complete structure of the
free boundary was described in [BFR18] under the assumption ∆ϕ ≤ 0. Finally, the
results of [CSS08] have been extended to a wide class of nonlocal elliptic operators
in [CRS17].

All the previous results are for the case b = 0. For the obstacle problem with drift
(3.1), Petrosyan and Pop proved in [PP15] the optimal C1,s regularity of solutions in
the case s > 1

2
. This result was obtained by means of an Almgren-type monotonicity

formula, treating the drift as a lower order term. In [GPPS17], the same authors
together with Garofalo and Smit Vega Garćıa establish C1,α regularity for the free
boundary around regular points, again in the case s > 1

2
. They do so by means of a

Weiss-type monotonicity formula and an epiperimetric inequality. The assumption
s > 1

2
is essential in both works in order to treat the gradient as a lower order term.

In the supercritical regime, s < 1
2
, only the linear stationary and evolution prob-

lem have been studied. In [Sil12], Silvestre established immediate spatial and tempo-
ral Hölder continuity for the solutions to the linear evolution problem; and in [EP16]
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Epstein and Pop studied the Sobolev regularity for the linear stationary problem by
means of a completely different approach.

3.1.2 Main result

We study the obstacle problem with critical drift

min
{

(−∆)1/2u+ b · ∇u, u− ϕ
}

= 0 in Rn,
lim|x|→∞ u(x) = 0.

(3.2)

Here b is a fixed vector in Rn, and the obstacle ϕ is assumed to satisfy

ϕ is bounded, ϕ ∈ C2,1(Rn), and {ϕ > 0} b Rn. (3.3)

The solution to (3.2) can be constructed as the smallest supersolution above the
obstacle and vanishing at infinity.

Our main result reads as follows.

Theorem 3.1. Let u be the solution to (3.2), with ϕ satisfying (3.3), and b ∈ Rn.

Let x0 ∈ ∂{u = ϕ} be any free boundary point. Then we have the following
dichotomy:

(i) either

0 < cr1+γ̃(x0) ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+γ̃(x0), γ̃(x0) ∈ (0, 1),

for all r ∈ (0, 1),

(ii) or

0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cεr
2−ε for all ε > 0, r ∈ (0, 1).

Moreover, the subset of the free boundary satisfying (i) is relatively open and is locally
C1,α for some α > 0.

Furthermore, γ̃(x0) is given by

γ̃(x0) =
1

2
+

1

π
arctan

(
b · ν(x0)

)
, (3.4)

where ν(x0) denotes the unit normal vector to the free boundary at x0 pointing to-
wards {u > ϕ}. Finally, for every point x0 satisfying (i) we have the expansion

u(x)− ϕ(x) = c0

(
(x− x0) · ν(x0)

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
(3.5)

for some σ > 0, and c0 > 0. The constants σ and α depend only on n and ‖b‖.
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We think it is quite interesting that the growth around free boundary points
(and thus, the regularity of the solution) depends on the orientation of the normal
vector with respect to the free boundary. To our knowledge, this is the first example
of an obstacle-type problem in which this happens.

The previous theorem implies that the solution is C1,γb at every free boundary
point x0, with

γb :=
1

2
− 1

π
arctan(‖b‖). (3.6)

Nonetheless, the constants may depend on the point x0 considered, so that if we
want a uniform regularity estimate for u we actually have the following corollary. It
establishes almost optimal regularity of solutions.

Corollary 3.2. Let u be the solution to (3.2) for a given obstacle ϕ of the form
(3.3), and a given b ∈ Rn. Let γb given by (3.6). Then, for any ε > 0 we have

‖u‖C1,γb−ε(Rn) ≤ Cε,

where Cε is a constant depending only on n, ‖b‖, ε, and ‖ϕ‖C2,1(Rn).

In order to prove Theorem 3.1 we proceed as follows. First, we classify convex
global solutions to the obstacle problem by following the ideas in [CRS17]. Then, we
show the Lipschitz regularity of the free boundary at regular points, and using the
results in [RS19] we find that the free boundary is actually C1,α. Finally, to prove
(3.5)-(3.4) we need to establish fine regularity estimates up to the boundary in C1,α

domains. This is done by constructing appropriate barriers and a blow-up argument
in the spirit of [RS16]. Notice that, since we do not have any monotonicity formula
for problem (3.2), our proofs are completely different from those in [PP15, GPPS17].

3.1.3 More general nonlocal operators of order 1 with drift

We will show an analogous result for more general nonlocal operators of the form

Lu(x) =

∫
Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
µ(y/|y|)
|y|n+1

dy, (3.7)

with
µ ∈ L∞(Sn−1) satisfying µ(θ) = µ(−θ) and 0 < λ ≤ µ ≤ Λ. (3.8)

The constants λ and Λ are the ellipticity constants. Notice that the operators L we
are considering are of order 1.

The obstacle problem in this case is, then,

min
{
− Lu+ b · ∇u, u− ϕ

}
= 0 in Rn,

lim|x|→∞ u(x) = 0.
(3.9)

Our main result reads as follows.

Theorem 3.3. Let L be an operator of the form (3.7)-(3.8). Let u be the solution
to (3.9), with ϕ satisfying (3.3), and b ∈ Rn.

Let x0 be any free boundary point, x0 ∈ ∂{u = ϕ}. Then we have the following
dichotomy:
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(i) either

0 < cr1+γ̃(x0) ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+γ̃(x0), γ̃(x0) ∈ (0, 1),

for all r ∈ (0, 1).

(ii) or

0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cεr
2−ε for all ε > 0, r ∈ (0, 1).

Moreover, the subset of the free boundary satisfying (i) is relatively open and is locally
C1,α for some α > 0.

Furthermore, the value of γ̃(x0) is given by

γ̃(x0) =
1

2
+

1

π
arctan

(
b · ν(x0)

χ(ν(x0))

)
, (3.10)

where ν(x0) denotes the unit normal vector to the free boundary at x0 pointing to-
wards {u > ϕ}, and

χ(e) =
π

2

∫
Sn−1

|θ · e|µ(θ)dθ for e ∈ Sn−1. (3.11)

Finally, for any point x0 satisfying (i) we have the expansion

u(x)− ϕ(x) = c0

(
(x− x0) · ν(x0)

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
for some σ > 0, and c0 > 0. The constants σ and α depend only on n, the ellipticity
constants, and ‖b‖.

This result extends Theorem 3.1, and the dependence on the operator L is re-
flected in (3.10). For the fractional Laplacian we have χ ≡ 1, and thus (3.10) becomes
(3.4).

We will also prove an analogous result to Corollary 3.2 regarding the almost
optimal regularity of solutions; see Corollary 3.29.

3.1.4 Structure of the work

We will focus on the proof of Theorem 3.3, from which in particular will follow
Theorem 3.1. The paper is organised as follows.

In Section 3.2 we introduce the notation and give some preliminary results regard-
ing nonlocal elliptic problems with drift. In Section 3.3 we establish C1,τ estimates
for solutions to the obstacle problem with critical drift. In Section 3.4 we classify
convex global solutions to the problem. In Section 3.5 we introduce the notion of reg-
ular points and we prove that blow-ups of solutions around such points converge to
convex global solutions. In Section 3.6 we prove C1,α regularity of the free boundary
around regular points. In Section 3.7 we establish estimates up to the boundary for
the Dirichlet problem with drift in C1,α domains, in particular, finding an expansion
of solutions around points of the boundary. In Section 3.8 we combine the results
from Sections 3.6 and 3.7 to prove Theorems 3.1 and 3.3. Finally, in Section 3.9,
we establish a non-degeneracy property at all points of the free boundary when the
obstacle is concave near the coincidence set.
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3.2 Notation and preliminaries

We begin our work with a section of notation and preliminaries. Here, we recall
some known results regarding nonlocal operators with drift, and we also find a 1-
dimensional solution.

Throughout the work we will use the following function in order to avoid a heavy
reading, γ : R→ (0, 1), given by

γ(t) :=
1

2
+

1

π
arctan (t) . (3.12)

We next introduce some known results regarding the elliptic problem with drift
that will be used. The first one is the following interior estimate.

Proposition 3.4. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn. Let
u solve

(−L+ b · ∇)u = f, in B1,

for some f . Then, if f ∈ L∞(B1), and for any ε > 0,

[u]C1−ε(B1/2) ≤ C

(
‖f‖L∞(B1) + ‖u‖L∞(B1) +

∫
Rn

|u(y)|
1 + |y|n+1

dy

)
,

where C depends only on n, ε, the ellipticity constants, and ‖b‖.

The proof of Proposition (3.4) is given in [Ser15] in case b = 0 (in the much more
general context of fully nonlinear equations). The proof of [Ser15] uses the main
result in [CD14]. The proof of Proposition 3.4 follows simply by replacing the use of
the result [CD14] in [Ser15] by [SS16, Theorem 7.2] or [CD16, Corollary 7.1].

We also need the following boundary Harnack inequality from [RS19].

Theorem 3.5 ([RS19]). Let U ⊂ Rn be an open set, let L be an operator of the
form (3.7)-(3.8), and let b ∈ Rn.

Let u1, u2 ∈ C(B1) be viscosity solutions to{
(−L+ b · ∇)ui = 0 in U ∩B1

ui = 0 in B1 \ U, , i = 1, 2,

and such that

ui ≥ 0 in Rn,

∫
Rn

ui(y)

1 + |y|n+1
dy = 1, i = 1, 2.

Then,

0 < cu2 ≤ u1 ≤ Cu2 in U ∩B1/2,

for some constants c and C depending only on n, ‖b‖, U , and the ellipticity constants.

We will also need the following result.
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Theorem 3.6 ([RS19]). Let U ⊂ Rn be a Lipschitz set, let L be an operator of the
form (3.7)-(3.8), and let b ∈ Rn.

Let u1, u2 ∈ C(B1) be viscosity solutions to{
(−L+ b · ∇)ui = gi in U ∩B1

ui = 0 in B1 \ U, , i = 1, 2,

for some functions gi ∈ L∞(U ∩B1), i = 1, 2. Assume also that

ui ≥ 0 in Rn,

∫
Rn

ui(y)

1 + |y|n+1
dy = 1, i = 1, 2.

Then, there exists δ > 0 depending only on n, U , the ellipticity constants, and
‖b‖ such that, if

‖gi‖L∞(U∩B1) ≤ δ in U ∩B1, i = 1, 2,

then ∥∥∥∥u1

u2

∥∥∥∥
Cσ(U∩B1/2)

≤ C,

for some constants σ and C depending only on n, U , the ellipticity constants, and
‖b‖.

Finally, to conclude this section we study how 1-dimensional powers behave with
respect to the operator, and in particular, we find a 1-dimensional solution to the
problem. This solution is the same as the one that appears as a travelling wave
solution in the parabolic fractional obstacle problem for s = 1

2
; see [CF13, Remark

3.7].

Proposition 3.7. Let b ∈ R, and let u ∈ C(R) be defined by

u(x) := (x+)β,

for β ∈ (0, 1). Then u satisfies

(−∆)1/2u+ bu′ = β
(
b sin(βπ) + cos(βπ)

)
(x+)β−1 in R+,

u ≡ 0 in R−.

In particular, let us define

u0(x) := C(x+)γ(b),

where

γ(t) :=
1

2
+

1

π
arctan (t) ∈ (0, 1).

Then, u0 satisfies

(−∆)1/2u0 + bu′0 = 0 in R+,

u0 ≡ 0 in R−,

i.e., u0 is a solution to the 1-dimensional non-local elliptic problem with critical drift
and with zero Dirichlet conditions in R−.
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Proof. Define the harmonic extension to R2
+, ū = ū(x, y), via the Poisson kernel, so

that ū(x, 0) = u(x), and −∂yū(x, 0) = (−∆)1/2u(x). We have that ū solves,{
∆ū = 0 in R2 ∩ {y > 0}
ū = 0 in {x ≤ 0} ∩ {y = 0}. (3.13)

For simplicity, define the reflected function w(x, y) = ū(−x, y), and let us con-
sider that, by separation of variables in polar coordinates, w(r, θ) = g(r)h(θ), for
r ≥ 0, θ ∈ [0, π] (we use the standard variables, x = r cos θ, y = r sin θ). Notice that
we are considering homogeneous solutions, so that g(r) = rβ. Then, from (3.13) we
get {

g′′h+ r−1g′h+ r−2gh′′ = 0 in {r > 0} ∩ {θ ∈ (0, π)}
h(0) = 0

(3.14)

from which arise that w can be expressed as

w(r, θ) = rβ sin(βθ).

Now notice that, for r > 0,

((−∆)1/2u+ bu′)(r) = (r−1∂θ + b∂r)w(r, θ)
∣∣
θ=π

= β (b sin(βπ) + cos(βπ)) rβ−1.

Solving for β we obtain that it is a solution for β = γ(b). Moreover, notice that
for β < γ(b) it is a supersolution, and for β > γ(b) a subsolution.

3.3 C1,τ regularity of solutions

In this section we prove C1,τ regularity of solutions to the obstacle problem with
critical drift. For this, we use the method in [CRS17, Section 2].

Throughout this section we can consider the wider class of nonlocal operators

Lu(x) =

∫
Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
a(y)

|y|n+1
dy, (3.15)

with
a ∈ L∞(Rn) satisfying a(y) = a(−y) and λ ≤ a ≤ Λ, (3.16)

so that we are dropping the homogeneity condition of the kernel.

Lemma 3.8. Let L be an operator of the form (3.15)-(3.16) and let b ∈ Rn. Let ϕ
be any obstacle satisfying (3.3), and let u be a solution to (3.9). Then,

(a) u is semiconvex, with

∂eeu ≥ −‖ϕ‖C1,1(Rn) for all e ∈ Sn−1.

(b) u is bounded, with
‖u‖L∞(Rn) ≤ ‖ϕ‖L∞(Rn).
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(c) u is Lipschitz, with
‖u‖Lip(Rn) ≤ ‖ϕ‖Lip(Rn).

Proof. The proof is exactly the same as in [CRS17, Lemma 2.1], since the operator
−L+ b · ∇ still has maximum principle and is translation invariant.

We next prove the lemma that will yield the C1,τ regularity of solutions.

Lemma 3.9. There exist constants τ > 0 and δ > 0 such that the following state-
ment holds true.

Let L be and operator of the form (3.15)-(3.16), let b ∈ Rn, and let u ∈ Lip(Rn)
be a solution to

u ≥ 0 in Rn

∂eeu ≥ −δ in B2 for all e ∈ Sn−1

(−L+ b · ∇)(u− u(· − h)) ≤ δ|h| in {u > 0} ∩B2 for all h ∈ Rn,
in the viscosity sense.

satisfying the growth condition

sup
BR

|∇u| ≤ Rτ for R ≥ 1.

Assume that u(0) = 0. Then,

|∇u(x)| ≤ 2|x|τ .

The constants τ and δ depend only on n, the ellipticity constants and ‖b‖.

Proof. The proof is very similar to that of [CRS17, Lemma 2.3].
Define

θ(r) := sup
r̄≥r

{
(r̄)−τ sup

Br̄

|∇u|
}

Note that, by the growth control on the gradient, θ(r) ≤ 1 for r ≥ 1. Note also
that θ is nonincreasing by definition.

To get the desired result, it is enough to prove θ(r) ≤ 2 for all r ∈ (0, 1). Assume
by contradiction that θ(r) > 2 for some r ∈ (0, 1), so that from the definition of θ,
there will be some r̄ ∈ (r, 1) such that

(r̄)−τ sup
Br̄

|∇u| ≥ (1− ε)θ(r) ≥ (1− ε)θ(r̄) ≥ 3

2
,

for some small ε > 0 to be chosen later.
We now define

ū(x) :=
u(r̄x)

θ(r̄)(r̄)1+τ
,

and

Lr̄w(x) :=

∫
Rn

(
w(x+ y) + w(x− y)

2
− w(x)

)
a(r̄y)

|y|n+1
dy
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Notice that Lr̄ is still of the form (3.15)-(3.16).
The rescaled function satisfies

ū ≥ 0 in Rn

D2ū ≥ −(r̄)2−1−τδId ≥ −δId in B2/r̄ ⊃ B2

(−Lr̄ + b · ∇)(ū− ū(· − h̄)) ≤ (r̄)−τδ|r̄h̄| ≤ δ|h̄| in {ū > 0} ∩B2

for all h ∈ Rn,

Moreover, by definition of θ and r̄, the rescaled function ū also satisfies

1− ε ≤ sup
|h̄|≤1/4

sup
B1

ū− ū(· − h̄)

|h̄| and sup
|h̄|≤1/4

sup
BR

ū− ū(· − h̄)

|h̄| ≤ (R+ 1/4)τ (3.17)

for all R ≥ 1.
Let η ∈ C2

c (B3/2) with η ≡ 1 in B1, η ≤ 1 in B3/2. Then,

sup
|h̄|≤1/4

sup
B3/2

(
ū− ū(· − h̄)

|h̄| + 3εη

)
≥ 1 + 2ε.

Fix h0 ∈ B1/4 such that

t0 := max
B3/2

(
ū− ū(· − h0)

|h0|
+ 3εη

)
≥ 1 + ε.

and let x0 ∈ B3/2 be such that

ū(x0)− ū(x0 − h0)

|h0|
+ 3εη(x0) = t0. (3.18)

Let us denote

v(x) :=
ū(x)− ū(x− h0)

|h0|
.

Then, we have
v + 3εη ≤ v(x0) + 3εη(x0) = t0 in B3/2.

Moreover, if τ is taken small enough then

sup
B4

v ≤ (4 + 1/4)τ < 1 + ε ≤ t0,

so that in particular x0 is in the interior of B3/2, and

v + 3εη ≤ t0 in B3. (3.19)

Note also that x0 ∈ {ū > 0} since otherwise ū(x0)−ū(x0−h0) would be a nonpositive
number.

We now evaluate the equation for v at x0 to obtain a contradiction. To do so,
recall that D2ū ≥ −δId in B2, ū ≥ 0 in Rn, and ū(0) = 0. It follows that, for z ∈ B2

and t′ ∈ (0, 1),

ū(t′z) ≤ t′ū(z) + (1− t′)ū(0) +
δ|z|2

2
t′(1− t′) ≤ ū(z) +

δ|z|2
2

t′(1− t′)
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and thus, for t ∈ (0, 1), setting z = x(1 + t/|x|) and t′ = 1/(1 + t/|x|) we obtain, for
x ∈ B1,

ū(x)− ū
(
x+ t

x

|x|

)
≤ δ

2
(|x|+ t)2 t/|x|

(1 + t/|x|)2
=
δ|x|t

2
≤ δt.

Therefore, denoting e = h0/|h0|, t = |h0| ≤ 1 and using that by (3.17), if τ small
enough,

‖ū‖Lip(B1) ≤
4

3
,

we obtain

v(x) =
ū(x)− ū(x− te)

t
≤ ū(x)− ū(x− te)

t
+
ū
(
x+ t x|x|

)
− ū(x)

t
+ δ

≤
ū
(
x+ t x|x|

)
− ū(x− te)
t

+ δ

≤ 4

3

∣∣∣∣e+
x

|x|

∣∣∣∣+ δ ≤ 1

4

(3.20)

in Ce ∩B1 provided δ is taken smaller than 1/12; where Ce is the cone,

Ce :=

{
x :

∣∣∣∣e+
x

|x|

∣∣∣∣ ≤ 1

8

}
.

On the other hand, we know that

v(x0 + y)− v(x0) ≤ 3ε
(
η(x0)− η(x0 + y)

)
in B3. (3.21)

This allows us to define

φ(x0 + y) =

{
v(x0) + 3ε

(
η(x0)− η(x0 + y)

)
in B1/8

v(x0 + y) otherwise.

Notice that φ is regular around x0 and that φ ≥ v everywhere, and recall that
(−Lr̄ + b · ∇)v(x0) ≤ δ in the viscosity sense. Therefore, we have

− Lr̄φ(x0)− C‖b‖ε ≤ (−Lr̄ + b · ∇)φ(x0) ≤ δ. (3.22)

Now, using
1− 2ε ≤ v(x0) ≤ 1 + ε,

and defining

δφ(x, y) :=
φ(x+ y) + φ(x− y)

2
− φ(x),

we can bound δφ(x0, y) as

δφ(x0, y) ≤


Cε|y|2 in B2

(|y|+ 2)τ − 1 + 2ε in Rn \B1

−3/8 + Cε in (−x0 + Ce ∩B1) \B1/4.
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The first inequality follows because around x0 and from (3.21) we have the bound
δφ(x0, y) ≤ 3

2
ε (2η(x0)− η(x0 + y)− η(x0 − y)) and η is a C2 function. The second

inequality follows from (3.17), and using that 1
2

(
|x0 + y|+ 1

4

)τ
+ 1

2

(
|x0 − y|+ 1

4

)τ ≤
(|y|+ 2)τ . For the third inequality, notice that

δφ(x0, y) =
v(x0 + y)− v(x0)

2
+
v(x0 − y)− v(x0)

2

≤ 1

8
− 1

2
+ ε+ Cε ≤ −3

8
+ Cε in (− x0 + Ce ∩B1) \B1/4,

where we have used (3.20) to bound the first term and (3.21) to bound the second
one. The constant C depends only on the η, so it is independent of everything else.

We then find

Lr̄φ(x0) ≤ Λ

∫
B1

Cε|y|2|y|−n−1dy + Λ

∫
Rn\B1

{
(|y|+ 2)τ − 1 + 2ε

}
|y|−n−1dy

+ λ

∫
(−x0+Ce∩B1)\B1/4

(
−3

8
+ Cε

)
|y|−n−1dy

≤ Cε+ C

∫
Rn\B1/2

{
(|y|+ 2)τ − 1

}
|y|−n−1dy − c,

with c > 0 independent of δ and τ (for ε small).
Thus, combining with (3.22) we get

c− C
(

(‖b‖+ 1)ε+

∫
Rn\B1/2

(|y|+ 2)τ − 1

|y|n+1
dy

)
≤ −C‖b‖ε− L̃r̄φ(x0) ≤ δ. (3.23)

If ε and τ are taken small enough so that the left-hand side in (3.23) is greater than
c/2, we get a contradiction for δ ≤ c/4.

The following proposition implies that the solution to the obstacle problem (3.9)
is C1,τ for some τ > 0.

Proposition 3.10. Let L be any operator of the form (3.15)-(3.16), let b ∈ Rn,
and let u ∈ Lip(Rn) with u(0) = 0 be any function satisfying, for all h ∈ Rn and
e ∈ Sn−1, and for some ε > 0,

u ≥ 0 in Rn

∂eeu ≥ −K in B2

(−L+ b · ∇)(u− u(· − h)) ≤ K|h| in {u > 0} ∩B2

|∇u| ≤ K(1 + |x|1−ε) in Rn.

Then, there exists a small constant τ > 0 such that

‖u‖C1,τ (B1/2) ≤ CK.

The constants τ and C depend only on n, ‖b‖, ε, and the ellipticity constants.

Proof. The proof is standard and it is exactly the same as the proof of [CRS17,
Proposition 2.4] by means of Lemma 3.9.
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3.4 Classification of convex global solutions

In this section we prove the following theorem, that classifies all convex global solu-
tions to the obstacle problem with critical drift.

Theorem 3.11. Let L be an operator of the form (3.7)-(3.8). Let Ω ⊂ Rn be a
closed convex set, with 0 ∈ Ω. Let u ∈ C1(Rn) a function satisfying, for all h ∈ Rn,

(−L+ b · ∇)(∇u) = 0 in Rn \ Ω
(−L+ b · ∇)(u− u(· − h)) ≤ 0 in Rn \ Ω

D2u ≥ 0 in Rn

u = 0 in Ω
u ≥ 0 in Rn.

(3.24)

Assume also the following growth control satisfied by u,

‖∇u‖L∞(BR) ≤ R1−ε for all R ≥ 1, (3.25)

for some ε > 0. Then, either u ≡ 0, or

Ω = {e · x ≤ 0} and u(x) = C(e · x)
1+γ(b·e/χ(e))
+ , (3.26)

for some e ∈ Sn−1 and C > 0. The value of χ(e) is given by (3.11) with the kernel
µ of L, and γ is given by (3.12).

We start by proving the following proposition.

Proposition 3.12. Let Σ be a non-empty closed convex cone, and let L be an oper-
ator of the form (3.7)-(3.8). Let u1 and u2 be two non-negative continuous functions
satisfying ∫

Rn

ui(y)

1 + |y|n+1
dy <∞, i = 1, 2.

Assume, also, that they are viscosity solutions to
(−L+ b · ∇)ui = 0 in Rn \ Σ

ui = 0 in Σ
ui > 0 in Rn \ Σ.

Then,
u1 ≡ Ku2 in Rn,

for some constant K.

Proof. The proof is the same as the proof of [CRS17, Theorem 3.1], using the bound-
ary Harnack inequality in Theorem 3.5.

Suppose, without loss of generality, that Σ ( Rn. Take P a point with |P | = 1
and Br(P ) ⊂ Rn \Σ for some r > 0, and assume that ui(P ) = 1. We want to prove
u1 ≡ u2.

Define, given R ≥ 1,

ūi(x) =
ui(Rx)

Ci
,
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with Ci such that
∫
Rn ūi(y)(1 + |y|)−n−1dy = 1. Thus, by Theorem 3.5 there exists

some c > 0 such that

ū1 ≥ cū2 and ū2 ≥ cū1 in B1/2. (3.27)

In particular, ū1(P/R) and ū2(P/R) are comparable, so that C1 and C2 are
comparable. Thus, from (3.27),

u1 ≥ cu2 and u2 ≥ cu1 in BR/2,

for any R ≥ 1, so that the previous inequalities are true in Rn.
Now take

c̄ := sup{c > 0 : u1 ≥ cu2 in Rn} <∞.
Define

v = u1 − c̄u2 ≥ 0.

Either v ≡ 0 in Rn or v > 0 in Rn \ Σ by the strong maximum principle. If v ≡ 0
we are done, because in this case c̄ = 1 due to the fact that u1(P ) = u2(P ) = 1.

Let us assume then that v > 0 in Rn \ Σ. Apply the first part of the proof
to v/v(P ) and u2 to deduce that, for some δ > 0, v > δu2. This contradicts the
definition of c̄, so v ≡ 0 as we wanted.

We can now prove the classification of convex global solutions in Theorem 3.11

Proof of Theorem 3.11. First, by the same blow-down argument in [CRS17, Theo-
rem 4.1], we can restrict ourselves to the case in which Ω = Σ for Σ a closed convex
cone in Rn with vertex at 0.

We now split the proof into two cases:
Case 1: When Σ has non empty interior there are n linearly independent unitary

vectors ei such that −ei ∈ Σ. Define

vi := ∂eiu,

and note that, since D2u ≥ 0 and −ei ∈ Σ = {u = 0}, we have
(−L+ b · ∇)vi = 0 in Rn \ Σ

vi = 0 in Σ
vi ≥ 0 in Rn.

(3.28)

From Proposition 3.12, we must have vi = aivk for some 1 ≤ k ≤ n, ai ∈ R, and
for all i = 1, . . . , n, so that ∂ei−aieku ≡ 0 in Rn for all i 6= k. Thus, there exists a
non-negative function φ : R→ R, φ ∈ C1, such that u = φ(e · x) for some e ∈ Sn−1;
so that, since 0 ∈ ∂Σ, Σ = {e · x ≤ 0}.

Notice that φ′ ≥ 0 solves (−L + (b · e)∂)(φ′) = 0 in R+ and φ′ ≡ 0 in R−, with
the growth φ′(t) ≤ C(1 + t1−ε). From [RS14, Lemma 2.1], we have

(χ(e)(−∆)1/2 + (b · e)∂)(φ′) = 0 in R+,

where χ(e) is given by (3.11). Now, a non-negative solution to the previous equation
is given by Proposition 3.7. Such solution is unique up to a multiplicative constant
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thanks to Proposition 3.12. Indeed, notice that the hypotheses of the lemma are
fulfilled due to the growth control of φ′ and the fact that φ′ ≥ 0. Thus, we obtain

φ(t) = (t+)1+γ(b·e)/χ(e) for t ∈ R,

where γ and χ are given by (3.12) and (3.11) respectively.
Case 2: If Σ has empty interior then by convexity it must be contained in some

hyperplane H = {x · e = 0}. From Proposition 3.10, rescaling,

[∇u]Cτ (BR) ≤ C(R),

for some constant C(R) depending on R; and for any R ≥ 1. In particular, for any
h ∈ Rn, if we define

v(x) = u(x)− u(x− h) for x ∈ Rn,

then v ∈ C1,τ
loc (Rn). This implies that (−L+ b ·∇)v ∈ Cτ

loc(Rn), but we already knew
that (−L+ b · ∇)v = 0 in Rn \H, so we must have

(−L+ b · ∇)v = 0 in Rn.

Now, from the interior estimates in Proposition 3.4 rescaled on balls BR we have

R1−ε/2[v]C1−ε/2(BR/2) ≤ C

(
‖v‖L∞(BR) +

∫
Rn

|v(Ry)|
1 + |y|n+1

dy

)
.

On the other hand, from the growth control on the gradient, we have

‖v‖L∞(BR) ≤ |h|R1−ε.

Putting the last two expressions together we reach

[v]C1−ε/2(BR/2) ≤
C|h|
Rε/2

.

Now let R→∞ to obtain that v must be constant for all h. That means that u
is affine, but u(0) = 0 and u ≥ 0 in Rn, so u ≡ 0.

3.5 Blow-ups at regular points

By subtracting the obstacle if necessary and dividing by C‖ϕ‖C2,1(Rn), we can assume
that we are dealing with the following problem,

u ≥ 0 in Rn

(−L+ b · ∇)u ≤ f in Rn

(−L+ b · ∇)u = f in {u > 0}
D2u ≥ −Id in Rn.

(3.29)

Moreover, dividing by a bigger constant if necessary, we can also assume that

‖f‖C1(Rn) ≤ 1, (3.30)
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and that

‖u‖C1,τ (Rn) ≤ 1. (3.31)

The validity of the last expression and the constant τ come from Proposition 3.10
and Lemma 3.8.

Let us now introduce the notion of regular free boundary point.

Definition 3.1. We say that x0 ∈ ∂{u > 0} is a regular free boundary point with
exponent ε if

lim sup
r↓0

‖u‖L∞(Br(x0))

r2−ε =∞

for some ε > 0.

The following proposition states that an appropriate blow up sequence of the
solution around a regular free boundary point converges in C1 norm to a convex
global solution.

Proposition 3.13. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let u be a solution to (3.29)-(3.30)-(3.31). Assume that 0 is a regular free boundary
point with exponent ε.

Then, given δ > 0, R0 ≥ 1, there exists r > 0 such that the rescaled function

v(x) :=
u(rx)

r‖∇u‖L∞(Br)

satisfies

‖∇v‖L∞(BR) ≤ 2R1−ε for all R ≥ 1,∣∣(−L+ b · ∇)(∇v)
∣∣ ≤ δ in {v > 0},

and

|v − u0|+ |∇v −∇u0| ≤ δ in BR0 ,

for some u0 of the form (3.26) and with ‖∇u0‖L∞(B1) = 1.

Before proving the previous proposition, let us prove the following lemma.

Lemma 3.14. Assume u ∈ C1(B1) satisfies ‖∇u‖L∞(Rn) = 1, u(0) = 0, and

sup
ρ≤r

‖u‖L∞(Br)

r2−ε →∞ as ρ ↓ 0.

Then, there exists a sequence rk ↓ 0 such that ‖∇u‖L∞(Brk ) ≥ 1
2
r1−ε
k , and for which

the rescaled functions

uk(x) =
u(rkx)

rk‖∇u‖L∞(Brk )

satisfy

|∇uk(x)| ≤ 2(1 + |x|1−ε) in Rn.
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Proof. Define

θ(ρ) := sup
r≥ρ

‖∇u‖L∞(Br)

r1−ε .

Notice that, since u(0) = 0, we have

‖u‖L∞(Br)

r2−ε ≤ ‖∇u‖L∞(Br)

r1−ε .

Therefore, θ(ρ)→∞ as ρ ↓ 0, and notice also that θ is non-increasing.
Now, for every k ∈ N, there is some rk ≥ 1

k
such that

rε−1
k ‖∇u‖L∞(Brk ) ≥

1

2
θ (1/k) ≥ 1

2
θ(rk). (3.32)

Since ‖∇u‖L∞(Rn) = 1, then

rε−1
k ≥ 1

2
θ(1/k)→∞ as k →∞,

so that rk → 0 as k → ∞. We also have θ(rk) ≥ 1, and therefore ‖∇u‖L∞(Brk ) ≥
1
2
r1−ε
k .
Finally, from the definition of θ and (3.32), and for any R ≥ 1, we have

‖∇uk‖L∞(BR) =
‖∇u‖L∞(BrkR)

‖∇u‖L∞(Brk )

≤ θ(rkR)(rkR)1−ε

1
2
(rk)1−εθ(rk)

≤ 2R1−ε,

which follows from the monotonicity of θ.

We can now prove Proposition 3.13, which follows taking the sequence of rescal-
ings given by Lemma 3.14 together with a compactness argument.

Proof of Proposition 3.13. Let rk ↓ 0 be the sequence given by Lemma 3.14. There-
fore, the functions

vk(x) =
u(rkx)

rk‖∇u‖L∞(Brk )

satisfy
‖∇vk‖L∞(BR) ≤ 2R1−ε for all R ≥ 1,

and
‖∇vk‖L∞(B1) = 1, vk(0) = 0.

Moreover,

D2vk =
rk

‖∇u‖L∞(Brk )

D2u ≥ − rk
‖∇u‖L∞(Brk )

Id,

and, in {vk > 0},∣∣(−L+ b · ∇)(∇vk)
∣∣ =

rk
‖∇u‖L∞(Brk )

∣∣(−L+ b · ∇)(∇u)
∣∣

≤ rk
‖∇u‖L∞(Brk )

‖∇f‖L∞ ≤
rk

‖∇u‖L∞(Brk )

.
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Notice that, from (3.32) and with the notation from the proof of Lemma 3.14,

1

ηk
:=
‖∇u‖L∞(Brk )

rk
≥ θ(rk)

2rεk
→∞, as rk ↓ 0.

Thus, in all we have a sequence vk such that vk ∈ C1, vk(0) = 0, and

‖∇vk‖L∞(BR) ≤ 2R1−ε for all R ≥ 1,∣∣(−L+ b · ∇)(∇vk)
∣∣ ≤ ηk in {vk > 0},

D2vk ≥ −ηkId,
with ηk ↓ 0. From the estimates in Proposition 3.10,

‖∇vk‖Cτ (BR) ≤ C(R) for all R ≥ 1,

for some constant depending on R, C(R). Thus, up to taking a subsequence, vk
converges in C1

loc(Rn) to some v∞ which by stability of viscosity solutions is a convex
global solution to the obstacle problem (3.24) fulfilling (3.25).

By the classification theorem, Theorem 3.11, v∞ must be of the form (3.26).
Taking limits

‖∇v∞‖L∞(B1) = 1

and v∞(0) = 0. Now the result follows because ηk ↓ 0 and vk converge in C1
loc(Rn)

to v∞.

3.6 C1,α regularity of the free boundary around

regular points

In this section we prove C1,α regularity of the free boundary around regular points.
We begin by proving the Lipschitz regularity of the free boundary, as stated in

the following proposition.

Proposition 3.15. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let u be a solution to (3.29)-(3.30)-(3.31). Assume that 0 is a regular free boundary
point.

Then, there exists a vector e ∈ Sn−1 such that for any ` > 0, there exists an
r > 0 and a Lipschitz function g : Rn−1 → R such that

{u > 0} ∩Br =
{
yn > g(y1, . . . , yn−1)

}
∩Br,

where y = Rx is a change of coordinates given by a rotation R with Re = en, and g
fulfils

‖g‖Lip(Br) ≤ `.

Moreover, ∂e′u ≥ 0 in Br for all e′ · e ≥ `√
1+`2

.

The following lemma will be needed in the proof, and it is analogous to [CRS17,
Lemma 6.2].
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Lemma 3.16. There exists η = η(n,Λ, λ, ‖b‖) such that the following statement
holds.

Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn. Let E ⊂ B1 be
relatively closed, and assume that, in the viscosity sense, w ∈ C(B1) satisfies

(−L+ b · ∇)w ≥ −η in B1 \ E
w = 0 in E ∪ (Rn \B2)
w ≥ −η in B2 \ E,

(3.33)

and ∫
B1

w+ ≥ 1.

Then, w is non-negative in B1/2, i.e.,

w ≥ 0 in B1/2.

Proof. Let us argue by contradiction, and suppose that the statement does not hold
for any η > 0. Define ψ ∈ C2

c (B3/4) be a radial function with ψ ≥ 0, ψ ≡ 1 in B1/2

and with |∇ψ| ≤ C(n). Let

ψt(x) := −η − t+ ηψ(x).

If w attains negative values on B1/2, then there exists some t0 > 0 and z ∈ B3/4

such that ψt0 touches w from below at z, i.e. ψt0 ≤ w everywhere and ψt0(z) =
w(z) < 0. Let δ > 0 be such that w < 0 in Bδ(z) (recall w continuous). Let us now
define

w̄(x) :=

{
w(x) if x ∈ Rn \Bδ(z)
ψt0(x) if x ∈ Bδ(z).

(3.34)

Notice that w̄ is C2 around z, and is such that w̄ ≤ w. By definition of viscosity
supersolution, we have

(−L+ b · ∇)w̄(z) ≥ −η.
On the one hand, this implies

(−L+ b · ∇)(w̄ − ψt0)(z) ≥ −Cη,

for some C depending on n, the ellipticity constants, and ‖b‖. On the other hand,
we can evaluate w̄ − ψt0 classically at z,

(−L+b · ∇)(w̄ − ψt0)(z) = −L(w̄ − ψt0)(z)

≤ −λ
∫
Rn

(w̄ − ψt0)(z + y)|y|−n−1dy ≤ −c(n)λ

∫
B1\Bδ(z)

(w̄ − ψt0)dy

≤ −c(n)λ

∫
B1

w+dy ≤ −c(n)λ.

We used here that (w̄ − ψt0)χB1\Bδ(z) ≥ w+ in B1.
In all, for η small enough depending only on n, the ellipticity constants, and ‖b‖,

we reach a contradiction.
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With the previous lemma and the results from the previous section, we can now
prove Proposition 3.15.

Proof of Proposition 3.15. Let δ > 0 and R0 to be chosen, and consider the rescaled
function from Proposition 3.13,

v(x) =
u(rx)

r‖∇u‖L∞(Br)

.

Thanks to Proposition 3.13, there exists some e ∈ Sn−1 such that∣∣∣∇v − (x · e)γ(b·e/χ(e))
+ e

∣∣∣ ≤ δ in BR0 .

Recall γ and χ are given by (3.12)-(3.11).
Now let e′ ∈ Sn−1 be such that (assuming ` ≤ 1)

e′ · e ≥ `√
1 + `2

≥ `

2
.

Notice that

∇v · e′ ≥ `

2
(x · e)γ(b·e/χ(e))

+ − δ in BR0 ,

and ∣∣(−L+ b · ∇)(∇v · e′)
∣∣ ≤ δ in {v > 0}.

Define

w =
C1

`
(∇v · e′)χB2 ,

for some C1 such that ∫
B1

w+ ≥ 1.

Notice that, if δ is small enough, then C1 depends only on n, `, ‖b‖, and the
ellipticity constants.

Let us call E = {v = 0}. If R0 is large enough, depending only on n, `, ε, ‖b‖, δ,
and the ellipticity constants, then w satisfies

(−L+ b · ∇)w ≥ −CC1

`
δ ≥ −η in B1 \ E

w = 0 in E ∪ (Rn \B2)
w ≥ −C1

`
δ ≥ −η in B2 \ E.

(3.35)

We are using here that, for x ∈ B1 \ E,

(−L+ b · ∇)w(x) ≥ −C1

`
δ − (−L+ b · ∇)

(
C1

`
(∇v · e′)χBc2

)
(x)

≥ −C1

`
δ +

C1

`
L(∇v · e′)χBc2(x)

≥ −C1

`
δ + λ

C1

`

∫
BR0−1

(∇v · e′)χBc2(x+ y) + (∇v · e′)χBc2(x− y)

2|y|n+1

+ λ
C1

`

∫
BcR0−1

(∇v · e′)χBc2(x+ y) + (∇v · e′)χBc2(x− y)

2|y|n+1

≥ −C1

`
δ − λC1

`
Ĉδ − ĉ ≥ −CC1

`
δ,
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where R0 is chosen large enough so that ĉ can be comparable to the other terms
(which can be done, thanks to the fact that ∇v grows as R1−ε). Notice that C
depends only on λ and n.

In all, we can choose δ small enough so that

CC1

`
δ ≤ η

for the constant η given in Lemma 3.16.
Therefore, applying Lemma 3.16 to the function w we get that

w ≥ 0 in B1/2,

or equivalently,
∂e′u ≥ 0 in Br/2,

for all e′ ∈ Sn−1 such that e′ · e ≥ `√
1+`2

. This implies that ∂{u > 0} is Lipschitz in
Br, with Lipschitz constant smaller than `.

Finally, combining Proposition 3.15 with the boundary regularity result in The-
orem 3.6 we show that the free boundary is C1,α around regular points.

Proposition 3.17. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let u be a solution to (3.29)-(3.30)-(3.31). Assume that x0 is a regular free boundary
point.

Then, there exists r > 0 such that the free boundary is C1,α in Br(x0) for some
α > 0 depending only on n, ‖b‖, and the ellipticity constants.

Proof. Without loss of generality assume x0 = 0 and that ν(0) = en, where ν(0)
denotes the normal vector to the free boundary at 0 pointing towards {u > 0}.

By Proposition 3.15, we already know the free boundary is Lipschitz around
0, with Lipschitz constant 1 in a ball Bρ. Let v1 = 1√

2
(∂iu+ ∂nu) for any fixed

i ∈ {1, . . . , n− 1}, and let v2 = ∂nu. We first show that for some r > 0 and α > 0,∥∥∥∥v1

v2

∥∥∥∥
Cα({u>0}∩Br)

=
1√
2

∥∥∥∥1 +
∂iu

∂nu

∥∥∥∥
Cα({u>0}∩Br)

≤ C. (3.36)

Define w as in the proof of Proposition 3.15, i.e., w = C1(∇v · e′)χB2 , where v is
the rescaling given by Proposition 3.13, and e′ is such that e′ · e ≥ `

2
(choose ` = 1

for example).
From the proof of Proposition 3.15 we know that w ≥ 0 in B1/2 (if, using the

same notation, R0 is large enough and δ is small enough; i.e., the rescaling defining
v is appropriately chosen). Now define

w̃ = C1(∇v · e′)+

and notice that ∣∣(−L+ b · ∇)w̃
∣∣ ≤ η in B1/4 \ {v = 0}

for some η > 0 that can be made arbitrarily small by choosing the appropriate
(small) δ > 0 and (large) R0 in the rescaling given by Proposition 3.13. The previous
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inequality follows from the fact that (∇v ·e′)− ≤ δ in BR0 , (∇v ·e′)− ≤ 2 (1 + |x|1−ε)
in BRc0

, and (∇v · e′)− ≡ 0 in B1/2.
Let ein := 1√

2
(ei + en), and define w1 = C (∇v · ein)+ and w2 = C(∇v · en)+

(taking e′ = ein and e′ = en). Now notice that w1 and w2 fulfil the hypotheses of the
boundary regularity result in Theorem 3.6, and w1 = C(∇v ·ein) and w2 = C(∇v ·en)
in B1/2. Thus, applying Theorem 3.6 to w1 and w2 we obtain that there exists some
α > 0 such that ∥∥∥∥w1

w2

∥∥∥∥
Cα({v>0}∩B1/8)

≤ C.

Going back to the rescalings defining w̃ we reach that for some r > 0, (3.36) holds.
Once we have (3.36) the procedure is standard. Notice that the components of

the normal vector to the level sets {u = t} for t > 0 can be written as

νi(x) =
∂iu

|∇u|(x) =
∂iu/∂nu(∑n−1

j=1 (∂ju/∂nu)2 + 1
)1/2

,

νn(x) =
∂nu

|∇u|(x) =
1(∑n−1

j=1 (∂ju/∂nu)2 + 1
)1/2

,

for u(x) = t > 0. In particular, from the regularity of ∂iu/∂nu given by (3.36),
we obtain ν is Cα on these level sets; that is, |ν(x) − ν(y)| ≤ C|x − y|α whenever
x, y ∈ {u = t} ∩Br. Now let t ↓ 0 and we are done.

3.7 Estimates in C1,α domains

Once we know that the free boundary is C1,α around regular points, we need to find
the expansion of the solution (3.5) around such points. To do so, we establish fine
boundary regularity estimates for solutions to elliptic problem with critical drift in
arbitrary C1,α domains. That is the aim of this section.

The main result of this section is the following, for the Dirichlet problem with
the operator −L + b · ∇ in C1,α domains. We will use it on the derivatives of the
solution to the obstacle problem.

Theorem 3.18. Let L be an operator of the form (3.7)-(3.8), let b ∈ Rn and let Ω
be a C1,α domain.

Let f ∈ L∞(Ω ∩B1), and suppose u ∈ L∞(Rn) satisfies{
(−L+ b · ∇)u = f in Ω ∩B1

u = 0 in B1 \ Ω.
(3.37)

Then, for each boundary point x0 ∈ B1/2 ∩ ∂Ω, there exists a constant Q with
|Q| ≤ C

(
‖u‖L∞(Rn) + ‖f‖L∞(Ω∩B1)

)
such that for all x ∈ B1∣∣∣u(x)−Q

(
(x− x0) · ν(x0)

)γ̃(x0)

+

∣∣∣ ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(Ω∩B1)

)
|x− x0|γ̃(x0)+σ,

where σ > 0 and ν(x0) is the normal unit vector to ∂Ω at x0 pointing towards the
interior of Ω, and γ̃(x0) is defined in (3.10). The constant C depends only on n, α,
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Ω, the ellipticity constants, and ‖b‖; and the constant σ depends only on n, α, the
ellipticity constants, and ‖b‖.

To prove Theorem 3.18 we will need several ingredients.

3.7.1 A supersolution and a subsolution

In this section we denote
d(x) := dist(x,Rn \ Ω).

We will also use the following.

Definition 3.2. Given a C1,α domain Ω, we consider % a regularised distance func-
tion to C1,α; i.e., a function that satisfies

K̃−1d ≤ % ≤ K̃d,

‖%‖C1,α(Ω) ≤ K̃ and |D2%| ≤ K̃dα−1,

where the constant K̃ depends only on α and the domain Ω.

The existence of such regularised distance was discussed, for example, in [RS15,
Remark 2.2].

We next construct a supersolution, needed in our proof of Theorem 3.18.

Proposition 3.19 (Supersolution). Let L be an operator of the form (3.7)-(3.8),
and let b ∈ Rn. Let Ω be a C1,α domain for some α > 0, and suppose 0 ∈ ∂Ω.

Let ν : ∂Ω → Sn−1 be the outer normal vector at the points of the boundary of
Ω, let γ be defined by (3.12), and χ by (3.11). Let us also define

γ0 := γ

(
b · ν(0)

χ(ν(0))

)
,

and

ην := inf

{
η ≥ 0 : γ

(
b · ν(x)

χ(ν(x))

)
≥ γ0 − η ∀x ∈ ∂Ω ∩B1

}
. (3.38)

Let φ := %κ for a fixed 0 < κ < γ0 − 2ην, and where % is the regularised distance
given by Definition 3.2. Then, there exist δ > 0 and Ĉ > 0 such that{

Ĉ(−L+ b · ∇)φ ≥ 1 in B1/2 ∩ {x : 0 < d(x) ≤ δ}
Ĉφ ≥ 1 in B1/2 ∩ {x : d(x) ≥ δ}. (3.39)

The constants δ and Ĉ depend only on n, Ω, κ, the ellipticity constants, and ‖b‖.
Proof. Pick any x0 ∈ B1/2 ∩ {x : d(x) ≤ δ}, and define

l0(x) =
(
%(x0) +∇%(x0) · (x− x0)

)
+
.

Notice that, whenever l0 > 0, if we define %̂0 := ∇%(x0)
|∇%(x0)| and z = %̂0 · x then

(−L+ b · ∇)lκ0 (x) =
(
χ(%̂0)(−∆)1/2 + (b · %̂0) ∂

) (
|∇%(x0)|z + c0

)κ
+

= |%(x0)|χ(%̂0)c
(
κ, b · %̂0/χ(%̂0)

)(
|∇%(x0)|z + c0

)κ−1

+
,
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where c0 = %(x0) − ∇%(x0) · x0, and c(κ, b · %̂0/χ(%̂0)) is the constant arising from
Proposition 3.7. We want to check that this constant is positive, which is equivalent
to saying (again, from Proposition 3.7) that

κ < γ

(
b · %̂0

χ(%̂0)

)
.

To see this, it is enough to check that

γ0 − 2ην ≤ γ

(
b · %̂0

χ(%̂0)

)
,

which will be true for some small δ > 0 and for any x0 ∈ B1/2 ∩ {x : d(x) ≤ δ} if

lim
δ↓0

inf
y∈B1/2

0<d(y)≤δ

sup
x∈∂Ω∩B3/4

∇%(y)

|∇%(y)| · ν(x) = 1,

i.e., ∇% normalised is close to some unit normal vector to the boundary as δ goes to
zero (notice that γ and χ are continuous). But this is true since % is a C1,α function,
so in particular, its gradient is continuous, and the boundary is a level set of %; i.e.,
∇%(y) = |∇%(y)|ν(y) for any y on the boundary. It is important to remark that the
modulus of continuity of ∇% depends only on Ω.

Now notice that

l0(x0) = %(x0) ∇l0(x0) = ∇%(x0). (3.40)

Let %̃ be a C1,α(Rn) extension of % to the whole Rn with % ≤ 0 in Rn \ Ω. Then we
have ∣∣%(x0) +∇%(x0) · y − %̃(x0 + y)

∣∣ ≤ C|y|1+α.

By using that |a+ − b+| ≤ |a− b| we find∣∣l0(x0 + y)− %(x0 + y)
∣∣ ≤ C|y|1+α.

Now, also using that |at−bt| ≤ |a−b|(at−1+bt−1) for a, b ≥ 0, |at−bt| ≤ C|a−b|t,
and saying d0 = d(x0) we get

|φ− lκ0 |(x0 + y) ≤


Cdκ−1

0 |y|1+α for y ∈ Bd0/(K̃+1)

C|y|(1+α)κ for y ∈ B1 \Bd0/(K̃+1)

C|y|κ for y ∈ Rn \B1.

(3.41)

We have used here that, in Bd0/(K̃+1), l
κ−1
0 ≤ Cdκ−1

0 and %κ−1 ≤ Cdκ−1
0 . Here, K̃

denotes the constant given in Definition 3.2. Putting all together

(−L+b · ∇)φ(x0) =

= (−L+ b · ∇)(φ− lκ0 )(x0) + (−L+ b · ∇)lκ0 (x0)

≥ L(lκ0 − φ)(x0) + c(κ)dκ−1
0

=

∫
Sn−1

∫ ∞
0

((lκ0 − φ)(x0 + rθ) + (lκ0 − φ)(x0 − rθ))
dr

r2
dµ(θ) + c(κ)dκ−1

0

≥ −C
(∫ d0/(K̃+1)

0

dκ−1
0 r1+α

r2
dr +

∫ 1

d0/(K̃+1)

r(1+α)κ

r2
dr +

∫ ∞
1

rκ

r2
dr

)
+ c(κ)ρκ−1

≥ −Cdκ−1+α
0 − Cd(1+α)κ−1

0 + c(κ)dκ−1
0 .
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Notice that the right-hand side tends to +∞ as δ ↓ 0 independently of the x0

chosen. Thus, we can choose δ small enough so that the right-hand side is greater
than 1. Then, by choosing Ĉ ≥ 1 such that Ĉφ ≥ 1 in B1/2 ∩ {x : d(x) > δ} we are
done.

We can similarly find a subsolution for the problem. It will be used in the next
section.

Lemma 3.20 (Subsolution). Let L be an operator of the form (3.7)-(3.8), and let
b ∈ Rn. Let Ω be a C1,α domain for some α > 0, and suppose 0 ∈ ∂Ω.

Let ν : ∂Ω → Sn−1 be the outer normal vector at the points of the boundary of
Ω, let γ be defined by (3.12), and χ by (3.11). Let us also define

γ0 := γ

(
b · ν(0)

χ(ν(0))

)
,

and

η(2)
ν := inf

{
η ≥ 0 : γ

(
b · ν(x)

χ(ν(x))

)
≤ γ0 + η ∀x ∈ ∂Ω ∩B1

}
. (3.42)

Let φ := %κ2 for any fixed 1 > κ2 > γ0 + 2η
(2)
ν . Then, there exist δ > 0 and Ĉ > 0

such that{
(−L+ b · ∇)φ ≤ −1 in B1/2 ∩ {x : 0 < d(x) ≤ δ}

φ ≤ Ĉ in B1/2 ∩ {x : d(x) > δ}. (3.43)

The constants δ and Ĉ depend only on n, Ω, κ2, the ellipticity constants, and ‖b‖.

Proof. The proof follows by the same steps as the proof of Proposition 3.19. Using
the same notation, one just needs to notice that when evaluating

(−L+ b · ∇)lκ2
0 (x) = c

(
κ2, b · %̂0/χ(%̂0)

)(
|∇%(x0)|z + c0

)κ2−1

+
,

now the constant c(κ2) is negative (independently of the κ2 chosen, as before). Thus,

(−L+ b · ∇)φ(x0) ≤ Cdκ2−1+α
0 + Cd

(1+α)κ2−1
0 + c(κ)dκ2−1

0 ,

for negative c(κ2), so that if d0 is small enough we obtain the desired result.

3.7.2 Hölder continuity up to the boundary in C1,α domains

The aim of this subsection is to prove Proposition 3.21 below. Before doing that, let
us introduce a definition.

Definition 3.3. We say that Γ ⊂ Rn is a C1,α graph splitting B1 into U+ and U−

if there exists some fΓ ∈ C1,α(Rn−1) such that

• Γ := {(x′, fγ(x′)) ∩B1 for x′ ∈ Rn−1};

• U+ := {(x′, xn) ∈ B1 : xn > fΓ(x′)};
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• U− := {(x′, xn) ∈ B1 : xn < fΓ(x′)}.

Under these circumstances, we refer to the C1,α norm of Γ as ‖fΓ‖C1,α(D′), where
D′ := {x′ ∈ Rn : (x′, fΓ(x′)) ∈ B1}.

Proposition 3.21. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let Γ be a C1,α graph splitting B1 into U+ and U−, according to Definition 3.3, and
suppose 0 ∈ Γ.

Let f ∈ L∞(U+), let g ∈ Cβ(U−), and suppose u ∈ C(B1) satisfying the growth
condition |u(x)| ≤M(1 + |x|)Υ in Rn for some Υ < 1. Assume also that u satisfies
in the viscosity sense {

(−L+ b · ∇)u = f in U+

u = g in U−.
(3.44)

Then there exists some σ > 0 such that u ∈ Cσ(B1/2) with

‖u‖Cσ(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖g‖Cβ(U−) + ‖f‖L∞(U+) +M

)
.

The constants C and σ depend only on n, α, the C1,α norm of Γ, Υ, the ellipticity
constants, and ‖b‖.

Proof. Let ũ = uχB1 so that (−L + b · ∇)ũ = f + L(uχBc1) =: f̃ in U+ ∩ B3/4,

and ũ = g in U−. Note that ‖f̃‖L∞(U+∩B3/4) ≤ C(‖f‖L∞(U+) + M) =: C0 for some
constant C depending only on n, Υ, and the ellipticity constants.

We begin by proving that for some small ε > 0, and for some C, we have

‖ũ− g(z)‖L∞(Br(z)) ≤ Crε for all r ∈ (0, 1), and for all z ∈ Γ ∩B1/2, (3.45)

where ε > 0 and C depend only on n, C0, ‖u‖L∞(B1), ‖g‖Cβ(U−), the ellipticity
constants, and ‖b‖.

Let us define a C1,α domain that will be used in this proof, analogous to a fixed
ball if the surface Γ was C1,1.

Thus, we define P as a fixed C1,α bounded convex domain with diameter 1 that
coincides with {x = (x1, . . . , xn) ∈ Rn : xn ≥ |(x1, . . . , xn−1)|1+α} in B1/2. Let yP
be a fixed point inside the domain, which will be treated as the center. Let us call
PR the rescaled version of such domain with diameter R and center yPR , and let us
define

P
(δ)
R := {x ∈ Rn : dist(x, PR) ≤ δ}.

As an abuse of notation we will also call PR any rotated and translated version that
will be given by the context.

Note that, since Γ is C1,α, there exists some ρ0 ∈ (0, 1) depending on the C1,α

norm of Γ such that any point z ∈ Γ∩B1/2 can be touched by some Pρ0 rotated and
translated correspondingly and contained completely in U−.

Let us now consider the supersolution given by Proposition 3.19 with respect to
the domain Rn \ P .
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B1/2

Γ

U+

U−

P
(Rδ)
R

O
z

yPR

PRu = g

(−L + b · ∇)u = f

Figure 3.1: Sketch of the ball B1/2 split into U+ and U−, and a domain PR tangen-
tially touching the boundary Γ.

That is, there is some function φP such that, for some constants δ > 0 and C
fixed, 

(−L+ b · ∇)φP ≥ 1 in P (δ) \ P
φP ≥ 1 in Rn \ P (δ)

φP = 0 in P
φP ≤ Cdκ in Rn,

(3.46)

where d = dist(x, P ) and 0 < κ < min
{
γ
(
b′·e
χ(e)

)
: ‖b′‖ = ‖b‖, e ∈ Sn−1

}
can also be

fixed — recall that γ and χ are given by (3.12)-(3.11).

Let P ′ be a rotated version of P , and let φP ′ be the corresponding rotated
supersolution. Notice that we can assume that φP ′ also fulfils (3.46) (with P ′ instead
of P ), since while the operator (−L+ b · ∇) is not rotation invariant, only an extra
positive constant arises depending on the ellipticity constants and ‖b‖.

Given a rotated, scaled and translated version of the domain P , PR, we will
denote the corresponding supersolution (the rotated, scaled and translated version
of φP ) by φPR .

Let now z ∈ Γ∩B1/2. For any R ∈ (0, ρ0) there exists some rescaled, rotated and
translated domain PR ⊂ U− touching Γ at z. Recall that yPR is the center of the
domain PR, so that in particular |z − yPR | = CPR for some constant CP that only
depends on the domain P chosen (CP ∈ (0, 1) because the domain PR has diameter
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R). See Figure 3.1 for a representation of this situation.
Recall that φPR is the supersolution corresponding to the domain PR, with the δ

given by Proposition 3.19 (now, when rescaling, δ becomes Rδ). Define the function

ψ(x) = g(yPR) + ‖g‖Cβ(U−)

(
(1 + δ)R

)β
+
(
C0 + ‖u‖L∞(B1)

)
φPR .

Note that ψ is above ũ in U− ∩ P (Rδ)
R , since ũ = g there and the distance from

yPR to any other point in P
(Rδ)
R is at most (1 + δ)R.

On the other hand, in P
(Rδ)
R \PR we have (−L+b ·∇)ψ ≥ (C0 +‖u‖L∞(B1))R

−1 ≥
C0 ≥ (−L + b · ∇)ũ since R ≤ ρ0 < 1; and outside P

(Rδ)
R we have ũ ≤ ψ. In all,

ũ ≤ ψ everywhere by the maximum principle, and thus for any R ∈ (0, ρ0)

ũ(x)− g(z) ≤ C
(
Rβ + (r/R)κ

)
for all x ∈ Br(z) and for all r ∈ (0, Rδ),

for some constant C that depends only on n, C0, ‖u‖L∞(B1), ‖g‖Cβ(U−), the ellipticity
constants, and ‖b‖. If R is small enough we can take r = R2, and repeat this
reasoning upside down to get that

‖ũ− g(z)‖L∞(Br(z)) ≤ C
(
rβ/2 + rκ/2

)
≤ Crε for all r ∈ (0, δ2),

for ε = min
{
β
2
, κ

2

}
. This yields the result (3.45) by taking a larger C if necessary.

Now let x, y ∈ B1/2, and let r = |x− y|. We will show

|u(x)− u(y)| ≤ Crσ,

for some σ > 0. If x, y ∈ U− we are done by the regularity of g. If x ∈ U+, y ∈ U−,
we can take z in the segment between x and y, on the boundary Γ, and compare x
and y to z, so that it is enough to consider x, y ∈ U+.

Let R = dist(x,Γ) ≥ dist(y,Γ), and suppose x0, y0 ∈ Γ are such that dist(x,Γ) =
dist(x, x0) and dist(y,Γ) = dist(y, y0). By interior estimates for the problem (see
Proposition 3.4),

[u]Cε(BR/2(x)) ≤ CR−ε. (3.47)

Let r < 1, and let us separate two different cases

• Suppose r ≥ R2/2. Then, using (3.45) and the regularity of g we obtain

|u(x)− u(y)| ≤ |u(x)− u(x0)|+ |u(x0)− u(y0)|+ |u(y0)− u(y)|
≤ CRε + C(2R + r)β

≤ C(rε/2 + rβ/2) ≤ Crε/2.

• Assume r ≤ R2/2, so that y ∈ BR/2(x). Thus, using (3.47),

|u(x)− u(y)| ≤ CR−εrε ≤ Crε/2.

In all, we have found u ∈ Cσ(B1/2) for σ = ε/2.

Remark 3.1. When U is C∞, the above Hölder estimate follows from the results in
[S94], [CD01]. We thank G. Grubb for pointing this out to us.
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3.7.3 A Liouville theorem

We next prove a Liouville-type theorem in the half-space for non-local operators
with critical drift, that will be used to prove Theorem 3.18.

Theorem 3.22. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn. Let u
be any weak solution to{

(−L+ b · ∇)u = 0 in Rn
+

u = 0 in Rn
−.

(3.48)

Assume also that for some ε > 0 and some constant C, u satisfies

‖u‖L∞(BR) ≤ CR1−ε for all R ≥ 1.

Then,
u(x) = C(xn)

γ(bn/χ)
+ , (3.49)

for some C > 0, and where bn is the n-th component of b. The constant χ is defined
by χ = χ(en) where χ(e) is given by (3.11), and γ is given by (3.12).

Before proving the Liouville theorem, let us prove it in the 1-dimensional case.
Notice that from Proposition 3.12 it already follows that any non-negative solu-

tion must be either u ≡ 0 or the one found in Proposition 3.7. Here, however, we
need the same result for solutions that may change sign.

Proposition 3.23. Let b ∈ R, and let u ∈ C(R) be a function satisfying

(−∆)1/2u+ bu′ = 0 in R+, u ≡ 0 in R−,

and |u(x)| ≤ C(1 + |x|1−ε) for some ε > 0. Then,

u(x) = C0(x+)γ(b),

where γ is given by (3.12).

Proof. We first claim that ∥∥u/(x+)γ(b)
∥∥
Cσ([0,1])

≤ C (3.50)

for some σ > 0.
Indeed, let

w = χ[0,2]u+ κχ[3/2,2],

and recall that, for some Ĉ,

‖u‖L∞([0,R]) ≤ ĈR1−ε.

Notice that w(0) = 0, and that w ≤ C0(x)
γ(b)
+ for x ≥ 1, if C0 is big enough

depending only on κ and Ĉ. Choose κ so that (−∆)1/2w ≤ 0 in [0, 1] so that by

the maximum principle u = w ≤ C0(x)
γ(b)
+ in [0, 1]. Doing the same for −u we reach

that
|u| ≤ C0(x)

γ(b)
+ for x ∈ [0, 1].
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Define now ũ = uχ(0,m) + M(x+)γ(b), where M = M(m) is such that ũ ≥ 0 in
(0,m). Notice that ũ solves an equation of the form (−∆)1/2ũ + bũ′ = fm(x) in
(0, 1) for some bounded fm with ‖fm‖L∞(0,1) ↓ 0 as m → ∞. We can now apply
Theorem 3.6 with ũ and (x+)γ(b) to get that for some large enough m,∥∥ũ/(x+)γ(b)

∥∥
Cσ([0,1])

≤ C,

for some σ > 0. Thus, we get (3.50).

Define v = u− k(x+)γ(b), where k = limx↓0
u(x)

(x+)γ(b) . Then we have

|v(x)| ≤ C|x|1−ε for x ≥ 1, (3.51)

|v(x)| ≤ C|x|γ(b)+σ for x ∈ [0, 2], (3.52)

and we can assume, without loss of generality, that 1 − ε > γ(b) + σ. Combining
this with the interior estimates from Proposition 3.4 we obtain v ∈ Cγ(b)+σ([0, 1]).
Indeed, take x, y ∈ [0, 1], x < y. Let r = y − x and R = |y|. Now separate two cases

• If 2r ≥ R, by (3.52)

|v(x)− v(y)| ≤ |v(x)|+ |v(y)| ≤ C(|x|γ(b)+σ + |y|γ(b)+σ)

≤ C
(
(R− r)γ(b)+σ +Rγ(b)+σ

)
≤ Crγ(b)+σ.

• If 2r < R, then x, y ∈ (y − R/2, y + R/2). By rescaling the estimates from
Proposition 3.4 and using (3.51)

Rγ(b)+σ[v]Cγ(b)+σ(y−R2 ,y+R
2 ) ≤ C

(
‖v‖L∞(y−R,y+R) +R1−ε) .

Now, from (3.52)
‖v‖L∞(y−R,y+R) ≤ CRγ(b)+σ,

so that
[v]Cγ(b)+σ(y−R2 ,y+R

2 ) ≤ C.

This implies
‖v‖Cγ(b)+σ([0,1]) ≤ C,

as desired.
Now, we claim that using the interior estimates from Proposition 3.4 we obtain

|v′(x)| ≤ C|x|−ε for x ≥ 1, (3.53)

and
|v′(x)| ≤ C|x|γ(b)+σ−1 for x ∈ [0, 1]. (3.54)

Let us show that these last inequalities hold. The first one, (3.53), follows using
that |v(x)| ≤ C(1+|x|1−ε), and that (3.51)-(3.52) combined with the rescaled interior
estimates in Proposition 3.4 yield

[v]Cγ(b)+σ(R,2R) ≤ CR1−ε−γ(b)−σ for R ≥ 1. (3.55)
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Indeed, take 0 < α < γ(b) + σ, and any h ∈ R with |h| ≤ R/2. Then by interior
estimates applied to the incremental quotients,[

v(x+ h)− v(x)

|h|γ(b)+σ

]
C1−α(R,2R)

≤ CRα−ε−γ(b)−σ for R ≥ 1,

with C independent of the h chosen. In particular, this yields

[v′]Cγ(b)+σ−α(R,2R) ≤ CRα−ε−γ(b)−σ for R ≥ 1.

The inequality in (3.53) now follows comparing the value of v′(2k) for any k ∈ N
with v′(1) dyadically.

For the second inequality, (3.54), we proceed similarly. Take 0 < α < γ(b) + σ,
and for any R > 0 fixed take |h| ≤ R/2 and notice that[

v(x+ h)− v(x)

|h|γ(b)+σ

]
C1−α(R,2R)

≤ CRα−1 for 0 < R < 1, (3.56)

with C independent of h. This follows from the interior estimates in Proposition 3.4
and the growth of v(x+h)−v(x)

|h|γ(b)+σ given by (3.55). As before, this implies

[v′]Cγ(b)+σ−α(R,2R) ≤ CRα−1 for 0 < R < 1.

Finally, the inequality (3.54) follows comparing the value of v′(2−k) with v′(1) dyad-
ically. Thus, (3.53) and (3.54) are proved.

Define now the function

ψA(x) = A
(
(x+)γ(b) + (x+)γ(b)−1

)
,

and notice that ψA and v′ solve

(−∆)1/2ψA + bψ′A = 0 in x > 0, (3.57)

(−∆)1/2v′ + b(v′)′ = 0 in x > 0. (3.58)

We have that ψA > v′ in {x > 0} for some large enough A, thanks to the growth
of v′ in (3.53)-(3.54). Choose the smallest nonnegative A such that ψA ≥ v′. Then,
by the growth at zero and infinity of both v′ and ψA they touch at some point in
(0,∞). Moreover, if A > 0, then we must have ψA 6≡ v′.

Let x0 > 0 be a point where ψA(x0) = v′(x0). Notice that ψA−v′ is a non-negative
(and non-zero) function with a minimum at x0. Thus,(

(−∆)1/2(ψA − v′) + b(ψA − v′)′
)
(x0) = (−∆)1/2(ψA − v′)(x0) < 0,

which contradicts the fact that both ψA and v′ are solutions to the problem, (3.57)-
(3.58). Thus, there is no positive A such that ψA and v′ touch at at least one point,
so we must have v′ ≤ 0. Doing the same from below we reach v′ ≥ 0, and therefore
v′ ≡ 0. Hence, since u(0) = 0 we find v ≡ 0. In particular, this means that

u = k(x+)γ(b),

as desired.
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We can now prove the Liouville theorem.

Proof of Theorem 3.22. Let us first see that the solution is 1-dimensional in the
direction en.

Given ρ ≥ 1, define
vρ(x) = ρ−ε+1u(ρx).

Notice that

‖vρ‖L∞(BR) = ρ−ε+1‖u(ρ·)‖L∞(BR) = ρ−ε+1‖u‖L∞(BρR) ≤ CR1−ε.

Moreover, by the homogeneity of (−L+ b · ∇),{
(−L+ b · ∇)vρ = 0 in Rn

+

vρ = 0 in Rn
−.

(3.59)

Define now ṽρ = vρχB2 , so that ṽρ ∈ L∞(Rn). We now have{
(−L+ b · ∇)ṽρ = gρ in B+

1

ṽρ = 0 in B−1 ,
(3.60)

for some gρ with ‖gρ‖L∞(B+
1 ) ≤ C0 with C0 independent of ρ. Indeed,

(−L+ b · ∇)ṽρ = (−L+ b · ∇)(vρ − vρχBc2) = L(vρχBc2) ≤ C0 in B+
1 ,

where the last inequality follows thanks to the uniform growth control on vρ.
Now, by Proposition 3.21,

‖vρ‖Cσ(B1/2) = ‖ṽρ‖Cσ(B1/2) ≤ C,

from which

[u]Cσ(Bρ/2) = ρ−σ[u(ρ·)]Cσ(B1/2) = ρ−σ+1−ε[vρ]Cσ(B1/2) ≤ Cρ−σ+1−ε. (3.61)

Now, given e ∈ Sn−1 with en = 0, and for any h > 0, define

w(x) =
u(x+ eh)− u(x)

hσ
.

By (3.61),
‖w‖L∞(BR) ≤ CR−σ+1−ε for all R ≥ 1.

We also have {
(−L+ b · ∇)w = 0 in Rn

+

w = 0 in Rn
−,

(3.62)

thanks to the fact that e does not have component in the n-th direction, en = 0.
Repeat the previous argument applied to w instead of u, to get

[w]Cσ(BR) ≤ CR−2σ+1−ε for all R ≥ 1.

Repeating iteratively we get that, for m = b1−ε
σ

+ 1c, then

[wm]Cσ(BR) ≤ CR−mσ+1−ε for all R ≥ 1,
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where wm is an incremental quotient of order m of u. Letting R → ∞ we observe
that wm ≡ 0.

Since wm is any incremental quotient of order m, this means that for any fixed
x, qx(y

′) := u(x + (y′, 0)) for y′ ∈ Rn−1 is a polynomial of order m − 1 in the y′

variables. However, from the growth condition on u the polynomial must grow less
than linearly at infinity, and therefore it is constant. This means that for any x,
u(x + eh) = u(x) for all h ∈ R and for all e ∈ Sn−1 with en = 0; i.e., u(x) = u(xn),
as we wanted to see.

Now we can proceed as in the proof of the classification theorem, Theorem 3.11,
and use the classification of 1-dimensional solutions from Proposition 3.23.

3.7.4 Proof of Theorem 3.18

We now prove the following result, which will directly yield Theorem 3.18. For this,
we combine the ideas in [RS16] with Propositions 3.21 and 3.23.

Proposition 3.24. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let Γ be a C1,α graph splitting B1 into U+ and U− (see Definition 3.3), and suppose
0 ∈ Γ and that ν(0) = en, where ν(0) is the normal vector to Γ at 0 pointing towards
U+.

Let f ∈ L∞(U+), and suppose u ∈ L∞(Rn) satisfies{
(−L+ b · ∇)u = f in U+

u = 0 in U−.
(3.63)

Let us denote γ := γ
(

b·ν(0)
χ(ν(0))

)
= γ(bn/χ(en)) and χ = χ(en) as defined in

(3.12)-(3.11), and suppose that γ ∈
[
γ0, γ0

(
1 + α

8

)]
for some γ0 ∈ (0, 1) such that

γ0

(
1 + α

4

)
< 1. Suppose also that ην as defined in (3.38) satisfies ην ≤ αγ0

64
, and let

Υ = γ0

(
1 + α

4

)
.

Then, there exists Q with |Q| ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(U+)

)
such that∣∣u(x)−Q(xn)γ+

∣∣ ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(U+)

)
|x|Υ for all x ∈ B1,

where the constant C depends only on n, α, the C1,α norm of Γ, γ0, the ellipticity
constants, and ‖b‖.

Before proving the previous result let us state a useful lemma. It can be found
in [RS16, Lemma 5.3].

Lemma 3.25 ([RS16]). Let 1 > Υ > β0 ≥ β and ν ∈ Sn−1 some unit vector. Let
u ∈ C(B1) and define

φr(x) := Q∗(r)(x · ν)β+,

where

Q∗(r) := arg minQ∈R

∫
Br

(
u(x)−Q(x · ν)β+

)2
dx =

∫
Br
u(x)(x · ν)β+dx∫
Br

(x · ν)2β
+ dx

.
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Assume that for all r ∈ (0, 1) we have

‖u− φr‖L∞(Br) ≤ C0r
Υ.

Then, there is Q ∈ R with |Q| ≤ C(C0 + ‖u‖L∞(B1)) such that

‖u−Q(x · ν)β+‖L∞(Br) ≤ CC0r
Υ

for some constant C depending only on Υ and β0.

We can now prove Proposition 3.24.

Proof of Proposition 3.24. Let us argue by contradiction. Suppose that there are
sequences Γi, U

+
i , U−i , Li, bi, ui, and fi that satisfy the assumptions

• Γi is a C1,α graph with bounded C1,α norm independently of i, splitting B1

into U+
i and U−i with 0 ∈ Γi and with en being the normal vector at 0 pointing

towards U+
i .

• Li are of the form (3.7)-(3.8), and ‖bi‖ = ‖b‖;

• For each Γi, the corresponding ην as defined in (3.38) fulfils ην ≤ (αγ0)/64;

• ‖ui‖L∞(Rn) + ‖fi‖L∞(U+) = 1;

• ui solves (−Li + bi · ∇)ui = fi in U+
i , ui = 0 in U−i ;

• If we define γi := γ(bi · en/χi) with γ as in (3.12) and χi = χi(en) as in (3.11)
with the operator Li, then γi ∈ [γ0, γ0(1 + α/8)];

but they are such that for all C > 0 there exists some i such that there is no constant
Q satisfying ∣∣ui(x)−Q(xn)γi+

∣∣ ≤ C|x|Υ for all x ∈ B1.

Step 1: Construction and properties of the blow up sequence.
Let us denote

φi,r := Qi(r)(xn)γi+ ,

where

Qi(r) := arg minQ∈R

∫
Br

(ui(x)−Q(xn)γi+ )2dx =

∫
Br
ui(x)(xn)γi+dx∫
Br

(xn)2γi
+ dx

.

From Lemma 3.25 with β = γi and β0 = γ0(1 + α/8) we have that

sup
i

sup
r>0

{
r−Υ‖ui − φi,r‖L∞(Br)

}
=∞.

Define the monotone function

θ(r) := sup
i

sup
r′>r

{
(r′)−Υ‖ui − φi,r′‖L∞(Br′ )

}
.
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Note that for r > 0, θ(r) < ∞, and θ(r) → ∞ as r ↓ 0. Now take a sequences
rm ↓ 0 and im such that

(rm)−Υ‖uim − φim,rm‖L∞(Brm ) ≥
θ(rm)

2
,

and denote φm = φim,rm .
Consider now

vm(x) =
uim(rmx)− φm(rmx)

rΥ
mθ(rm)

.

By definition of φm we have the orthogonality condition for all m ≥ 1,∫
B1

vm(x)(xn)γi+dx = 0. (3.64)

Note that also from the choice of rm we have a nondegeneracy condition for vm,

‖vm‖L∞(B1) ≥
1

2
. (3.65)

From the definition of φi,r, φi,2r − φi,r =
(
Qi(2r)−Qi(r)

)
(xn)γi+ so that

|Qi(2r)−Qi(r)|rγi = ‖φi,2r − φi,r‖L∞(Br)

≤ ‖φi,2r − u‖L∞(B2r) + ‖φi,r − u‖L∞(Br) ≤ CrΥθ(r).

Proceeding inductively, if R = 2N , then

rγi−Υ|Qi(Rr)−Qi(r)|
θ(r)

≤
N−1∑
j=0

2j(Υ−γi)
(2jr)

γi−Υ|Qi(2
j+1r)−Qi(2

jr)|
θ(r)

≤ C
N−1∑
j=0

2j(Υ−γi)
θ(2jr)

θ(r)
≤ C2N(Υ−γi) = CRΥ−γi .

(3.66)

Thus, we obtain a bound on the growth control of vm given by

‖vm‖L∞(BR) ≤ CRΥ for all R ≥ 1. (3.67)

Indeed,

‖vm‖L∞(BR) =
1

θ(rm)rΥ
m

‖ui −Qim(rm)(xn)γi+‖L∞(Rrm)

≤ 1

θ(rm)rΥ
m

‖ui −Qim(Rrm)(xn)γi+‖L∞(Rrm)+

+
1

θ(rm)rΥ
m

|Qim(Rrm)−Qim(rm)|(Rrm)γi

≤ RΥθ(Rrm)

θ(rm)
+ CRΥ,
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and the result follows from the monotonicity of θ.
Notice also that the previous computation in (3.66) also gives a bound for Qi(r)

given by
|Qi(r)| ≤ Cθ(r), (3.68)

which follows by putting R = r−1.
Step 2: Convergence of the blow up sequence.
In this second step we show that vm converges locally uniformly in Rn to some

function v satisfying {
(−L̃+ b̃ · ∇)v = 0 in Rn

+

v = 0 in Rn
−,

(3.69)

for some operator L̃ of the form (3.7)-(3.8), ‖b̃‖ = ‖b‖.
To do so, define

U+
R,m := BR ∩

(
r−1
m U+

im

)
∩ {xn > 0},

and suppose that it is well defined by assuming m is large enough so that Rrm < 1/2.
Notice that in U+

R,m, vm satisfies an elliptic equation with drift,

(−Lim + bim · ∇)vm(x) =
rm

rΥ
mθ(rm)

fim(rmx) in U+
R,m,

since we know that (−Li + bi · ∇)φm = 0 in {xn > 0}. In particular, since Υ < 1,
the right-hand side converges uniformly to 0 as rm ↓ 0.

We will now show that

‖uim − φm‖L∞(Br∩(U−im∪R
n
−) ≤ Cθ(rm)r(1+α)κ for all r < 1/4, (3.70)

and where the constant C is independent of m, and κ := γ0

(
1− α

16

)
. Notice that

κ < γ0 − 2ην , so that we can use the supersolution from Proposition 3.19 to get

|uim| ≤ C
(
dist(x, U−)

)κ
,

with C depending only on n, the C1,α norm of Γ, α, the ellipticity constants, and
‖b‖. On the other hand, by definition of φm,

|φm(x)| ≤ CQim(rm)
(
dist(x,Rn

−)
)γi ≤ Cθ(rm)

(
dist(x,Rn

−)
)κ

for all x ∈ B1,

where we used (3.68). Finally, since the domain is C1,α, we have that

dist(x, U−im) ≤ Cr1+α, dist(x,Rn
−) ≤ Cr1+α in Br ∩ (U−im ∪ Rn

−),

where the constant C depends only on the C1,α norm of the domain U+
im

, and there-
fore, it is independent of m. Thus, combining the last two expressions we get (3.70).

Now, from Proposition 3.21 we have

‖uim‖Cσ(B1/8) ≤ C,

uniformly in m, for some σ ∈ (0, γ0).
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From the regularity of φm this yields, in particular,

‖uim − φm‖Cσ(Br∩(U−∪Rn−)) ≤ Cθ(rm), (3.71)

where we have used again the bound (3.68).
Thus, interpolating (3.70) and (3.71) there exists some σ0 < σ (depending on σ,

γ0, and α) such that

‖uim − φm‖Cσ0 (Br∩(U−im∪R
n
−)) ≤ Cθ(rm)rΥ.

Notice that we can do so because Υ < κ(1 + α). Scaling the previous expression we
obtain

‖vm‖Cσ0 (BR\U+
R,m) ≤ C(R) for all m with Rrm < 1/4, (3.72)

for some constant C(R) that depends on R, but is independent of m.
We now want to apply Proposition 3.21 to vm, rescaled to balls BR. Recall that

(−Lim + bim · ∇)vm(x) =
rm

rΥ
mθ(rm)

fim(rmx) in U+
R,m,

and vm is Cσ0 outside U+
R,m by (3.72). Notice also that the boundary ∂U+

R,m has C1,α

norm smaller than the C1,α norm of Γ thanks to the fact that we are rescaling with
smaller rm and Rrm < 1/4. Thus, Proposition 3.21 can be applied and we obtain
that there exists some σ′ > 0 small such that

‖vm‖Cσ′ (BR/2) ≤ C(R) for m with Rrm < 1/4.

we have again that the constant C(R) depends on R, but is independent of m; i.e,
we have reached a uniform Cσ′ bound on vm over compact subsets.

Thus, up to taking a subsequence, vm converge locally uniformly to some v.

Step 3: Contradiction. Up to taking a subsequence if necessary, Lim converges weakly
to some operator L̃ of the form (3.7)-(3.8), and bim converges to some b̃ with ‖b̃‖ =
‖b‖. Notice that, in particular, this means that γi converges to some γ∗ ∈ [γ0, γ0(1 +
α/8)], and γ∗ = γ(b̃ · en/χ̃), where χ̃ = χ̃(en) is the associated constant defined as
in (3.11) with the operator L̃.

On the other hand, the domains U+
im

converge uniformly to Rn
+ over compact

subsets by construction. Thus, passing all this to the limit, we reach that v satisfies
(3.69).

Now, passing the growth control (3.67) to the limit, we reach

‖v‖L∞(BR) ≤ CRΥ for all R ≥ 1,

so that we can apply the Liouville theorem in the half space, Theorem 3.22, to get

v(x) = C(xn)γ∗+ .

Passing to the limit (3.64) and using this last expression, we obtain v ≡ 0.
However, by passing (3.65) to the limit we get

‖v‖L∞(B1) ≥
1

2
,

a contradiction.
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Proof of Theorem 3.18. The result follows from Proposition 3.24 applied to small
enough balls so that the condition on ην is fulfilled. Notice that the constant σ
cannot go to 0, because γ̃(x0) cannot be made arbitrarily small for a given L and
b.

3.8 Proof of Theorems 3.1 and 3.3

In this section, we will prove Theorems 3.1 and 3.3. We already know that if x0 is
a regular free boundary point, then the free boundary is C1,α in a neighbourhood.
Next, using the results of the previous section, we show that the regular set is open,
and that at any regular free boundary point we have (3.73) below.

Proposition 3.26. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let u be a solution to (3.29)-(3.30)-(3.31).

Then the set of regular free boundary points is relatively open. Moreover, around
each regular point x0

0 < cr1+γ̃(x0) ≤ sup
Br(x0)

u ≤ Cr1+γ̃(x0) for all r ≤ 1, (3.73)

for some positive constants c and C depending only on n, ‖b‖, and the ellipticity
constants. Here, γ̃(x0) is given by (3.10) with ν(x0) being the normal vector to the
free boundary at x0 pointing towards {u > 0}.

Proof. Suppose without loss of generality that x0 = 0 and ν(x0) = en. The free
boundary, Γ, is C1,α in Br0 for some α, r0 > 0 by Proposition 3.17. Apply now
Theorem 3.18 to the partial derivative ∂nu around points z ∈ Br0/2 ∩ Γ. We obtain∣∣∣∂nu(x)−Q(z)

(
(x− z) · ν(z)

)γ̃(z)

+

∣∣∣ ≤ C|x− z|γ̃(z)+σ, (3.74)

for some σ > 0, and some constant C independent of z.
Step 1: Q is continuous and positive at the origin. Let us first check that Q is
a continuous function on the free boundary at 0. Indeed, suppose it is not con-
tinuous, so that there exists a sequence zk → 0 on the free boundary such that
limk→∞Q(zk) = Q̄ 6= Q(0). Then, we have∣∣∣∂nu(x)−Q(zk)

(
(x− zk) · ν(zk)

)γ̃(zk)

+

∣∣∣ ≤ C|x− zk|γ̃(zk)+σ.

Thus, taking limits as k →∞, for any fixed x, we obtain∣∣∣∂nu(x)− Q̄(xn)
γ̃(0)
+

∣∣∣ ≤ C|x|γ̃(0)+σ.

We have used here that ν and γ̃ are continuous. On the other hand, we had∣∣∣∂nu(x)−Q(0)(xn)
γ̃(0)
+

∣∣∣ ≤ C|x|γ̃(0)+σ,

so that
|Q̄−Q(0)|(xn)

γ̃(0)
+ ≤ C|x|γ̃(0)+σ.
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Now take x = (0, t) ∈ Rn−1 × R for t ∈ R+ and let t → 0. It follows Q̄ = Q(0), a
contradiction; i.e., Q is continuous at 0.

We now prove that Q(0) > 0 (notice that we already know that Q(0) ≥ 0
because u ≥ 0). To do so, we proceed by creating an appropriate subsolution using
Lemma 3.20.

First of all, consider a fixed bounded strictly convex C1,α domain P ⊂ {u > 0}
touching the free boundary at 0, similar to the domains considered in the proof of
Proposition 3.21. Suppose that P has diameter less than 1, and take an h > 0 such
that, if we denote νP (z) the normal vector to ∂P pointing towards the interior of P
at z ∈ ∂P , then

γ̃h := max

{
γ

(
b · νP (z)

χ(νP (z))

)
for z ∈ ∂P ∩ {xn < h}

}
≤ γ̃(0) +

σ

4
,

where σ is the small constant following from Theorem 3.18 that appears in (3.74).
Let us call

η(h)
ν := γ̃h − γ̃(0) ≥ 0

Such h > 0 exists because P is C1,α, and γ and χ are continuous. Take now κ =
γ̃(0) + 3η

(h)
ν , and let % be a regularised distance to Rn \ P as in Definition 3.2. In

particular, % ≡ 0 in Rn \ P . We will see that φ := %κ ≤ C∂nu for an appropriate C.
By Lemma 3.20 used in Bh we get that for some constant δ0 < h/2,

(−L+ b · ∇)φ ≤ −1 in Bh/2 ∩ {x : 0 < d(x,Rn \ P ) ≤ δ0}.

Now, since P is strictly convex, we have that there exists some δP with 0 < δP ≤
δ0 such that

(−L+ b · ∇)φ ≤ −1 in {0 < xn < δP} ∩ P.
Now consider vr as the one defined in Proposition 3.13 (there it is called v),

vr(x) =
u(rx)

r‖∇u‖L∞(Br)

.

By the same reasoning as in the proof of Proposition 3.15 rescaling to a larger
ball we have that

w̃r = C1(∂nvr)χB2 ≥ 0

for r small enough.
From Proposition 3.13 we can choose r small enough so that for some positive

constant c,
w̃r > c > 0 in P ∩ {xn ≥ δP}.

Moreover, also proceeding as in the proof of Proposition 3.15, (−L+b·∇)w̃r > −η
in B1 ∩ {vr > 0} for some arbitrarily small constant η, making r even smaller if
necessary. Thus, we can assume

(−L+ b · ∇)w̃r > −
c̃

2
in B1 ∩ {vr > 0},

for some 0 < c̃ < c to be chosen later.
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Now compare the functions φ and c̃−1w̃r. Notice that in Rn \ P , w̃r ≥ φ ≡ 0.
In P ∩ {xn ≥ δP}, c̃ can be chosen small enough depending on δP and P so that
c̃−1w̃r ≥ φ there, because w̃r > c > 0 in P ∩ {xn ≥ δP}. Finally,

(−L+ b · ∇)φ ≤ (−L+ b · ∇)w̃r in {0 < xn < δP} ∩ P.
Thus, by the maximum principle, for this particular r fixed we have that w̃r ≥ c̃φ.

Going back to the definition of w̃r, this means that for some ρ and c positive constants

∂nu(ten) ≥ c%(ten) for 0 < t < ρ.

For ρ small enough, % is comparable to (xn)κ+ along the segment ten, so that we
actually have

∂nu(ten) ≥ ctκ for 0 < t < ρ. (3.75)

Now, if Q(0) = 0 then
|∂nu(x)| ≤ C|x|γ̃(0)+σ.

Since κ < γ̃(0) + σ we get a contradiction with (3.75). Thus, Q(0) > 0.

Step 2: Conclusion of the proof. For z ∈ Γ ∩ Br for r small enough we have that
Q(z) > 0, because Q is continuous and Q(0) > 0. In particular,∣∣∣∂nu(x)−Q(z)

(
(x− z) · ν(z)

)γ̃(z)

+

∣∣∣ ≤ C|x− z|γ̃(z)+σ.

By taking x = z + ten for t > 0 we get∣∣∣∂nu(z + ten)−Q(z)
(
νn(z)t

)γ̃(z)

+

∣∣∣ ≤ Ctγ̃(z)+σ.

Integrating with respect to t from 0 to t′ < 1, using that ∂nu(z) = 0 and
νn(z) > 1/2 for r small enough and recalling that Q(z) > 0, we get

u(z + t′en) ≥ ct′1+γ̃(z) > 0,

so that in particular, z is a regular point; i.e., the set of regular points is relatively
open. Doing the same for z = 0 we get one of the inequalities from (3.73),

sup
Br

u ≥ cr1+γ̃(0) > 0 for all r ≤ 1. (3.76)

On the other hand, we can also find the expansion at 0 for ∂iu for any i ∈
{1, . . . , n}, ∣∣∣∂iu(x)−Qi(xn)

γ̃(0)
+

∣∣∣ ≤ C|x|γ̃(0)+σ.

Therefore,
|∇u(x)| ≤ C

(
|x|γ̃(0) + |x|γ̃(0)+σ

)
.

Integrating, and using ∇u(0) = 0

u(x) ≤ C
(
|x|1+γ̃(0) + |x|1+γ̃(0)+σ

)
,

i.e.,
sup
Br

u ≤ Cr1+γ̃(0) for all r ≤ 1.

Thus, combined with (3.76), this proves (3.73).
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Proposition 3.27. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn. Let
u be a solution to (3.29)-(3.30)-(3.31) and let x0 be a free boundary regular point.
Then

u(x) = c0

(
(x− x0) · ν(x0)

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
(3.77)

with c0 > 0 and for some σ > 0. Here γ̃(x0) is given by (3.10), with ν(x0) being the
normal vector to the free boundary at 0 pointing towards {u > 0}; and σ depends
only on n, the ellipticity constants, and ‖b‖.

Proof. Assume that x0 = 0 and ν(x0) = en. From the expansions in the proof of
Proposition 3.26 we have

∂iu(x) = Qi(xn)
γ̃(0)
+ + o

(
|x|γ̃(0)+σ

)
, (3.78)

for some Qi, with Qn > 0, and σ > 0. Now, let x = (x′, xn), with x′ ∈ Rn−1 and
xn ∈ R. Integrating the expression (3.78) in the segment with endpoints 0 and (x′, 0)
we get

u(x′, 0) = o
(
|x|1+γ̃(0)+σ

)
.

Then, integrating in the segment with endpoints (x′, 0) and (x′, xn) we find

u(x′, xn) =
Qn

1 + γ̃(0)
(xn)

1+γ̃(0)
+ + o

(
|x|1+γ̃(0)+σ

)
.

Thus, (3.76) is proved.

We finally can put all elements together to prove our main results, Theorems 3.1
and 3.3.

Proof of Theorem 3.3. After subtracting the obstacle and dividing by a constant,
we can assume u is a solution to (3.29)-(3.30)-(3.31). Then the result we want is a
combination of Propositions 3.17, 3.26, and 3.27.

Proof of Theorem 3.1. It is a particular case of Theorem 3.3; we only need to check
that χ ≡ 1. For this, notice that the kernel is constant and given by µ(θ) = cn,1/2,
where the constant cn,s is the one appearing in the definition of fractional Laplacian,

cn,s :=

(∫
Rn

1− cos(x1)

|x|n+2s
dx

)−1

;

see for example [DPV12]. Thus, the value of χ for (−∆)1/2 is

χ(e) =
πcn,1/2

2

∫
Sn−1

|θ · e|dθ.

Notice that, by changing variables to polar coordinates,

c−1
n,1/2 =

∫
Rn

1− cos(x1)

|x|n+1
dx =

∫
Sn−1

∫ ∞
0

1− cos(rθ1)

r2
drdθ =

π

2

∫
Sn−1

|θ1|dθ,

where we have used that
∫∞

0
(1 − cos(t))t−2dt = π/2. This immediately yields that

χ ≡ 1 for (−∆)1/2, as desired.
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We next prove the almost optimal regularity of solutions. Given an operator L
of the form (3.7)-(3.8), the associated χ defined as in (3.11), and b ∈ Rn, we define

γ−L,b := inf
e∈Sn−1

γ

(
b · e
χ(e)

)
, (3.79)

where γ is given by (3.12). Notice that γ−L,b ∈ (0, 1/2].

Proposition 3.28. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn.
Let u be a solution to (3.29)-(3.30)-(3.31). Then, for any ε > 0,

‖u‖
C

1,γ−
L,b
−ε

(Rn)
≤ Cε,

where the constant Cε depends only on n, L, b, and ε. The constant γ−L,b is given by
(3.79).

Proof. In order to prove the bound we first check the growth of the solution at the
free boundary, and then we combine it with interior estimates.

For simplicity, we will denote γε = γ−L,b − ε.
Step 1: Growth at the free boundary. We first prove that, if 0 is a free boundary

point, then

sup
r>0

‖∇u‖L∞(Br)

rγε
≤ C, (3.80)

for some constant C depending only on n, L, b, and ε.
We proceed by contradiction, using a compactness argument. Suppose that it is

not true, so that there exists a sequence of functions uk, fk, with ‖uk‖C1,τ ≤ 1 for
some τ > 0 fixed and ‖fk‖C1(Rn) ≤ 1, such that

uk ≥ 0 in Rn

(−L+ b · ∇)uk ≤ fk in Rn

(−L+ b · ∇)uk = fk in {uk > 0}
D2uk ≥ −1 in Rn,

(3.81)

but uk are such that

θ(r) := sup
i

sup
r′>r

(r′)−γε‖∇uk‖L∞(Br′ )
→∞ as r ↓ 0.

Notice that for r > 0, θ(r) < ∞ and that θ is a monotone function, with
θ(r)→∞ as r ↓ 0. Now take sequences rm ↓ 0 and im such that

r−γεm ‖∇uim‖ ≥
θ(rm)

2
,

and define the functions

vm(x) :=
uim(rmx)

r1+γε
m θ(rm)

.

Notice that

‖∇vm‖L∞(B1) ≥
1

2
, (3.82)
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and

D2vm ≥ −
r1−γε
m

θ(rm)
in Rn, |(L+ b∇)(∇vm)| ≤ r1−γε

m

θ(rm)
in {vm > 0}. (3.83)

On the other hand,

‖∇vm‖L∞(BR) =
‖∇uim‖L∞(BRrm )

rγεm θ(rm)
≤ Rγε

θ(Rrm)

θ(rm)
≤ Rγε for R ≥ 1. (3.84)

Therefore, noticing that r1−γε
m /θ(rm) → 0 as m → ∞, we can apply Proposi-

tion 3.10 to deduce that, for some τ > 0 independent of m,

‖vm‖C1,τ (BR) ≤ C(R),

for some constant depending on R, C(R). Let us take limits as m→∞. By Arzelà-
Ascoli, vm converges, up to taking a subsequence, in C1

loc(Rn) to some v∞. By taking
to the limit the properties (3.83)-(3.84) we reach that v∞ should be a convex global
solution. By the classification theorem, Theorem 3.11, we have that either v ≡ 0

v∞(x) = C(e · x)
1+γ(b·e/χ(e))
+ for some e ∈ Sn−1,

where γ and χ are given by (3.12)-(3.11). Notice, however, that taking (3.84) to the
limit, v∞ grows at most like γε, and by definition γ(b · e/χ(e)) > γε. Therefore, we
must have v∞ ≡ 0. But this is a contradiction with (3.82) in the limit. Therefore,
we have proved (3.80).

Step 2: Conclusion. Let us combine the previous growth with interior estimates
to obtain the desired result.

Let x, y ∈ Rn, let r = |x − y| and R = dist(x, {u = 0}). We want to prove that
for some constant Cε then

|∇u(x)−∇u(y)| ≤ Crγε .

Without loss of generality and by the growth found in the first step we can
assume that x, y ∈ {u > 0}. Let x̄ ∈ ∂{u = 0} be such that dist(x̄, x) = R. We
separate two cases:

• If 4r > R,

|∇u(x)−∇u(y)| ≤ |∇u(x)−∇u(x̄)|+ |∇u(x̄)−∇u(y)|
≤ C

(
Rγε + (R + r)γε

)
≤ Crγε ,

where we have used the growth found in Step 1.

• If 4r ≤ R, then x, y ∈ BR/2(x), and BR(x) ⊂ {u > 0}. Notice that we have

(−L+ b · ∇)(∇u) = ∇f in BR(x).

From the interior estimates in Proposition 3.4 rescaled, we have

Rγε [∇u]Cγε (BR/2(x)) ≤ C

(
R‖∇f‖L∞(BR(x)) + ‖∇u‖L∞(BR(x)) +

∫
Rn

|∇u(Rx)|
1 + |x|n+1

)
.
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Now notice that thanks to the growth found in Step 1 we have, on the one
hand,

‖∇u‖L∞(BR(x)) ≤ CRγε ,

and on the other hand,∫
Rn

|∇u(Rx)|
1 + |x|n+1

≤ Rγε

∫
Rn

|x|γε
1 + |x|n+1

= CRγε ,

so that putting all together and using ‖∇f‖L∞(Rn) ≤ 1, it yields,

[∇u]Cγε (BR/2(x)) ≤ C
(
1 +R1−γε

)
.

Thus, if R ≤ 4 we are done. Now suppose R > 4. If r < 1, by applying
interior estimates to B1(x) we are done. If r ≥ 1, we are also done, because
|∇u(x)−∇u(y)| ≤ 2‖∇u‖L∞(Rn) ≤ C.

Thus, we have reached the desired result.

As a consequence, we have the following immediate corollary.

Corollary 3.29. Let L be an operator of the form (3.7)-(3.8), and let b ∈ Rn. Let
u be the solution to (3.9) for a given obstacle ϕ of the form (3.3). Then, for any
ε > 0,

‖u‖
C

1,γ−
L,b
−ε

(Rn)
≤ Cε,

where Cε depends only on n, L, b, ε, and ‖ϕ‖C2,1(Rn). The constant γ−L,b is given by
(3.79).

Proof. After subtracting the obstacle and dividing by an appropriate constant, we
can apply Proposition 3.28 and the result follows.

Finally, we prove Corollary 3.2.

Proof of Corollary 3.2. After subtracting the obstacle and dividing by a constant,
we get that this result is a particular case of Proposition 3.28, but the constant Cε
depends on b and not only on ‖b‖.

To prove that Cε actually depends on ‖b‖, the proof of Proposition 3.28 can
be rewritten by taking also sequences of vectors bk ∈ Rn with ‖bk‖ = ‖b‖; by
compactness, up to a subsequence they converge to some b̃ with ‖b̃‖ = ‖b‖ and the
rest of the proof is the same.

3.9 A nondegeneracy property

In the obstacle problem for the fractional Laplacian (without drift), in [BFR18],
Barrios, Figalli and the second author proved a non-degeneracy condition at all free
boundary points for obstacles satisfying ∆ϕ ≤ 0. From this, and by means of a
Monneau-type monotonicity formula, they establish a global regularity result for
the free boundary.
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In the obstacle problem with critical drift for the fractional Laplacian we can
actually find a non-degeneracy result analogous to the one found in [BFR18]. In this
case, however, we cannot establish regularity of the singular set, since we do not
have (and do not expect) any monotonicity formula for this problem.

Proposition 3.30. Let b ∈ Rn, and suppose that ϕ ∈ C1,1(Rn). Assume that ϕ is
concave in {ϕ > 0} or, more generally, that

(∆ + ∂2
bb)ϕ ≤ 0 in {ϕ > 0}, ∅ 6= {ϕ > 0} b Rn.

Let u be a solution to the obstacle problem (3.2). Then, there exist constants c, r0 > 0
such that for any x0 a free boundary point then

sup
Br(x0)

(u− ϕ) ≥ cr2 for all 0 < r < r0.

Proof. Let w :=
(
(−∆)1/2 + b · ∇

)
u, so that w ≥ 0. If w ≡ 0, by the interior

estimates rescaled, and using that u is globally bounded, we reach u is constant. From
lim|x|→∞ u(x) = 0 we would get u ≡ 0, but this is a contradiction with ∅ 6= {ϕ > 0}.
Thus, w 6≡ 0.

Notice, however, that w ≡ 0 in {u > ϕ}. In particular, given x̄ ∈ {u > ϕ}, then
∇w(x̄) = 0 and w has a global minimum at x̄, so that(

(−∆)1/2 − b · ∇
)
w(x̄) = (−∆)1/2w(x̄) < 0.

Now, noticing that {ϕ > 0} b Rn, we get that by compactness there are some
c̄, r̄ > 0 such that for any x̄ ∈ {u > ϕ} with dist(x̄, {u = ϕ}) ≤ r̄ then(

(−∆)1/2 − b · ∇
)
w(x̄) ≤ −c̄ < 0.

Now, since
(
(−∆)1/2 + b · ∇

)
u = w in Rn and from the semigroup property of

the fractional Laplacian,

−∆u− bibj∂iju =
(
(−∆)1/2 − b · ∇

)
w ≤ −c̄ in Ū ,

where Ū := {u > ϕ} ∩ {dist(·, {u = ϕ}) ≤ r̄}. Note that the operator ∆ + bibj∂ij is
uniformly elliptic, with ellipticity constants 1 and 1 + ‖b‖2.

Since u > 0 on the contact set, by compactness there exists some h > 0 such
that ϕ ≥ h in {u = ϕ}. By continuity, there exists some 0 < r0 < r̄/2 such that

ϕ > 0 in U0 := {u > ϕ} ∩ {dist(·, {u = ϕ}) ≤ 2r0}.

Now let x̄ ∈ U0 with dist(x̄, {u = ϕ}) ≤ r0, and consider r ∈ (0, r0). From the
condition on ϕ, (∆ + ∂2

bb)ϕ ≤ 0 in {ϕ > 0}, we get that if ū := u− ϕ then

(∆ + ∂2
bb) ū ≥ c̄ > 0 in {ū > 0} ∩Br(x̄) ⊂ U0.

Therefore, if we define

v := ū− c̄

2(n+ ‖b‖2)
|x− x̄|2 in {ū > 0} ∩Br(x̄),
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then
(∆ + ∂2

bb)v ≥ 0.

By the maximum principle, if Ωr := {ū > 0} ∩Br(x̄) then

0 < ū(x1) ≤ sup
Ωr

v = sup
∂Ωr

v.

Since v < 0 in ∂{ū > 0} ∩Br(x̄),

0 < sup
{ū>0}∩∂Br(x̄)

v ≤ sup
∂Br(x̄)

ū− cr2,

where c = c̄
2(n+‖b‖2)

. Therefore, c is independent of x̄, and we can let x̄ → x0, to
obtain the desired result.



Chapter 4

Regularity of minimal surfaces
with lower dimensional obstacles

We study the Plateau problem with a lower dimensional obstacle in Rn. Intuitively,
in R3 this corresponds to a soap film (spanning a given contour) that is pushed
from below by a “vertical” 2D half-space (or some smooth deformation of it). We
establish almost optimal C1,1/2− estimates for the solutions near points on the free
boundary of the contact set, in any dimension n ≥ 2.

The C1,1/2− estimates follow from an ε-regularity result for minimal surfaces with
thin obstacles in the spirit of the De Giorgi’s improvement of flatness. To prove it,
we follow Savin’s small perturbations method. A nontrivial difficulty in using Savin’s
approach for minimal surfaces with thin obstacles is that near a typical contact point
the solution consists of two smooth surfaces that intersect transversally, and hence
it is not very flat at small scales. Via a new “dichotomy approach” based on barrier
arguments we are able to overcome this difficulty and prove the desired result.

4.1 Introduction

4.1.1 Minimal surfaces with obstacles

In this paper we study the regularity of minimizers in the Plateau problem with a
lower dimensional — or thin — obstacle. Before introducing the problem in further
detail let us contextualize it by recalling five closely related classical problems and
commenting on them.

� The Plateau problem:

min
{
P (E;B1) : E \B1 = E◦ \B1

}
, (4.1)

where E◦ ⊂ Rn (boundary condition), and B1 denotes the unit ball of Rn,
E ⊂ Rn, and P (E;B1) denotes the relative perimeter of the set E in B1.

� The Plateau problem with an obstacle:

min
{
P (E;B1) : E ⊃ O, E \B1 = E◦ \B1

}
(4.2)

where E◦, E are as above and O ⊂ E◦ (the obstacle) is given.

109
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� The nonparametric obstacle problem:

min
v

{∫
B′1

√
1 + |∇v|2 : v ≥ ψ in B′1, v|∂B′1 = g

}
, (4.3)

where B′1 denotes the unit ball of Rn−1, g : ∂B′1 → R (the boundary condition)
is given, v : B′1 → R, and ψ : B′1 → R is the obstacle satisfying ψ|∂B′1 < g.

� The obstacle problem:

min
v

{∫
B′1

|∇v|2
2

: v ≥ ψ in B′1, v|∂B′1 = g

}
, (4.4)

where g, v, and ψ, are as above.

� The Signorini problem, or thin obstacle problem:

min
v

{∫
B′1

|∇v|2
2

: v ≥ ψ in B′1 ∩ {xn−1 = 0}, v|∂B′1 = g

}
, (4.5)

where g and v are as above, and now ψ : B′1 ∩ {xn−1 = 0} → R (the thin
obstacle) acts only on {xn−1 = 0}.

Note that (4.3) is a particular case of (4.2), namely, when ∂O and ∂E are graphs.
Also, (4.4) is, in turn, a limiting case of (4.3) — for ε-flat graphs, the area functional∫ √

1 + |ε∇v|2 becomes the Dirichlet energy
∫

1
2
|ε∇v|2 at leading order.

The regularity of solutions and free boundaries is nowadays well understood
in both the classical obstacle problem (4.4) — see [Caf77, Caf98] — and in the
Signorini problem — see [AC04, ACS08]. The case of minimal surfaces with thick
obstacles (both in parametric and nonparametric form) is also well understood —
see [Kin73, BK74, Jen80, Giu10].

This paper is concerned with the regularity of minimizers of the Plateau problem
with lower dimensional, or thin, obstacles. Namely, we consider (4.2) with obstacle

O := Φ
(
{xn−1 = 0, xn ≤ 0}

)
(4.6)

where Φ : Rn → Rn is some smooth (C1,1) diffeomorphism. We denote

∂O := Φ
(
{xn−1 = 0, xn = 0}

)
.

This problem (4.2)-(4.6) is the geometric version of the Signorini problem (4.5) in
the same way that (4.2) with thick O is the geometric version of (4.4). To visualize a
solution of this problem in R3, one can think of a soap film (spanning a given contour)
that is pushed from below by a vertical 2D half-space, as depicted in Figure 4.1.
Note that, in R3, we cannot use a “wire” (i.e. a one dimensional curve) as obstacle,
since the surface will not “feel” it1.

1More precisely, one can see that if O had codimension two, then solutions of (4.2) with an
infinitesimal tubular neighbourhood of O as obstacle would become, in the limit, solutions of the
Plateau problem (4.1) (without obstacle).
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Figure 4.1: The “potato chip configuration”, popularized by Caffarelli.

Although the problem of minimal surfaces with thin obstacles was introduced by
De Giorgi [DeG73] already in 1973 (he established an existence result), very little
was known on the regularity of its solutions. De Acutis in [DeA79] established C1

regularity around points of the solution belonging to O \ ∂O. To our knowledge,
the only known regularity results up to ∂O concern the nonparametric case — as in
(4.3) but with ψ as in (4.5). They are due to Kinderlehrer [Kin71] who proved C1

regularity estimates for the solution in two dimensions, and to Giusti [Giu72], who
obtained Lipschitz estimates for the solution in every dimension.

The difficulty in studying (4.2)-(4.6) (with respect to the same problem with a
thick obstacle) lies on the fact that near a typical point of the contact set the hy-
persurface ∂E consists of two surfaces that intersect transversally on ∂O. Therefore,
∂E is typically not flat at small scales and thus (4.2) cannot be treated as a pertur-
bation of (4.5). A more subtle dichotomy argument is needed: in Subsection 4.1.5
we outline the idea of this new approach that is tailored to overcome the previous
difficulty.

Let us also point out that it is not completely obvious how to give a meaning-
ful notion of solution to (4.2)-(4.6). The main issue is that with the Caccioppoli
definition of relative perimeter P we have

P (E ∪ O;B1) = P (E;B1) for all measurable E, (4.7)

and thus the obstacle O seems to be ignored by P . This issue led De Giorgi [DeG73]
to introduce a more appropriate notion of perimeter that is suitable for the study
of thin obstacle problems (this is currently known as the De Giorgi measure). We
choose the similar (and a posteriori equivalent) approach of looking at the thin
obstacle as a limit of infinitesimaly thick neighbourhoods of it. See Subsection 4.1.4
for a more detailed discussion on this issue.

The goal of this paper is to address the question of the regularity of solutions to



112 Chapter 4. Regularity of minimal surfaces with lower dimensional obstacles

(4.2)-(4.6). In particular, the main result of this paper is the proof of the following
local almost optimal regularity result.

Theorem 4.1. Let E be a solution to the thin obstacle problem (4.2)-(4.6) in the
unit ball of Rn, n ≥ 2. Then, ∂E is C1,1/2− around contact points and up to the
contact set.

The appropriate notion of solution is discussed in Subsection 4.1.4. Let us empha-
size here that this local regularity near contact points result holds in any dimension
n ≥ 2, in contrast to the classical regularity theory of minimal surfaces in which
minimizers are regular only up to dimension 7. As we will see, this difference is due
to the presence of the thin obstacle, which rules out solutions with singularities of
the type of Simons and Lawson’s cones like those appearing in dimension n ≥ 8 in
the Plateau problem without obstacles.

In the following subsections we recall the main steps in the regularity theory for
sets of minimal perimeter and present the appropriate analogues for (4.2)-(4.6).

4.1.2 Improvement of flatness

For the classical Plateau problem De Giorgi [DeG61] established, in 1961, the fol-
lowing fundamental result:

Theorem 4.2 ([DeG61]). Let E ⊂ Rn be a minimizer of the perimeter functional
in B1 and assume that ∂E ∩B1 ⊂ {|e ·x| ≤ ε◦} for some e ∈ Sn−1, where ε◦ = ε◦(n)
is some positive dimensional constant. Then, ∂E ∩B1/2 is a smooth hypersurface.

This theorem follows from the following improvement of flatness property for
minimizers E of the perimeter in B1. Namely, given α ∈ (0, 1) there exist positive
constants ε◦(n, α) and ρ◦(n, α) such that, whenever 0 ∈ ∂E and ε ∈ (0, ε◦) then the
following implication holds:

∂E ∩B1 ⊂
{
|e · x| ≤ ε

}
⇒ ∂E ∩Bρ◦ ⊂

{
|ẽ · x| ≤ ερ1+α

◦
}
. (4.8)

Here, e and ẽ denote two possibly different unit vectors (in Sn−1).
Combined with the classification of stable minimal cones by Simons [Sim68],

Theorem 4.2 yields that minimizers of the perimeter in Rn are smooth for 3 ≤ n ≤ 7.
This result is optimal since, in dimensions n ≥ 8, Bombieri, De Giorgi, and Giusti
[BDG69] showed the existence of minimal boundaries with an (n − 8)-dimensional
linear space of cone-like singularities.

The philosophy of Theorem 4.2 is also shared by other key regularity results
of nonlinear PDEs: if a solution happens to be close enough to some special solu-
tion (e.g., the hyperplane), then it is regular. These are the so-called “ε-regularity
results”.

The goal of the paper is to establish an ε-regularity result for (4.2)-(4.6), thus
extending De Giorgi’s improvement of flatness theorem to the setting of problem
(4.2)-(4.6) — see Theorem 4.3 below. As a consequence, we will prove almost optimal
C1,1/2− estimates for minimizers of (4.2)-(4.6) in Rn that are sufficiently close to a
canonical blow-up solution (the wedges introduced in the following subsection). We
will also see that these canonical blow-up solutions are the only possible blow-ups
at any contact point, and then Theorem 4.1 will follow.
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4.1.3 Blow-ups

An essential tool in the theory of minimal surfaces is the monotonicity formula.
Namely, if ∂E is a minimal surface and x◦ ∈ ∂E, then the function

A(r) :=
1

rn−1
Hn−1

(
∂E ∩Br(x◦)

)
(4.9)

is monotone nondecreasing. In addition, A is constant if and only if E is a cone. A
standard consequence of this monotonicity formula is that blow-ups of a minimizer
of the perimeter E ⊂ Rn at any point x◦ ∈ ∂E are minimizing cones. Simons proved
in [Sim68] that half-spaces are the only minimizing cones in dimensions n ≤ 7. As
a consequence, one can always apply Theorem 4.2 near x◦ after zooming in enough
— this gives the smoothness of perimeter minimizers for n ≤ 7.

For problem (4.2)-(4.6) we find several analogies with this theory. As we will
prove in Lemma 4.27, if E is a minimizer of (4.2)-(4.6) and x◦ ∈ ∂E ∩ ∂O is a
contact point, then the same function A(r) in (4.9) is still monotone when Φ = id
(and an approximate monotonicity formula is also available for general smooth Φ; see
Lemma 4.27). As a consequence, blow-ups are also cones for (4.2)-(4.6). It is trivially
false, however, that hyperplanes are the only possible blow-ups in low dimensions.
Indeed, the wedges (see Figure 4.2)

Λγ,θ :=
{
x ∈ Rn : eγ+θ · x ≤ 0 and eγ−θ · x ≤ 0

}
, (4.10)

for

eω := sinω en−1 + cosω en, −π
2
≤ γ ≤ π

2
, 0 ≤ θ ≤ π

2
− |γ|. (4.11)

are solutions to (4.2)-(4.6) for Φ = id . Thus, they are always possible blow-ups.

Being a wedge, Λγ,θ is the intersection of two semispaces with normal vectors
contained in the plane generated by en−1 and en. The aperture angle of the wedge is
given by π−2θ, while its rotation angle is given by γ with respect to en (we take the
convention that en−1 = eπ/2). Note also that there is the restriction 0 ≤ θ ≤ π

2
− |γ|

to guarantee that the obstacle {xn−1 = 0, xn ≤ 0} is contained in Λγ,θ.

We will show that, in all dimensions, the wedges are the only possible blow-
ups around contact points. More precisely, if E is a minimizer of (4.2)-(4.6) and
x◦ ∈ ∂E ∩ ∂O (i.e. x◦ is a contact point) we have, in a suitable frame depending on
x◦,

1

rk

(
O − x◦

)
−→ {xn−1 = 0, xn ≤ 0} (4.12)

and
1

rk

(
E − x◦

)
−→ Λγ,θ. (4.13)

This will be a consequence of the the classification of conic solutions to the thin
obstacle problem, given in Proposition 4.5.



114 Chapter 4. Regularity of minimal surfaces with lower dimensional obstacles

en

en−1

eγ

θ

δ
Λγ,θ

Λδ

eγ+θ

eγ−θ
γ

θ

en

en−1

〈e1, . . . , en−2〉

〈e1, . . . , en−2〉

Λγ,θ

Λδ

Figure 4.2: Representations of Λγ,θ and Λδ.

4.1.4 Rigorous notion of solution to (4.2)-(4.6)

Given a measurable set E and an open set Ω ⊂ Rn, we recall the standard definition
of the relative perimeter of E in Ω as

P (E; Ω) =

∫
Ω

|∇χE| = sup
g∈C1

0 (Ω),‖g‖L∞≤1

∣∣∣∣∫
E

div g

∣∣∣∣ . (4.14)

With this definition of perimeter (4.7) holds. Thus, unless we define the problem
with further precision, minimizers of (4.2)-(4.6) will be — strictly speaking — just
the ones of (4.1), ignoring O.

This, of course, is not what we have in mind when we think of (4.2)-(4.6). Heuris-
tically, we would like that if ∂E attaches from both sides to O in some region, then
the area of it is counted twice in the computation of the perimeter of E instead
of being ignored. To solve this issue De Giorgi introduced in [DeG73] a notion of
perimeter that is suitable for the study of thin obstacle problems (the De Giorgi
measure); see also [DeA79]. Here we will use the similar approach (that will be a
posteriori equivalent) of considering a thin obstacle as a limit of thick obstacles.

Let us introduce the precise notion of (4.2)-(4.6) that will be used in this paper.
For δ > 0 small, let us denote

Λδ := Λ0,π
2
−δ. (4.15)

(Note that Λδ is very sharp wedge, pointing in the en direction.)

Definition 4.1. We say that E is a minimizer of (4.2)-(4.6) in B1 if E has positive
density at some point of O and there exist δk ↓ 0, Ek minimizers of

min
{
P (Ẽ;B1) : Ẽ \B1 =

(
E◦ ∪ Φ(Λδk)

)
\B1 and Φ(Λδk) ⊂ Ẽ

}
(4.16)

such that χEk → χE in L1(B1).
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Note that Φ
(
Λδk
)

are thick sets approximating O. Now, minimizers of (4.16)
“feel” the obstacle no matter how small δk is. The intuitive idea behind this definition
is that a sequence Ek as in Definition 4.1 will not converge to a solution to the
Plateau problem unless the obstacle O is “inactive” (i.e., the obstacle is contained
in density one points for the solution to the Plateau problem). The philosophy of
the paper will be to prove regularity estimates for problem (4.16) that are robust as
δk ↓ 0. As a consequence, we will be able to show that the previous intuitive idea is
actually fact. Namely, as it will be clear from the results of the paper, if the solution
to the Plateau problem (with boundary data E◦) crosses O\∂O, then there exists a
minimizer of (4.2)-(4.6) which is not a solution of Plateau problem (and therefore,
the thin obstacle plays an active role).

We remark that any minimizer according to Definition 4.1 (up to replacing the
complement of E by the zero density points of E) is a minimizer in the sense of
De Giorgi by [DeA79] (see Remark 4.5). Conversely, it is not true a priori that
any minimizer in the sense of De Giorgi can be recovered as a minimizer in the
sense of Definition 4.1. Nonetheless, minimizers of the De Giorgi perimeter present
locally an aperture around the obstacle by [DeA79] (and thus, a wedge fits within),
and therefore, locally around contact points they are minimizers in the sense of
Definition 4.1. In particular, since our regularity results are local, they apply to
minimizers in the sense of De Giorgi. (See Remark 4.3.)

4.1.5 Regularity for solutions sufficiently close to a wedge

The first result of this paper is stated next, after introducing some notation and a
definition. Throughout the paper we will denote

X ⊂ Y in B ⇔ X ∩B ⊂ Y ∩B.

We also introduce the following

Definition 4.2. We say that E is ε-close to Λγ,θ in B if

Λ−εγ,θ ⊂ E ⊂ Λε
γ,θ in B

where

Λε
γ,θ := {x ∈ Rn : dist(x,Λγ,θ) ≤ ε}, Λ−εγ,θ := {x ∈ Rn : dist(x,Rn \ Λγ,θ) ≥ ε}.

Here is our main result, which we call improvement of closeness:

Theorem 4.3 (Improvement of closeness). Given α ∈
(
0, 1

2

)
there exist positive

constants ε◦ and ρ◦ depending only on n and α such that the following holds:
Assume that, for some δ > 0, a set E ⊂ Rn with P (E;B1) < ∞ satisfies

Φ(Λδ) ∩B1 ⊂ E and

P (E;B1) ≤ P (F ;B1) ∀F such that E \B1 = F \B1 and Φ(Λδ)∩B1 ⊂ F. (4.17)

Suppose that 0 ∈ ∂E ∩ ∂O, ε ∈ (0, ε◦), and

Φ(0) = 0, DΦ(0) = id, |D2Φ| ≤ ε1+ 1
2 . (4.18)
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Then,

E is ε-close to Λγ,θ in B1 ⇒ E is ερ1+α
◦ -close to Λγ̃,θ̃ in Bρ◦ , (4.19)

where γ, γ̃, θ, and θ̃, are as in (4.11).

Remark 4.1. Let us comment on the statement of Theorem 4.3:

(1) This result generalizes the classical De Giorgi’s improvement of flatness theo-
rem (4.8).

(2) Our estimate (4.19) is designed to be applied, iteratively in a sequence of
dyadic balls, to a minimizer E of (4.16). It gives C1,α regularity of ∂E at
points of the contact set; see Theorem 4.4 below.

(3) An essential feature of our result is that the constant ε◦ is independent of δ.
Thus (4.19) is stable as δ ↓ 0 and hence applies to solutions of (4.2)-(4.6); see
Definition 4.1.

(4) The assumption α < 1/2 is almost sharp. Indeed, one can easily see that the
statement of the theorem cannot be true for α ∈ (1

2
, 1) by using that the

optimal regularity of solutions to the Signorini problem is C1, 1
2 .

(5) If Φ : Rn → Rn is any C1,1 diffeomorphism and x◦ belongs to ∂O = Φ({xn−1 =
xn = 0}), then for ρ > 0 and in some new coordinates x̄ = ψx◦(x) with origin
at x◦ such that

ψx◦(x) := ρ−1Rx◦(x− x◦), where Rx◦ is an orthogonal matrix,

the assumption (4.18) will be fulfiled by some new diffeomorphism Φ̄ satisfying
Φ̄(Λδ̄) = ψ(Φ(Λδ)) — see Lemma 4.10. Hence, assumption (4.18) is always
satisfied after a change of coordinates.

4.1.6 On the proof of Theorem 4.3

Let us now briefly comment on the proof of Theorem 4.3. Our main idea is to
use a “dichotomy approach”, which is combined with Savin’s “small perturbation
method”. More precisely, we prove by a barrier argument that — if ε◦ is small
enough — one of the following two alternatives must hold:

(a) ∂E is very flat in B1.

(b) The contact set is full in B3/4 (it contains ∂O ∩ B3/4) and ∂E splits into two
minimal surfaces that meet along ∂O with some angle.

Then, on the one hand, if (a) holds we can use that our problem is a perturbation
of the Signorini problem (4.5) and exploit the C1,1/2 regularity for (4.5) to prove
(4.19). For this we use the “small perturbation method” pioneered by Savin — see
[Sav09, Sav10, Sav10b].

On the other hand, if (b) holds then ∂E splits in B3/4 into two minimal surfaces
with boundary, each of them flat in a different direction. Since the contact set is
full we can interpret it as a smooth “boundary condition”. Then, using the C1,1

regularity up to the boundary of flat minimal surfaces, we can improve the flatness
of each of the two surfaces separately to prove (4.19).
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4.1.7 Consequences

From our Theorem 4.3, as in the classical theory, we get that once the minimizer is
sufficiently close to a “wedge” type set Λγ,θ, then it has a local C1,α structure.

Theorem 4.4. Given α ∈
(
0, 1

2

)
there exists a positive constant ε◦ depending only

on n and α such that the following holds:
Assume that, for some δ > 0, a set E ⊂ Rn with P (E;B1) < ∞ satisfies

Φ(Λδ) ∩B1 ⊂ E and (4.17). Suppose that 0 ∈ ∂E ∩ ∂O, that

Φ(0) = 0, DΦ(0) = id, |D2Φ| ≤ ε
1+ 1

2
◦ , (4.20)

and that E is ε◦-close to Λγ,θ in B1.
Then, ∂E has the following C1,α structure in B1/2. Either:

(a) In some appropriate coordinates y = (y′, yn) = (y1, . . . , yn), Φ−1(∂E) is the

graph {yn = h(y′)} of a function h ∈ C0(B′1/2) that belongs to C1,α(B′+1/2) ∩
C1,α(B′−1/2), where B′1/2 denotes the ball in Rn−1 and B′±1/2 are the half-balls

B′1/2 ∩ {±yn−1 > 0}. Moreover, we have h ≥ 0 on yn−1 = 0 and ∇h is contin-

uous on {yn−1 = 0} ∩ {h > 0}.

or

(b) ∂E∩B1/2 is the union of two C1,1− surfaces that meet on ∂O with full contact
set in B1/2.

In the previous statement C1,1− :=
⋂
β∈(0,1)C

1,β.

Remark 4.2. It will be clear from the proofs that if O is a minimal surface (with
boundary), then ∂E cannot stick to O \ ∂O and (b) must hold with the same
regularity as that of ∂O. Namely, if ∂O is a Ck,β (resp. analytic) codimension two
surface, then the two surfaces in (b) will also be Ck,β (resp. analytic), and not just
C1,1−.

Theorem 4.4 requires the solution to be sufficiently close to a wedge-type set Λγ,θ.
Thanks to the following classification of global conical solutions to our problem, we
will have that this is always the case (after rescaling) near any contact point.

Proposition 4.5 (Classification of minimal cones in Rn). Let Σ ⊂ Rn be a cone,
i.e. tΣ = Σ for all t > 0, with ∂Σ 6= ∅. Suppose that Σ satisfies (4.17) with Φ ≡ id.

Then, Σ = Λγ,θ for some γ and θ as in (4.11).

As a direct consequence of the combination of Theorem 4.4 and Proposition 4.5
we obtain the following result (which is just a more precise version of Theorem 4.1
above),

Corollary 4.6. Let n ≥ 2, and assume that O is a minimal surface and that Φ ∈
Ck,β for some k ≥ 2 and β ∈ (0, 1) — or equivalently ∂O is of class Ck,β.

Let E be a solution (in the sense of Definition 4.1) of (4.2)-(4.6) with x◦ ∈
∂E ∩ ∂O ∩B1/2. Then, for all α ∈

(
0, 1

2

)
, ∂E has the following C1,α local structure

near x◦. For r > 0 small enough, we have either:
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(a) In some appropriate coordinates y = (y′, yn) = (y1, . . . , yn), Φ−1(∂E) is the
graph {yn = h(y′)} of a function h ∈ C0(B′r) that belongs to C1,α(B′+r ) ∩
C1,α(B′−r ), where B′r denotes the ball in Rn−1 and B′±r are the half-balls B′r ∩
{±yn−1 > 0}. Moreover, we have h ≥ 0 on yn−1 = 0 and ∇h is continuous on
{yn−1 = 0} ∩ {h > 0}.

or

(b) ∂E∩Br(x◦) is the union of two Ck,β minimal surfaces with boundary that meet
on ∂O with full contact set in Br(x◦).

Remark 4.3. By [DeA79, Theorem 2.1 and Theorem 2.2] (or by a standard barrier
argument similar to that used in Hopf’s lemma) if one considers a minimizer of the
De Giorgi measure for obstacles as in Corollary 4.6, then its boundaries do not stick
to the obstacle. More precisely, they present an aperture around the obstacle that
allows, locally, a wedge contained in the minimizer.

As a consequence, minimizers of the De Giorgi measure are locally (in a neigh-
borhood of any contact point) minimizers in the sense of Definition 4.1. Therefore,
Corollary 4.6 above applies to minimizers in the sense of De Giorgi.

Remark 4.4. In the previous statement the condition that O is a minimal surface
appears only to be able to apply Remark 4.2 and obtain (b). Otherwise, an analogous
result with C1,1− regularity holds.

Remark 4.5. We observe that, as a consequence of our results,

E is a minimizer as in Definition 4.1 ⇒ PDG(E;B1) = P (E;B1). (4.21)

Indeed, let E be a minimizer as in Definition 4.1. First, as proven in [DeA79],
since O is smooth, the De Giorgi perimeter PDG of the minimizer can be expressed
as

PDG(F ;B1) = P (F ;B1) + 2Hn−1((O \ F ) ∩B1) ≥ P (F ;B1) for any Borel set F.
(4.22)

But note that ∂E cannot stick to the obstacle from both sides at any point of
O \ ∂O by the strong maximum principle. Hence,

Hn−1((O \ E) ∩B1) = 0. (4.23)

Using (4.22) and (4.23), E is therefore also a minimizer of PDG, since PDG(F ;B1) ≥
P (F ;B1) ≥ P (E;B1) = PDG(E;B1) for any competitor F .

Remark 4.6. Corollary 4.6 gives the regularity of the hypersurface around contact
points. The regularity around other points follows from the classical theory for mini-
mal surfaces (see for instance chapters 8 and 9 of the classical book of Giusti [Giu84]).
Note that this is result only up to dimension 7 [Sim68] since nonsmooth minimizers
exist in dimensions 8 and higher [BDG69]. In contrast, our regularity result holds
around the contact set of the thin obstacle, in any dimension.
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Remark 4.7. After a previous version of this manuscript, a preprint of Focardi and
Spadaro [FoSp18b] appeared in which the authors establish optimal C1,1/2 regularity
estimates and rectifiability of the free boundary for minimal surfaces with flat thin
obstacles in the nonparametric case (that is, in our notation, for the case Φ = id
and assuming that ∂E is a graph in the n-th direction). Interestingly, our Corollary
(4.6) gives that (at least for flat obstacles) the assumptions of [FoSp18b] are always
satisfied near any contact point by parametric minimal surfaces with thin obstacles.
Thus, when combined with our results, the results in [FoSp18b] yield that solutions
to parametric thin obstacle problems are C1,1/2 near the obstacle and their free
boundary is rectifiable.

4.1.8 Organization of the paper

The paper is organised as follows.
In Section 4.2 we introduce some notation, definitions, and preliminary results.

In Section 4.3 we construct a barrier and prove the dichotomy presented in the intro-
duction: if the solution is close to a wedge, then either ∂E is very flat or its contact
set is full in a smaller ball. In Section 4.4 we focus on the flat configuration, showing
the improvement of closeness result in this case (Proposition 4.14). In Section 4.5,
instead, we focus on the full contact set configuration, which allows us to complete
the proof of our first main result, Theorem 4.3. In Section 4.6 we prove Theorem 4.4
by iteratively applying Theorem 4.3. Finally, in Section 4.7 we discuss blow-ups
(monotonicity formula and classification of minimal cones) and we complete the
proofs of Proposition 4.5 and Corollary 4.6, thus obtaining Theorem 4.1.

4.2 Notation and preliminary results

4.2.1 Conventions and notation.

As it is standard, throughout the paper we will assume that the representative of
E among sets that differ from it by a null set is such that topological and measure
theoretic boundary agree. That is, given a set E ⊂ Rn, we will say that x ∈ Rn

belongs to the boundary of E, x ∈ ∂E, whenever

0 < |E ∩Br(x)| < |Br(x)|, for all r > 0.

Notice that, in general, this is not necessarily true. However, the set of points
where this does not hold is of measure zero, and therefore we can consider instead
the equivalent set Ẽ that arises from removing all such points. Thus, without loss
of generality, we will always assume that the measure theoretic and topological
boundary agree.

The notation introduced in Subsections 4.1.3 and 4.1.4 will be recurrent through-
out the work. In particular, the definitions of Λγ,θ and Λδ from (4.10)-(4.15) as well
as the definition of ew and the conditions on the constants θ and γ (see (4.11)). See
also Figure 4.2.

On the other hand, when not stated otherwise, we add a superscript prime to
an element or set in Rn to denote its projection to Rn−1; and we proceed similarly
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with a double superscript prime projection to Rn−2. Thus, if x = (x1, . . . , xn) ∈ Rn,
we can also denote x = (x′, xn) ∈ Rn−1 × R or x = (x′′, xn−1, xn) ∈ Rn−2 × R × R.
Similarly, B1 denotes the unit ball in Rn, B′1 is the unit ball in Rn−1 and B′′1 in Rn−2.
We may sometimes write B′1 ⊂ Rn, or x′ ∈ Rn as an abuse of notation, meaning
B′1 × {0} ⊂ Rn and (x′, 0) ∈ Rn respectively.

4.2.2 Preliminary results

Definition 4.3. Let E ⊂ Rn. We say that E is a minimizer of the δ-thin obstacle
problem in B1 ⊂ Rn if Φ(Λδ) ∩B1 ⊂ E and (4.17) holds.

We are also interested in the notion of super- and subsolutions to the minimal
perimeter problem. Thus, the follow definition will also be useful.

In general terms, we say that a set E+ is a supersolution to the minimal perimeter
problem when compact additive perturbations to E+ in B1 produce sets of larger
perimeter. Similarly, E− is a subsolution to the minimal perimeter problem when
compact subtractive perturbations to E− in B1 increase the perimeter.

Definition 4.4. Let E± ⊂ Rn. Then, E+ is a supersolution in B if

P (F+;B) ≥ P (E+;B),

for any F+ with E+ ⊂ F+ and F+ \ E+ b B.
Analogously, E− is a subsolution in B if

P (F−;B) ≥ P (E−;B),

for any F− with E− ⊃ F− and E− \ F− b B.

Notice that, in particular, a set satisfying (4.17) is a supersolution to the minimal
perimeter problem.

Proposition 4.7. Given E◦ ⊂ Rn with P (E◦;B1) < ∞, there exists E satisfying
(4.17) with E \B1 = E◦ \B1.

Proof. The proof follows by classic methods in the calculus of variations. Lower
semicontinuity and compactness in L1 of BV functions directly yield the result (see
[Giu84, Thm 1.9, Thm 1.19]).

Proposition 4.8. Let E ⊂ Rn satisfying (4.17). Then, for any Br(x◦) ⊂ B1, E
is a supersolution in Br(x◦). Moreover, if Br(x◦) ∩ Φ(Λδ) = ∅, then E is a set of
minimal perimeter in Br(x◦).

Proof. This just follows from the definitions of minimizer of the δ-thin obstacle
problem (4.17) and supersolution.

Lemma 4.9. If E is a local minimizer of the perimeter around a point x◦ ∈ ∂E,
then ∂E satisfies the mean curvature equation

M(D2v,∇v) := (1 + |∇v|2)∆v − (∇v)TD2v∇v = 0
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in the viscosity sense. That is, if we define for any smooth ϕ : B′1 → R,

S±ϕ := {±xn < ϕ(x′)},

then, if S±ϕ is included in either E or Ec in some ball Br(x◦) and x◦ ∈ ∂S±ϕ , we have
that

±M(D2ϕ,∇ϕ) ≤ 0. (4.24)

Moreover, if E is a supersolution to the minimal perimeter problem around x◦ ∈ ∂E,
then if S±ϕ is included in E in some ball Br(x◦) and x◦ ∈ ∂S±ϕ we have the same
result, (4.24).

Proof. The proof is very standard, just using the definitions of minimal perimeter
and supersolution and noticing that we can decrease the perimeter if the conclusion
does not hold. See, for example, [CC93].

Lemma 4.10. Let Φ : Rn → Rn be any C1,1 diffeomorphism and let x◦ belong to
∂O = Φ({xn−1 = xn = 0}). Assume that [Φ]C1,1 ≤M and |D(Φ−1)(x◦)| ≤M . Then,
for ρ > 0, there are new coordinates x̄ = ψx◦(x)

ψx◦(x) := ρ−1Rx◦(x− x◦), where Rx◦ is an orthogonal matrix,

and a new C1,1 diffeomorphism Φ̄, such that

Φ̄(Λδ̄) = ψx◦(Φ(Λδ)) for some δ̄ ∈ (0, Cδ)

and
Φ̄(0) = 0, Φ̄(0) = id, and |D2Φ̄| ≤ CM3ρ,

where C depends only on n.

Proof. Let us choose Rx◦ to be some orthogonal matrix to be chosen and define

Ax◦ := Rx◦DΦ(Φ−1(x◦)
)
.

Choose Rx◦ and δ̄ ∈ (0, Cδ) such that

Ax◦(Λ
δ) = Λδ̄

as a consequence the set

{xn−1 = 0, xn ≤ 0} is invariant under the linear map Ax◦ .

Now define

Φx◦ := Rx◦

(
Φ(Φ−1(x◦) + A−1

x◦ x)− x◦
)

and Φ̄ := ρ−1Φx◦(ρx).

Note that since Φ−1(x◦) ∈ {xn−1 = xn = 0} we have Φ−1(x◦) + A−1
x◦ Λδ̄ = Λδ and

thus
Φ̄(Λδ̄) = ψx◦(Φ(Φ−1(x◦) + A−1

x◦ Λδ̄)) = ψx◦(Φ(Λδ)).

By construction, we have Φ̄(0) = 0, DΦ̄(0) = id, and [Φ̄]C1,1 ≤ CM3ρ.
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4.3 Barriers and dichotomy

For this section let us start by defining the mean curvature operator H, on functions
ϕ : Rn−1 → R as

Hϕ = div

(
∇ϕ√

1 + |∇ϕ|2

)
= (1 + |∇ϕ|2)−

3
2M(D2φ,∇ϕ). (4.25)

We start by introducing a supersolution that will be used as barrier.

Lemma 4.11 (Supersolution). Let β ∈
(

0, 1
10(n−2)

)
. Let

S+
β :=

{
x = (x′′, xn−1, xn) ∈ B1 ⊂ Rn−2 × R× R :

xn ≤ ϕβ(x′) := β
(
|x′′|2 − 2(n− 2)x2

n−1

) }
Then, S+

β is a strict supersolution to the equation of minimal graphs in B1, and

Hϕβ ≤ −cβ, in B′1,

for some positive constant c depending only on n.

Proof. Let us check that, given ϕβ, then

Hϕβ ≤ −cβ.

Let us rewrite the operator H,

Hϕβ(x′) =
1√

1 + |∇ϕβ|2
(

∆ϕβ −
(∇ϕβ)TD2ϕβ∇ϕβ

1 + |∇ϕβ|2
)

(x′) =
∑
i,j

Uij(x
′)∂ijϕβ(x′),

where

Uij(x
′) :=

1√
1 + |∇ϕβ|2

(
δij −

∂iϕβ(x′)∂jϕβ(x′)

1 + |∇ϕβ|2
)
.

Let Sϕ(x′) =
√

1 + |∇ϕβ|2. Note that, U(x′) = S−1
ϕ (x′)

(
Id− ϕ̄βϕ̄Tβ

)
, where

ϕ̄β(x′) = ∇ϕβ(x′)/Sϕ(x′). The only eigenvalue of Id − ϕ̄βϕ̄
T
β different from 1 is

1−‖ϕ̄β‖2. Let mϕ = sup{|∇ϕβ|}, where the supremum is taken over the domain of
definition of ϕβ. Putting all together we have obtained that U is uniformly elliptic,
with ellipticity constants λϕ = (1 +m2

ϕ)−3/2 and 1.
Notice then that

Hϕβ(x′) =
∑
i,j

Uij(x
′)∂ijϕβ(x′) ≤ β (2(n− 2)− 4(n− 2)λϕ) , in B′1.

On the other hand, from the fact that |∇ϕ| ≤ 4β(n− 2) in B′1,

λϕ = (1 +m2
ϕ)−3/2 ≥ (1 + 16β2(n− 2)2)−3/2. (4.26)

Putting all together, we get the desired result.
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erγ

2θ − arctan(C̃ε)

θ arctan(C̃ε)

ε
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β

Λr
γ,θ

∂Er

(Λδ)r

β n−2
2

xn = −C̃εxn−1
en

en−1

Figure 4.3: Representation of the setting in Lemma 4.12 after a rotation.

The following lemma shows that whenever the minimizer is not flat, then the
contact set is full in the interior. The condition of flatness is used via the angle θ from
the definition of the wedge Λγ,θ: being flat means that θ is small, when compared to
ε.

Lemma 4.12. There exists ε◦ and C◦ depending only on n such that the following
statement holds:

Let E ⊂ Rn satisfying (4.17) be such that it is ε-close to some Λγ,θ in B1, for
some ε ∈ (0, ε◦), and (4.18) holds. Suppose that θ ∈

[
C◦ε,

π
2

)
. Then

E ⊂ Φ(Λγ,θ−C◦ε) in B1/2.

In particular, the contact set is full in B1/2.

Proof. Let us prove this result, for simplicity, in the case Φ ≡ id, and at the end
of the proof we discuss how to modify it in order to account for small second order
perturbations.

We will slide an appropriate supersolution from above until we intersect with the
surface ∂E.

Take x◦ ∈ B′′1/2×{0}× {0}, and by making a translation let us assume x◦ is the
origin. Let us also rotate the setting with respect to the last two coordinates so that
the angle between eγ and en is ∠(eγ, en) = θ − arctan(C̃ε), for some constant C̃
depending only on n to be chosen, such that θ > arctan(C̃ε). Let us denote erγ, ∂E

r,
∂Λr

γ,θ, and (Λδ)r, the corresponding rotated versions. The following argument can
be done with both configurations that fulfil this property, so let us assume without
loss of generality that we are in a situation where

{xn = −C̃εxn−1} ∩ {xn−1 ≥ 0} ⊂ ∂Λr
γ,θ, in B1/2. (4.27)

See Figure 4.3 for a representation of this rotated situation, and the whole proof.
Take the supersolution S+

β from Lemma 4.11. Slide ∂S+
β from above until it

touches the boundary of the minimizer of the δ-thin obstacle problem, ∂Er. That
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is, define
Stβ := ∂S+

β + ten,

and consider
mβ := inf{t > 0 : Stβ ∩ ∂Er ∩B1/2 6= ∅}.

We recall that

∂S+
β =

{
x = (x′′, xn−1, xn) ∈ B1 : xn = β

(
|x′′|2 − 2(n− 2)x2

n−1

)}
.

If mβ > 0 and xm = (xm1 , . . . , x
m
n ) ∈ B1/2 is such that xm ∈ Smββ ∩ ∂Er ∩ B1/2,

then xm cannot be an interior point to S
mβ
β ∩B1/2. Indeed, since S

mβ
β ∩B1/2∩{xn−1 =

0} ⊂ {xn ≥ mβ > 0} is strictly above zero, then thanks to Proposition 4.8 ∂Er is a
surface of minimal perimeter around xm. On the other hand, S

mβ
β is a supersolution,

touching on an interior point with a surface of minimal perimeter locally, which is
not possible.

We will show that the boundary ∂B1/2 ∩ Smββ is always above ∂Er in the en
direction. From (4.27) and using that ∂Er ⊂ Λr

γ,θ + Bε, it is enough to show that

there exists C̃ depending only on n such that

β
(
|x′′|2 − 2(n− 1)x2

n−1

)
≥ −C̃εxn−1 + c0ε, for x′ = (x′′, xn−1) ∈ ∂B′1/2, (4.28)

for some constant c0 depending only on n that accounts for the difference in distance
between the Hausdorff distance and the distance in the en-direction. For (4.28) to
be satisfied, using |x′′|2 = 1

4
− (xn−1)2, we want

−β(2n− 1)x2
n−1 + C̃εxn−1 ≥ −

β

4
+ c0ε, for xn−1 ∈ [0, 1/2].

By taking β = 4c0ε and C̃ = 2c0(2n − 1) the previous condition holds, and notice
that for ε small enough (depending only on n) S+

β is a supersolution as wanted.

Thus, for β = 4c0ε and C̃ = 2c0(2n − 1), we can slide Stβ until t = 0, where it

touches ∂Er at the origin (since it touches (Λδ)r there). Therefore, the origin is a
contact point, and moreover, ∂Er is contained in S+

β ∩ {xn−1 ≥ 0}. In particular,
since the origin was a translation of any point in B′′1/2 × {0} × {0}, we have that in

B′′1/2 × {0} × {0} ∩ {xn−1 ≥ 0}, ∂Er is contained in {xn ≤ 0}.
Rotating back, and putting arctan(C̃ε) = C◦ε for some C◦ depending only on

n, we obtain the desired result from one side. Doing the same on the other side
completes the proof.

If Φ 6≡ id, we can proceed similarly using that |D2Φ| ≤ ε1+ 1
2 . Indeed, if E is

ε-close to Λγ,θ, then Φ−1(E) is 2ε-close to Λγ,θ for ε small enough depending only on
n. Now we can repeat the previous argument with Φ−1(E) instead of E. The only
place where we used that E satisfies (4.17) is to check that we cannot touch at an
interior point when sliding the supersolution (using the previous notation, to check
that mβ cannot be strictly positive).

If we were touching at an interior point xm in this case, then E would be a
surface of minimal perimeter around Φ(xm). Since we can choose β = 4c0ε to avoid
contact in the boundary, thanks to Lemma 4.11 the mean curvature of ∂S

mβ
β is
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below −4cε. Consequently, the mean curvature of Φ(∂S
mβ
β ) is below −4cε + c′ε1+ 1

2

and for ε small enough Φ(S
mβ
β ) is still a supersolution: there cannot be an interior

tangential contact point.

Lemma 4.12 shows that if if E is ε-close to some wedge Λγ,θ in B1 with θ ≥ C◦ε
then we have E ⊂ Φ(Λγ,θ−C◦ε). As a counterpart, the following lemma shows that
Φ(Λγ,θ+C◦ε) ⊂ E — even for θ < C◦ε.

Lemma 4.13. There exists ε◦ and C◦ depending only on n such that the following
statement holds:

Let E ⊂ Rn satisfying (4.17) be such that it is ε-close to some Λγ,θ in B1, for
some ε ∈ (0, ε◦) and θ ∈

[
0, π

2
− C◦ε

)
. Suppose that Φ satisfies (4.18). Then

Φ(Λγ,θ+C◦ε) ⊂ E in B1/2.

Proof. The proof follows very similarly to the previous result, Lemma 4.12. Again,
as before, we assume Φ ≡ id; and the proof can be adapted to the case |D2Φ| ≤ ε1+ 1

2

following analogously to the proof of Lemma 4.12.
We want to show that we can open Λδ up to being at an angle proportional to

ε from Λγ,θ. Let us show it for xn−1 ≥ 0.
The fact that Λδ ⊂ E in B1 allows us to establish a separation between xn−1 ≥ 0

and xn−1 ≤ 0.
Consider the surface ∂E ∩ {xn−1 ≥ 0}. Let θ1 be the angle between ∂Λγ,θ and

∂Λδ in {xn−1 ≥ 0}. If θ1 ≤ C1ε for some C1 depending only on n we are already
done, since Λδ is already a barrier; so that we can suppose that θ1 ≥ C1ε for some
C1 to be determined. We denote Γγ,θ = ∂Λγ,θ ∩ {xn−1 ≥ 0}.

Now, as in Lemma 4.12, we rotate the setting in the last two coordinates, so that
Γrγ,θ ⊂ {xn ≥ 0} at an angle arctan(C̃ε) from {xn = 0}, for some constant C̃ to be
chosen. See Figure 4.4 for a representation after the rotation.

Notice that −S+
β is a subsolution to the problem, where S+

β denotes the superso-
lution constructed in Lemma 4.11. Now the situation is the same as in Lemma 4.12
upside down. In the new coordinates after the rotation, since in {xn−1 > 0} any
point on ∂Er is locally a supersolution, we will be able to slide up the subsolution
up until the origin for the same constant C̃ as in Lemma 4.12 as long as we are are
not touching with it in the region {xn−1 ≤ 0} after the rotation. But this can be
avoided choosing C1 such that C1ε ≥ 3 arctan C̃ε for ε small.

4.4 Improvement of closeness in flat configuration

In this section we prove our main result, Theorem 4.3, in the flat configuration case
in the case θ ∈ (0, C◦ε). Namely, we show:

Proposition 4.14. For every α ∈
(
0, 1

2

)
, there exist positive constants ρ◦ and ε◦

depending only on n and α, such that the following statement holds:
Let E ⊂ Rn satisfying (4.17), with 0 ∈ ∂E, be such that E is ε-close to Λγ,θ in

B1, for some θ ∈ (0, C◦ε) and ε ∈ (0, ε◦), and (4.18) holds.
Then,

E is ρ1+α
◦ ε-close to Λγ̃,θ̃ in Bρ◦ ,
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arctan(C̃ε)

θ1

θ1 − arctan(C̃ε) + δ

(Λδ)r

Γrγ,θ

∂Er

en

en−1

−S+
β

O

Figure 4.4: Representation of the setting in Lemma 4.13 after a rotation.

for some new γ̃′ and θ̃ as in (4.11).

The proof of this proposition follows by compactness, using the C1,1/2 regularity
of the solutions to the classical thin obstacle problem with the Laplacian, ∆.

The following proposition will be used to show compactness of vertical rescalings{
(x′, xn/ε) : (x′, xn) ∈ ∂E

}
near a contact point.

Proposition 4.15. There exist h◦ and τ◦ depending only on n such that the following
statement holds:

Denote Q1 := B′1 × (−1, 1) Let E ⊂ Rn satisfying, for some v ∈ Q1,

P (E;Q1) ≤ P (F ;Q1) ∀F : E \Q1 = F \Q1 and
(
v + Φ(Λδ)

)
∩Q1 ⊂ F. (4.29)

be such that for some b ∈ (−1, 1) and some h ∈ (0, h◦), (4.18) holds for ε ∈ (0, h),

{xn ≤ b− h} ⊂ E ⊂ {xn ≤ b+ h}, in B′1 × (−1, 1),

and (
v + Φ(Λ0,h)

)
⊂ E, in B′1 × (−1, 1).

Then,

� either {xn ≤ b− h(1− τ◦)} ⊂ E, in B′1/2 × (−1, 1);

� or E ⊂ {xn ≤ b+ h(1− τ◦)}, in B′1/2 × (−1, 1).

To prove Proposition 4.15 we need the following half-Harnack for supersolutions;
see [Sav10b, Section 2] or the proof of [Sav10, Thm 5.3].



127

Proposition 4.16 ([Sav10, Sav10b]). Let E ⊂ Rn be a supersolution to the minimal
perimeter problem in B1, and suppose ∂E ⊂ {xn ≥ 0}. Then, for every η◦ > 0, there
exists some τ◦ and C depending only on n and η◦ such that if τ < τ◦ and τen ∈ ∂E,
then

|Πen (∂E ∩ {xn ≤ Cτ} ∩ (B′1 × (−1, 1)))|Hn−1 ≥ (1− η◦)|B′1|Hn−1 ;

where Πen denotes the projection of a set onto B′1 in the en direction.

Proof of Proposition 4.15. We separate the proof into two different scenarios.
The first possibility is b ≤ ε1+ 1

4 . In this case, since Φ(Λ0,h) ⊂ E, it follows that{
xn ≤ −

tanh

2
− Cε1+ 1

2

}
⊂ E, in B′1/2 × (−1, 1),

for some C depending only on n. For h◦ small enough depending only on n, since
ε ≤ h ≤ h◦ and b ≤ ε1+ 1

4 ,{
xn ≤ b− 3

4
h

}
⊂
{
xn ≤ −

tanh

2
− Cε1+ 1

2

}
⊂ E, in B′1/2 × (−1, 1).

This completes the case b ≤ ε1+ 1
4 .

The second case is b > ε1+ 1
4 , and is less straight-forward. By Savin’s half Harnack,

Proposition 4.16, for every τ > 0 small enough depending only on n, if there exists

z = (z′, zn) ∈ ∂E, with |z′| ≤ 1

2
and zn ≤ b− h+ τh, (4.30)

then∣∣Πen

(
∂E ∩B1 ∩

(
B′3/4 × (−1, 1)

)
∩ {xn ≤ b− h+ C1τh}

)∣∣
Hn−1

≥ 3

4
|B′3/4|Hn−1 ,

(4.31)
for some constant C1 depending only on n.

On the other hand, notice that since we are in the case b > ε1+ 1
4 ,

Ẽ := E ∪ {xn ≤ b},

is a subsolution to the minimal perimeter problem in B1 for h small enough. This
follows since Φ(Λδ) ⊂ {xn ≤ ε1+ 1

4} for ε small enough, and ∂E is a surface of
minimal perimeter whenever it does not touch Φ(Λδ).

Take Ẽc, and apply again Proposition 4.16 to get that, for every τ > 0 small
enough depending only on n (take τ < C−1

1 ), if there exists

z = (z′, zn) ∈ ∂E, with |z′| ≤ 1

2
and zn ≥ b+ h− τh, (4.32)

then∣∣Πen

(
∂E ∩B1 ∩

(
B′3/4 × (−1, 1)

)
∩ {xn ≥ b+ h− C1τh}

)∣∣
Hn−1

≥ 3

4
|B′3/4|Hn−1 .

(4.33)
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Take Q = B′3/4 × (b− h, b+ h) In particular, we must have that

P (E;Q) ≥ 3

2
|B′3/4|Hn−1 .

Notice, on the other hand, that we can take h small enough so that the lateral
perimeter of Q is less than 1

2
|B′3/4|Hn−1 . This yields a contradiction, since including

Q to E gives a competitor for the minimizer of (4.17); and therefore either (4.30)
or (4.32) does not hold. This completes the proof.

We also need a similar improvement of oscillation far away from contact points. In
such case, we can use the following classical Harnack inequality for minimal surfaces.
The proof of this proposition is an straightforward application of Proposition 4.16.

Proposition 4.17 ([Sav10b]). There exists h◦ and τ◦ depending only on n such that
the following statement holds:

Let E ⊂ Rn be a set of minimal perimeter in B′1 × (−1, 1), such that for some
b ∈ (−1, 1) and some h ∈ (0, h◦)

{xn ≤ b− h} ⊂ E ⊂ {xn ≤ b+ h}, in B′1 × (−1, 1).

Then,

� either {xn ≤ b− h(1− τ◦)} ⊂ E, in B′1/2 × (−1, 1);

� or E ⊂ {xn ≤ b+ h(1− τ◦)}, in B′1/2 × (−1, 1).

Actually, to account for situations in which ∂E may stick to ∂Φ(Λγ,θ), we need
the following version of Proposition 4.17 for minimal surfaces with flat enough thin
obstacles.

Proposition 4.18. There exists h◦ and τ◦ depending only on n such that the fol-
lowing statement holds:

Assume that Φ satisfies (4.18) with ε ∈ (0, h). Let E ⊂ Rn, satisfying

Φ
(
{xn ≤ 0}

)
∩Q1 ⊂ E

where we denote Qr := B′r × (−1, 1), be a solution of

P (E;Q1) ≤ P (F ;Q1) ∀F such that E \Q1 = F \Q1, Φ
(
{xn ≤ 0}

)
∩Q1 ⊂ F.

Assume that for some b ∈ (−1, 1) and some h ∈ (0, h◦)

{xn ≤ b− h} ⊂ E ⊂ {xn ≤ b+ h}, in Q1.

Then,

� either {xn ≤ b− h(1− τ◦)} ⊂ E, in Q1/2;

� or E ⊂ {xn ≤ b+ h(1− τ◦)}, in Q1/2.
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Proof. The proof is very similar to that of Proposition 4.17 in [Sav10b]. We sketch
it.

Note that, by (4.18) we have

Φ
(
{xn = 0}

)
⊂ {|xn| ≤ ε1+ 1

2} in Q1.

Now, if b ≤ 0, since ∂E is above Φ
(
{xn = 0}

)
in Q1, we have {xn ≤ −ε1+ 1

2} ⊂ E

in Q1. Thus we obtain {xn ≤ b− h(1− τ◦)} ⊂ E in Q1 provided ε1+ 1
2 ≤ h(1− τ◦),

which is trivially satisfied if τ◦ ≤ 1/2 and ε < h < h◦ ≤ 1/4. In other words, the
first alternative of the conclusion of the proposition holds whenever b ≤ 0.

Let us now consider the case b ≥ 0. Note that we may suppose that the “coinci-
dence set” ∂E ∩Φ

(
{xn = 0}

)
is nonempty in Q3/4 since otherwise the result follows

immediately from Proposition 4.17, noting ∂E would be a minimal boundary in
Q3/4.

Since E is a supersolution in Q1 satisfying {xn ≤ −ε1+ 1
2} ⊂ E in Q1 such that has

some point x◦ = (x′◦, x◦,n) ∈ ∂E ∩Q3/4 with x◦,n ∈ (−ε1+ 1
2 , ε1+ 1

2 ), Proposition 4.16
(with a standard covering argument) yields∣∣∣Πen

(
∂E ∩ {xn ≤ Cε1+ 1

2} ∩Q3/4

)∣∣∣
Hn−1

≥ 3

4
|B′3/4|Hn−1 . (4.34)

At the same time, the set Ẽ := E ∪{xn ≤ b+h/2}) is a subsolution in Q1 since the

contact set ∂E ∩ ∂Φ
(
{xn = 0}

)
∩Q1 is contained in {xn ≤ ε1+ 1

2} ⊂ {xn ≤ b+ h/2}
(recall b ≥ 0 and ε ≤ h). Thus, either

E ⊂ Ẽ ⊂
{
xn ≤ b+ h(1− τ◦)

}
in Q3/4 (4.35)

or else, by Proposition 4.16 applied to Ẽc, we would have∣∣∣Πen

(
∂Ẽ ∩ {xn ≥ b+ h− Cτ◦h} ∩Q3/4

)∣∣∣
Hn−1

≥ 3

4
|B′3/4|Hn−1 . (4.36)

Now (4.35) clearly implies the conclusion of the proposition (first alternative). On
the other hand, should (4.36) hold then, by definition of Ẽ, (4.36) would also hold
with ∂Ẽ replaced by ∂E and thus we would find a contradiction with (4.34) when

taking τ◦ small enough so that b + h − Cτ◦h > Cε1+ 1
2 (recall ε < h < h◦ small

enough). Indeed, this contradiction argument — which uses the minimality of ∂E
among boundaries of sets containing the obstacle — is identical to the one given in
the proof of Proposition 4.15.

At this point, combining Proposition 4.15 and Proposition 4.18 we obtain the fol-
lowing lemma regarding the convergence of vertical rescalings to a Hölder continuous
function.

Lemma 4.19. Let (Ek)k∈N be a sequence such that Ek ⊂ Rn satisfy (4.17), with
0 ∈ ∂Ek, and with Φk such that (4.18) holds for ε = εk. Suppose Ek is εk-close
to Λγk,θk in B1, with θk ∈ (0, εk), and with εk → 0 as k → ∞. Suppose also that
Φk(Λγk,θk+εk) ⊂ Ek in B1. Let

Eεk
k :=

{(
x′,

xn
2εk

)
: x = (x′, xn) ∈ Er

k ∩B1

}
, for all k ∈ N, (4.37)
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where Er
k := Rγk(Ek), and Rγk denotes the rotation of angle γk in the last two

coordinates bringing eγk to en.
Then, there exists u ∈ C0,a(B′1/2) with ‖u‖C0,a(B′

1/2
) ≤ C, for some C depending

only on n, such that

{xn ≤ u(x′)− εβk} ⊂ Eεk
k ⊂ {xn ≤ u(x′) + εβk}, in B′1/2 × (−1, 1), (4.38)

for some a > 0 and β > 0 depending only on n.

Proof. Let us define the cylinder Qr(x◦) = (B′r(x
′
◦)× (−1, 1)) ∩ B1 for any x◦ =

(x′◦, x◦,n) ∈ B1. Notice that, thanks to the hypotheses, for any x◦ ∈ ∂Er
k ∩B1/2,

∂Er
k ∩Q1/2(xr◦) ⊂ {x ∈ B1 : |xn − x◦,n| ≤ 2εk},

where xr◦ denotes the rotated version of r. That is, introducing a notation, we have

oscn
Q2−1 (xr◦)

∂Er
k ≤ 2εk;

the oscillation in the en direction of ∂Er
k in the cylinder Q2−1(xr◦) is less than 2εk.

We would like to use that if εk is small enough, then either Proposition 4.15 or
Proposition 4.18 improves the oscillation in the half cylinder, and proceed iteratively.
In order to do that, we separate between four cases.

Case 1: x◦ = 0. The first case we consider is x◦ = 0 ∈ ∂Ek. By assumption,
Φk(Λγk,θk+εk) ⊂ Ek in B1, and we have that

oscn
Q2−1 (xr◦)

∂Er
k ≤ 2εk.

If we denote as h◦ and τ◦ the variables coming from Proposition 4.15; we have that
if

4εk ≤ h◦, (4.39)

then
oscn

Q2−2 (xr◦)
∂Er

k ≤ 2εk(1− τ◦).

We are using here Proposition 4.15 with h = εk. Condition (4.39) is to ensure that
θk + εk ≤ h◦

2. If we rescale by a factor 2, we have

oscn
Q2−1 (xr◦)

2∂Er
k ≤ 4εk(1− τ◦),

so that, if we want to repeat the argument, hypothesis (4.39) becomes

8εk(1− τ◦) ≤ h◦.

If we want to continue one next iteration, we can take h = 2εk(1− τ◦). Notice that,
after the rescaling, the transformation Φ associated to 2∂Ek, is Φ̃k(x) = 2Φk(x/2),

2Notice that here we want to ensure that Φ(Λ0,h) ⊂ Erk in order to apply Proposition 4.15. We
actually have that RγkΦk(Λγk,θk+εk) ⊂ Erk, but this is enough to use it as a barrier from below in
the proof of Proposition 4.15.
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so that |D2Φ̃k| ≤ 2−1ε
1+ 1

2
k , and the hypotheses of Proposition 4.15 are still fulfilled,

with a better constant.
Rescaling and repeating this procedure iteratively, we have that as long as

2m(1− τ◦)m−2εk ≤ h◦, (4.40)

then
oscn

Q2−m (xr◦)
∂Er

k ≤ 2εk(1− τ◦)m−1. (4.41)

Case 2: x◦ ∈ ∂Ek ∩ ∂Ok ∩ B1/2. The second case is when x◦ belongs to the contact
set of the thin obstacle, x◦ ∈ ∂Ek ∩ ∂Ok, where ∂Ok := Φ({xn−1 = xn = 0}). After
a translation and a rotation, up to redefining Φ if necessary, we can put ourselves
in Case 1 (see Lemma 4.10 with ρ = 1), so that

2m(1− τ◦)m−2εk ≤ h◦ ⇒ oscn
Q2−m (xr◦)

∂Er
k ≤ 2εk(1− τ◦)m−1. (4.42)

We must point out here that, a priori, the oscillation might be in a direction different
from en due to the rotation coming from Lemma 4.10. However, since the rotation
tends to the identity as εk ↓ 0, we may also assume that for εk small enough, the
previous also holds.

Case 3: dist(x◦, ∂Ek ∩ ∂Ok) ≥ 1
8
. Follows exactly as the two previous cases, using

Proposition 4.18 instead of Proposition 4.15, yielding again (4.42).

Case 4: 2−p−1 ≤ dist(x◦, ∂Ek ∩ ∂Ok) ≤ 2−p for p ≥ 3. This is a combination of Case
2 and Case 3. We apply Case 2 and rescale, until we can apply Case 3, so that (4.42)
holds again.

That is, (4.42) holds for all x◦ ∈ ∂Ek ∩ B1/2. Let mk denote the largest m we
can take for every εk such that (4.40) holds. Clearly, mk → ∞ as k → ∞, since
εk → 0. If we consider the rescaled sets in the en direction, Eεk

k , we have that for
every m ≤ mk,

oscn
Q2−m (x◦)

∂Eεk
k ≤ 2(1− τ◦)m−1. (4.43)

In particular, there exists a Hölder modulus of continuity as εk → 0 controlling
the boundaries ∂Eεk

k . By Arzelà-Ascoli, up to subsequences, ∂Eεk
k converges in the

Hausdorff distance to the graph of some Hölder continuous function, u.

Lemma 4.20. The function u ∈ C0,a(B′1/2) from the Lemma 4.19 is a viscosity

solution to the classical thin obstacle problem with u(0) = 0. That is, u fulfils
∆u = 0 in B′1/2 \ ({xn−1 = 0} ∩ {u = 0})
∆u ≤ 0 on {xn−1 = 0} ∩ {u = 0}
u ≥ 0 on {xn−1 = 0},

(4.44)

in the viscosity sense. In particular,

‖u‖
C1,1/2

(
B′

1/4
∩{xn−1≥0}

) + ‖u‖
C1,1/2

(
B′

1/4
∩{xn−1≤0}

) ≤ C, (4.45)

for some constant C depending only on n. That is, u is C1,1/2 up to {xn−1 = 0} in
either side.
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Proof. The proof follows along the lines of [Sav10].
Since ∂Eεk

k converges uniformly to the graph of u, and ∂Eεk
k ∩ {xn−1 = 0} ⊂

{xn ≥ −Cεk}, we clearly have that u ≥ 0 on {xn−1 = 0}. This follows since
Φ(Λγk,θk+εk) ⊂ Ek. Similarly, u(0) = 0.

Now take any point x′◦ ∈ B′1/2. Consider P (x′) a quadratic polynomial in B1/2′ ,

with graph touching the graph of u from below at (x′◦, u(x′◦)). Since ∂Eεk
k is con-

verging uniformly to the graph of u, P (x′)− ck touches from below ∂Eεk
k at a point

yk such that yk → (x′◦, u(x′◦)) as k →∞. Rescaling back, εkP (x′)− c̃k touches from
below ∂Er

k at ỹk such that ỹ′k → x′◦ for some sequence c̃k bounded. Since ∂Er
k is a

supersolution being touched from below, by Lemma 4.9 we have

M(εkD
2P, εk∇P ) = εk∆P + ε3

k

(
∆P |∇P |2 − εk(∇P )TD2P ∇P

)
≤ 0

at ỹ′k. By letting εk → 0 we reach

∆P (x′◦) ≤ 0,

so that u solves ∆u ≤ 0 in the viscosity sense.
On the other hand, suppose x′◦ ∈ B′1/2 \ ({xn−1 = 0} ∩ {u = 0}). Let P (x′) be

a quadratic polynomial in B1/2′ , with graph touching the graph of u from above
at (x′◦, u(x′◦)). Now, P (x′) + ck touches from above ∂Eεk

k at a point yk such that
yk → (x′◦, u(x′◦)) as k → ∞. That is, εkP (x′) + c̃k touches from above ∂Er

k at ỹk
such that ỹ′k → x′◦ for some sequence c̃k bounded. If k large enough, ỹ′k ∈ B′1/2 \
({xn−1 = 0} ∩ {u = 0}). Therefore, either ∂Er

k is a surface of minimal perimeter
around ỹk, or ∂Er

k is touching Φk(Λ
δ) at ỹk. In the first case, we are already done

proceeding as before, we get M(εkD
2P, εk∇P ) ≥ 0.

Suppose then, that ∂Er
k is touching Φk(Λ

δ) at ỹk. For this to happen, one must
have that Φk(Λ

δ) is a supersolution to the minimal perimeter problem around ỹk,
otherwise there could not be a contact point with a supersolution. However, notice
that it is a supersolution with mean curvature around ỹk bounded from below by

−Cε1+ 1
2

k . Therefore, M(εkD
2P, εk∇P ) ≥ −Cε1+ 1

2
k at ỹk, and letting k → ∞ we get

∆P (x′◦) ≥ 0. Thus, (4.44) holds in the viscosity sense.
Finally, the regularity of solution to the classical thin obstacle problem, (4.45),

was first shown by Caffarelli in [Caf79]; and the optimal C1,1/2 regularity here pre-
sented was obtained by Athanaopoulos and Caffarelli in [AC04].

We can now present the proof regarding the improvement of closeness to sets of
the form Λγ,θ, Proposition 4.14.

Proof of Proposition 4.14. Let us argue by contradiction, and suppose that the state-
ment does not hold. Then, there exists some α? ∈

(
0, 1

2

)
and a sequence Ek ⊂ Rn

satisfying (4.17), such that 0 ∈ ∂Ek, Ek are εk-close to some Λγk,θk for θk ∈ (0, C◦εk),
(4.18) holds for ε = εk (and the transformation Φk), for some positive sequence
εk → 0 as k →∞, but such that the conclusion does not hold for any ρ◦, ε◦ > 0.

By Lemma 4.13 we have that

Φk(Λγk,θk+C◦εk) ⊂ Ek, in B1/2.
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By rescaling and renaming the εk sequence if necessary, we can assume that θk ∈
(0, εk) and Φk(Λγk,θk+εk) ⊂ Ek in B1, so that we are in the same situation as in
Lemma 4.19. In particular, due to Lemma 4.19, the sequence ∂Eεk

k approaches (in
Hausdorff distance) a function u in B′1/2×(−1, 1), which by Lemma 4.20 is a solution
to a classical thin obstacle problem. Thanks to the regularity of u, and the fact that
u(0) = 0 and ∇x′′u(0) = 0, we have that∣∣u(x′)− ∂+

n−1u(0)(x′n−1)+ − ∂−n−1u(0)(x′n−1)−
∣∣ ≤ Cρ3/2, in B′2ρ,

for any ρ > 0 and for some constant C depending only on n. Here, we have denoted
a+ = max{a, 0}, a− = min{a, 0}, and

∂±n−1u(0) := lim
η↓0

∂u

∂x′n−1

(0, . . . , 0,±η),

i.e., the limit of the derivative in the en−1 direction coming from {xn−1 > 0} or
{xn−1 < 0} (which exist by the regularity up to the contact set). Notice, moreover,
that since ∆u ≤ 0 around 0, we must have ∂−n−1u(0) ≥ ∂+

n−1u(0). In particular,
thanks to the closeness of ∂Eεk

k to the graph of u, we have that

∂Eεk
k ∩

(
B′3ρ/2 × (−1, 1)

)
⊂
{∣∣xn − ∂+

n−1u(0)(x′n−1)+ − ∂−n−1u(0)(x′n−1)−
∣∣ ≤ Cρ1/2

}
,

which, after rescaling implies that ∂Er
k is at distance at most Cεkρ

3/2 from some Λγ̃,θ̃

in Bρ, given by the graph of εk∂
+
n−1u(0)(x′n−1)+ + εk∂

−
n−1u(0)(x′n−1)−. Now, simply

take ρ small enough depending only on n and α? such that Cρ3/2 ≤ ρ1+α? , and we
reach a contradiction (notice that such ρ exists because α? <

1
2
).

4.5 Improvement of closeness in non-flat configu-

ration

In this section we study the complementary case to the one in the previous section:
the case where E is ε-close to a non-flat (θ & ε) wedge Λγ,θ. Under this condition,
thanks to Lemma 4.12, there exists a full contact set, so that the study of the
regularity becomes a known matter.

We state and prove now the lemma that will allow us to conclude the proof of
Theorem 4.3.

Lemma 4.21. There exists ε◦ depending only on n such that the following statement
holds:

Let E ⊂ Rn satisfying (4.17) with 0 ∈ ∂E be such that for some Λγ,θ, and
ε ∈ (0, ε◦),

Φ(Λγ,θ+ε) ⊂ E ⊂ Φ(Λγ,θ−ε), in B1, (4.46)

where Φ satisfies (4.18).
Then,

∂E ∩B1/2 = Γ+ ∪ Γ−, (4.47)

where
Γ± = ∂E ∩B1/2 ∩ Φ({±xn−1 > 0}), (4.48)
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and
Γ± ∩ Φ({xn−1 = 0}) ∩B1/2 ⊂ Φ({xn−1 = xn = 0}). (4.49)

Moreover, for each β ∈ (0, 1), Γ+ and Γ− are C1,β graphs up to the boundary in
the eγ+θ and eγ−θ directions respectively, with C1,β-norms bounded by Cε, where C
depends only n and β.

Remark 4.8. A a direct consequence of the C1,β estimates from Lemma 4.21 there
exists Λγ?,θ? as in (4.11) such that for any ᾱ ∈ (0, 1/2),

E is Cεr1+ᾱ-close to Λγ?,θ? in Br, for all r ∈ (0, 1/2),

for some constant C depending only on n. Moreover,

|γ̄ − γ|+ |θ̄ − θ| ≤ Cε,

for some constant C depending only on n. This will be useful later on in the paper.
In fact, we could clearly take ᾱ ∈ (0, 1) but we will only need ᾱ < 1/2 later on (see
Proposition 4.24).

In order to prove Lemma 4.21 we need a version for thick smooth obstacles of
the following standard result on regularity of flat minimizers of the perimeter.

Theorem 4.22 ([Giu84, Chapter 8]). There exists η◦ small depending only on n
such that the following statement holds:

Let E ⊂ Rn be a minimizer of the perimeter in B1 such that

{xn ≤ −η} ⊂ E ⊂ {xn ≤ η}, in B1,

for some η ∈ (0, η◦).
Then, there exists a map ϕ : B′1/2 → R such that

∂E = {x = (x′, xn) ⊂ Rn : xn = ϕ(x′)} in B′1/2 × (−1/2, 1/2) ,

where ‖ϕ‖Ck(B′
1/2

) ≤ C(n, k) η, for some constant C depending only on n and k.

Let us comment on the standard proof of the previous theorem.

Remark 4.9. Theorem 4.22 is usually shown in two steps. First, one iterates (4.8)
obtain

|ν(x)− ν(y)| ≤ Cη|x− y|α,
for α > 0, and where ν(x) for x ∈ ∂E denotes the unit normal vector to ∂E pointing
outwards E. This Cα estimate for the normal ν is a consequence of the improvement
of flatness property (4.8).

Second, one improves this C1,α estimate to obtain the Ck regularity using interior
Schauder estimates for graphs.

Comparing normal vectors is like comparing the corresponding tangent hyper-
planes (or half-spaces). A similar approach is what inspired part of this work, where
we compare sets of the form Λγ,θ instead of half-spaces to get the regularity.

The version of the previous result we will need is the following
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Theorem 4.23. There exists η◦ small depending only on n such that the following
statement holds:

Assume η ∈ (0, η◦) and that Φ satisfies (4.18) with ε ∈ (0, η). Let E ⊂ Rn,
satisfying

Φ
(
{xn ≤ 0}

)
∩B1 ⊂ E,

P (E;B1) ≤ P (F ;B1) ∀F such that E \B1 = F \B1, Φ
(
{xn ≤ 0}

)
∩B1 ⊂ F.

Assume that for some b ∈ (−1/2, 1/2)

{xn ≤ b− η} ⊂ E ⊂ {xn ≤ b+ η}, in B1.

Then, there exists a map ϕ : B′1/2 → R such that

∂E = {x = (x′, xn) ⊂ Rn : xn = ϕ(x′)} in B′1/2 × (b− 1/4, b+ 1/4) , (4.50)

where ‖ϕ‖C1,1(B′
1/2

) ≤ Cη, for some constant C depending only on n.

The proof of Theorem 4.23 is based on two steps as the proof of Theorem 4.22 (see
Remark 4.9). First, we prove that ∂E is a C1,α graph or, more precisely, (4.50) with
‖ϕ‖C1,α(B′

1/2
) ≤ Cη. This can be done exactly by compactness of vertical rescaling,

following the exact same strategy of Savin [Sav10, Sav10b].
Second, we can apply a theorem of Brézis and Kinderleher [BK74] to improve

from this C1,α estimate to the optimal C1,1 estimate. By completeness we sketch the
proof here.

Proof of Theorem 4.23. We do the argument in two steps.

Step 1. Fix some α ∈ (0, 1), say α := 1/4. Then, we claim that if η◦ is small
enough then (4.50) holds with ‖ϕ‖C1,α(B′

1/2
) ≤ Cη, where C depends only on n.

Indeed, exactly as in the proof of Proposition 4.14, we establish by compactness the
following improvement of flatness property, around x◦ ∈ B3/4 ∩ ∂E,

∂E ⊂
{
|e·(x−x◦)| ≤ η

}
in Br(x◦) ⇒ ∂E ⊂

{
|ẽ·(x−x◦)| ≤ ρ1+α

◦ η
}

in Bρ◦r(x◦).
(4.51)

for some ρ◦ ∈ (0, 1) depending only on n. The proof of (4.51) is analogous to the
Proof of Proposition 4.14. It is enough to do the case r = 1. To do it, we consider
the vertical rescalings defined similarly as in (4.37) in Lemma 4.19. These vertical
rescalings of ∂E are compact by Proposition 4.18 (similarly as in Lemma 4.19) and
converge “uniformly” to a function u ∈ Ca(B′1/2) which is harmonic. Indeed, the

condition |D2Φ| ≤ η1+ 1
2 implies that the thick obstacle will be zero in the limit if

we apply the vertical rescaling (x′, xn) 7→ (x′, xn/η) and let η ↓ 0. Using the C1,1

regularity of harmonic functions we establish (4.51).
With a standard iteration of (4.51) we establish that (4.50) holds with

‖ϕ‖C1,α(B′
1/2

) ≤ Cη (α = 1/4),

as we wanted to show.

Step 2. We improve the previous C1,1/4 estimate to the optimal estimate ‖ϕ‖C1,1(B′
1/2

) ≤
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(Λδ)r

en

en−1
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Λr
γ,θ−ε◦

Λr
γ,θ+ε◦

Λr
γ,θ

(Γ+)r

ε◦

ε◦

θ

x◦

Br◦(x
◦)

Figure 4.5: Representation of the setting after a rotation.

Cη. This is a straightforward application of the results of Brézis and Kinderleher
[BK74] of optimal C1,1 regularity for obstacle problems with uniformly elliptic non-
linear operators. Indeed, once we have proved that ∂E is a graph and with bounded
gradient, then it follows that the mean curvature operator H is uniformly elliptic
and thus [BK74, Theorem 1] provides exactly the desired C1,1 estimate.

We can now prove Lemma 4.21.

Proof of Lemma 4.21. We divide the proof into two steps. In the first step we show
that Γ± are a graphs, and in the second step we show their regularity.

Step 1: Γ± are graphs in an appropriate direction. The proof of the fact
that Γ± are graphs is almost immediate, just noticing that (4.46) allows us to apply
Theorem 4.23 at every scale.

Let us consider first the case Φ ≡ id, and let us rotate the setting with respect to
the last two coordinates, in such a way that the normal vector to Λγ,θ for {xn−1 >
0}, eγ+θ, now becomes en (that is, rotate an angle γ + θ). Let us denote as the
corresponding rotated versions with superindex r, e.g. Λr

γ,θ. See Figure 4.5 for a
representation of the rotated setting.

Now take any point x◦ ∈ B1/2∩{xn = 0}, so that x◦ ∈ Λr
γ,θ. Denote r◦ = x◦n−1/2,

and consider a ball Br◦(x
◦). Notice that

{xn ≤ −3 tan(ε◦)r◦} ⊂ E ⊂ {xn ≤ 3 tan(ε◦)r◦}, in Br◦(x
◦).

Thus, if ε◦ is small enough, we can apply Theorem 4.22 rescaled in the ball
Br◦(x

◦); which tells us that (Γ+)r in Br◦(x
◦) is the graph of a function in the en
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direction. Since we can cover all of (Γ+)r with balls of this kind, we conclude that
(Γ+)r is the graph of a function in the en direction in B1/2 ∩ {xn−1 ≥ 0}.

The case Φ 6≡ id is a perturbation of the previous one, but we would need to
use Theorem 4.23 instead of Theorem 4.22, since it is no longer true that we are
necessarily a minimal surface in Br◦(x

◦).

Step 2: C1,1− regularity of Γ±. Let us first discuss the case Φ ≡ id. In this
situation, using (4.46), we obtain that Γ+ is a graph that is Lipschitz up to its
boundary {xn−1 = xn = 0} and we may now consider the reflection Γ+

∗ of Γ+ under
the transformation (x′′, xx−1, xn) 7→ (x′′,−xn−1,−xn). Since Γ+ is a Lipschitz graph

up to {xn−1 = xn = 0} the “odd reflection” Γ+ ∪ Γ+
∗ is a Lipschitz graph which

solves the equation of minimal graphs in the viscosity sense. It follows that Γ+ ∪ Γ+
∗

is analytic.
In the case Φ 6≡ id we cannot use the reflection trick and the interior smoothness

of minimal graph to conclude, but still using (4.46) and that Φ ∈ C1,1 we see that
Γ+ is a Lipschitz graph with now C1,1 boundary datum solving a thick obstacle
problem with the mean curvature operator H. It follows from standard perturbative
methods and the boundary regularity theory for obstacle problems with elliptic
operators (see, for instance, Jensen [Jen80]) that the Γ+ is a C1,β graph up to its
boundary Φ({xn−1 = xn = 0}).

With this, we can proceed and prove Theorem 4.3.

Proof of Theorem 4.3. If θ ∈ (0, C◦ε), then we can directly apply Proposition 4.14.
On the other hand, if θ ∈

[
C◦ε,

π
2

)
, thanks to Lemmas 4.12 and 4.13 we have

that
Φ(Λγ,θ+C◦ε) ⊂ E ⊂ Φ(Λγ,θ−C◦ε), in B1/2.

That is, by rescaling and taking ε smaller depending only on n if necessary, we
have put ourselves in the situation to apply Lemma 4.21. We conclude the proof in
this case by noticing Remark 4.8 and that we can take ρ◦ = 1

4
.

4.6 Regularity of solutions

In this section, in order to simplify the computations, we assume Φ ≡ id. All state-
ments and proofs are done under this assumption. We leave to the interested reader
the standard extension of this results to the cases Φ ∈ Ck,β, k ≥ 2 and β ∈ (0, 1) or
Φ analytic.

Proposition 4.24. There exists ε◦ depending only on n such that the following
statement holds:

Let E ⊂ Rn satisfying (4.17) with 0 ∈ ∂E, be such that E is ε-close to Λγ,θ in
B1, for some ε ∈ (0, ε◦). Then, there exists some Λγ,θ with γ and θ as in (4.11),

such that for α ∈
(
0, 1

2

)
,

E is Cαεr
1+α-close to Λγ,θ in Br, for all r ∈ (0, 1/2),

for some constant Cα depending only on n and α.
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Proof. We will suppose that ε > 0 is sufficiently small so that each of the results
used can be applied.

We begin by noticing that there are two possible scenarios. Either θ ≥ C◦ε or
θ < C◦ε, where C◦ is the constant given in Lemma 4.12 and in Proposition 4.14,
depending only on n.

Notice that if θ ≥ C◦ε we are already done. Indeed, in this case we can apply
Lemma 4.12 and Lemma 4.13 to fulfill the hypotheses of Lemma 4.21; which at the
same time yields the desired result, thanks to Remark 4.8.

Suppose otherwise that θ < C◦ε. In this case we can apply the improvement of
closeness in Proposition 4.14. That is, there exist some radius ρ◦, depending only
on n and α, such that

E is ρ1+α
◦ ε-close to Λγ2,θ2 in Bρ◦ ,

for some γ2 and θ2 as in (4.11). Let us define E2 := ρ−1
◦ E, so that we have a set

E2 ⊂ Rn, satisfying (4.17), with 0 ∈ ∂E2 and ρα◦ ε-close to Λγ2,θ2 in B1. We are now
again presented with a dichotomy: either θ2 ≥ C◦ρ

α
◦ ε or θ2 ≤ C◦ρ

α
◦ ε. In the former

case, we can again apply Lemma 4.21 and Remark 4.8 to find that

E2 is Cερα◦ r
1+α-close to Λγ̄2,θ̄2 in Br, for all r ∈ (0, 1/2),

for some Λγ̄2,θ̄2 (which is close to Λγ2,θ2). Rescaling back, E is Cεr1+α-close to Λγ̄2,θ̄2

in Br for all r ∈ (0, ρ◦/2). Using that E is ε-close to Λγ,θ in B1 it follows that E is
Cαεr

1+α close to Λγ̄2,θ̄2 in Br, for all r ∈ (0, 1/2), and a constant Cα that depends
on α and n, of the form Cα = Cρ−1−α

◦ for C depending only on n.
If θ2 ≤ C◦ρ

α
◦ ε, we can repeat the process iteratively. Suppose that for all k <

k◦ ∈ N, we have θk ≤ C◦ρ
kα
◦ ε, but θk◦ ≥ C◦ρ

k◦α
◦ ε. That is, there exist Ek := ρ−k+1

◦ E,

satisfying (4.17), with 0 ∈ ∂Ek such that it is ρ
α(k−1)
◦ ε-close to Λγk,θk in B1. By

Lemma 4.21 and Remark 4.8,

Ek◦ is Cερ(k◦−1)α
◦ r1+α-close to Λγ̄k◦ ,θ̄k◦

in Br, for all r ∈ (0, 1/2), (4.52)

for some Λγ̄k◦ ,θ̄k◦
(close to Λγk◦ ,θk◦

) and for some constant C depending only on n.
Alternatively, we can write

E is Cεr1+α-close to Λγ̄k◦ ,θ̄k◦
in Br, for all r ∈ (0, ρk−1

◦ /2).

Let us redefine, from now on, and for convenience in the upcoming notation,
Λγk◦ ,θk◦

:= Λγ̄k◦ ,θ̄k◦
. Notice that Ek is ρ

α(k−1)
◦ ε-close to Λγk,θk in B1, but it is also

ρ
α(k−2)−1
◦ ε-close to Λγk−1,θk−1

. Therefore,

|θk − θk−1|+ |γk − γk−1| ≤ C◦ρ
α(k−2)
◦

(
ρ−1
◦ + ρα◦

)
ε = Cn,αρ

αk
◦ ε, (4.53)

where the sub-indices denote the only dependences of the constants. In particular,
by triangular inequality

|θk◦ − θk|+ |γk◦ − γk| ≤ Cn,αε
k◦∑

j=k+1

ραj◦ ≤ Cn,αε
ρ
α(k+1)
◦

1− ρα◦
= Cn,αερ

αk
◦ , (4.54)
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for a different constant Cn,α, still depending only on n and α. Thus, since Ek is

ρ
α(k−1)
◦ ε-close to Λγk,θk in B1, E is ρ

(1+α)(k−1)
◦ ε-close to Λγk,θk in Bρk−1

◦
.

Now, from (4.54), Λγk,θk is Cn,αερ
αk
◦ ρ

k−1
◦ -close to Λγk◦ ,θk◦

in Bρk−1
◦

. Putting all

together, E is Cn,αρ
(1+α)(k−1)
◦ ε-close to Λγk◦ ,θk◦

in Bρk−1
◦

for all k < k◦. This, combined
with (4.52), yields the desired result.

Finally, if θk ≤ C◦ρ
kαε for all k ∈ N, we can take k◦ =∞ and repeat the previous

procedure. In this case, consider as e∞ and θ∞ the limits of the sequences (ek)k∈N
and (θk)k∈N, which exist by (4.53). Notice that θ∞ = 0.

Remark 4.10. In the previous proof, notice that if k◦ <∞ we must be dealing with a
point in the interior of the contact set. In particular, all points on the free boundary
must have k◦ = ∞, and since θ∞ = 0 there is a supporting plane at each of this
points.

We now give a proposition on regularity of ∂E in the case that it is close enough
to some Λγ,θ with θ small enough (the wedge is almost a half-space).

Proposition 4.25. There exists ε◦ depending only on n such that the following
statement holds:

Let E ⊂ Rn satisfying (4.17), be such that E is ε-close to Λγ,θ in B1, for ε ∈
(0, ε◦), and θ ≤ C◦ε for a constant C◦ depending only on n. Then, after a rotation
of angle γ, ∂E is the graph of a function h : B′1/2 → (−1, 1) in the en direction in
B1/2. Moreover,

‖h‖C1,α(B′
1/2
∩{xn−1≥0}) + ‖h‖C1,α(B′

1/2
∩{xn−1≤0}) ≤ Cε, (4.55)

for any α ∈
(
0, 1

2

)
, and some constant C depending only on n and α.

Proof. Let assume for simplicity that γ = 0, the other cases are analogous. We will
assume that ε◦ is small enough so that the previous results can be applied. Let us
also assume that the contact set, ∆E := ∂E ∩ {xn−1 = xn = 0}, is non-empty in
B1/2; ∆E ∩ B1/2 6= ∅. Otherwise we are already done by the classical improvement
of flatness.

Step 1: ∂E is the graph of a function. Let us first show that indeed ∂E is the
graph of a function. To do so, proceed as in the first part of Lemma 4.21, combined
with Proposition 4.24 and the fact that θ ≤ C◦ε:

Take any x◦ ∈ B1/2 ∩ ∂E not belonging to the contact set ∆E, and let r :=
dist(x◦,∆E) = |x◦ − z| for z ∈ ∆E. Applying Proposition 4.24 around z, we deduce
that for some Λγ̄,θ̄ (depending on z),

E is Cεr-close to Λγ̄,θ̄, in Br/2(x◦),

for some constant C depending only on n. If we rescale the space a factor 2r−1 with
respect to z so that E becomes Ẽ then

Ẽ is Cε-close to Λγ̄,θ̄, in B1(2r−1 x◦).

Notice that Ẽ is a minimal surface in B1(2r−1 x◦), since E is a minimal surface in
Br/2(x◦). Using that |γ̄−0|+ |θ− θ̄| ≤ Cε for some C depending only on n, and that
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θ ≤ C◦ε, we get that Λγ̄,θ̄ is Cεr-close to {xn = 0} in Br/2(x◦). After the rescaling,

Λγ̄,θ̄ is Cε-close to {xn = 0} in B1(2r−1 x◦), so that Ẽ is Cε-close to {xn = 0} in
B1(2r−1 x◦). Thanks to the classical improvement of flatness (Theorem 4.22) for ε
small enough depending only on n, ∂Ẽ is a graph in the en direction in B1(2r−1 x◦),
and consequently the same occurs for ∂E in Br/2(x◦). Let us call h the function whose
graph is defined on Br/2(x◦) in the en direction. In particular, applying Theorem 4.22
again, h ∈ Lip(B′r/4(x′◦)), with [h]C0,1(B′

r/2
) ≤ Cε; where x′◦ is the projection of x◦ to

{xn = 0}.
Now, by a standard covering argument together with the fact that ∂E is contin-

uous and ∆E has measure zero, u is defined in B′1/2 with

[h]C0,1(B′
1/2

) ≤ Cε,

for some C depending only on n.

Step 2: Regularity bound. Let us now show (4.55). We will show that for any
y′ ∈ B′1/4∩{xn−1 ≥ 0} and any ρ ∈ (0, 1/4), there exists some py′ ∈ Rn−1 depending

only on y′ such that for any α ∈ (0, 1/2),

|h(x′)− h(y′)− py′ · (x′ − y′)| ≤ Cερ1+α in B′ρ(y
′) ∩ {x′n−1 ≥ 0}, (4.56)

for some constant C depending only on n and α. The other half, {x′n−1 ≤ 0}, follows
by symmetry.

Throughout this second step we will be switching between the characterisation
of the solution to our thin obstacle problem as a boundary, ∂E, and as the graph
of a function u on Rn−1. Thus, we can rewrite Proposition 4.24. That is, if 0 ∈ ∂E,
we know that

E is Cαεr
1+α-close to Λγ,θ in Br, for all r ∈ (0, 1/2), (4.57)

for some constant Cα depending only on n and α, and for some Λγ̄,θ̄. We want to
rewrite it in terms of u. Note that |γ|+ θ̄ ≤ Cε for some constant C depending only
on n, since θ ≤ C◦ε, and therefore, we have that (4.57) implies

|h(x′)− A+(x′n−1)+ − A−(x′n−1)−| ≤ Cαε|x′|1+α, in B′1/2, (4.58)

with A− ≥ A+ and |A−| + |A+| ≤ Cε for some Cα depending only on n and α.
Notice that if 0 is in the free boundary of the contact set, 0 ∈ ∂∆′E, then A+ = A−,
or equivalently θ̄ = 0 (see Remark 4.10).

Let y′, z′ ∈ B′1/4 ∩ {x′n−1 ≥ 0}, and let y′◦, z
′
◦ ∈ ∆′E be such that dist(y′,∆′E) =

|y′−y′◦| and dist(z′,∆′E) = |z′−z′◦|. We denote by y, z, y◦, and z◦, the corresponding
elements as seen in Rn (e.g. y = (y′, 0)), and let ȳ = (y′, h(y′)) ∈ ∂E and z̄ =
(z′, h(z′)) ∈ ∂E. Suppose, without loss of generality, that d = |y′ − y′◦| ≤ |z′ − z′◦|,
and we consider two different cases.

� Case 1. Suppose that r = |z′ − y′| ≥ d/2. Using (4.58) centered around
y′◦instead of 0, we know that for some A+ depending on y′◦,

|h(x′)− A+x′n−1| ≤ Cαε|x′ − y′◦|1+α, for x′ ∈ B′1/2(y′◦) ∩ {x′n−1 ≥ 0}.
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Putting y′ and z′ in the previous expression yields

|h(y′)− A+y′n−1| ≤ Cαε|y′ − y′◦|1+α = d1+α ≤ Cαεr
1+α,

|h(z′)− A+z′n−1| ≤ Cαε|z′ − y′◦|1+α ≤ Cαε (d+ r)1+α ≤ Cαεr
1+α,

from which

|h(y′)− h(z′)− A+(y′n−1 − z′n−1)| ≤ Cαεr
1+α,

and in particular, (4.56) holds with py′ = A+.

� Case 2. Suppose r = |z′ − y′| ≤ d/2. If B′d(y
′) * {x′n−1 ≥ 0}, then y′◦ ∈ ∆′E

belongs to the free boundary and the corresponding Λγ(y′◦),θ(y
′
◦) from Proposi-

tion 4.24 around y◦ is actually an hyperplane (θ(y′◦) = 0) with normal vector
eγ(y′◦) (see Remark 4.10). In particular, ∂E is Cεd1+α-flat in the eγ(y′◦) di-
rection in the ball Bd(y) thanks to Proposition 4.24. On the other hand, if
B′d(y

′) ⊂ {x′n−1 ≥ 0}, we consider again the corresponding Λγ(y′◦),θ(y
′
◦) from

Proposition 4.24 around y◦. Then ∂E is Cεd1+α-flat in the eγ(y′◦)+θ(y
′
◦) direc-

tion in the ball Bd(y) (recall that eγ(y′◦)+θ(y
′
◦) is the normal vector to Λγ(y′◦),θ(y

′
◦)

in {xn−1 ≥ 0}). In any case, noting that E is a set of minimal perimeter in
Bd(y) we can apply the classical improvement of flatness (see Remark 4.9) in
Bd(y), to get

|ν(y)− ν(z)| ≤ Cε|y − z|α,
for some C depending only on n. We have denoted here by ν(x) for x ∈ ∂E
the unit normal vector to ∂E pointed outwards with respect to E at the point
x.

Now notice that if ε is small enough depending only on n, since |∇h| ≤ Cε,
|ν(y)− ν(z)| ≥ |∇h(y′)−∇h(z′)|, and on the other hand, |y− z| ≤ |y′− z′|+
|h(y′)− h(z′)| ≤ 2|y′ − z′| so that

|∇h(y′)−∇h(z′)| ≤ Cε|y′ − z′|α,

from which (4.56) follows.

From (4.56) the result (4.55) follows by a covering argument.

With this, we can now prove Theorem 4.4.

Proof of Theorem 4.4. In the case Φ ≡ id it is a direct consequence of Lemma 4.21
and Proposition 4.25, depending on whether the wedge Λγ,θ is ε-flat or not. The case
Φ 6≡ id follows from standard perturbative arguments and is left to the interested
reader.

4.7 Monotonicity formula and blow-ups

In this section we prove Proposition 4.5 and Corollary 4.6.
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Lemma 4.26 (Monotonicity formula for minimizers of (4.17)). Let E ⊂ Rn satisfy
(4.17) in B2 (instead of B1) and suppose 0 ∈ ∂E ∩ ∂O. Let us define

A(r) :=
P
(
E; Φ(Br)

)
rn−1

, for r > 0. (4.59)

Then,
(a) If Φ ≡ id then A′(1) ≥ 0
(b) If Φ(0) = 0, DΦ(0) = id, and [Φ]C1,1 ≤ η◦ for η◦ ∈ (0, 1) small enough

depending only on n then
A′(1) ≥ −Cη◦

for some C depending only on n.

Proof. (a) The proof is similar to that of the classical monotonicity formula for
minimal surfaces. Indeed, we take as a competitor to E in B1 the dilation of E
to B1−ε and we extend it conically in the annulus. For simplicity in the following
computations, from now on we rescale everything by a factor 2, so that we can deal
with r = 1 and A′(1).

As in [Sav10b], we take F defined as

x ∈ F ⇔


x ∈ E if |x| > 1
x/|x| ∈ E if (1− ε) ≤ |x| ≤ 1
(1− ε)−1x ∈ E if |x| < (1− ε),

(4.60)

that is, we first contract it by a factor 1 − ε and then extend conically F in the
annulus B1 \B1−ε to obtain a competitor for E in B1.

Thus,
PB1(E) ≤ PB1(F ) = (1− ε)n−1PB1(E) + PB1\B1−ε(F ). (4.61)

Now, dividing by ε and letting ε ↓ 0, we obtain

(n− 1)PB1(E) ≤ Hn−2(∂E ∩ ∂B1). (4.62)

On the other hand, notice that

A′(1) =

∫
1√

1− (x · ν(x))2
dHn−2

∂E∩∂B1
− (n− 1)PB1(E), (4.63)

which combined with (4.62) yields the result in the case (a).
(b) The proof in this case is a perturbation of the proof in case (a). Now we have

Φ(0) = 0, DΦ(0) ≡ id and |D2Φ| ≤ η◦ in B1,

The observation that allows us to control the errors is that, for all x◦ ∈ B1.

Φ(x) = Φ(x◦) +DΦ(x◦)(x− x◦) +O(η◦|x− x◦|2), (4.64)

DΦ(x◦) = id +O(η◦), DΦ(rx◦) = DΦ(x◦) +O(η◦(1− r)), ∀r ∈ (0, 1). (4.65)

As a consequence, for r ∈ (0, 1] the maps θ : (0, 1]× Φ(B1)→ Φ(Br) defined by

(r, x) 7→ Φ
(
rΦ−1(x)

)
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are bi-Lipschitz and are quasi-dilations with the estimate, for r ∈ (1/2, 1)

|θ(r, x)− θ(r, x◦)| ≤ r|x− x◦|
(
1 + C(1− r)η◦

)
. (4.66)

Indeed, (4.66) follows immediately from (4.64) and (4.65) if |x◦ − x| < (1− r). For
general x◦, x we use the previous case and the triangle inequality.

Now, repeat the proof for the case (a) after applying Φ−1 and then check using
(4.66) that the errors we make are small. Namely, we define F as in (4.60) but with
E replaced by Φ−1(E). Note that Φ(F ) is a “competitor” of E in Φ(B1), namely,
Φ(Λδ) ⊂ Φ(F ) and Φ(F ) \ Φ(B1) = E \ Φ(B1).

Now (4.61) must be replaced by

PΦ(B1)(E) ≤ PΦ(B1)(Φ(F )) = PΦ(B1−ε)(Φ(F )) + PΦ(B1\B1−ε)(Φ(F )). (4.67)

Now, using (4.66) and Φ(F ) = θ(1− ε, E) in Φ(B1−ε), we obtain

PΦ(B1−ε)(Φ(F )) ≤ (1− ε)n−1PΦ(B1)(E) +O(η◦ε).

and
PΦ(B1\B1−ε)(Φ(F )) = εHn−2

(
Φ(F ∩ ∂B1)

)
+O(η◦ε).

So that,

PΦ(B1)(E) ≤ (1− ε)n−1PΦ(B1)(E) + εHn−2
(
Φ(F ∩ ∂B1)

)
+O(η◦ε).

Dividing by ε and letting ε ↓ 0 we obtain

(n− 1)PΦ(B1)(E) ≤ Hn−2(∂E ∩ Φ(∂B1)) +O(η◦).

Now we conclude the proof observing that

A′(1) =

∫ ∣∣∂rθ(1,Φ−1(x)
)∣∣√

1− (x · ν(x))2
dHn−2

∂E∩Φ(∂B1) − (n− 1)PΦ(B1)(E),

and that
∣∣∂rθ(1,Φ−1(x)

)∣∣ = 1 +O(η◦).

Lemma 4.27 (Monotonicity formula for minimizers of (4.17)). Let E ⊂ Rn satisfy
(4.17) and suppose 0 ∈ ∂E ∩ ∂O. Let us define

AE(r) :=
P
(
E; Φ(Br)

)
rn−1

, for r > 0. (4.68)

Then,
(a) If Φ ≡ id then A′ ≥ 0 for r ∈ (0, 1). Moreover, A′ ≡ 0 (i.e., A constant) if

and only if E is a cone (tE = E for any t > 0).
(b) If Φ(0) = 0, DΦ(0) = id, and [Φ]C1,1 ≤ η◦ for η◦ ∈ (0, 1) small enough

depending only on n then
A′E(r) ≥ −Cη◦

for some C depending only on n.
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Proof. It follows by scaling Lemma 4.26. Part (a) is immediate, being the cone
condition an immediate consequence of (4.63). For part (b), let us define, for any
λ > 0, Φλ := λΦ

(
1
λ
·
)
, and

AλE(r) :=
P
(
E; Φλ(Br)

)
rn−1

, for r > 0. (4.69)

Note now, that

AE(r) =
P
(
λE;λΦ(Br)

)
λn−1rn−1

=
P
(
λE; Φλ(Bλr)

)
λn−1rn−1

= AλλE(λr).

Differentiating both sides with respect to r we obtain

A′E(r) = λ
(
AλλE

)′
(λr). (4.70)

On the other hand, applying Lemma 4.26 with λE and Φλ,(
AλλE

)′
(1) ≥ −C[Φλ]C1,1(B1) ≥ −Cλ−1η◦.

Putting it together with (4.70) and fixing λ = r−1 we obtain

A′E(r) = r−1
(
AλλE

)′
(1) ≥ −Cη◦,

as we wanted to see.

We now recall the well-known density estimates lemma for perimeter minimizers.
It is a very standard result in the theory of minimal surfaces which can be found
extensively in the literature. We mention, for example, the survey [Sav10].

Lemma 4.28. Let E ⊂ Rn be a minimizer of the perimeter in Br◦ for some r◦ > 0,
such that 0 ∈ ∂E. Then,

|E ∩Br| ≥ crn,

|Ec ∩Br| ≥ crn, for all r ∈ (0, r◦),

for some c constant depending only on the dimension n.

We have a similar lemma for supersolutions to the minimal perimeter problem.

Lemma 4.29. Let E+ ⊂ Rn be a supersolution to the minimal perimeter problem
in Br◦ for some r◦ > 0, such that 0 ∈ ∂E+. Then,

|(E+)c ∩Br| ≥ crn, for all r ∈ (0, r◦),

for some c constant depending only on the dimension n.

Proof. This is standard, and follows exactly the same as Lemma 4.28.

Let us now prove the following proposition, stating that in order to prove that
at some scale the solution is close enough to a wedge, it is enough to classify conical
solutions.
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Proposition 4.30. Assume that in some dimension n ≥ 2 the wedges Λγ,θ are the
only cones E ⊂ Rn satisfying (4.17) with Φ = id and any δ > 0.

Assume that, for some δ > 0, the set E ⊂ Rn with P (E;B1) < ∞ satisfies
Φ(Λδ) ∩B1 ⊂ E and (4.17), with Φ a C1,1 diffeomorphism.

Then, for any ε > 0, there exists ρ > 0 depending only on n, ε, and ‖Φ‖C1,1, and
‖DΦ−1‖L∞, such that if x◦ ∈ ∂E ∩ ∂O ∩B1/2, then

ρ−1(Rx◦E − x◦) is ε-close to Λγ,θ,

for some γ and θ as in (4.11) and for some rotation Rx◦ depending only on x◦.

Proof. After a translation, let us start by assuming that x◦ = 0. Let us also take
a rotation Rx◦ of the whole setting, in such a way that, if we denote Φk := kΦ,
then Rx◦Φk(Λ

δ) converges in Hausdorff distance locally to Λδ′ as k → ∞ for some
δ′ > 0 (i.e., we take the blow-up of a Lipschitz boundary). Notice that the value δ′

is determined only by δ and Φ. By redefining Φ if necessary, let us assume Rx◦ = id
for simplicity. (Note that we could also argue via Lemma 4.10.)

Let us argue by contradiction, and assume that the thesis does not hold.
Let ρk = k−1, and consider the sequence of sets Ek = ρ−1

k E. Notice that, for
Φk := kΦ, each Ek fulfils Φk(Λ

δ) ∩ Bk ⊂ Ek and solves a thin obstacle problem of
the type

P (Ek;Bk) ≤ P (F ;Bk) ∀F such that Ek \Bk = F \Bk and Φk(Λ
δ) ∩Bk ⊂ F.

(4.71)
Recall that the set Φk(Λ

δ) converges in Hausdorff distance to Λδ′ as k → ∞. From

minimality, we have compactness in L1
loc of Ek, so that, up to a subsequence, Ek

L1
loc−−→

E∞, for some global solution to the δ′-thin obstacle problem with Φ = id, E∞, with
Λδ′ ⊂ E∞. It immediately follows that 0 ∈ E∞.

On the other hand, by the density estimates in Lemma 4.29, since each Ek is a
supersolution to the minimal perimeter problem in B1 and 0 ∈ ∂Ek for all k, we
have

|Ec
k ∩Br| ≥ crn, for all r ∈ (0, 1),

for some constant c. The convergence in L1
loc implies that the limit also fulfils |Ec

∞∩
Br| ≥ crn, and therefore 0 ∈ ∂E∞.

Using the same notation as in the proof of Lemma 4.27 (see (4.69)), we know

AE(r) = AkEk(kr), for all r > 0.

Notice, also, that

AkEk(r)→ AE∞(r) :=
P
(
E;Br

)
rn−1

locally as k →∞,

where we are using the L1
loc convergence of Ek to E∞, and the fact that Φk =

kΦ(k−1 · )→ id as k →∞ in C1,1
loc . In particular, we have that

lim
ρ↓0
AE(ρ) = AE∞(r), for all r > 0.
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Thanks to Lemma 4.27 part (b), the left-hand side limit is well defined. That is,
AE∞(r) is bounded and constant for any r > 0, which, from Lemma 4.27 part (a)
implies that E∞ is a cone (tE∞ = E∞ for any t > 0). By assumption, therefore,
E∞ = Λγ,θ for some γ and θ; and we have that Ek is converging in L1

loc to some Λγ,θ.
Finally, in order to reach the contradiction, let us show that the convergence of

∂Ek to ∂E∞ is in Hausdorff distance locally, which will complete the proof.
Suppose that is is not. That is, after extracting a subsequence, we can as-

sume that there exists some sequence of points yk ∈ ∂Ek such that yk → y∞ and
dist(yk, ∂E∞) > ε > 0 for some ε > 0 and for all 1 ≤ k ≤ ∞. We have a dichotomy,
either y∞ ∈ E∞ or y∞ ∈ Ec

∞.
Let us now use the density estimate in Lemma 4.29. If y∞ ∈ E∞ then, after a

subsequence if necessary, |Ec
k ∩ Bε(yk)| ≥ cεn but |Ec

∞ ∩ Bε(y∞)| = 0, which is a
contradiction with the L1

loc convergence. On the other hand, if y∞ ∈ Ec
∞ assume

that after a subsequence yk ∈ Ec
∞ for all k > 0. We have that for k large enough

yk ∈ ∂Ek is a point around which Ek is a minimal surface (being E∞ a barrier from
below). That is, we can use the classical density estimates for minimal surfaces in
Lemma 4.28 to reach that |Ek ∩ Bε(yk)| ≥ cεn but |E∞ ∩ Bε(y∞)| = 0, again, a
contradiction.

Thus, in order to prove Corollary 4.6, it will be enough to classify cones.

Proof of Proposition 4.5. The proof is by induction on the dimension n.

Step 1: Base case. Dimension n = 2.
Assume that Σ2 ⊂ R2 is a cone satisfying (4.17), in other words, the boundary of

Σ2 in B1 consists of radii of length one. By assumption, we have (0,−1) ∈ Σ2 ∩ S1.
Now, if Σ2 were not a wedge (that is, if Σ2 ∩S1 were disconnected) then the convex
hull of Σ2 ∩ B1 would be a set containing the obstacle (it contains Σ2) and having
strictly less relative perimeter in B1 than Σ2. This would contradict the minimality
of Σ2 —i.e. (4.17).

Step 2: Induction step. Suppose that it holds up to dimension n− 1 ≥ 2. Let us
show it for dimension n.

Let us first prove regularity of the cone around contact points. Assume that we
have, without loss of generality, x◦ = e1 = (1, 0, . . . , 0) ∈ ∂Σ ∩ ∂B1. The first thing
to notice is that the blow up of Σ around x◦ is a wedge Λγ1,θ1 . Indeed, the blow-up
is a cone by the monotonicity formula, and thanks to the fact that Σ is a cone and
x◦ = e1, we get that the blow up at x◦ must be of the form R × Σn−1; where now
Σn−1 ⊂ Rn−1 is a cone in n− 1 dimensions such that satisfies (4.17) (also taking Λδ

in n− 1 dimensions). In particular, by induction step, Σn−1 = Λn−1
γ1,θ1
⊂ Rn−1, where

Λn−1
γ1,θ1

denotes Λγ1,θ1 as seen in n − 1 dimensions. This immediately yields that the
blow up at x◦ is a wedge of the form Λγ1,θ1 . By Proposition 4.30 and Theorem 4.4, ∂Σ
is a smooth minimal surface around any x◦ ∈ ∂Σ∩{xn−1 = xn = 0} in {±xn−1 ≥ 0}
up to {xn−1 = 0}.

Let us separate the proof between both sides ±xn−1 ≥ 0, and let us focus first
on xn−1 ≥ 0 (the other side follows analogously). We can now take s∗ = max{s ≥
δ : Λs ⊂ Σ in xn−1 ≥ 0}. Notice that it is indeed a maximum, since it is enough to
check that Λs ∩Sn−1 ⊂ Σ∩Sn−1, where Sn−1 ⊂ Rn denotes the (n− 1)-dimensional
sphere.
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The boundaries ∂Σ∩Sn−1 and ∂Λs∗∩Sn−1 must touch at a point x◦ ∈ {xn−1 ≥ 0}.
If x◦ ∈ {xn−1 > 0}, then by the strong maximum principle for minimal surfaces we
must have ΣO = Λs∗ in {xn−1 ≥ 0}, where ΣO denotes the connected component of
Σ \ {xn−1 = xn = 0} that contains the thin obstacle O (which, in this case, is flat).
On the other hand, if x◦ ∈ {xn−1 = xn = 0}, then we have previously shown (by
induction and dimension reduction) that ∂Σ∩ {xn−1 ≥ 0} is C1 up to its boundary
around the points x◦ and touches the half-plane of ∂Λs∗ tangentially at x◦. Using the
boundary strong maximum principle (Hopf lemma) we obtain again that ΣO = Λs∗

in {xn−1 ≥ 0}.
The same holds for the other side, xn−1 ≤ 0, so that in all we have that

ΣO = Λγ,θ

for some γ and θ as in (4.11).
We can now repeat the argument, but opening Λγ,θ instead, until we reach an-

other connected component of Σ \ {xn−1 = xn = 0}. Proceeding iteratively, this
yields that Σ must be one dimensional; that is, Σ is the cone Rn−2 × Σ2 for some
cone Σ2 ⊂ R2. By the base case in Step 1 minimality implies that Σ2 must be a
convex angle and hence Rn−2 × Σ2 is a wedge.

Once cones are classified, we can proceed with the proof of Corollary 4.6,

Proof of Corollary 4.6. We will apply Theorem 4.4 after an translation, rotation,
and scaling. We have to check that the hypotheses are fulfilled.

By definition of minimizer of (4.2) (see Definition 4.1) there exist δk ↓ 0, Ek
minimizers of (4.16) such that χEk → χE in L1(B1). For each Ek let x◦ be any point
in B1/2 ∩ ∂Ek ∩ ∂O. Let Ex◦,ρ

k := ψx◦(Ek) = ρ−1(Rx◦Ek − x◦), where ψx◦ denotes
the change of coordinates from Lemma 4.10. Let us also denote Φx◦

ρ := Φ̄ the new
diffeomorphism (also from Lemma 4.10).

Thus, Ex◦,ρ
k is a minimizer of the δ̄-thin obstacle problem around x◦ with diffeo-

morphism Φρ
x◦ such that Φx◦

ρ (0) = 0, DΦx◦
ρ (0) = id, and [Φx◦

ρ ]C1,1(B1) ≤ Cρ thanks
to Lemma 4.10.

On the other hand, as a consequence of Proposition 4.5 and Proposition 4.30 in
any dimension n ≥ 2, we reach that, for ρ small enough, Ex◦,ρ

k is ε◦-close to Λγ,θ

for some γ and θ. Also, for ρ small enough, we will have [Φx◦
ρ ]C1,1(B1) ≤ ε

1+ 1
2

◦ where
ε◦ > 0 is the constant in Theorem 4.4. Therefore, applying Theorem 4.4 to Ex◦,ρ

k

(and shrinking by a factor ρ) we obtain that ∂Ek has the following C1,α structure
in Bρ/2(x◦). Either:

(a) In appropriate coordinates y, (Φx◦)−1
(
Rx◦(∂Ek−x◦)

)
is the graph {yn = h(y′)}

of a function h ∈ C0(B′ρ/2) satisfying h ∈ C1,α(B′+ρ/2) ∩ C1,α(B′−ρ/2). Moreover,

we have h ≥ 0 on yn−1 = 0 and ∇h is continuous on {yn−1 = 0} ∩ {h > 0}.

or

(b) R(∂Ek − x◦) ∩ Bρ/2 is the union of two C1,1− surfaces that meet on ∂O with
full contact set in Bρ/2.
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Now we deduce in case (a) that in some new coordinates with origin at x◦ we
have Φ−1

(
∂Ek

)
is the graph {zn = h̃(z′)} of a function h̃ ∈ C0(B′ρ̃) satisfying

h̃ ∈ C1,α(B′+˜̃ρ
) ∩ C1,α(B′−ρ̃ ). Moreover, we have h̃ ≥ 0 on zn−1 = 0 and ∇h̃ is

continuous on {zn−1 = 0} ∩ {h̃ > 0}.
Since either (a) or (b) holds for Ek with estimates independent of k, we can pass

to the limit and show that either (a) or (b) also holds for E.
Finally, if the alternative (b) near some point x◦ then using that ∂O is of class

Ck,β (and the classical Ck,β regularity up to the boundary results for minimal sur-
faces [Jen80]) we obtain that ∂E splits into two Ck,β minimal surfaces with boundary
in a small ball around x◦.

Proof of Theorem 4.1. After having introduced the appropriate notion of solution,
we have that Theorem 4.1 corresponds to Corollary 4.6.



Chapter 5

On the singular set in the thin
obstacle problem: higher order
blow-ups and the very thin
obstacle problem

In this work, we consider the singular set in the thin obstacle problem with weight
|xn+1|a for a ∈ (−1, 1), which arises as the local extension of the obstacle problem
for the fractional Laplacian (a non-local problem). We develop a refined expansion of
the solution around its singular points by building on the ideas introduced by Figalli
and Serra to study the fine properties of the singular set in the classical obstacle
problem. As a result, under a superharmonicity condition on the obstacle, we prove
that each stratum of the singular set is locally contained in a single C2 manifold,
up to a lower dimensional subset, and the top stratum is locally contained in a C1,α

manifold for some α > 0 if a < 0.
In studying the top stratum, we discover a dichotomy, until now unseen, in this

problem (or, equivalently, the fractional obstacle problem). We find that second
blow-ups at singular points in the top stratum are global, homogeneous solutions to
a codimension two lower dimensional obstacle problem (or fractional thin obstacle
problem) when a < 0, whereas second blow-ups at singular points in the top stratum
are global, homogeneous, and a-harmonic polynomials when a ≥ 0. To do so, we
establish regularity results for this codimension two problem, what we call the very
thin obstacle problem.

Our methods extend to the majority of the singular set even when no sign as-
sumption on the Laplacian of the obstacle is made. In this general case, we are able
to prove that the singular set can be covered by countably many C2 manifolds, up
to a lower dimensional subset.

5.1 Introduction

Lower dimensional obstacle problems are an important class of obstacle problems,
arising in many areas of mathematics. For instance, they can be found in the theory
of elasticity (see [Sig33, Sig59, KO88]), and they also appear in describing osmosis
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through semi-permeable membranes as well as boundary heat control (see, e.g.,
[DL76]). Moreover, they often are local formulations of fractional obstacle problems,
another important class of obstacle problems. Fractional obstacle problems can be
found in the optimal stopping problem for Lévy processes, and can be used to
model American option prices (see [Mer76, CT04]). They also appear in the study
of anomalous diffusion, [BG90], the study of quasi-geostrophic flows, [CV10], and in
studies of the interaction energy of probability measures under singular potentials,
[CDM16]. (We refer to [Ros18] for an extensive bibliography on the applications of
obstacle-type problems.)

Broadly, lower dimensional obstacle problems are minimization problems for a
given energy functional on class of functions constrained to sit above a given ob-
stacle (function) defined on a lower dimensional manifold. Obstacle problems are
free boundary problems: the principal part of their study is the structure and regu-
larity of the boundary of the contact set of the solution and the obstacle, the free
boundary. The lower dimensional obstacle problem we consider — the thin obsta-
cle problem with weight |xn+1|a — has garnered much interest and attention (see
[AC04, CS07, ACS08, GP09, KRS19, FoSp18, CSV19, JN17]); it is a model setting,
and has motivated the study of many other types of lower dimensional obstacle prob-
lems (see [MS08, AM11, Fer16, RS17, RuSh17, FS20, FoSp18b, GR19, BLOP19]).

Nevertheless, the study of the non-regular part of the free boundary has been
rather limited. Only recently has significant progress been made (see [GP09, FoSp18,
GR19, CSV19]). And many open questions still remain. In this work, we address
some of these questions, focusing on the singular set (see Section 5.1.2). In particular,
we explore the fine properties of the solution and its expansion around singular
points, inspired by [FS18].

We note that the techniques of [FS18] have been further developed and im-
proved in [FRS19], where the authors prove generic regularity (namely, the generic
smoothness of the free boundary in the classical obstacle problem) in dimension
three and the smoothness of the free boundary at almost every time for the three-
dimensional Stefan problem. We expect the machinery built here to be useful in tack-
ling genericness-type questions of this nature in the context of the thin/fractional
obstacle problem, expanding on the very recent results by the first author and Ros-
Oton in [FR19].

5.1.1 The Thin Obstacle Problem

In this paper, we consider a class of lower dimensional obstacle problems in Rn+1 :=
{X = (x, y) ∈ Rn×R} with weight |y|a where Rn×{0} acts as the lower dimensional
manifold. We will often refer to them as, simply, the thin obstacle problem, even
though this name is usually reserved for the case a = 0. In particular, for an analytic
obstacle ϕ : B1 ∩ {y = 0} → R, we look at the thin obstacle problem:

min
w∈A

{∫
B1

|∇w|2|y|a dX

}
, with a ∈ (−1, 1), (5.1)



151

where A is the convex subset of the Sobolev space W 1,2(B1, |y|a dX) (which, for
simplicity, we call W 1,2(B1, |y|a)) defined by

A := {w ∈ W 1,2
0 (B1, |y|a) + g : w(x, 0) ≥ ϕ(x) and w(x,−y) = w(x, y)},

given some boundary data g ∈ C(B1) (even with respect to y) such that g|∂B1∩{y=0} ≥
ϕ. The condition that w sits above ϕ on the thin space Rn×{0} needs to be under-
stood in the trace sense, a priori.

If u is the (unique) solution to (5.1), then u satisfies the Euler–Lagrange equations
u(x, y) ≥ ϕ(x) on B1 ∩ {y = 0}

Lau(x, y) ≤ 0 in B1

Lau(x, y) = 0 in B1 \ Λ(u)
u(x, y) = u(x,−y) in B1

u(x, y) = g(x, y) on ∂B1

(5.2)

where
Lau(x, y) := div(|y|a∇u(x, y))

and
Λ(u) := {(x, 0) : u(x, 0) = ϕ(x)}.

The set Λ(u) is called the contact set, and is an unknown of the problem. Its topo-
logical boundary in Rn

Γ(u) := ∂Λ(u) ⊂ Rn × {0}
is called the free boundary.

Remark 5.1. A useful equivalent characterization of the minimizer u of (5.1) is that
u is the smallest super a-harmonic function in A : u ∈ A , Lau ≤ 0, and u ≤ w for
all w ∈ A such that Law ≤ 0.

Remark 5.2. In this work, we consider analytic obstacles. Clearly, this regularity
restriction can be relaxed; the thin obstacle problem (5.1) can be well-formulated
with significantly less regular obstacles (e.g., continuous obstacles). That said, the
analytic setting allows us to understand the model behavior of Γ(u), and for this
reason, it deserves special consideration.

The Obstacle Problem for the Fractional Laplacian

As shown in [CSS08], the Euler–Lagrange equations (5.2) appear naturally in the
context of the obstacle problem for the fractional Laplacian, or the fractional obstacle
problem. Indeed, let ϕ : Rn → R be an obstacle (with sufficient decay at infinity)
and let ū solve the fractional obstacle problem

ū ≥ ϕ in Rn

(−∆)sū ≥ 0 in Rn

(−∆)sū = 0 in {ū > ϕ}
lim|x|→∞ ū(x) = 0

with s :=
1− a

2
∈ (0, 1). (5.3)

Then, the even in y, a-harmonic extension of ū to Rn+1 (i.e., u : Rn+1 → R
such that Lau(x, y) = 0 for |y| > 0, u(x, 0) = ū(x), u(x, y) = u(x,−y), and
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lim|(x,y)|→∞ u(x, y) = 0) solves (5.2) in Rn+1 (and, in particular, with its own bound-
ary data, in B1). Consequently, all of the results we prove in this work can be
translated into statements regarding the fractional obstacle problem. We leave this
translation to the interested reader.

5.1.2 Known Results

Let us briefly summarize some of the known properties of the solution to the thin
obstacle problem and its free boundary. To do so, it will be useful to “normalize” ϕ,
and it will be necessary to define a collection of rescalings of u.

Since ϕ = ϕ(x) is analytic, we can extend it from a function defined on B1∩{y =
0} to an a-harmonic, even in y function defined on B1 (see [GR19, Lemma 5.1]). For
simplicity, we still denote this extension by ϕ. So if we let

ũ := u− ϕ, (5.4)

(5.2) becomes 
ũ(x, y) ≥ 0 on B1 ∩ {y = 0}

Laũ(x, y) ≤ 0 in B1

Laũ(x, y) = 0 in B1 \ Λ(ũ)
ũ(x, y) = ũ(x,−y) in B1

ũ(x, y) = g̃(x, y) on ∂B1,

(5.5)

with g̃ := g − ϕ and

Λ(ũ) := {(x, 0) : ũ(x, 0) = 0} = Λ(u).

Furthermore,

Laũ = 2 lim
y↓0

ya∂yũ(x, y)Hn Λ(ũ). (5.6)

Hence, considering (5.5),

lim
y↓0

ya∂yũ(x, y) ≤ 0 for |x| < 1,

lim
y↓0

ya∂yũ(x, y) = 0 for |x| < 1 and ũ(x, 0) > 0,

and

ũ Laũ = 0 in B1.

(See [CSS08, GP09, FoSp18, GR19].) All of the above expressions must be under-
stood in a distributional sense.

As we have mentioned, we need to introduce a collection of rescalings of u around
a free boundary point X◦ ∈ Γ(u) in order to outline the existing literature on (5.1).
They are

ũX◦,r(X) :=
ũX◦(rX)(

1
rn+a

∫
∂Br

ũ2
X◦
|y|a
)1/2

where ũX◦(X) := ũ(X◦ +X). (5.7)



153

Blow-ups and Optimal Regularity

In [ACS08, CSS08], Athanasopoulos, Caffarelli, and Salsa and Caffarelli, Salsa, and
Silvestre, for a = 0 and a ∈ (−1, 1) respectively, proved that the set {ũX◦,r}r>0 is
weakly precompact in W 1,2

loc (Rn+1, |y|a), and that the limit points of {ũX◦,r}r>0 as
r ↓ 0 or blow-ups of u at X◦ are global λX◦-homogeneous solutions to (5.5) with

λX◦ ∈ [1 + s,∞) for s :=
1− a

2
.

It is important to note that the homogeneity of blow-ups depends only on the point
X◦ ∈ Γ(u) at which they are taken, and is independent of the sequence along which
the weak limit is produced.

Moreover, in [AC04, CSS08], it was shown that u is optimally C1,s on either side
of the thin space (but only C2s across, Lipschitz if s = 1

2
).

The Free Boundary

The free boundary Γ(u) can be partitioned into three sets:

Γ(u) = Reg(u) ∪ Sing(u) ∪Other(u),

the set of regular points, the set of singular points, and set of other points (see
[GP09, FoSp18, GR19]), and they can be characterized by the value of λX◦ with
X◦ ∈ Γ(u).

Reg(u) is the set of free boundary points where blow-ups are (1+s)-homogeneous.
In [ACS08, CSS08], it was proved that Reg(u) is relatively open, that blow-ups
at points in Reg(u) are unique, and that Reg(u) is an (n − 1)-dimensional C1,α

submanifold of the thin space (it is analytic, in fact, as proved in [KRS19]).
Sing(u) is the set of points in Γ(u) where the contact set has zero Hn-density,

Sing(u) :=

{
X◦ ∈ Γ(u) : lim

r↓0

Hn(Λ(u) ∩Br(X◦))

rn
= 0

}
.

In [GP09, GR19], Garofalo and Petrosyan and Garofalo and Ros-Oton, for a = 0
and a ∈ (−1, 1) respectively, proved that the points of Sing(u) are those at which
blow-ups are evenly homogeneous and unique. In addition, they showed that Sing(u)
is contained in the countable union of m-dimensional C1 manifolds with m ranging
from 0 to n − 1. (The regularity of the covering manifolds was later improved to a
more quantitative C1,log in [CSV19] when a = 0.) The goal of this manuscript is to
achieve a better understanding of singular points.

Finally, Other(u) is the remainder of the free boundary, and is not yet fully
characterized. That said, in [FoSp18], Focardi and Spadaro proved that Γ(u), in
particular, Other(u), has finite (n−1)-dimensional Minkowski content, which implies
that the free boundary is Hn−1-rectifiable. Moreover, they showed that outside of
an at most Hausdorff (n−2)-dimensional subset of Γ(u), the possible homogeneities
of blow-ups take values in {2k, 2k − 1 + s, 2k + 2s}k∈N (the same result was proved
for a = 0 by Krummel and Wickramasekera in [KW13]).
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The Non-degenerate Problem

We have already seen that the study of the thin obstacle problem for an analytic
obstacle can be reduced to the study of the thin obstacle problem for the zero ob-
stacle, (5.5). An alternative normalization is to reduce to the zero boundary data
case by subtracting off the a-harmonic extension of g to B1. Indeed, for simplicity,
let g be its own a-harmonic extension to B1, i.e., assume that g is defined on B1

and Lag = 0 in B1. Then, u− g solves (5.1) with zero boundary data and obstacle
ϕg := (ϕ− g)|{y=0}. (This procedure does not require ϕ to be analytic.) Under this
normalization, Barrios, Figalli, and Ros-Oton proved that if ϕg is strictly superhar-
monic, then

λX◦ ∈ {1 + s, 2},
for all X◦ ∈ Γ(u) (see [BFR18]). Consequently, we make the following definition.

Definition 5.1. We say that the thin obstacle problem (5.1) or, equivalently, (5.2)
is non-degenerate if

∆xϕg ≤ −c < 0 on B1 ∩ {y = 0}. (5.8)

Analogously, we say the Euler–Lagrange equations (5.5) are non-degenerate if they
arise from (5.1) or (5.2) satisfying (5.8); i.e., ∆xg̃ ≥ c > 0 on B1 ∩ {y = 0}, where g̃
denotes its own a-harmonic extension of g̃ to B1.

Remark 5.3. In the context of the obstacle problem for the fractional Laplacian in
all of Rn, (5.3), the problem is non-degenerate under the less restrictive assumption
∆ϕ ≤ 0 in {ϕ > 0} ⊂ Rn.

5.1.3 Main Results

We are interested in studying the fine properties of u at points in Sing(u), in the
spirit of the work of Figalli and Serra ([FS18]), wherein such a study is undertaken
for the classical obstacle problem given obstacles with Laplacian identically equal
to −1, i.e., under a non-degeneracy condition (cf. Definition 5.1). To do so, we
establish a framework to better characterize the structure of singular points and
the behavior of u around singular points: we develop a higher order expansion of u
around singular points, which, up to lower dimensional sets, yields a more regular
covering of Sing(u). Our approach and results are new even for the case a = 0.

Before stating our results, it will be convenient to expand our discussion of
Sing(u) and the work of [GP09, GR19], and introduce some notation. Let

Σκ(u) := {X◦ ∈ Γ(u) : λX◦ = κ}

denote the set of free boundary points where the homogeneity of blow-ups is κ.
Consequently,

Sing(u) =
⋃
κ∈2N

Σκ(u). (5.9)

As noted, in [GP09, GR19], the authors showed that one and only one blow-up
exists, which is evenly homogeneous, at each singular point. In fact, they proved
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much more: the unique blow-up at a singular point is a non-trivial, a-harmonic,
evenly homogeneous polynomial that is even in y and non-negative on the thin
space. In other words, blow-ups at singular points belong to the set of polynomials

Pκ := {p : Lap = 0, X · ∇p(X) = κp(X), p(x, 0) ≥ 0, p(x,−y) = p(x, y)}

for κ ∈ 2N. Furthermore, they produce the first term in the expansion of u around
X◦ ∈ Σκ(u) ⊂ Sing(u); they show that

ũ(X◦ + r · )
rκ

→ p∗,X◦ ∈Pκ locally uniformly as r ↓ 0. (5.10)

The polynomial p∗,X◦ , which we call the first blow-up of u at X◦, is a constant (non-
zero) multiple of the blow-up of u at X◦ given by the rescalings (5.7). With the
rescalings (5.10), we have

ũ(X) = p∗,X◦(X −X◦) + o(|X −X◦|κ). (5.11)

Finally, consider

L(p∗,X◦) := {ξ ∈ Rn : ξ · ∇xp∗,X◦(x, 0) = 0 for all x ∈ Rn}

the invariant set or spine of p∗,X◦ on {y = 0} as well as

mX◦ := dimL(p∗,X◦).

Observe that L(p∗,X◦) is a linear subspace of Rn. Also, since p∗,X◦ 6≡ 0 on Rn × {0},

mX◦ ∈ {0, 1, . . . , n− 1},

and this number accounts for the dimension of the contact set around a singular
point. Thus, the singular set can be further stratified:

Sing(u) =
⋃
κ∈2N

n−1⋃
m=0

Σm
κ (u) where Σm

κ (u) := {X◦ ∈ Σκ(u) : mX◦ = m}. (5.12)

In particular, by [BFR18], if the problem is non-degenerate (see Definition 5.1),
then

Γ(u) = Reg(u) ∪ Sing(u) = Reg(u) ∪ Σ2(u) = Reg(u) ∪
n−1⋃
m=0

Σm
2 (u).

Now we are ready to present the main results of this work. First, given a non-
degenerate obstacle, we prove that each m-dimensional component of Sing(u) can
be locally covered by a single C2 manifold outside a lower dimensional set:

Theorem 5.1. Let u solve (5.1) in the non-degenerate case (see Definition 5.1).
Then,

(i) Σ0
2(u) is isolated in Sing(u) = Σ0

2(u) ∪ · · · ∪ Σn−1
2 (u).
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(ii) There exists an at most countable set E1 ⊂ Σ1
2(u) such that Σ1

2(u)\E1 is locally
contained in a single one-dimensional C2 manifold.

(iii) For each m ∈ {2, . . . , n − 1}, there exists a set Em ⊂ Σm
2 (u) of Hausdorff

dimension at most m− 1 such that Σm
2 (u) \Em is locally contained in a single

m-dimensional C2 manifold.

(iv) If a ∈ (−1, 0), Σn−1
2 (u) is locally contained in a single (n − 1)-dimensional

C1,α manifold, for some α > 0 depending only on n and a.

The framework we develop in order to prove Theorem 5.1 is rather robust, and
only sees the non-degeneracy condition (5.8) superficially. As a result, we can suit-
ably extend Theorem 5.1 to the bulk of Sing(u), the top stratum Σn−1(u) :=⋃
κ∈2N Σn−1

κ (u), in the general case. Recall that the lower stratum Σ<n−1(u) :=
Sing(u)\Σn−1(u) is strictly lower dimensional; it is contained in the countable union
of (n− 2)-dimensional C1 manifolds. More precisely, we prove

Theorem 5.2. Let u solve (5.1). Then,

(i) Σ0
2(u) is isolated in Sing(u) =

⋃
κ∈2N

⋃n−1
m=0 Σm

κ (u).

(ii) There exists an at most countable set E2,1 ⊂ Σ1
2(u) such that Σ1

2(u) \ E2,1 is
contained in the countable union of one-dimensional C2 manifolds.

(iii) For each m ∈ {2, . . . , n − 1}, there exists a set E2,m ⊂ Σm
2 (u) of Hausdorff

dimension at most m− 1 such that Σm
2 (u) \E2,m is contained in the countable

union of m-dimensional C2 manifolds.

Moreover, for each κ ∈ 2N,

(iv) If n = 2, there exists an at most countable set Eκ,1 ⊂ Σ1
κ(u) such that Σ1

κ(u) \
Eκ,1 is contained in the countable union of 1-dimensional C2 manifolds.

(v) If n ≥ 3, there exists a set Eκ,n−1 ⊂ Σn−1
κ (u) of Hausdorff dimension at most

n−2 such that Σn−1
κ (u)\Eκ,n−1 is contained in the countable union of (n−1)-

dimensional C2 manifolds.

(vi) If n ≥ 2 and a ∈ (−1, 0), Σn−1
κ (u) can be covered by a countable union of

(n − 1)-dimensional C1,ακ manifolds, for some ακ > 0 depending only on n,
a, and κ.

Remark 5.4. Notice that from the lower-dimensionality of Σ<n−1
κ (u), by Theorem 5.2(iv)

and (v), we find that the whole singular set can be covered by countably many
(n− 1)-dimensional C2 manifolds up to a lower dimensional subset.

Remark 5.5. When n = 1, it is well-known that singular points are isolated. Recall
that ũ(X◦ + · ) = p∗,X◦ + o(|X|κ) if X◦ ∈ Σκ(u). Since n = 1, p∗,X◦ > 0 in a
neighborhood of 0, so that ũ > 0 around X◦ and X◦ is isolated.
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Before stating Theorem 5.2, we noted that our methods see the non-degeneracy
of the problem superficially. Indeed, if we could show that p∗,X◦ ’s nodal set {(x, 0) :
p∗,X◦(x, 0) = |∇xp∗,X◦(x, 0)| = 0} and p∗,X◦ ’s spine align for every X◦ ∈ Eκ,m (see
Section 5.7 (also 5.5) for a description of Eκ,m), then our analysis would imme-
diately imply that Eκ,m is lower dimensional, and Σm

κ (u) ⊂ Sing(u) is contained
in a countable union of C2 manifolds up to an (m − 1)-dimensional subset for all
m ∈ {0, . . . , n− 1}, and not just when m = n− 1.

We remark that due to potential accumulation of lower homogeneity singular
points to higher homogeneity singular points, the countable covers of Theorem 5.2
cannot be improved to single covers, as done in the the non-degenerate setting,
Theorem 5.1 (and also as done in [FS18]).

5.1.4 Strategy of the Proof

From this point forward, we do not distinguish u and ũ, as defined in (5.4) (or
we assume that ϕ ≡ 0); we will always assume that we are in the normalized
situation (5.5). Furthermore, in this section, whenever we discuss Σκ(u), κ ∈ 2N =
{2, 4, 6, . . . }.

Theorems 5.1 and 5.2 are the culmination of a procedure that constructs the
second term in the expansion of u at singular points, outside of a lower dimensional
set. In order to study the higher infinitesimal behavior of u at X◦ ∈ Σκ(u), we, quite
naturally, consider the rescalings

ṽX◦,r(X) :=
vX◦(rX)(

1
rn+a

∫
∂Br

v2
X◦
|y|a
)1/2

where vX◦(X) := u(X◦ +X)− p∗,X◦(X)

(cf. (5.7)).
First, we show that the set {ṽX◦,r}r>0 is weakly precompact in W 1,2

loc (Rn+1, |y|a)
and classify its limit points as r ↓ 0 or blow-ups (see Sections 5.2 and 5.3):

Proposition 5.3. Let u solve (5.1), and let X◦ ∈ Σm
κ (u) for m ∈ {0, . . . , n− 1}.

(i) If a ∈ [0, 1), the limit points of {ṽX◦,r}r>0 as r ↓ 0 are λ∗,X◦-homogeneous,
a-harmonic polynomials with λ∗,X◦ ≥ κ.

(ii) If m < n − 1 and κ = 2, the limit points of {ṽX◦,r}r>0 as r ↓ 0 are λ∗,X◦-
homogeneous, a-harmonic polynomials with λ∗,X◦ ≥ 2.

(iii) If m = n− 1 and a ∈ (−1, 0), the limit points of {ṽX◦,r}r>0 as r ↓ 0 are λ∗,X◦-
homogeneous, global solutions to the very thin obstacle problem (or fractional
thin obstacle problem) (5.89) on L(p∗,X◦) ⊂ Rn×{0} with λ∗,X◦ ≥ κ+ ακ, for
some ακ > 0 depending only on n, a, and κ.

As far as we know, Proposition 5.3 is the first instance of truly distinct behavior
within our class of lower dimensional obstacle problems; in all previous studies of
(5.1), the class parameterized by a ∈ (−1, 1) was treatable uniformly. The key
difference is that if a ≥ 0, subsets of the thin space {y = 0} of Hausdorff dimension
n − 1 have zero W 1,2(Rn+1, |y|a)-capacity or a-harmonic capacity, while if a < 0,
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subsets of the thin space {y = 0} of Hausdorff dimension n − 1 have positive a-
harmonic capacity. This capacitory distinction permits the formulation of, what we
call, a very thin obstacle problem, i.e., a search for a weighted Dirichlet energy
minimizer, as in (5.1), within a class of functions constrained to sit above a given
function defined on an (n−1)-dimensional submanifold of Rn×{0} (see Section 5.8),
or, equivalently, a lower dimensional obstacle problem for the fractional Laplacian
(−∆)s where s > 1

2
(see Section 5.9 and cf. Section 5.1.1).

We remark that the above classification in the case a < 0 is analogous to the
classification found in [FS18], wherein Figalli and Serra consider the classical obstacle
problem. There, the analogous blow-ups in the top stratum of the singular set are
global, homogeneous solutions to the thin obstacle problem (5.1) with zero obstacle
and a = 0. And in the lower stratum of the singular set, the analogous blow-ups set
are homogeneous, harmonic polynomials. That said, while Figalli and Serra could
rely on developed theory (for the thin obstacle problem) for their analysis, we cannot;
the very thin obstacle problem has, until now, been unstudied (Section 5.8).

Given Proposition 5.3 and our desire to produce the next term in the expansion
of u at X◦, we then show that collection of points for which λ∗,X◦ ∈ [κ, κ + 1) is
lower dimensional (for κ = 2 or m = n− 1). More specifically, if we define

Σm,a
κ (u) := {X◦ ∈ Σm

κ (u) : λ∗,X◦ ∈ [κ, κ+ 1)},

then we have the following proposition.

Proposition 5.4. Let u solve (5.1). Then,

(i) Σ0,a
2 (u) is empty.

(ii) For each m ∈ {1 . . . , n− 1}, Σm,a
2 (u) has Hausdorff dimension at most m− 1.

(iii) For each κ ∈ 2N, Σn−1,a
κ (u) has Hausdorff dimension at most n− 2.

Remark 5.6. In fact, we can show that for n = 2, if a ∈ (−1, 0), then Σ1,a
κ (u) is

countable; and if a ∈ [0, 1), then Σ1,a
κ (u) is discrete. Moreover, for n ≥ 3, Σ1,a

2 (u) is
discrete.

In turn, we call Σm,a
κ (u) the set of anomalous points of Σm

κ (u) and

Σm,g
κ (u) := Σm

κ (u) \ Σm,a
κ (u)

the generic points of Σm
κ (u) (cf. [FS18]). (See Sections 5.4 and 5.5.) In order to

prove Proposition 5.4, we use two Federer-type dimension reduction arguments.
When a ≥ 0 or m < n− 1, we argue as in [FS18], while when a < 0 and m = n− 1,
we adopt the arguments pioneered in [FRS19].

After the statement of Theorem 5.2, we remarked that if the nodal set and spine
of p∗,X◦ were aligned for each X◦ ∈ Eκ,m, then Theorem 5.2 would immediately hold
for all m ∈ {0, . . . , n − 1} and all κ ∈ 2N. (Notice that this alignment is always
true when m ∈ {0, . . . , n − 1} if κ = 2, but only when m = n − 1 if κ > 2.)
Another way to understand this remark is as follows. If the nodal set and spine of
p∗,X◦ were aligned for each X◦ ∈ Σm,a

κ (u), then our analysis would directly show
that Σm,a

κ (u) is at most (m − 1)-dimensional (in the Hausdorff sense), extending
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Proposition 5.4 to every (κ,m) pair. Hence, Theorem 5.2 would immediately hold
for all m ∈ {0, . . . , n − 1} and all κ ∈ 2N since every other aspect of our analysis
is indifferent to this issue. Nonetheless, it is unclear if such a statement is true; in
fact, Remark 5.16 indicates (but does not prove) the opposite.

Thanks to Propositions 5.3 and 5.4, and Whitney’s Extension Theorem, generic
points are contained in the countable union of C1,1 manifolds; and so, we have the
following result, which is Theorem 5.2, but with C1,1 coverings.

Theorem 5.5. Let u solve (5.1). Then,

(i) Σ0
2(u) is isolated in Sing(u) =

⋃
κ∈2N

⋃n−1
m=0 Σm

κ (u).

(ii) For each m ∈ {1, . . . , n − 1}, Σm
2 (u) \ Σm,a

2 (u) is contained in the countable
union of m-dimensional C1,1 manifolds, where dimHΣm,a

2 (u) ≤ m− 1.

Moreover, for each κ ∈ 2N,

(iii) Σn−1
κ (u) \Σn−1,a

κ (u) is contained in the countable union of (n− 1)-dimensional
C1,1 manifolds, where dimHΣn−1,a

κ (u) ≤ n− 2.

(iv) In addition, if a ∈ (−1, 0), each Σn−1
κ (u) can be covered by a countable union

of (n− 1)-dimensional C1,ακ manifolds, for some ακ > 0 depending only on n,
a, and κ.

(See Section 5.6.) We refer to Remark 5.6 for the size of the anomalous set in the
cases n = 2 and m = 1, which corresponds to parts (ii) and (iv) of Theorem 5.2. Just
as Theorem 5.5 is a C1,1 precursor to Theorem 5.2, we note that a C1,1 precursor to
Theorem 5.1 also holds.

To conclude the proofs of our main results and produce the next term in the
expansion of u outside a lower dimensional set (and go from C1,1 to C2 covering
manifolds), we prove that outside of an at most (m−1)-dimensional (in the Hausdorff
sense) subset of Σm,g

κ (u), when κ = 2 and m ∈ {0, . . . , n− 1} as well as when κ > 2
and m = n− 1, the blow-ups classified in Proposition 5.3 are (κ+ 1)-homogeneous
polynomials, and not just higher homogeneous, global solutions to a codimension
two obstacle problem. In particular, we show that

vX◦(r · )
rκ+1

→ q∗,X◦ locally uniformly as r ↓ 0

where q∗,X◦ is a (κ+1)-homogeneous, a-harmonic polynomial at all but strictly lower
dimensional set of X◦ ∈ Σm,g

κ (u), again, when κ = 2 and m ∈ {0, . . . , n− 1} as well
as when κ > 2 and m = n− 1. (See Section 5.7.)

5.1.5 Notation

We define the balls

Br(X◦) := {X ∈ Rn+1 : |X −X◦| < r},
B∗r (x◦) := {x ∈ Rn : |x− x◦| < r},
B′r(x

′
◦) := {x′ ∈ Rn−1 : |x′ − x′◦| < r},
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i.e., the balls of radius r centered at X◦, x◦, and x′◦ in Rn+1, Rn, and Rn−1 respec-
tively. We will also denote Br := Br(0), B∗r := B∗r (0), and B′r := B′r(0). Similarly,
we let

Dr ⊂ R2

be the disc of radius r > 0, centered at the origin.
For a polynomial p : Rn → R, consider

Exta(p) := p+
∞∑
j=1

cj
(−1)j

(2j)!
y2j∆j

xp with cj :=

j∏
i=1

2i− 1

2i− 1− a. (5.13)

Notice that Exta(p) : Rn+1 → R is the unique even in y, a-harmonic extension of p
to Rn+1 (see [GR19, Lemma 5.2]); La(Exta(p)) = 0.

5.1.6 Structure of the Work

In Section 5.2, we introduce a collection of monotonicity formulae (in particular,
Almgren’s frequency function), and prove some basic but useful estimates. In Sec-
tion 5.3, we start a blow-up analysis of the solution around singular points. We show
the existence of second blow-ups and prove some facts about them. We also show
Proposition 5.3 holds. In Section 5.4, we gather some important lemmas regarding
the accumulation of singular points, which are then used to study the size of the
anomalous set in Section 5.5. Whence, we prove Proposition 5.4 and Remark 5.6.
In Section 5.6, we show that the set of generic points is contained in a countable
union of C1,1 manifolds, which combined with previous results yields the proof of
Theorem 5.5. Finally, we conclude the proofs of our main results in Section 5.7, The-
orems 5.1 and 5.2, by studying the case of (κ+ 1)-homogeneous, a-harmonic second
blow-ups. Specifically, we show that those points at which the second-blow up is
not the next order term in the expansion are collectively lower-dimensional. Finally,
Section 5.8 is dedicated to studying the very thin obstacle problem. Here, we prove
the estimates and claims on the very thin obstacle problem made use of throughout
the work. In Section 5.9, we make a final remark on global obstacle problems.

5.2 Monotonicity Formulae and Preliminary Re-

sults

We recall that we will always assume that we are dealing with the zero obstacle case
(5.5).

Let X◦ be a singular point for u of order κX◦ ∈ 2N := {2, 4, 6, . . . }, and let p∗,X◦
be the (unique) first blow-up of u at X◦,

p∗,X◦(X) := lim
r↓0

u(X◦ + rX)

rκX◦
(5.14)

(see (5.10)). Recall that p∗,X◦ ∈ PκX◦
, i.e., it is an a-harmonic, κX◦-homogeneous

polynomial, non-negative on the thin space, and even in y, and κX◦ is equal to
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Almgren’s frequency of u at the X◦:

κX◦ = N(0+, u,X◦) := lim
r↓0

r
∫
Br(X◦)

|∇u|2|y|a∫
∂Br(X◦)

u2|y|a

(see [ACS08, CSS08, GP09, GR19]).
We often assume that X◦ = 0 (which we can do without loss of generality after

a translation), and we let p∗ := p∗,0. In particular, define

v∗ := u− p∗,

and set
κ∗ := κ0, L∗ := L(p∗), and m∗ := m0, (5.15)

so that m∗ is the dimension of the spine of p∗ in {y = 0}, L∗, which is κ∗-
homogeneous.

Let, for κ ∈ 2N,
p ∈Pκ and v = u− p,

and observe that
v Lav = −pLau ≥ 0. (5.16)

Since Lau(x, y) = 2 limy↓0 y
a∂yu(x, y)Hn−1 Λ(u) ≤ 0, v Lav is non-negative as soon

as p is non-negative on Λ(u) \ N (u) where

N (u) := {(x, 0) : u(x, 0) = |∇xu(x, 0)| = lim
y↓0

ya∂yu(x, y) = 0}. (5.17)

The set N (u) is called the nodal set of u.

Remark 5.7. Notice that v = u − p is a solution to the thin obstacle problem with
obstacle ϕ = −p|B1∩{y=0} and subject to its own boundary data. (This follows easily
by Remark 5.1.)

The goal of this section is to prove monotonicity-type results and estimates for
v = u − p for any p ∈ Pκ. We stress that κ might not be equal to κ∗, and so we
will sometimes write N(0+, u) := N(0+, u, 0) instead. Yet we will most often apply
these results and estimates to v∗.

5.2.1 Monotonicity Formulae

To begin we study Almgren’s frequency function on v at the origin, and prove that
it is non-decreasing provided that κ ≤ κ∗ = N(0+, u).

Proposition 5.6. Suppose that κ ≤ N(0+, u), and let v = u− p for p ∈Pκ. Then,
Almgren’s frequency function on v

r 7→ N(r, v) =
r
∫
Br
|∇v|2|y|a∫

∂Br
v2|y|a

is non-decreasing. Moreover, N(0+, v) ≥ κ.
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Before proceeding with the proof of Proposition 5.6, let us recall a few definitions
and facts. Let Wλ(r, u) denote the λ-Weiss energy of u at r:

Wλ(r, u) :=
1

r2λ
D(r, u)− λ

r2λ
H(r, u) (5.18)

where

D(r, u) :=
1

rn+a−1

∫
Br

|∇u|2|y|a = r2

∫
B1

|∇u(rX)|2|y|a (5.19)

and

H(r, u) :=
1

rn+a

∫
∂Br

u2|y|a =

∫
∂B1

u(rX)2|y|a. (5.20)

By [GR19, Theorem 2.11], we have that N(r, u) is non-decreasing, from which, we
immediately deduce that

Wκ(r, u) =
H(r, u)

r2κ
(N(r, u)− κ) ≥ 0 (5.21)

(recall N(0+, u) ≥ κ). In turn, we have the following lemma:

Lemma 5.7. Suppose that κ ≤ N(0+, u), and let v = u− p for p ∈Pκ. Then,

1

rn−1+a+2κ

∫
Br

|∇v|2|y|a ≥ κ

rn+a+2κ

∫
∂Br

v2|y|a (5.22)

and
1

rn+a+2κ

∫
∂Br

v(X · ∇v − κv)|y|a ≥ 1

rn−1+a+2κ

∫
Br

v Lav. (5.23)

Proof. We proceed as in the proof of [GP09, Theorem 1.4.3]. By [GR19, Theo-
rem 2.11], N(r, p) ≡ κ, from which it follows that Wκ(r, p) ≡ 0. Using (5.21) and
integrating by parts, we immediately have that

0 ≤ Wκ(r, u)−Wκ(r, p)

=
1

rn−1+a+2κ

∫
Br

(
|∇v|2 + 2∇v · ∇p

)
|y|a − κ

rn+a+2κ

∫
∂Br

(
v2 + 2vp

)
|y|a

=
1

rn−1+a+2κ

∫
Br

|∇v|2|y|a − κ

rn+a+2κ

∫
∂Br

v2|y|a +
2

rn+a+2κ

∫
∂Br

v(X · ∇p− κp)|y|a

=
1

rn−1+a+2κ

∫
Br

|∇v|2|y|a − κ

rn+a+2κ

∫
∂Br

v2|y|a,

which directly yields (5.22). Continuing, integrating by parts again, we get

1

rn−1+a+2κ

∫
Br

|∇v|2|y|a − κ

rn+a+2κ

∫
∂Br

v2|y|a

= − 1

rn−1+a+2κ

∫
Br

v Lav +
1

rn+a+2κ

∫
∂Br

v(X · ∇v − κv)|y|a,

which implies (5.23).
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With Lemma 5.7 in hand, we can now prove Proposition 5.6.

Proof of Proposition 5.6. Notice that

N(r, v) =
D(r, v)

H(r, v)
,

where D and H are given by (5.19) and (5.20). By scaling (namely, N(ρ, ur) =
N(rρ, u), for the rescaling (5.7)), it is enough to show N ′(1, v) ≥ 0 or, equivalently,
that

D′(1)H(1)−H ′(1)D(1) ≥ 0, (5.24)

where we have let D(1) = D(1, v) and H(1) = H(1, v).
We compute D′(1) and H ′(1). First,

D′(1) = 2

∫
B1

|∇v|2|y|a + 2

∫
B1

∇v ·D2v ·X |y|a

= 2

∫
B1

∇v · ∇(X · ∇v)|y|a

= 2

∫
∂B1

v2
ν |y|a − 2

∫
B1

Lau (X · ∇u) + 2

∫
B1

Lau (X · ∇p),

using integration by parts and that p is a-harmonic. Now notice that, by the reg-
ularity of the solution, Lau (X · ∇u) ≡ 0. This, together with the fact that p is
κ-homogeneous, yields

D′(1) = 2

∫
∂B1

v2
ν |y|a + 2κ

∫
B1

pLau = 2

∫
∂B1

v2
ν |y|a − 2κ

∫
B1

v Lav,

where the last inequality follows by (5.16). On the other hand,

H ′(1) = 2

∫
∂B1

vvν |y|a.

Now letting

I :=

∫
B1

v Lav

and using ∫
B1

|∇v|2|y|a =

∫
∂B1

vvν |y|a − I,

in addition to the Cauchy–Schwarz inequality, we find that

D′(1)H(1)−H ′(1)D(1)

=

(
2

∫
∂B1

v2
ν |y|a − 2κI

)∫
∂B1

v2|y|a − 2

∫
∂B1

vvν |y|a
(∫

∂B1

vvν |y|a − I
)

= 2

(∫
∂B1

v2
ν |y|a

∫
∂B1

v2|y|a − κI
∫
∂B1

v2|y|a −
(∫

∂B1

vvν |y|a
)2

+ I

∫
∂B1

vvν |y|a
)

≥ −2κI

∫
∂B1

v2|y|a + 2I

∫
∂B1

vvν |y|a

= 2I

∫
∂B1

v(X · ∇v − κv)|y|a.
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Hence, by (5.16) and (5.23), we deduce that (5.24) holds, as desired.

We end the subsection with a lemma on a Monneau-type monotonicity statement
and Weiss-type monotonicity statement, arguing as in [FS18, Lemma 2.6 and 2.8],
and a important Monneau-type limit.

Lemma 5.8. Suppose that κ ≤ N(0+, u), and let v = u − p for p ∈ Pκ. Given
λ > 0, define

Hλ(r, v) :=
1

rn+a+2λ

∫
∂Br

v2|y|a =
1

r2λ
H(r, v). (5.25)

Then, r 7→ Hλ(r, v) is non-decreasing for all 0 ≤ λ ≤ N(0+, v). Moreover, the
λ-Weiss energy

r 7→ Wλ(r, v)

on v is also non-decreasing for all λ > 0.

Proof. Let vr(X) := (u− p)(rX); then,

H ′λ
Hλ

(r, v) =
2r
∫
∂B1

vr(X)(X · ∇v(rX))|y|a − 2λ
∫
∂B1

v2
r |y|a

r
∫
∂B1

v2
r |y|a

.

Notice also that

r

∫
∂B1

vr(X)(X · ∇v(rX))|y|a =

∫
∂B1

vr(X · ∇vr)|y|a =

∫
B1

|∇vr|2|y|a +

∫
B1

vr Lavr,

and vr Lavr ≥ 0 (see (5.16)). Hence, since N(1, vr) = N(r, v),

H ′λ
Hλ

(r, v) ≥ 2

r
(N(r, v)− λ) . (5.26)

Now using that N(r, v) ≥ N(0+, v) ≥ λ, we reach the desired result, (5.25).
To see the monotonicity of Wλ(r, v) for 0 ≤ λ ≤ N(0+, v), we simply combine

the expressions (5.21) and (5.25), so that Wλ(r, v) is product of two non-decreasing
non-negative functions.

On the other hand, if λ > N(0+, v), a simple manipulation (see the proof of
Proposition 5.6) yields

W ′
λ(1) = D′(1)− λH ′(1)− 2λ(D(1)− λH(1))

= 2

∫
∂B1

(vν − λv)2|y|a + 2(λ− κ)

∫
B1

v Lav.

As v Lav ≥ 0 and λ > N(0+, v) ≥ κ (by Proposition 5.6), we conclude.

Notice also that if we set

λ∗ := N(0+, v∗) ≥ κ∗ = N(0+, u),

then
lim
r↓0

Hλ(r, v∗) =∞ for all λ > λ∗,

which follows arguing exactly as in [FS18, Corollary 2.9].
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5.2.2 Estimates

Let us define, for any function f , the positive and negative parts as

f+ := max{f, 0} and f− := max{−f, 0} = −min{f, 0}.

Hence, f = f+ − f−.
We start with an L∞–L2 estimate on v.

Lemma 5.9. Let v = u− p for p ∈Pκ. Then,

‖v‖L∞(B1/2) ≤ C‖v‖L2(B1,|y|a), (5.27)

for some constant C depending only on n and a.

Proof. Observe that v− is sub a-harmonic in B1 as the maximum of two sub a-
harmonic functions in B1.

Let us show that v+ is also sub a-harmonic in B1. To this end, first, by Re-
mark 5.7, recall that v is the solution to (5.1) with ϕ = −p|B1∩{y=0} and its own
boundary data. Now let η be any smooth compactly supported function in B1 such
0 ≤ η ≤ 1. In addition, let hδ be an approximation of the Heaviside function:
hδ(t) = 0 for t ≤ 0, hδ(t) = t/δ for t ∈ (0, δ), and hδ(t) = 1 for t ≥ δ. Finally, for
0 < ε < δ, define vε := v − εηhδ(v).

Since p(x, 0) ≥ 0, observe that vε(x, 0) ≥ −p(x, 0) and vε|∂B1 = v|∂B1 . Therefore,∫
B1

|∇v − ε∇(ηhδ(v))|2|y|a ≥
∫
B1

|∇v|2|y|a,

which implies that, after dividing through by ε and letting ε ↓ 0,∫
B1

∇v · ∇(ηhδ(v))|y|a ≤ 0.

Expanding, ∫
B1

hδ(v)∇v · ∇η|y|a ≤ −
∫
B1

η|∇v|2h′δ(v)|y|a ≤ 0.

In turn, if H ′δ = hδ with Hδ(0) = 0, then∫
B1

∇(Hδ(v)) · ∇η|y|a ≤ 0.

(Obviously, Hδ here is not the Monneau-type function from Lemma 5.8.) Because
η was arbitrary, we find that Hδ(v) is sub a-harmonic in B1. So letting δ ↓ 0, we
determine that v+ is sub a-harmonic in B1 (Hδ(v) is an approximation of v+).

To conclude, see that by the local boundedness of subsolutions for La (see, e.g.,
[JN17, Proposition 2.1]), we have that

sup
B1/2

v± ≤ C

(∫
B1

|v±|2|y|a
)1/2

,

and (5.27) holds.
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Next, we prove Lipschitz and semiconvexity estimates on v along the spine of p.
But before doing so, we prove a characterization lemma on the spine of a generic
κ-homogeneous polynomial.

Lemma 5.10. Let κ ∈ N, and let p : Rn → R be a κ-homogeneous polynomial.
Then, the following sets are equal.

(i) L(p) := {ξ ∈ Rn : ξ · ∇p(x) = 0 for all x ∈ Rn}.

(ii) I(p) := {ξ ∈ Rn : p(x+ ξ) = p(x) for all x ∈ Rn}.

(iii) Dκ−1(p) := {ξ ∈ Rn : Dαp(ξ) = 0 for all α = (α1, . . . , αn) : |α| = κ− 1}.

Proof. We prove that (i) and (ii) as well as (ii) and (iii) are equivalent.

– L(p) ⊂ I(p): Let ξ ∈ L(p). Then,

p(x+ ξ) = p(x) +

∫ 1

0

ξ · ∇p(x+ tξ) dt = p(x).

– I(p) ⊂ L(p): We start by noticing that I(p) is actually a linear space, thanks to
the homogeneity of p. Indeed, the additive property is clear; it is also clear that
−ξ ∈ I(p) if ξ ∈ I(p). Now suppose ξ ∈ I(p) and consider βξ for some β > 0. Then,
p(x+ βξ) = βκp(β−1x+ ξ) = βκp(β−1x) = p(x) for all x ∈ Rn, so that βξ ∈ I(p).

Let ξ ∈ I(p). Now for all h > 0 and for all x ∈ Rn, p(x+ hξ) = p(x). Hence,

ξ · ∇xp(x) = lim
h↓0

p(x+ hξ, 0)− p(x)

h
= 0,

that is, ξ ∈ L(p).

– I(p) ⊂ Dκ−1(p): Let ξ ∈ I(p). Then, p(ξ + x) = p(x) and Dαp(x + ξ) = Dαp(x)
for any α = (α1, . . . , αn−1) with |α| = κ − 1. Taking x = 0, we conclude thanks to
the κ-homogeneity of p.
– Dκ−1(p) ⊂ I(p). Let ξ ∈ Dκ−1(p). Consider the degree κ polynomial q(x) :=
p(x+ ξ). Notice that from the definition of Dκ−1, q is homogeneous. Now let β > 0.
Using the homogeneity of q and p,

p(x+ ξ) = q(x) = βκq(β−1x) = βκp(β−1x+ ξ) = p(x+ βξ)

for all β > 0. Taking β ↓ 0, we see that ξ ∈ I(p).
This concludes the proof.

Notice that the equivalence of (i) and (ii) also holds for general κ-homogeneous
functions.

Remark 5.8. Lemma 5.10 will be applied to p(x, 0) for p ∈Pκ.

The following lemma shows that derivatives of v along the invariant set of p are
bounded. Recall that L(p) denotes the invariant set of p(x, 0). The lemma is proved
by means of a Bernstein’s technique for integro-differential equations, as introduced
by Cabré, Dipierro, and Valdinoci, in [CDV20].
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Lemma 5.11. Let v = u− p for p ∈Pκ. Then, for all e ∈ L(p) ∩ Sn,

‖∂ev‖L∞(B1/2) ≤ C‖v‖L2(B1,|y|a),

for some constant C depending only on n and a.

Proof. We proceed by Bernstein’s technique (see [CDV20]). Let η ∈ C∞c (B1/2) be
even in y and such that η ≡ 1 in B1/4. Consider the function,

ψ := η2(∂ev)2 + µv2,

for some µ > 0 to be chosen.
Since v is a-harmonic outside Λ(u), in B1/2 \ Λ(u),

La(v
2) = 2v Lav + 2|∇v|2|y|a ≥ 2|∇v|2|y|a.

Similarly, because ∂ev is a-harmonic outside Λ(u), we have that in B1/2 \ Λ(u),
La∂ev = La∂eu = 0. Therefore, we find that in B1/2 \ Λ(u),

La(η
2(∂ev)2) = (∂ev)2La(η

2) + η2La((∂ev)2) + 2|y|a∇(∂ev)2 · ∇η2

= (∂ev)2La(η
2) + 2η2|∇∂ev|2|y|a + 2|y|a∇(∂ev)2 · ∇η2

≥ (∂ev)2La(η
2) + 2η2|∇(∂ev)|2|y|a − 8|y|a|∇∂ev||∂ev||∇η|η

≥ |y|a|∂ev|2(|y|−aLa(η2)− 8|∇η|2)

where there last inequality follows from

η2|∇∂ev|2 + 4|∂ev|2|∇η|2 ≥ 4|∂ev||∇∂ev|η|∇η|.

So in B1/2 \ Λ(u),

Laψ ≥ |y|a|∂ev|2(|y|−aLa(η2)− 8|∇η|2) + |y|a|∇v|22µ

≥ |y|a|∇v|2(2µ− |y|−a|La(η2)| − 8|∇η|2).

Now as η is even in y and smooth, |y|−a|La(η2)|+ 8|∇η|2 ≤ Cη in B1/2, from which
we deduce that

Laψ ≥ 0 in B1/2 \ Λ(u)

provided 2µ ≥ Cη.
By the maximum principle then, ψ must attain its maximum at the boundary

of B1/2 \ Λ(u). Being that ∂ep = ∂eu = 0 on Λ(u) and η|∂B1/2
= 0, ψ = µv2 on

∂B1/2 ∪ Λ(u). Hence,

sup
B1/2

ψ ≤ µ sup
B1/2

v2.

In particular, as η ≡ 1 on B1/4,

‖∂ev‖L∞(B1/4) ≤ µ1/2‖v‖L∞(B1/2).

Thus, by Lemma 5.9 and a covering argument, we find the desired estimate.



168 Chapter 5. Singular points in the thin obstacle problem

Finally, we show that v is semiconvex along the spine of p. Naturally, for h > 0,
let

δ2
e,hf :=

f( · + he) + f( · − he)− 2f

h2

be the second order h-incremental quotient of the function f in the direction e ∈ Sn.

Lemma 5.12. Let v = u− p for p ∈Pκ. Then, for all e ∈ L(p) ∩ Sn,

inf
B1/2

∂eev ≥ −C‖v‖L2(B1,|y|a),

for some constant C depending only on n and a.

Proof. For any γ > 0, let uγ be the solution to
uγ(x, y) ≥ 0 on B7/8 ∩ {y = 0}

Lauγ(x, y) ≤ 0 in B7/8

Lauγ(x, y) = 0 in B7/8 \ Λ(uγ)
uγ(x, y) = u(x, y) + γ on ∂B7/8.

(5.28)

That is, in B7/8, uγ is the solution to the thin obstacle problem with zero obstacle
and boundary data u+γ. Notice that since u is continuous in B1, we have that uγ ↓ u
uniformly in B7/8, as γ ↓ 0. Also, uγ > 0 in B7/8 \B7/8−β for some β = β(γ) > 0, by
the continuity of uγ. In particular, uγ is a-harmonic in the annulus B7/8 \B7/8−β.

Consider the function
fγ(x) := (∂eeuγ(x))−

as the pointwise limit of (δ2
e,hu(x))− as h ↓ 0. To do so, we define

gγε,h,e(x) := min{δ2
e,huγ(x),−ε}.

Observe that La(δ
2
e,huγ) ≤ 0 in B7/8 \ Λ(uγ) (since Lauγ ≤ 0 in B7/8 and Lauγ = 0

in B7/8 \Λ(uγ)). Moreover, since uγ is continuous and δ2
e,huγ ≥ 0 on Λ(uγ), we have

gγε,h,e = −ε in a neighbourhood of Λ(uγ). Thus, Lag
γ
ε,h,e ≤ 0 in B7/8.

We now want to let ε ↓ 0 and then h ↓ 0 to deduce that Lafγ ≥ 0 in B3/4 and
fγ ≡ 0 on Λ(uγ). In order to pass Lag

γ
ε,h,e ≤ 0 to the limit (as ε, h ↓ 0), it is enough

to show that |gγε,h,e| ≤ C for some C independent of ε and h (but possibly depending
on γ). As gγε,h,e is super-a-harmonic in B7/8, its minimum must be achieved on the
boundary. In particular, since gγε,h,e ≤ 0,

sup
B3/4

|gγε,h,e| ≤ sup
∂B7/8−β/2

|gγε,h,e| ≤ C(β),

where in the last inequality, we have used that gγε,h,e is a-harmonic in B7/8 \ B7/8−β
and corresponding C2 estimates in the tangential direction for a-harmonic functions.
Hence, we can indeed pass Lag

γ
ε,h,e ≤ 0 in B3/4 to the limit and obtain that Lafγ ≥ 0

in B3/4 and fγ ≡ 0 on Λ(uγ).
With the sub-a-harmonicity and nonnegativity of fγ in hand, it is easy to see that

fγ is continuous in B3/4. Indeed, sub-a-harmonic functions are upper semi-continuous
(see [HKM93, Theorem 3.63]). So being that fγ is continuous when fγ > 0 and fγ
is nonnegative in general, we determine the continuity of fγ, as desired.
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To conclude, we again proceed by Bernstein’s technique (see [CDV20]). Let η ∈
C∞c (B1/2) be even in y and such that η ≡ 1 in B1/4, and set

ψγ := η2f 2
γ + µ(∂euγ)

2,

where we recall fγ(x) := (∂eeuγ(x))−. By the discussion above, ψγ is continuous in
B1/2. Recall that fγ ≡ 0 on Λ(uγ), and therefore, ψγ ≡ 0 on Λ(uγ). On the other
hand, on the boundary of B1/4, we have that ψγ = µ(∂euγ)

2. Following the proof
of Lemma 5.11 exactly (and using that Lafγ ≥ 0 in B3/4), we see that Laψγ ≥ 0
in B1/2 \ Λ(uγ) if µ is large enough, and so, its maximum must be achieved at the
boundary. In turn,

‖fγ‖L∞(B1/4) ≤ µ1/2‖∂euγ‖L∞(B1/2) = µ1/2‖∂e(uγ − p)‖L∞(B1/2) ≤ C‖uγ − p‖L2(B1,|y|a),

where we have used Lemma 5.11 in the last inequality. This implies the family
{uγ}, for 0 < γ ≤ 1, is uniformly semiconvex. Letting γ ↓ 0 then and applying a
covering argument, we deduce the desired result (using that semiconvexity passes
to the limit).

Remark 5.9. Notice that p’s polynomial nature plays no role in Lemmas 5.9, 5.11,
and 5.12. We have only used that p is non-negative in the thin space and a-harmonic
in Lemma 5.9, and that p is non-negative in the thin space, a-harmonic, and invariant
in the e directions in Lemmas 5.11 and 5.12.

5.3 Blow-up Analysis

Recall, after a translation, we may assume that 0 ∈ Sing(u) represents any singular
point. And, as such, the first blow-up of u at 0 is an element of Pκ for some κ ∈ 2N.
As in Section 5.2, we let p∗ denote the first blow-up of u at 0, and define

v∗ := u− p∗, κ∗ := κ0, L∗ := L(p∗), m∗ := m0, and λ∗ := N(0+, v∗).

For notational simplicity, from this point forward, we often suppress the star
subscript when denoting the homogeneity of p∗, and simply write κ instead of κ∗.

In this section, we are interested in classifying the second blow-ups of u at 0, that
is, the limit points of the set {ṽr}r>0, which is weakly precompact by Proposition 5.6,
as r ↓ 0, with

ṽr :=
vr

‖vr‖L2(∂B1,|y|a)

and vr(X) := u(rX)− p∗(rX). (5.29)

In turn, we will prove Proposition 5.3.
We will work according to two cases, determined by the value of a and the

alignment of L∗ and the nodal set of p∗,

N∗ := N (p∗)

(see (5.17)). Notice that by Lemma 5.10, if we consider L(p) as a subset of Rn×{0},
then

L(p) ⊂ N (p)
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for all p ∈Pκ; yet L(p) may be smaller than N (p). In particular, we define Case 1
and Case 2 as follows.

Either a ∈ [0, 1)
or a ∈ (−1, 0) and dimHN∗ ≤ n− 2

(Case 1)

and

a ∈ (−1, 0) and dimHN∗ = dimH L∗ = n− 1. (Case 2)

Remark 5.10. We remark that Case 1 and Case 2, a priori, do not cover all possibil-
ities. Indeed, the case when a ∈ (−1, 0) and dimH L∗ < dimHN∗ = n− 1 is missing.
In fact, it is currently unknown if such a situation can occur when u 6≡ p∗.

Before we proceed with our classification results, we make a pair of observations,
the second of which will play a key feature in Case 2. Since p∗ ≥ 0 on Rn+1∩{y = 0},
we have that

{(x, 0) : p∗(x, 0) = 0} = {(x, 0) : p∗(x, 0) = |∇xp∗(x, 0)| = 0} = N∗. (5.30)

Furthermore, if L∗ ∼= Rn−1, as it is in Case 2, then p∗|Rn×{0} is a one-dimensional
polynomial, and so we can identify L∗ and N∗ as the same subset of Rn × {0}.

Let us start by studying second blows-up in Case 1.

Proposition 5.13. In Case 1, for every sequence rj ↓ 0, there is a subsequence
rj` ↓ 0 such that ṽrj` ⇀ q weakly in W 1,2(B1, |y|a) as ` → ∞, and q 6≡ 0 is a
λ∗-homogeneous, a-harmonic polynomial. In particular, λ∗ ∈ {κ, κ+ 1, κ+ 2, . . . }.

Proof. By Proposition 5.6, we see that given any sequence rj ↓ 0, the sequence ṽrj
is uniformly bounded in W 1,2(B1, |y|a). Hence, there is a subsequence rj` ↓ 0 such
that

ṽrj` ⇀ q in W 1,2(B1, |y|a),
for some q, and as ‖ṽrj`‖L2(∂B1,|y|a) = 1, we have that

‖q‖L2(∂B1,|y|a) = 1.

Observe that Laṽr is a non-positive measure as

Lavr = 2r lim
y↓0

ya∂yurHn Λ(ur) ≤ 0

in the sense of distributions. Furthermore, let K ⊂ B1 be a any compact set and
ηK ∈ C∞c (B1) be such that ηK ≡ 1 on K and 0 ≤ ηK ≤ 1 in B1. By Hölder’s
inequality,

0 ≤
∫
K

−Laṽr ≤
∫
B1

−ηKLaṽr =

∫
B1

∇ηK · ∇ṽr|y|a ≤ CK‖∇ṽr‖L2(B1,|y|a)

Since the family ṽr is uniformly bounded in W 1,2(B1, |y|a) by Proposition 5.6, it
follows that the collection of measures Laṽr is tight. So, up to a further subsequence,
which we still denote by rj` , we have that Laq is a non-positive measure. Then, as
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r−κur → p∗ locally uniformly, with ur(X) := u(rX), the sets Λ(ur) converge to N∗
in the Hausdorff sense (recall (5.30)). Therefore, the distribution Laq is supported on
{(x, 0) : p∗(x, 0) = 0}. Yet we are in Case 1, and N∗ is of zero a-harmonic capacity
Rn+1. Indeed, as p∗|Rn×{0} 6≡ 0, the set N∗ has locally finite Hn−1 measure. If a ≥ 0,
then the a-harmonic capacity of N∗ is smaller than the harmonic capacity of N∗,
which is zero. If a < 0, then, by assumption, N∗ has locally finite Hn−2 measure,
which implies that it is of zero a-harmonic capacity (see [Kil94, Corollary 2.12]).
Thus, q is a-harmonic, i.e., Laq ≡ 0.

Let us now show that q is homogeneous, arguing as in [FS18, Lemma 2.12], with
homogeneity λ∗ := N(0+, v∗). In order to do so, by [GR19, Theorem 2.11], it suffices
to show that

λ∗ = N(ρ, q) for all ρ ∈ (0, 1). (5.31)

Notice, first, that since q is a-harmonic, N(ρ, q) is non-decreasing. On the other
hand, by the lower semicontinuity of the weighted Dirichlet integral,

N(1, q) ≤ lim inf
`→∞

N(1, ṽrj` ) = lim inf
`→∞

N(1, vrj` ) = lim inf
`→∞

N(rj` , v∗) = λ∗.

Also, by Lemma 5.8 applied to ṽrj` , and taking `→∞,

1

ρn+a+2λ∗

∫
∂Bρ

q2|y|a ≤
∫
∂B1

q2|y|a = 1. (5.32)

However, because Laq = 0 and by (5.26), we know that

H ′λ
Hλ

(ρ, q) =
2

ρ
(N(ρ, q)− λ).

Suppose now that N(ρ◦, q) = λ◦ < λ∗ for some ρ◦ ∈ (0, 1). In particular, by the
previous representation of Hλ, Hλ◦ is non-increasing for ρ ∈ (0, ρ◦), so that

1

ρn+a+2λ∗

∫
∂Bρ

q2|y|a ≥ ρ2(λ◦−λ∗)

ρn+a+2λ◦
◦

∫
∂Bρ◦

q2|y|a > 0 for all ρ ∈ (0, ρ◦).

But this contradicts (5.32) for ρ small enough. Therefore, (5.31) holds and q is
homogeneous of degree λ∗. And by [CSS08, Lemma 2.7], we deduce that q is a
polynomial. In particular, λ∗ ≥ κ is an integer.

All in all, we have that q 6≡ 0 is an a-harmonic, even in y, and λ∗-homogeneous
polynomial with λ∗ ∈ {κ, κ+ 1, κ+ 2, . . . }. In particular, q

∣∣
Rn×{0} 6≡ 0.

Before moving to Case 2, let us state and prove a lemma which will help us to
compare p∗ and q when working in Case 1. That said, this lemma is independent of
Case 1 and Case 2, and holds generically.

Lemma 5.14. Assume that ṽr` ⇀ q in W 1,2(B1, |y|a) for some sequence r` ↓ 0.
Then, ∫

∂B1

qp∗|y|a = 0 (5.33)

and ∫
∂B1

qp|y|a ≤ 0 for all p ∈Pκ. (5.34)
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Proof. We proceed as in [FS18, Lemmas 2.11-2.12]. In order to see (5.33), we use
Hλ(r, u− p) is non-decreasing for λ = κ ≤ N(0+, u− p) (see Lemma 5.8), recalling
that κ = N(0+, u), by assumption. In particular, we have

1

rn+a+2κ

∫
∂Br

(u− p)2|y|a ≥ lim
ρ↓0

1

ρn+a+2κ

∫
∂Bρ

(u− p)2|y|a

= lim
ρ↓0

∫
∂B1

(ρ−κu(ρX)− p)2|y|a

=

∫
∂B1

(p∗ − p)2|y|a,

(5.35)

using the local uniform convergence of r−κur to p∗ as r ↓ 0, with ur(X) := u(rX),
and the κ-homogeneity of p. By the definition of p∗, notice that

hr := ‖vr‖L2(∂B1,|y|a) = o(rκ) as r ↓ 0 and εr :=
hr
rκ

= o(1) as r ↓ 0.

Furthermore, for some subsequence, which we still denote by r`, we have that ṽr` =
vr`/hr` → q in L2(∂B1, |y|a). Thus,∫
∂B1

(vr
rκ

+ p∗ − p
)2

|y|a =
1

rn+a+2κ

∫
∂Br

(u−p)2|y|a ≥
∫
∂B1

(p∗−p)2|y|a for all r > 0.

Since r−κvr = ṽrεr, taking the subsequence r` and expanding, we obtain

ε2
r`

∫
∂B1

ṽ2
r`
|y|a + 2εr`

∫
∂B1

ṽr`(p∗ − p)|y|a ≥ 0 for all p ∈Pκ.

Dividing by εr` and taking the limit as `→∞,∫
∂B1

q(p∗ − p)|y|a ≥ 0 for all p ∈Pκ.

Now taking p = 2p∗ and p = 2−1p∗, which are both members of Pκ, we deduce
that ∫

∂B1

qp∗|y|a = 0,

from which (5.34) follows immediately.

Let us now deal with Case 2. As we noted before, in this case, the spine and the
nodal set of p∗ can be identified: L∗ = N∗.
Proposition 5.15. In Case 2, for every sequence rj ↓ 0, there is a subsequence
rj` ↓ 0 such that ṽrj` ⇀ q weakly in W 1,2(B1, |y|a) as ` → ∞, and q 6≡ 0 is a
λ∗-homogeneous solution to the very thin obstacle problem with zero obstacle on L∗,

q ≥ 0 on L∗

Laq ≤ 0 in Rn+1

Laq = 0 in Rn+1 \ L∗
qLaq = 0 in Rn+1.

(5.36)

Moreover, λ∗ ≥ κ+ ακ, for some constant ακ > 0 depending only on n, a, and κ.
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Proof. Without loss of generality, we will assume that L∗ = {xn = y = 0}. We
divide the proof into several steps.

Step 1: Weak limit and non-negativity on L∗. As in the proof of Proposi-
tion 5.13, we have that

ṽr` ⇀ q in W 1,2(B1, |y|a), (5.37)

for some q, and Laṽr is converging weakly∗ as measures to a non-positive measure
Laq supported on L∗. Unlike before, the set on which Laq is supported is now a set
of strictly positive a-harmonic capacity (since m = n− 1).

Consider the following trace operators

γ : W 1,2(B1, |y|a)→ W s,2(B∗1) and γ̃ : W s,2(B∗1)→ W s− 1
2
,2(B′1).

By [NLM88] (see also [Kim07]), since s > 1/2, γ is continuous; and γ̃ is the standard
continuous trace operator. (Recall that a = 1− 2s.) The operator τ := γ̃ ◦ γ then is
continuous. Hence, considering (5.37),

τ(ṽr`) ⇀ τ(q) in W s− 1
2
,2(B′1) and τ(ṽr`)→ τ(q) in L2(B′1).

Now τ(ṽr`) ≥ 0 on B′1 for all ` ∈ N, since p∗ ≡ 0 and u ≥ 0 on L∗. Thus, from
the strong convergence above, τ(q) ≥ 0, or q ≥ 0 on L∗.

Step 2: Semiconvexity in directions parallel to L∗. By Lemma 5.12,

inf
B1/2

∂eeṽr ≥ −C for all e ∈ L∗ ∩ Sn, (5.38)

for some constant C independent of r. Namely, the sequence of functions ṽr is locally
uniformly semiconvex (and, therefore, locally uniformly Lipschitz) in the directions
parallel to L∗.

Step 3: Strong convergence. We show that for every 0 < ε � 1, there exists a
constant Cε > 0 independent of r` for which

[ṽr` ]C−a−ε(B1/2) ≤ Cε. (5.39)

Thus, by a covering argument, ṽr` → q locally uniformly in B1, and, in fact, q ∈
C−a−εloc (B1).

Recall that L∗ = {xn = y = 0} and X = (x′, xn, y) for x′ ∈ Rn−1. For simplicity,
in the following computations, set

w := ṽr.

Let Qr◦ := B′r◦ × Dr◦ ⊂ B1, for some r◦ > 0. Recall that Dr denotes the disc of
radius r in R2 centered at the origin. For convenience, rescale and assume r◦ = 1.
By Step 2, ‖w(x′, ·, ·)‖2

L2(D1,|y|a) is Lipschitz, as a function of x′. Hence,

osc
B′1

‖w(x′, ·, ·)‖2
L2(D1,|y|a) ≤ C.
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Recalling that ‖w‖L2(B1,|y|a) ≤ C (we have rescaled to work in Q1, else this bound
would be 1), we have that∫

B′1

‖w(x′, ·, ·)‖2
L2(D1,|y|a) dx′ ≤ C, (5.40)

and so ‖w(x′, ·, ·)‖L2(D1,|y|a) has bounded oscillation and integral. In turn,

‖w(x′, ·, ·)‖L2(D1,|y|a) ≤ C for all x′ ∈ B′1. (5.41)

We also recall that

lim
y↓0

ya∂yw ≤ 0 and Law = 0 in B1 ∩ {y > 0}. (5.42)

– Step 3.1. In this subset, we prove that the measure

nw(x′, xn) := lim
y↓0

ya∂yw ≤ 0

is finite on each x′ slice. Equivalently, we show that

0 ≥
∫ 1

−1

ζ(|(x′, xn)|)nw(x′, xn) dxn ≥ −C for all x′ ∈ B′1 (5.43)

where ζ is a smooth test function ζ = ζ(r) : [0,∞) → [0, 1] such that ζ ≡ 1 in
[0, 1/2] and ζ ≡ 0 in [3/4,∞).

Let ζ = ζ(|(x′, xn, y)|). By the divergence theorem,∫ 1

−1

ζnw dxn = −
∫
D1∩{y>0}

divxn,y(ζy
a∇xn,yw) dxn dy

= −
∫
D1∩{y>0}

ζLxn,ya w −
∫
D1∩{y>0}

ya∇xn,yζ · ∇xn,yw

=: I + II

(5.44)

where Lxn,ya f := divxn,y(|y|a∇xn,yf). On one hand, observe that

Lxn,ya w = Law − ya∆x′w = −ya∆x′w in D1 ∩ {y > 0}

by (5.42). And so, by (5.38),
I ≥ −C. (5.45)

On the other hand, by the symmetries of ζ (i.e., ∂yζ = O(y) as ∂yζ
∣∣
y=0

= 0 and ζ is

smooth),

|wLxn,ya ζ| = |wyay−aLxn,ya ζ| = |w|ya|∂nnζ + ∂yyζ + ay−1∂yζ| ≤ C|w|ya.

So, by the symmetries of ζ again, Hölder’s inequality, and (5.41), we deduce that

II = −
∫
D1∩{y>0}

ya∇xn,yζ · ∇xn,yw =

∫
D1∩{y>0}

wLxn,ya ζ ≥ −C. (5.46)
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We have also used that the boundary term at y = 0 vanishes in the integration by
parts, ya∂yζ ≡ 0 on {y = 0}. Therefore, combining (5.44), (5.45), and (5.46), we see
that (5.43) holds, as desired.

– Step 3.2. Now we conclude. Consider the fundamental solution for the operator
La (see, e.g, [CS07]) given by

Γa(X) := Cn,a|X|−n+1−a.

More precisely, Γa is such that LaΓa = 0 in {|y| > 0} and limy↓0 y
a∂yΓa = δ(x), the

Dirac delta at x. Let
w̄(x, y) := Γa( · , y) ∗x (ζnw),

where ζ is the test function defined in Step 3.1, with ζ = ζ(|x|) here. We have that
Law̄ = 0 in |y| > 0, and limy↓0 y

a∂yw̄ = ζnw. We claim that w̄ is bounded. Indeed,
by (5.43),

|w̄(x′, xn, y)| ≤
∫
B′1

∫ 1

−1

(ζnw)(z′, zn)

|(x′ − z′, xn − zn, y)|n−1+a
dzn dz′

≤ C

∫
B′1

dz′

|(x′ − z′, 0, y)|n−1+a
≤ C.

By means of the previous proof, (−∆)s̄Xw̄ = ((−∆)s̄XΓa ∗x (ζnw)) is bounded as long
as 2s̄ < −a, since (−∆)s̄X |X|−n+1−a = C|X|−n+1−a−2s̄, and ζnw does not depend on
y. Thus, (−∆)s̄Xw̄ is bounded as long so 2s̄ < −a, and by interior regularity for the
fractional Laplacian (suppose s̄ 6= 1/2), w̄ is C2s̄ (see [RS16, Theorem 1.1]).

Finally, notice that La(w̄−w) = 0 in B1∩{|y| > 0} and limy↓0 y
a∂y (w̄ − w) = 0

in B1/2∩{|y| > 0}. It follows that La(w̄−w) = 0 in B1/2, and then w̄−w ∈ C1
loc(B1/2)

by interior estimates for a-harmonic functions (and recalling that a ∈ (−1, 0)). In
turn, w inherits the regularity of w̄; that is, w is C2s̄, so long as 2s̄ < −a, and (5.39)
is proved.

In particular, by Arzelà–Ascoli and a covering argument, we have that

ṽr` → q in C0
loc(B1), (5.47)

and q ∈ C−a−εloc (B1) for any ε > 0.

Step 4: Homogeneous solution to the very thin obstacle problem in B1.
First, we show that q is a solution to the very thin obstacle problem, (5.36); the
only condition that remains to be checked is that q Laq ≡ 0.

By the proof of Proposition 5.6 and (5.23),

rN ′(r, v∗)

N(r, v∗)
=

d

dρ
logN(ρ, vr)

∣∣∣∣
ρ=1

≥
2
(∫

B1
vrLavr

)2∫
B1
|∇vr|2|y|a

∫
∂B1

v2
r |y|a

≥ 0.

Hence, by the definition of ṽr,

rN ′(r, v∗) ≥ 2

(∫
B1

ṽrLaṽr

)
. (5.48)
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Furthermore, reasoning as in [FS18, Lemma 2.12], since N(r, v) ↓ λ∗ as r ↓ 0,

−
∫ 2rj`

rj`

rN ′(r, v∗) dr ≤ 2(N(2rj` , v∗)−N(rj` , v∗))→ 0 as `→∞.

And so, by the mean value theorem, we can find r̄j` ∈ [rj` , 2rj` ] with r̄j`N
′(r̄j` , v∗)→

0 as `→∞. In turn, the non-negativity of v∗ Lav∗ and (5.48) then imply that∫
B1

ṽrj` Laṽrj` ≤
∫
Bρ̄j`

ṽrj` Laṽrj` → 0

with ρ̄j` := r̄j`/rj` . Therefore, since Laṽrj` ⇀ Laq weakly∗ as measures in B1, ṽrj` → q

strongly in C0
loc(B1) by Step 3, (5.47), and ṽr Laṽr ≥ 0, we obtain that∫

BR

q Laq = 0 for all R < 1,

so that, in fact, q Laq ≡ 0 in B1.
Thus, q is a solution to the very thin obstacle problem (5.36) inside B1.
To conclude, we show that q is homogeneous with homogeneity λ∗ := N(0+, v∗).

Since q solves the very thin obstacle problem, by Lemma 5.52, it suffices to show
that

λ∗ = N(ρ, q) for all ρ ∈ (0, 1). (5.49)

But this follows from arguing exactly as in the proof of Proposition 5.13, where
we obtained that q is homogeneous in Case 1, using Lemma 5.52, (5.108), and
Lemma 5.53.

Step 5: λ∗ ≥ κ+ακ. We argue by contradiction (or compactness). Suppose, to the
contrary, that there exists a bounded sequence of solutions u` such that 0 ∈ Σκ(u`),
dimH L(p∗,`) = n − 1, and λ∗,` ≤ κ + `−1. Let p∗,` be the first blow-up and q` be
a second blow-up of u` at 0 (the homogeneity of q` is λ∗,`). Up to a subsequence
(we can assume the sequences enjoy uniform bounds in appropriate Hölder spaces),
taking ` to infinity, we find a solution u∞ whose first blow-up at 0 is of order κ,
whose spine has Hausdorff dimension equal to n− 1, and whose second blow-up q∞
is homogeneous of order κ.

Since q∞ is a κ-homogeneous, global solution to the very thin obstacle prob-
lem, it is an a-harmonic polynomial. Indeed, by [GR19, Proposition 4.4], any global,
evenly homogeneous function u◦ with Lau◦ non-negative and supported on Rn×{0}
is actually an a-harmonic polynomial of degree κ. In particular, we have that
‖q∞‖Lip(B1) ≤ C for some constant depending only on n, a, and κ. Also, by as-
sumption, q∞ ≥ 0 on L(p∗,∞), where p∗,∞ is the first blow-up of u∞ at 0.

For simplicity, let q = q∞ and p∗ = p∗,∞, and let us assume that L(p∗,∞) = {xn =
0}, so that p∗ depends only on xn in the thin space {y = 0}. By Lemma 5.14,

〈q, p〉a :=

∫
∂B1

qp|y|a ≤ 0 for all p ∈Pκ and 〈q, p∗〉a = 0. (5.50)

Since p∗ is κ-homogeneous and depends only on xn, a constant c∗ > 0 exists for
which p∗|B1∩{y=0} = c∗|xn|κ. Now for any ε > 0, observe that

Cεp∗ + q ≥ −ε on ∂B1 ∩ {y = 0}
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with

Cε := c−1
∗ ε
−κ‖q‖L∞(B1∩{y=0})‖q‖κLip(B1∩{y=0}).

Indeed, if |xn| ≥ ε/‖q‖Lip(B1∩{y=0}), then Cεp∗|B1∩{y=0} + q|B1∩{y=0} ≥ 0, by the
definition of Cε. On the other hand, if |xn| ≤ ε/‖q‖Lip(B1∩{y=0}), then q|B1∩{y=0} ≥ −ε
since q ≥ 0 on {xn = 0} (recall p∗ ≥ 0 on the thin space). Thus, Cεp∗ + q +
εExta(|x|κ) ∈Pκ for every ε > 0 (see (5.13)). So (5.50) implies that

‖q‖L2(∂B1,|y|a) ≤ −ε〈Exta(|x|κ), q〉a.

Taking ε ↓ 0, we deduce that q ≡ 0, a contradiction.

With Propositions 5.13 and 5.15 in hand, we can now prove Proposition 5.3.

Proof of Proposition 5.3. The proof is a simple consequence of Propositions 5.13
and 5.15. Without loss of generality, X◦ = 0.

(i) If a ∈ [0, 1), we are in Case 1. So by Proposition 5.13, our claim holds.

(ii) When κ = 2, since p∗ ≥ 0 on the thin space, we have that L∗ = N∗. Thus,
since m < n− 1, we are again in Case 1, and we conclude by Proposition 5.13
once more.

(iii) Finally, if m = n−1 and a ∈ (−1, 0), we are in Case 2 (recall L∗ ⊂ N∗). Thus,
applying Proposition 5.15, we arrive at our desired conclusion.

This completes the proof.

5.4 Accumulation Lemmas

In this section, we gather some important lemmas concerning accumulation points
of Sing(u). These lemmas are the key tools used in estimating the size of the points
where we can construct the next term in the expansion of u. The lemmas of this
section are analogous to the accumulation lemmas of [FS18], although several new,
interesting technical challenges appear in our setting.

Let us start by proving an auxiliary lemma.

Lemma 5.16. Let q be a κ-degree, a-harmonic polynomial, for κ ≥ 1, and let
X◦ ∈ Rn+1. Then,

N(r, q,X◦) =
r
∫
Br(X◦)

|∇q|2|y|a∫
∂Br(X◦)

q2|y|a ≤ κ for all r > 0.

Moreover,

N(0+, q,X◦) = m◦

where m◦ is the smallest integer for which the m◦-homogeneous part of q(X◦ + ·) is
non-zero.
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Proof. Without loss of generality, we assume that X◦ = 0. Let

q =
κ∑

m=0

q0

where qm denotes the m-homogeneous part of q. Since q is a-harmonic and a ∈
(−1, 1), each of its homogeneous parts is a-harmonic. Notice that if p1 and p2 are
homogeneous a-harmonic polynomials with non-zero homogeneities m1 6= m2, then
they are orthogonal in L1(∂Br, |y|a). Indeed, using that mipi = x · ∇pi = r∂νpi on
∂Br and integrating by parts,

(m1 −m2)

∫
∂Br

p1p2|y|a = r

∫
∂Br

p2∂νp1|y|a − r
∫
∂Br

p1∂νp2|y|a

= −r
∫
Br

∇p1 · ∇p2|y|a + r

∫
Br

∇p1 · ∇p2|y|a = 0,

where we have also used that Lapi = 0.
Now, by means of them-homogeneity of qm and the orthogonality in L2(∂Br, |y|a)

of homogeneous a-harmonic polynomials of different homogeneities, we find that∫
Br

∇q · ∇qm|y|a =
m

r

∫
∂Br

q2
m|y|a.

Thus,

r

∫
Br

|∇q|2|y|a =
κ∑

m=1

m

∫
∂Br

q2
m|y|a ≤ κ

κ∑
m=1

∫
∂Br

q2
m|y|a.

Pythagoras’s theorem also implies that∫
∂Br

q2|y|a =
κ∑

m=0

∫
∂Br

q2
m|y|a.

Hence,

r

∫
Br

|∇q|2|y|a ≤ κ

∫
∂Br

q2|y|a,

as desired.
Now let cm :=

∫
∂B1

q2
m|y|a, and set m◦ ≥ 0 to be the smallest integer so that

cm◦ 6= 0. Then,

r
∫
Br
|∇q|2|y|a∫

∂Br
q2|y|a =

∑κ
m=m◦

mcmr
2m∑κ

m=m◦
cmr2m

= m◦ +O(r2),

which concludes the proof.

Just as in Section 5.3, we divide our attention between Case 1 and Case 2. Again,
we begin with Case 1. Our accumulation lemma in this case is analogous to [FS18,
Lemma 3.2]. We repeat the common parts for completeness.

We recall that, in the following lemmas, we are assuming that 0 ∈ Σκ is a singular
point of order κ ∈ 2N.
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Lemma 5.17. In Case 1, suppose that there exists a sequence of free boundary
points Σ≥κ 3 X` = (x`, 0) → 0 and radii r` ↓ 0 with |X`| ≤ r`/2 such that ṽr` ⇀ q
in W 1,2(B1, |y|a) and Z` := X`/r` → Z∞. Then,

Z∞ = (z∞, 0) ∈ L∗ and Dαq(Z∞) = 0 for all α = (α′, 0) and |α| ≤ κ− 2.

Moreover, if λ∗ = κ, then qZ∞ := q(Z∞ + · )− q is invariant under L∗ + L(q); that
is,

qZ∞(x+ ξ, 0) = qZ∞(x, 0) for all pairs (ξ, x) ∈ (L∗ + L(q))× Rn.

Proof. From Proposition 5.6 applied at X`, the frequency of u(X` + · ) − p∗ is at
least κ. (Here, p∗ is being considered as just an element of Pκ. Recall, p∗ is the
blow-up at 0, not at X`.) Therefore,

N(ρ, u(X` + r` · )− p∗(r` · )) = N(ρr`, u(X` + · )− p∗) ≥ κ for all ρ ∈ (0, 1/2),

or, equivalently, for all ρ ∈ (0, 1/2),

ρ
∫
Bρ
|∇ṽr`(Z` + · ) + h−1

r`
∇(p∗(X` + r` · )− p∗(r` · ))|2|y|a∫

∂Bρ
|ṽr`(Z` + · ) + h−1

r`
(p∗(X` + r` · )− p∗(r` · ))|2|y|a

≥ κ (5.51)

with
hr` := ‖vr`‖L2(∂B1,|y|a).

Now let

q`(X) :=
p∗(X` + r`X)− p∗(r`X)

hr`
,

which is a (κ− 1)-degree, a-harmonic polynomial. Also, observe that∫
B1/2

|ṽr`(Z` + · )|2|y|a +

∫
B1/2

|∇ṽr`(Z` + · )|2|y|a ≤ ‖ṽr`‖2
W 1,2(B1,|y|a) ≤ C. (5.52)

We claim that the coefficients of q` are uniformly bounded with respect to `, so
that, up to subsequences, q` → q∞ locally uniformly where q∞ is some a-harmonic
polynomial of degree κ − 1. Indeed, suppose that this is not true. Then, letting
{a`}i∈I denote the coefficients of q` and setting σ` :=

∑
i∈I |a`i |, we have that

σ` →∞. Now set

q̄` :=
q`
σ`
,

which is a polynomial with coefficients bounded by 1, and let q̄∞ denote its limit
(up to a subsequence). Notice that q̄∞ is an a-harmonic, (κ− 1)-degree polynomial
as q̄` are all a-harmonic, (κ − 1)-degree polynomials. So, from (5.51), dividing the
numerator and denominator by σ2

` , and by Lemma 5.16, we deduce that

κ ≤
ρ
∫
Bρ
|∇ε` +∇q̄`|2|y|a∫

∂Bρ
|ε` + q̄`|2|y|a

→
ρ
∫
Bρ
|∇q̄∞|2|y|a∫

∂Bρ
|q̄∞|2|y|a

= N(ρ, q̄∞) ≤ κ− 1

since, by (5.52),

ε` :=
ṽr`(Z` + · )

σ`
→ 0 in W 1,2(B1/2, |y|a).
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Impossible.
Since q` converges, up to subsequences, to some q∞ uniformly in compact sets

and by interior estimates for a-harmonic functions (see, e.g., [JN17, Propsition 2.3]),
we have that |Dαq`(0)| ≤ C for some C independently of ` for any multi-index
α = (α1, . . . , αn, 0). Then, from the κ-homogeneity of p∗, we have

Dαq`(0) =
r
|α|
`

hr`
Dαp∗(X`) =

rκ`
hr`

Dαp∗(Z`) (5.53)

for all |α| ≤ κ− 1. Hence, using |Dαq`(0)| ≤ C and hr` = o(rκ` ), we determine that

|Dαp∗(Z`)| = o(1)→ 0 as `→∞

when |a| ≤ κ− 1. That is, Dαp∗(Z∞) = 0 for |α| ≤ κ− 1. Thanks to Lemma 5.10,

Z∞ ∈ L∗.

Proceeding as in [FS18, Lemma 3.2] by means of the Monneau-type monotonicity
formula from Lemma 5.8, we obtain

1

ρa+2κ
−
∫
∂Bρ

|q(Z∞ + · ) + q∞|2|y|a ≤ 2a+2κ−
∫
∂B1/2

|q(Z∞ + · ) + q∞|2|y|a (5.54)

for all ρ ∈ (0, 1/2). Notice that, until now, we have not used any information on
the second blow-up q. From Proposition 5.13, q is a λ∗-homogeneous, a-harmonic
polynomial with λ∗ ≥ κ, since we are in Case 1. It follows that the polynomial
q(Z∞ + · ) + q∞ is only made up of monomials of degree greater than or equal to κ.
Thus, recalling (5.53), we have that

λ∗q(Z∞) = Z∞ · ∇xq(Z∞) = −Z∞ · ∇xq∞(0) = − lim
`→∞

r`
hr`

(Z∞ · ∇xp∗(X`)) = 0.

Here, we have also used that Z∞ ∈ L∗, X` = (x`, 0), and q is κ∗-homogeneous.
Moreover, taking derivatives, we have

(λ∗ − |α|)Dαq(Z∞) = − lim
`→∞

rκ`
hr`

(Z∞ · ∇xD
αp∗(Z`)) = 0.

(By Lemma 5.10, Z∞ · ∇xD
αp∗(Z`) = 0.) Therefore,

Dαq(Z∞) = 0 for all α = (α′, 0) and |α| ≤ κ− 2.

In addition, notice that by construction, q` is invariant under L∗. Hence, so is q∞.
Finally, suppose λ∗ = κ. Then, q(Z∞ + · ) + q∞ consists of only degree κ terms.

In other words, it is κ-homogeneous. Now notice that q(Z∞ + · ) = q + s∞ where
s∞ is a degree κ − 1 polynomial. Consequently, q(Z∞ + · ) + q∞ − q = s∞ + q∞ is
a κ-homogeneous polynomial. This is only possible if s∞ + q∞ ≡ 0 (recall, q∞ is of
degree κ− 1.) And so, it follows that

q∞ = q − q(Z∞ + · ),
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from which we deduce that q∞ is invariant under L(q). Since the invariant set of a
function is a linear space,

q∞(x+ ξ, 0) = q∞(x, 0) for all pairs (ξ, x) ∈ (L∗ + L(q))× Rn.

Lastly, we find that

Dαq∞(0) = 0 for all α = (α′, 0) and |α| ≤ κ− 2,

making q∞ a (κ− 1)-homogeneous, even in y, a-harmonic polynomial.

Notice that if Z∞ ∈ L(q), then q∞ ≡ 0. Indeed, all of the derivatives of q∞|Rn×{0}
up to order κ − 2 vanish at the origin since Dαq(Z∞) = 0 for all α = (α′, 0) and
|α| ≤ κ − 2. So if Dαq(Z∞) = 0 for all α = (α′, 0) with |α| ≤ κ − 1 too, then q∞
would vanish up to infinite order at the origin, making it identically zero. In other
words,

Z∞ ∈ L(q) if and only if q∞ ≡ 0.

This also follows directly from the form q∞ takes when λ∗ = κ.
Before stating and proving a Case 2 accumulation lemma, we present a simple

consequence of Lemma 5.17 and make a remark.
If m∗ = 0, then L∗ = {0}. Hence, from Lemma 5.17, we deduce that Σ0

κ is isolated
in Σ≥κ.

Lemma 5.18. Suppose Case 1 holds. Then, 0 is an isolated point of Σ≥κ.

Proof. Suppose, to the contrary, that Σ≥κ 3 X` → 0 is a sequence of points (X` 6= 0).
Let r` := 2|X`|. By Lemma 5.17, we have that, up to a subsequence,

ṽr` ⇀ q in W 1,2(B1, |y|a) and Z` :=
X`

r`
→ Z∞ ∈ L∗ ∩ ∂B1/2

where q is a κ∗-homogeneous harmonic polynomial with λ∗ ≥ κ. But, this is impos-
sible, since L∗ = {0}.

Remark 5.11. In general, lower frequency singular points can accumulate to a higher
frequency singular point. Take, for example, the harmonic extension of x2

1x
2
2 to R3:

u(X) = x2
1x

2
2 − (x2

1 + x2
2)y2 +

1

3
y4.

This polynomial is a solution to the thin obstacle problem with a = 0, and has
singular points of order 2 approaching a singular point of order 4. In particular, it
is not true that Σ0

κ is isolated from Σ<κ.
By the recent results of Colombo, Spolaor, and Velichkov, see [CSV19, Theorem

4], we know that the set of even frequencies (κ = 2m) is isolated from the set of
all possible frequencies for the thin obstacle problem when a = 0. This, together
with the upper semicontinuity of the frequency, implies that free boundary points
of strictly higher order cannot accumulate to a singular point of lower order in this
case. Therefore, the above hypothesis “X` ∈ Σ≥κ and X` → 0 ∈ Σκ” reduces to
“X` ∈ Σκ and X` → 0 ∈ Σκ”, at least when a = 0.
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Now we prove a Case 2 accumulation lemma. It will only be applied when λ∗ <
κ+ 1 and λ = λ∗ (with λ as defined in the lemma). Nonetheless, we state it in more
generality, for completeness.

We recall that Exta denotes the a-harmonic extension of a polynomial, see (5.13).

Lemma 5.19. In Case 2, suppose that there exists a sequence of free boundary
points Σn−1

κ 3 X` = (x`, 0) → 0 and radii r` ↓ 0 with |X`| ≤ r`/2 such that ṽr` ⇀ q
in W 1,2(B1, |y|a) and (z`, 0) = Z` := X`/r` → Z∞. Set

λ∗,X` := N(0+, u(X` + · )− p∗,X`),

where p∗,X` denotes the first blow-up of u at X`. Let e∗ ∈ Sn ∩ {y = 0} ∼= Sn−1 be
such that e∗ ⊥ L∗, and let qeven and qodd be the even and odd parts of q with respect
to L∗,

qeven(X) =
1

2
[q(X) + q(X − 2(e∗ ·X)e∗)]

and

qodd(X) =
1

2
[q(X)− q(X − 2(e∗ ·X)e∗)] .

Let ακ > 0 be as in Proposition 5.15 and set λ := lim inf`{λ∗,X`} ≥ κ+ ακ. Then,

Z∞ = (z∞, 0) ∈ L∗

and

−
∫
∂Bρ

|qeven(Z∞ +X)− c∞ Exta((e∗ · x)κ)|2|y|a ≤ Cρ2λ+a for all ρ ∈ (0, 1/2),

(5.55)
for some constants c∞ and C independent of ρ. Moreover, if λ∗ < κ + 1, then
qodd ≡ 0. If, in addition, λ = λ∗, then c∞ = 0 in (5.55), and q is invariant in the
Z∞ direction; that is, q(Z∞ +X) = q(X) for all X ∈ Rn+1.

Proof. We divide the proof into two steps.

Step 1: We proceed using the ideas developed to prove [FS18, Lemma 3.3]. Recall
that

p∗,X`(X) := lim
r↓0

u(X` + rX)

rκ
.

Define

q`(X) :=
p∗,X`(r`X)− p∗(X` + r`X)

hr`
with hr` := ‖vr`‖L2(∂B1,|y|a).

By Proposition 5.15 and Proposition 5.6, for all ρ ∈ (0, 1/2),

N(ρr`, u(X` + · )− p∗,X`) ≥ λ∗,X` ≥ κ+ ακ > κ, (5.56)

or, equivalently,
ρ
∫
Bρ
|∇ṽr`(Z` + · )−∇q`|2|y|a∫

∂Bρ
|ṽr`(Z` + · )− q`|2|y|a

≥ κ+ ακ



183

(cf. (5.51)). Furthermore, arguing as in the proof of Lemma 5.17, we find that the
family {q`}`∈N has uniformly bounded coefficients. This time, however, we use that
q` is of degree κ and a-harmonic rather than of degree κ−1 and a-harmonic. Indeed,
as in Lemma 5.17, suppose not. Then, dividing by the largest coefficient, we obtain
uniformly bounded, a-harmonic polynomials q̄` of degree κ and the inequality

1

2

∫
B1/2
|∇ε` −∇q̄`|2|y|a∫

∂B1/2
|ε` − q̄`|2|y|a

≥ κ+ ακ for all ` ∈ N (5.57)

and for some ε` → 0 in W 1,2(B1/2, |y|a). Now notice that q̄` are degree κ polynomials
converging uniformly to some q̄∞ (up to subsequences). Also, since the translations
that define q` are in {y = 0}, q̄` are a-harmonic. In turn, the limit q̄∞ is an a-
harmonic, κ-degree polynomial. From (5.57) and Lemma 5.16, we obtain

κ ≥ 1

2

∫
B1/2
|∇q̄∞|2|y|a∫

∂B1/2
|q̄∞|2|y|a

≥ κ+ ακ,

a contradiction, since ακ > 0. Thus, q` converges, up to subsequences, locally uni-
formly to some q∞, which is an a-harmonic polynomial of degree κ. So |Dαq`(0)| ≤ C
for some C independently of ` for any multiindex α = (α1, . . . , αn, 0), and for
|a| ≤ κ− 1,

Dαq`(0) =
r
|α|
`

hr`
Dαp∗(X`) =

rκ`
hr`

Dαp∗(Z`). (5.58)

Then, as hr` = o(rκ` ), we determine that

|Dαp∗(Z`)| = o(1)→ 0 as `→∞
when |a| ≤ κ− 1. That is, Dαp∗(Z∞) = 0 for |α| ≤ κ− 1. Thanks to Lemma 5.10,

Z∞ ∈ L(p∗) ∈ L∗.
Now, by assumption, for some e` ∈ Sn−1 and c`, c∗ > 0,

p∗,X`(x, 0) = c`(e` · x)κ and p∗(x, 0) = c∗(e∗ · x)κ.

Also, setting a` := e∗ · z`, we see that

q`(x, 0) = h−1
r`

(p∗,X`(r`x, 0)− p∗(x` + r`x, 0))

= rκ` h
−1
r`

(c`(e` · x)κ − c∗(e∗ · (z` + x))κ)

= rκ` h
−1
r`

(
c`(e` · x)κ − c∗(e∗ · x)κ − c∗κa`(e∗ · x)κ−1

+ c∗a
2
`

κ∑
j=2

(
κ

j

)
αj−2
` (e∗ · x)κ−j

)
.

Since p∗,X` → p∗, we have that c` → c∗ and e` → e∗ (up to a sign). Moreover, as
Z` → Z∞ ∈ L∗ and e∗ ⊥ L∗, a` → 0. Therefore, by the uniform boundedness in ` of
the coefficients of q`(x, 0), we immediately find that

q`(x, 0) = rκ` h
−1
r`

(
c`(e` · x)κ − c∗(e∗ · x)κ − c∗κa`(e∗ · x)κ−1

)
+O(a`)

= rκ` h
−1
r`

(
(c` − c∗)(e` · x)κ + c∗((e` · x)κ − (e∗ · x)κ)− c∗κa`(e∗ · x)κ−1

)
+O(a`).
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Set e′` := e`−e∗
|e`−e∗|

. Then,

(e` · x)κ − (e∗ · x)κ

|e` − e∗|
=

(
e` − e∗
|e` − e∗|

· x
) κ−1∑

i=1

(e∗ · x)i(e` · x)κ−1−i =: (e′` · x)Q`(x).

In addition, as `→∞,

e′` → e′∞ ∈ Sn−1 and Q` → (κ− 1)(e∗ · x)κ−1,

and e′∞ ⊥ e∗. Thus,

q∞(x, 0) = c1(e∗ · x)κ + c2(e′∞ · x)(e∗ · x)κ−1 + c3(e∗ · x)κ−1, (5.59)

for some constants c1, c2, and c3. So q∞ vanishes on L∗.
Thanks to Lemma 5.8 applied to u(X` + r` · ) − p∗,X` , denoting λ` := λ∗,X` , for

all ρ ∈ (0, 1/2),

1

ρ2λ`+a
−
∫
∂Bρ

|ṽr`(Z` + · )− q`|2|y|a ≤ 22λ`−a−
∫
∂B1/2

|ṽr`(Z` + · )− q`|2|y|a,

from which we deduce that, taking `→∞,

1

ρ2λ+a
−
∫
∂Bρ

|q(Z∞ + · )− q∞|2|y|a ≤ C−
∫
∂B1/2

|q(Z∞ + · )− q∞|2|y|a. (5.60)

In turn, because q∞(X) = Exta(q∞(x, 0)) and by (5.59),

−
∫
∂Bρ

|qeven(Z∞ + · )− Exta(c1(e∗ · x))κ|2|y|a = −
∫
∂Bρ

|(q(Z∞ + · )− q∞)even|2|y|a

≤ −
∫
∂Bρ

|q(Z∞ + · )− q∞|2|y|a

≤ Cρ2λ+a−
∫
∂B1/2

|q(Z∞ + · )− q∞|2|y|a,

from which, taking c∞ = c1, we find (5.55). (Here, we have used that taking the even
part of a function with respect to L∗, i.e., f 7→ f even, is an orthogonal projection in
L2(∂Bρ, |y|a).)
Step 2: Let us now show that if λ∗ < κ + 1, then qodd ≡ 0; and if, in addition,
λ = λ∗, then c∞ = 0 in (5.55). We remark that the fact that qodd ≡ 0 if λ∗ /∈ N is
independent of Step 1.

If X ∈ Rn+1 \ L∗, then X − 2(e∗ ·X)e∗ ∈ Rn+1 \ L∗; so

Laq
odd(X) = Laq(X)− Laq(X − 2(e∗ ·X)e∗) = 0 for X ∈ Rn+1 \ L∗

(by Proposition 5.15, q solves the very thin obstacle problem and is a-harmonic
outside of L∗). On the other hand, if X ∈ L∗, then we have that X−2(e∗ ·X)e∗ = X.
And so,

Laq
odd(X) = Laq(X)− Laq(X) = 0 for X ∈ L∗.
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Therefore, qodd is a-harmonic in Rn+1. This, together with the fact that qodd is λ∗-
homogeneous (again, by Proposition 5.15) and even in y, yields that, by Liouville’s
theorem for a-harmonic functions, qodd is a λ∗-homogeneous polynomial (see, e.g.,
[CSS08, Lemma 2.7]). Hence, if κ < λ∗ < κ+ 1, then qodd ≡ 0, and q = qeven.

Finally, let us now show that if λ = λ∗ < κ+ 1, then c∞ = 0. Let

qZ∞(X) := q(Z∞ +X)− c∞ Exta((e∗ · x)κ),

which is a solution to the very thin obstacle problem with zero obstacle on L∗. If
(5.55) holds with λ = λ∗, then from Lemma 5.55 and recalling that q = qeven, we
deduce that

N(0+, qZ∞) ≥ λ∗.

In turn, qZ∞ is λ∗-homogeneous. Indeed, for all r > 0, by Lemma 5.52,

λ∗ ≤ N(r, qZ∞) ≤ N(+∞, qZ∞) = N(+∞, q(X)− c∞ Exta((e∗ · x)κ)) = λ∗.

The penultimate equality holds since the limit as r → +∞ of Almgren’s frequency
function is independent of the point at which it is centered, and the last equal-
ity holds because q is λ∗-homogeneous with λ∗ > κ, and thus q out-scales a κ-
homogeneous polynomial.

Since qZ∞ is λ∗-homogeneous, we deduce that

q(X + Z∞) =
q(X) + q(X + 2Z∞)

2
. (5.61)

To see this, first, observe that

τλ∗q(X + τ−1Z∞) = q(τX + Z∞) = τλ∗qZ∞(X) + τκc∞ Exta((e∗ · x)κ),

for all τ > 0. The first equality follows from the λ∗-homogeneity of q, while the
second follows from the λ∗-homogeneity of qZ∞ . So

q(X + τ−1Z∞)− qZ∞(X) = τκ−λ∗c∞ Exta((e∗ · x)κ),

for all τ > 0. Taking the limit as τ → +∞ yields

qZ∞ = q. (5.62)

(Recall, λ∗ > κ.) That is,

c∞ Exta((e∗ · x)κ) = q(X + Z∞)− q(X). (5.63)

And because e∗ ⊥ Z∞,

c∞ Exta((e∗ · x)κ) = q(X)− q(X − Z∞).

Hence, (5.61) holds, as desired.
To conclude, from the λ∗-homogeneity of q and (5.63), observe that

∂(κ)
e∗ q(Z∞) = κ!c∞.
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On the other hand, (5.61) implies

∂(κ)
e∗ q(Z∞) =

∂
(κ)
e∗ q(2Z∞)

2
= 2λ∗−κ−1∂(κ)

e∗ q(Z∞).

Thus,
(1− 2λ∗−κ−1)κ!c∞ = 0.

Yet λ∗ − κ− 1 6= 0, by assumption. Consequently, c∞ = 0.
Therefore, we have that if λ∗ < κ+ 1 and λ = λ∗,

1

ρn+2λ∗+a

∫
∂Bρ

|q(Z∞ + · )|2|y|a ≤ C. (5.64)

By Lemma 5.55, N(0+, q(Z∞+ · )) = λ∗ as q(Z∞+ · ) is a solution to the very thin
obstacle problem. On the other hand, since q is λ∗-homogeneous, N(+∞, q(Z∞ +
· )) = λ∗, and from the monotonicity formula in Lemma 5.52, we deduce that q(Z∞+
· ) is λ∗-homogeneous. Then,

q(X + Z∞) = τλ∗q(τ−1X + Z∞) = q(X + τZ∞) for all X ∈ Rn and τ > 0;

that is, q is invariant in the Z∞ direction.

We close this section with a pair of remarks and a Case 2 version of Lemma 5.18.
The observations made in these remarks are crucial to our analysis of when we can
produce the next term in the expansion of u around a singular point.

Remark 5.12. In Lemma 5.19, as in Lemma 5.17, if q is an a-harmonic, (κ + 1)-
homogeneous polynomial and λ = λ∗ = κ+ 1, we also have that

Dαq(Z∞) = 0 for all α = (α′, 0) and |α| ≤ κ− 2. (5.65)

Indeed, observe that (5.60) becomes

−
∫
∂Bρ

|q(Z∞ + · )− q∞|2|y|a ≤ Cρ2(κ+1)+a,

for all ρ ∈ (0, 1/2). Hence, the polynomial q(Z∞ + · ) + q∞ is only made up of
monomials of degree κ + 1. In particular, since q is (κ + 1)-homogeneous and q∞
is of degree κ, q(Z∞ + · ) + q∞ is a (κ + 1)-homogeneous polynomial. So, for all
multiindices |α| ≤ κ,

Dαq(Z∞) = Dαq∞(0),

which, by (5.59), implies (5.65) holds, as desired.

Remark 5.13. The last part of the proof of Lemma 5.19 fails to show that qeven is
invariant in the Z∞ direction when λ = λ∗ = κ + 1. In this case, however, we find
that

qe
Z∞(X) := qeven(Z∞ +X)− c∞ Exta((e∗ · x)κ),

is λ∗-homogeneous. Hence,

qeven(X + τ−1Z∞)− qe
Z∞(X) = τ−1c∞ Exta((e∗ · x)κ),
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as before, for all τ > 0. By letting τ → ∞, we deduce that qe
Z∞ = qeven, which

substituting back yields

qeven(X + τZ∞) = qeven(X) + τc∞ Exta((e∗ · x)κ) for all X ∈ Rn and τ > 0.
(5.66)

Moreover, considering X−Z∞, we find that qeven(X) = qeven(X−Z∞)+c∞ Exta((e∗ ·
x)κ) for all X ∈ Rn+1. Hence, (5.66) for all τ ∈ R.

Lemma 5.20. Suppose Case 2 holds. Then, 0 is an isolated point of Σ≥κ.

Proof. The proof is identical to that of Lemma 5.18, but using Lemma 5.19 instead
of Lemma 5.17.

5.5 The Size of the Anomalous Set

The goal of this section is to further stratify the set of singular points and prove
Proposition 5.4 and Remark 5.6. Proposition 5.4 (and Remark 5.6) is a statement
regarding the Hausdorff dimension of the anomalous singular points of order 2 and
(n − 1)-dimensional singular points of arbitrary order (i.e., singular points whose
first blow-up has (n− 1)-dimensional spine and is κ-homogeneous). As such, let us
recall the definition of anomalous singular points, and generic singular points, as
well as some measure theoretic facts.

5.5.1 Singular Points Revisited

Given the set of singular points of order κ and dimension m (i.e., whose first blow-up
has m-dimensional spine), we recall that the anomalous points are those for which
the homogeneity of second blow-ups is strictly less than κ+ 1:

Σm,a
κ := {X◦ ∈ Σm

κ : N(0+, u(X◦ + · )− p∗,X◦) < κ+ 1}.

The generic points, on the other hand, are those for which the homogeneity of second
blow-ups jumps by at least one:

Σm,g
κ := {X◦ ∈ Σm

κ : N(0+, u(X◦ + · )− p∗,X◦) ≥ κ+ 1}.

In turn, Σm,g
κ = Σm

κ \ Σm,a
κ .

While Proposition 5.4 and Remark 5.6 ignore higher order (greater than two)
and lower dimensional (less than n−1) singular points, our analysis, in a sense, does
not. In particular, our results rely on the alignment of the nodal set and the spine
of first blow-ups at anomalous singular points. And so, we set

Σ̃κ := {X◦ ∈ Σκ : N (p∗,X◦) = L(p∗,X◦)}

and define
Σ̃m,a
κ := Σ̃κ ∩ Σm,a

κ and Σ̃m,g
κ := Σ̃κ ∩ Σm,g

κ .

Remark 5.14. A key consequence of the coincidence of N (p∗,X◦) and L(p∗,X◦) is
that p∗,X◦ |Rn×{0} is positive away from its spine, i.e., if N (p∗,X◦) = L(p∗,X◦), then
p∗,X◦(x, 0) > 0 for any x ∈ Rn such that x /∈ L(p∗,X◦).
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Remark 5.15. Notice that if m = n− 1 or if κ = 2, then Σ̃m,a
κ = Σm,a

κ . Moreover, if
the spine and the nodal set of the first blow-up at anomalous points coincide, Case
1 and Case 2 exhaust all possibilities (cf. Remark 5.10).

5.5.2 Some Measure Theory

Given β > 0 and δ ∈ (0,∞], we define the Hausdorff premeasures

Hβ
δ (E) := inf

{∑
i

ωβ

(
diamEi

2

)β
: E ⊂

⋃
i

Ei with diamEi < δ

}
,

so that the β-dimensional Hausdorff measure of a set E is

Hβ(E) := lim
δ↓0
Hβ
δ (E).

(Here, ωβ is the volume of the β-dimensional unit ball.) The Hausdorff dimension
of a set can then be defined as

dimHE := inf{β > 0 : Hβ
∞(E) = 0}. (5.67)

(See, e.g., [Sim83].)

Lemma 5.21. Let E ⊂ Rn+1 be a set with Hβ
∞(E) > 0 for some β ∈ (0, n+ 1]. The

following holds:

(i) For Hβ-almost every point X◦ ∈ E, there is a sequence rj ↓ 0 such that

lim
k→∞

Hβ
∞(E ∩Brj(X◦))

rβj
≥ cn,β > 0, (5.68)

where cn,β is a constant depending only on n and β. We call these points
“density points”.

(ii) Assume that 0 ∈ E is a “density point”, let rj ↓ 0 be a sequence along which
(5.68) holds, and define the “accumulation set” for E at 0 as

AE := {Z ∈ B1/2 : ∃{Z`}`∈N, {j`}`∈N such that Z` ∈ r−1
j`
E∩B1/2 and Z` → Z}.

Then,
Hβ
∞(A) > 0.

Proof. See [FS18, Lemma 3.5].

In order to prove that anomalous points form a small set in Case 2, we will
focus on “almost continuity” points of the frequency, in the spirit of [FRS19]. More
precisely, as shown in [FRS19], points where the frequency is discontinuous along
“too many” sets of converging sequences have small Hausdorff measure. This fact,
which plays a crucial role in [FRS19], allows us to use Lemma 5.19 to show that
second blow-ups are translation invariant in directions of “almost continuity” of the
frequency.
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Lemma 5.22. Let E ⊂ Rn+1 and f : E → R be any function. The set

{X ∈ E : for all {X`}`∈N such that X` 6= X and X` → X, f(X`) 6→ f(X)}

is at most countable.

Proof. If X◦ is an element of the set in question, then (X◦, f(X◦)) is an isolated
point of {(X, f(X)) : X ∈ E}. Since collection of isolated points of any subset of
Rn+2 is at most countable, the lemma follows.

Lemma 5.23. Let E ⊂ Rn and f : E → [0,∞) be any function. Suppose for any
x ∈ E and any ε > 0, there exists a ρ > 0 such that for all r ∈ (0, ρ),

E ∩Br(x) ∩ f−1 ([f(x)− ρ, f(x) + ρ]) ⊂ {z : dist(z,Πx,r) ≤ εr} (5.69)

for some m-dimensional plane Πx,r passing through x, possibly depending on r. Then,

dimHE ≤ m.

Proof. See [FRS19].

5.5.3 Proofs of Proposition 5.4 and Remark 5.6

We now move to the goal of this section. We start with a set of results which pertain
to Case 1.

Proposition 5.24. Assume n ≥ 2.

(i) If a ∈ [0, 1), dimH Σ̃m,a
κ ≤ m− 1 for any 1 ≤ m ≤ n− 1.

(ii) If a ∈ (−1, 0), dimH Σ̃m,a
κ ≤ m− 1 for any 1 ≤ m ≤ n− 2.

Proof. The first part of the proof follows the steps of [FS18, Lemma 3.6]. Set Σ :=
Σ̃m,a
κ .

Step 1: We argue by contradiction. Suppose that Hβ
∞(Σ) > 0 for some β > m− 1.

Then, there is a point X◦ ∈ Σ and sequence rj ↓ 0 such that

Hβ
∞(Σ ∩Brj(X◦))

rβj
≥ cn,β > 0.

Up to a translation, X◦ = 0. By definition, we have that

λ∗ := N(0+, v∗) < κ+ 1,

and that, after extracting a subsequence,

ṽrj → q in L2(B1, |y|a).

Additionally, from Lemma 5.21(ii), we have that the accumulation set A := AΣ

satisfies
Hβ
∞(A) > 0. (5.70)
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By the definition of A, Z ∈ A if there are sequences X` ∈ Σ and rj` ↓ 0
such that |X`| ≤ rj` and X`/rj` → Z. Thus, X`/2rj` → Z/2, and by Lemma 5.17
(notice that we are in Case 1), Z ∈ L∗ and Z ∈ T (q) := {X = (x, 0) ∈ Rn+1 :
q(x+ · , 0)− q( · , 0) is invariant under L∗}. That is,

A ⊂ B1 ∩ L∗ ∩ T (q).

Notice that by assumption, q is κ-homogeneous and dimH L∗ = m. Also, T (q) is
a linear space. We will, therefore, reach a contradiction if we can show that L∗ 6≡
T (q) ∩ L∗; since then, dimH L∗ ∩ T (q) ≤ m− 1, which contradicts (5.70).

Step 2: Let p̄ := p|Rn×{0} for any a-harmonic, even in y polynomial p, and recall that
p̄ uniquely determines p (see the lines after (5.13)). Suppose, again, to the contrary,
that L∗ ≡ T (q)∩L∗. After a change of variables, since L∗ has dimension m, we can
assume that p̄∗ = p̄∗(x1, . . . , xl) for l = n − m. Set xl = (x1, . . . , xl). Notice that
L∗ = {(0l, xm, 0) : xm ∈ Rm}, where 0l ∈ Rl denotes the vector 0 in l dimensions.
The inclusion L∗ ⊂ T (q) implies that q̄((0l, xm) + · )− q̄ can only depend on xl for
any xm ∈ Rm. This, together with the homogeneity of q, directly yields that

q̄(x) = q1(xl) +
n∑

j=l+1

qj(x
l)xj =: q̄1(xl) + q̄2(x),

where q1 and qj are κ-homogeneous and (κ−1)-homogeneous polynomial respectively
depending only on x1, . . . , xl.

Now recall Lemma 5.14:∫
B1

qp|y|a ≤ 0 for all p ∈Pκ. (5.71)

Moreover, (5.71) is an equality if p = p∗ (this is (5.33)). Notice, first, that (recall
(5.13)) ∫

B1

Exta(q̄1) Exta(q̄2)|y|a = 0. (5.72)

Indeed, q̄1 does not depend on xl+1, . . . , xn, whereas the terms of q̄2 are sums of
linear terms in one of xl+1, . . . , xn; thus, odd in one of the last variables.

Since 0 ∈ Σ = Σ̃m,a
κ , p̄∗(x

l, 0m) > 0 for all xl ∈ Rl \ {0}. In particular, we can
choose C � 1 such that Cp̄∗ + q̄1 ≥ 0 (p̄∗ and q̄1 have the same homogeneity and
depend on the same variables). That is, Exta(Cp̄∗ + q̄1) = Cp∗ + Exta(q̄1) ∈ Pκ,
from which it follows that

0 ≥
∫
B1

(Cp∗ + Exta(q̄1))q|y|a =

∫
B1

Exta(q̄1)2|y|a,

using the equality in (5.71) and (5.72). Hence,

q̄1 ≡ 0.

Finally, fix l+ 1 ≤ j ≤ n, and take p̄j := C(|xl|κ +xκj ) + qj(x
l)xj for some C � 1

so that p̄j ≥ 0. (The fact that such a constant C > 0 exists is straight-forward.
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Indeed, it suffices to show that xκ1 + xκ2 − xκ−1
1 x2 ≥ 0, which after dividing by xκ2 is

analogous to showing that ξκ ≥ ξ − 1 for all ξ ∈ R; this is immediate.) Arguing as
before, by odd/even symmetry, we find that∫

B1

Exta(qjxj) Exta(qixi)|y|a = 0 for all l + 1 ≤ i 6= j ≤ n

and ∫
B1

Exta(|xl|κ + xκj ) Exta(qixi)|y|a = 0 for all l + 1 ≤ i, j ≤ n.

And so, as q̄1 ≡ 0 and Exta(p̄j) ∈Pκ,

0 ≥
∫
B1

Exta(p̄j)q|y|a =

∫
B1

Exta(qjxj)
2|y|a,

which is only true if qj ≡ 0. Because j was fixed arbitrarily, we deduce that

q̄2 ≡ 0.

A contradiction.

Lemma 5.25. Let n ≥ 2. Then, Σ̃0,a
κ is empty.

Proof. Suppose 0 ∈ Σ̃0,a
κ . Then, N∗ = L∗ = {0} and p̄∗ := p∗|Rn×{0} > 0 outside of

the origin. Hence, there exists a C � 1 so that Exta(Cp̄∗ + q̄) = Cp∗ + q ∈ Pκ

(cf. Step 2 of the proof of Proposition 5.24). Here, q̄ is the restriction of any second
blow-up of u at 0. So, by (5.34) and (5.33), we find that

0 ≥
∫
∂B1

q(Cp∗ + q)|y|a =

∫
∂B1

q2|y|a,

which cannot be: q 6≡ 0.

Lemma 5.26. Let n ≥ 2 and a ∈ [0, 1) or n ≥ 3 and a ∈ (−1, 1). Then, Σ̃1,a
κ is

isolated in Σ≥κ.

Proof. Suppose not and assume that 0 ∈ Σ̃1,a
κ . Then, there exists a sequence X` ∈

Σ≥κ with X` → 0. Let r` := 2|X`|, and notice that dimH L∗ = dimH{p∗ = 0} = 1, by
assumption. On the other hand, up to a subsequence, we can assume that ṽr` → q
in L2(B1, |y|a), which is κ-homogeneous.

The proof now follows exactly as in Step 2 of the proof of Proposition 5.24.

Remark 5.16. In all of the above results, Proposition 5.24, Lemma 5.25, and Lemma 5.26,
the coincidence of the nodal set and the spine of p∗ is crucial. To illustrate how much,
let us consider Σ0,a

4 , which we would like to say is empty. (Notice that Σ0,a
2 is empty;

in this case, the nodal set and spine of the first blow-up at any point are aligned.)
In Proposition 5.24, in order to rule out a κ-homogeneous, a-harmonic q as a

second blow-up at anomalous points, we have used Lemmas 5.17 and 5.14. Since
we are dealing with Σ0,a

4 , Lemma 5.17 provides no new information on q. Also,
Lemma 5.14 is too weak to rule out that q is a 4-homogeneous, harmonic (assume
a = 0, for simplicity) polynomial.
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Indeed, in R3 = {(x1, x2, y)}, consider the harmonic extensions

p∗ = Ext0(x2
1x

2
2)

and

q = Ext0

(
bx4

1 −
(

11

24
+ b

)
x4

2 + x2
1x

2
2

)
with b ∈

[
−1

3
,−1

8

]
.

Notice that the spine and nodal set of p∗ are different:

L∗ = {(0, 0)} while N∗ = {x1 = 0} ∪ {x2 = 0}.

Moreover, by direct (but tedious) computations, the pair (p∗, q) is such that

〈q, p∗〉0 = 0 and 〈q, p〉0 ≤ 0 for all p ∈P4.

In turn, this pair could be a first and second blow-up pair at 0 for a solution u
for which Σ0

4(u) = {0}, leaving open the possibility that Σ0,a
4 is not only not lower

dimensional, but all of Σ0
4.

Now we study of the size of the anomalous set in Case 2.

Lemma 5.27. Let n = 2 and a ∈ (−1, 0). Then, Σ1,a
κ is at most countable.

Proof. Assume that 0 ∈ Σ1,a
κ , which holds up to a translation, and that there exists

a sequence X` ∈ Σ1
κ such that X` → 0 and N(0+, u(X` + · ) − p∗,X`) =: λ∗,X` →

λ∗ = N(0+, v∗). By Proposition 5.15 and the definition of anomalous set, Σ1,a
κ , we

have that
λ∗ ∈ [κ+ ακ, κ+ 1). (5.73)

Moreover, up to a subsequence, if r` := 2|X`|,

ṽr` ⇀ q in W 1,2(B1, |y|a)

where q is a global λ∗-homogeneous solution to the very thin obstacle problem with
zero obstacle on L∗. In addition, by Lemma 5.19, X`/r` → Z∞ ∈ L∗∩∂B1/2, q = qeven

(λ∗ < κ+ 1 by assumption, forcing qodd ≡ 0), and q is invariant in the Z∞ direction
(i.e., in the L∗ direction). That is, q is two-dimensional. So by Lemma 5.58, since
λ∗ > 2, q is a polynomial and, in particular, λ∗ ≥ κ+ 1. But this contradicts (5.73).

In turn, by Lemma 5.22 applied to E = Σn−1
κ and f(X) = N(0+, u(X+ · )−p∗,X),

we conclude.

Proposition 5.28. Let n ≥ 3 and a ∈ (−1, 0). Then, dimHΣn−1,a
κ ≤ n− 2.

Proof. Let Σ := Σn−1,a
κ . We will show that Σ fulfills the hypotheses of Lemma 5.23

with m = n− 2 and

f(X) :=

{
N(0+, u(X + · )− p∗,X) if X ∈ Rn × {0}
0 otherwise.

(5.74)

Then, by Lemma 5.23, dimHΣ ≤ n− 2.
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Suppose, to the contrary, that (5.69) does not hold, that is, in particular, there
exists some X◦ ∈ Σ, ε◦ > 0, ρ` ↓ 0 as `→∞, and 0 < r` < ρ` for which

inf
Π∈ΠX◦

dist
(

Σ ∩Br`(X◦) ∩ f−1 ([f(X◦)− ρ`, f(X◦) + ρ`]) ,Π
)
≥ ε◦r`, (5.75)

where ΠX◦ denotes the set of (n − 2)-dimensional planes passing through X◦, and
we denote dist(A,B) := supx∈A infy∈B |x− y|. Up to a translation, assume X◦ = 0.

We claim (and prove later) that thanks to (5.75), for any ` ∈ N, there exist n−1
points

X`
1, . . . , X

`
n−1 ∈ Σ ∩Br` ∩ f−1 ([f(0)− ρ`, f(0) + ρ`]) (5.76)

such that

|Y `
1 ∧ · · · ∧ Y `

n−1| ≥ εn−1
◦ where Y `

i := r−1
` X`

i ∈ B1 \Bε◦ , (5.77)

for all i ∈ {1, . . . , n − 1}. In particular, up to subsequences, Y `
i → Y ∞i ∈ B1 \ Bε◦

for all i ∈ {1, . . . , n− 1}, and passing to the limit, in (5.77),

|Y ∞1 ∧ · · · ∧ Y ∞n−1| ≥ εn−1
◦ . (5.78)

On the other hand, from (5.76), we have that

f(X`
i )→ f(0) as `→∞ for all i ∈ {1, . . . , n− 1}. (5.79)

Up to subsequences, by Proposition 5.15,

vr`
‖vr`‖L2(∂B1,|y|a)

⇀ q in W 1,2(B1, |y|a),

and q is some λ∗-homogeneous solution to the very thin obstacle problem. Moreover,
since 0 ∈ Σ,

N(0+, v∗) ∈ [κ+ ακ, κ+ 1) (5.80)

Thus, for each i ∈ {1, . . . , n − 1}, we can apply Lemma 5.19 with the sequence of
radii 2r`. By definition and using the notation of Lemma 5.19, we are in the case
λ∗ < κ + 1 (see (5.80)) and λ = λ∗ (thanks to (5.79)). So by Lemma 5.19, q is
invariant in the directions Y ∞i for all i ∈ {1, . . . , n− 1}.

From (5.78), the set {Y ∞1 , . . . , Y ∞n−1}i∈N ⊂ L∗×{0} is linearly independent. That
is, q is independent of the n− 1 directions determined by this linearly independent
set. Therefore, it is a two-dimensional solution to the very thin obstacle problem.
Hence, by Lemma 5.58, q is a polynomial, and N(0+, q) ≥ κ + 1. But this runs
contrary to 0 living in Σ = Σn−1,a

κ , (5.80).
In turn, Σ meets the hypotheses of Lemma 5.23 with m = n− 2 and f as above.

And so, dimHΣ ≤ n− 2.
We now prove (5.76) and (5.77).
After a dilation, it suffices to show that if S ⊂ B1 is such that

inf
Π∈Π0

dist(S,Π) ≥ ε,
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then there exist points X1, . . . , Xn−1 ∈ S such that

|X1 ∧ · · · ∧Xn−1| ≥ εn−1.

But this follows from a simple construction.
Take any X1 ∈ S ∩ (B1 \ Bε), and let e1 := X1/|X1| be the first element of our

orthogonal n−1 dimensional basis on which we will compute the (n−1)-determinant.
Notice X1 = a1,1e1 for some |a1,1| ≥ ε. Now take any (n − 2)-dimensional plane
passing through X1 (and 0), ΠX

1 , take any X2 ∈ S ∩ (B1 \ Bε) that is ε far from
ΠX

1 , and choose e2 ⊥ e1 and such that span(e1, e2) = span(X1, X2). Then, X2 =
a2,1e1 + a2,2e2, and since X2 is ε far from ΠX

1 ⊃ span(e1), |a2,2| ≥ ε.
Proceed recursively until m = n− 1: let Xm ∈ S ∩ (B1 \Bε) be ε far from ΠX

m−1,
where ΠX

m−1 is any (n− 2)-dimensional plane containing {0, X1, . . . , Xm−1} (such a
plane always exists since m ≤ n − 1). Choose em ⊥ span(e1, . . . , em−1) and such
that span(e1, . . . , em) = span(X1, . . . , Xm). Then,

Xm = am,1e1 + am,2e2 + · · ·+ am,m−1em−1 + am,mem,

and since Xm is ε far from ΠX
m−1 ⊃ span(e1, . . . , em−1), |am,m| ≥ ε. Therefore,

|X1 ∧ · · · ∧Xn−1| = |a1,1e1 ∧ a2,1e1 + a2,2e2 ∧ · · · ∧ an−1,1e1 + · · ·+ an−1,n−1en−1|
= |a1,1a2,2 · · · an−1,n−1||e1 ∧ e2 ∧ · · · ∧ en−1|
≥ εn−1,

as desired.

We close this section by collecting the results we have proved to understand the
size of Σm,a

κ when κ = 2 and m ≤ n− 1 and when κ ∈ 2N and m = n− 1.

Proofs of Proposition 5.4 and Remark 5.6. We separate each case.

(i) This follows by Lemma 5.25, noting that Σ̃0,a
2 = Σ0,a

2 .

(ii) If a ∈ [0, 1) or a ∈ (−1, 0) and m < n − 1, this follows from Proposition 5.24
by noting that Σ̃m,a

2 = Σm,a
2 . If a ∈ (−1, 0) and m = n − 1, this is due to

Proposition 5.28.

(iii) If a ∈ [0, 1), we use Proposition 5.24, noticing that Σ̃n−1,a
κ = Σn−1,a

κ . If a ∈
(−1, 0), we use Proposition 5.28.

Finally, regarding Remark 5.6, if n = 2 and a ∈ (−1, 0), Σ1,a
κ is countable by

Lemma 5.27, and if n = 2 and a ∈ [0, 1), Σ1,a
κ is discrete by Lemma 5.26. If n ≥ 3,

Σ1,a
2 is discrete by Lemma 5.26, as well.

5.6 Whitney’s Extension Theorem and the Proof

of Theorem 5.5

In this section, we prove our first higher regularity result Theorem 5.5. The proof
of Theorem 5.5 is a model for the proofs of our main results, and utilizes an im-
plicit function theorem argument and the following generalized Whitney’s extension
theorem. (See [Fef09] and the references therein.)
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Lemma 5.29 (Whitney’s Extension Theorem). Let β ∈ (0, 1], ` ∈ N, K ⊂ Rn+1

be compact, and f : K → R. For every Z◦ ∈ K, suppose that there exits a degree `
polynomial PZ◦ for which

(i) PZ◦(Z◦) = f(Z◦); and

(ii) |DαPZ◦(X◦) − DαPX◦(X◦)| ≤ C|Z◦ − X◦|`+β−|α| for all |α| ≤ ` and X◦ ∈ K,
where C > 0 is independent of Z◦

hold. Then, there exists a function F : Rn+1 → R of class C`,β and constant C`,n > 0
for which

F |K ≡ f and |F (X)− PX◦(X)| ≤ C`,n|X −X◦|`+β for all X0 ∈ K.

Now we state and prove a collection of results that, in aggregate, prove Theo-
rem 5.5.

Theorem 5.30. The set Σm,g
κ is contained in the countable union of m-dimensional

C1,1 manifolds.

Proof. Let us define

Eh := {X◦ ∈ Σκ∩B1−1/h : h−1ρκ ≤ sup
|X−X◦|=ρ

|u(X)| < hρκ, 0 < ρ < 1−|X◦|}. (5.81)

From the continuity of the map

Σκ 3 X◦ 7→ p∗,X◦

(see [GR19, Proposition 4.6]), we find that the map

Eh 3 X◦ 7→ N(0+, u(X◦ + · )− p∗,X◦)

is upper semicontinuous (it is the pointwise monotone decreasing limit of a sequence
of continuous maps). Here, the sets Eh ⊂ B(h−1)/h are closed and decompose Σκ as
follows:

Σκ =
∞⋃
h=1

Eh

(this follows arguing exactly as in the proof of [GP09, Lemma 1.5.3], using [GR19,
Lemma 4.5]). In turn, the set

Shκ,λ := {X◦ ∈ Eh : N(0+, u(X◦ + · )− p∗,X◦) ≥ λ}

is compact in Rn+1.
For each X◦ ∈ Shκ,λ, define

PX◦(X) := p∗,X◦(X −X◦).

We claim that f ≡ 0, K = Shκ,λ, and {PX◦}X◦∈K satisfy the hypotheses of Whitney’s
Extension Theorem, Lemma 5.29, with `+ β = λ.

Clearly, (i) holds.
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To show (ii) holds, first observe that Lemma 5.8 implies that for all X◦ ∈ Shκ,λ,

‖u(X◦+r · )−p∗,X◦(r · )‖L2(B1,|y|a) ≤
1

n+ 1 + a+ 2λ
‖u(X◦+r · )−p∗,X◦(r · )‖L2(∂B1,|y|a)

and
‖u(X◦ + r · )− p∗,X◦(r · )‖L2(∂B1,|y|a) ≤ Chr

λ.

So
‖u(X◦ + r · )− p∗,X◦(r · )‖L2(B1,|y|a) ≤ Chr

λ for all X◦ ∈ Shκ,λ. (5.82)

(Of course, r < 1− |X◦|.) Now for any pair Z◦, X◦ ∈ Shκ,λ,

‖[PZ◦ − PX◦ ](r · )‖L2(B1/2(r−1X◦),|y|a) ≤ Chr
λ (5.83)

where r := 2|X◦ − Z◦|. Indeed,

‖[PZ◦ − PX◦ ](r · )‖L2(B1/2(r−1X◦),|y|a) ≤ I + II.

with

I + II := ‖u(r · )− PX◦(r · )‖L2(B1/2(r−1X◦),|y|a) + ‖u(r · )− PZ◦(r · )‖L2(B1/2(r−1X◦),|y|a).

Now assume that r < h−1. Then, by (5.82) applied at X◦ and Z◦,

I = ‖u(X◦+ r · )− p∗,X◦(r · )‖L2(B1/2,|y|a) ≤ ‖u(X◦+ r · )− p∗,X◦(r · )‖L2(B1,|y|a) ≤ Chr
λ

and

II = ‖u(Z◦ + r · )− p∗,Z◦(r · )‖L2(B1/2(r−1(X◦−Z◦)),|y|a)

≤ ‖u(Z◦ + r · )− p∗,Z◦(r · )‖L2(B1,|y|a) ≤ Chr
λ.

When h−1 ≤ r < 4, (5.83) is true by the triangle inequality, using that p∗,X◦ and p∗,Z◦
are homogeneous, and the bound ‖p∗,X◦‖L2(B1,|y|a), ‖p∗,Z◦‖L2(B1,|y|a) ≤ C. Finally,
since all norms are equivalent on the finite dimensional space of κ-homogeneous
polynomials, (5.83) implies that

‖[PZ◦ − PX◦ ](r · )‖C`(B1/2(X◦/r)) ≤ Chr
λ

for any X◦, Z◦ ∈ Shκ,λ with r = 2|X◦ − Z◦|. In turn,

|DαPZ◦(rX)−DαPX◦(rX)| ≤ Chr
`+β−|α| = Ch|X◦−Z◦|`+β−|α| for all X ∈ B1/2(r−1X◦).

Taking X = X◦/r, we see that (ii) holds.
With our claim justified, applying Whitney’s Extension Theorem, we find an

F ∈ C`,β(Rn+1) such that

|F (X)− PX◦(X)| ≤ Ch|X −X◦|`+β for all X◦ ∈ Shκ,λ.

If X◦ ∈ Shκ,λ ∩Σm
κ , by definition, there exist n−m linearly independent unit vectors

ei ∈ Rn and points (xi, 0), i = 1, . . . , n−m, such that

∂eip∗,X◦(x
i, 0) = ei · ∇xp∗,X◦(x

i, 0) 6= 0.
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Let vi be the unit vector parallel to (xi, 0) and oriented so that vi · xi > 0. Then,
we deduce that

∂ei∂
(κ−1)
vi

F (X◦) = ∂(κ−1)
vi

∂eip∗,X◦(0) 6= 0 for all i = 1, . . . n−m.

On the other hand,

Σm
κ ∩ Shκ,λ ⊂

n−m⋂
i=1

{∂(κ−1)
vi

F = 0}.

Notice that ∂
(κ−1)
vi F ∈ C`−κ+1,β(Rn+1). In turn, by the implicit function theorem,

Σm
κ ∩ Shκ,λ is contained in an m-dimensional manifold of class C`−κ+1,β.

The theorem then follows by the definition of Σm,g
κ , which implies that ` = κ and

β = 1.

Remark 5.17. In contrast to the classical (non-degenerate) obstacle problem, studied
in [FS18], in the thin obstacle problem, singular points of many different orders may
exist. Their interaction (see Remark 5.11) makes it impossible to prove that Σm,g

κ

is contained in a single m-dimensional manifold. But in the non-degenerate setting,
this is ruled out, and only singular points of order 2 exist.

Theorem 5.31. In the non-degenerate case, Σm,g
2 is contained in a single m-dimensional

C1,1 manifold.

Proof. In this setting, the singular set is closed. Consider B1−η ⊂ B1, for any η ∈
(0, 1). Thanks to the non-degeneracy condition (see Definition 5.1), there exists a
constant c◦ > 0, depending only on n, a, the non-degeneracy constant c, and η, such
that

sup
Br(X◦)

u ≥ c◦r
2,

for all small r > 0 and all X◦ ∈ Σ2(u) ∩ B1−η (see [BFR18, Lemma 3.1]). In
particular, using the notation from the proof of Theorem 5.30, there exists some
h◦ ≥ max{c−1

◦ , η
−1} such that Σ2∩B1−η ⊂ Eh◦ . Thus, by the proof of Theorem 5.30,

Σm
2 ∩ Sh◦2,3 is contained in a single m-dimensional manifold of class C1,1, and since

this can be done for any η > 0, we obtain that Σm
2 is locally contained in a single

m-dimensional manifold. This concludes the proof.

Proposition 5.32. If a ∈ (−1, 0), the set Σn−1
κ is contained in a countable union

of (n− 1)-dimensional C1,ακ manifolds. Moreover, in the non-degenerate case, it is
contained in a single (n− 1)-dimensional C1,α manifold, for some α > 0 depending
only on n and a.

Proof. The proof follows that of Theorem 5.30 exactly, replacing β = 1 with β = ακ;
when a ∈ (−1, 0) and m = n− 1, second blow-ups always have higher homogeneity:
λ∗ ≥ κ+ακ > κ (see Proposition 5.15). In the non-degenerate case, we can proceed
as in Theorem 5.31 instead.

Finally, we can proceed with the proof of one of our main results, Theorem 5.5.

Proof of Theorem 5.5. We separate each case.
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(i) Notice that we are in Case 1 (since κ = 2). So apply Lemma 5.18.

(ii) Σm,a
2 is lower dimensional by Proposition 5.4, while Σm,g

2 is covered by a count-
able union of m-dimensional C1,1 manifolds by Theorem 5.30.

(iii) Again, Σn−1,a
κ is lower dimensional by Proposition 5.4. And Σn−1,g

κ is covered
by a countable union of (n− 1)-dimensional C1,1 manifolds by Theorem 5.30.

(iv) This follows by Proposition 5.32.

This completes the proof.

5.7 The Main Results

In this section, we construct the second term in the expansion of u at singular points,
up to a lower dimensional set. We start by defining a specific subset of the generic
singular points at which the nodal set and spine of the first blow-up align. These
points will be those at which we produce the next term (of order at least κ + 1) in
the expansion of u at a order κ singular point, the goal of this work.

Definition 5.2. Let n ≥ 2 and 0 ≤ m ≤ n− 1. We define the set Σm,nxt
κ as the set

of singular points X◦ ∈ Σ̃m,g
κ for which there exists a sequence r` ↓ 0 as `→∞ such

that the following holds: there exists a (κ+1)-homogeneous, a-harmonic polynomial
q◦ (possibly q◦ ≡ 0) such that

(i)

vr`,κ+1 :=
u(X◦ + r` · )− p∗,X◦(r` · )

rκ+1
`

⇀ q◦ in W 1,2(B1, |y|a);

(ii) Dαq◦ vanishes on L(p∗,X◦) for all α = (α1, . . . , αn, 0) and |α| ≤ κ− 2; and

(iii)
‖q◦‖2

L2(∂B1,|y|a) = Hκ+1(0+, u(X◦ + · )− p∗,X◦).

In the first set of results of this section, we estimate the size of Σm,nxt
κ for certain

pairs of κ and m.

Lemma 5.33. Let n ≥ 2 and a ∈ [0, 1). Then, dimHΣn−1
κ \ Σn−1,nxt

κ ≤ n− 2.

Proof. We proceed as in Proposition 5.24. Notice that by Proposition 5.24, Σn−1,a
κ

is already lower dimensional. So we restrict our attention to Σn−1,g
κ . Let

Σ := Σn−1,g
κ \ Σn−1,nxt

κ

and suppose that Hβ
∞(Σ) > 0 for some β > n−2. Then, there exists a point X◦ ∈ Σ

and a sequence rj ↓ 0 such that

Hβ
∞(Σ ∩Brj(X◦))

rβj
≥ cn,β > 0.



199

Up to a translation, assume that X◦ = 0. By assumption,

λ∗ := N(0+, v∗) ≥ κ+ 1,

and, up to a subsequence r` = rj` ,

ṽr` ⇀ q in W 1,2(B1, |y|a),

where ṽr` is defined as in (5.29), and q is a-harmonic and at least (κ+1)-homogeneous.
Moreover, by Lemma 5.21(ii),

Hβ
∞(A) > 0,

where A = AΣ. Now if Z ∈ A, then there are sequences X` ∈ Σ and r` ↓ 0 such
that |X`| ≤ r` and X`/2r` → Z/2. By Lemma 5.17, if we denote

Dκ−2(q) := {X = (x, 0) : Dαq(X) = 0 for all α = (α1, . . . , αn, 0) with |α| ≤ κ− 2},

then Z ∈ L∗ ∩Dκ−2(q), so that

A ⊂ B1 ∩ L∗ ∩Dκ−2(q).

Now, using the monotonicity of Hκ+1(r`, v∗) (see Lemma 5.8), we have that

H
1/2
κ+1(0+, v∗) exists. So let

q◦ := H
1/2
κ+1(0+, v∗)q

and notice that

vr`,κ+1 :=
u(r` · )− p∗(r` · )

rκ+1
`

= ṽr`
‖vr`‖L2(∂B1)

rκ+1
`

= ṽr`H
1/2
κ+1(r`, v∗).

In turn,
vr`,κ+1 ⇀ q◦ in W 1,2(B1, |y|a).

Additionally,
‖q◦‖2

L2(∂B1,|y|a) = Hκ+1(0+, v∗) (5.84)

since ‖q‖L2(∂B1,|y|a) = 1.
If λ∗ > κ + 1, then ‖v∗‖2

L2(∂Br,|y|a) = o(r2(κ+1)+n+a). And so Hκ+1(0+, v∗) = 0,

which, by (5.84), implies that q◦ ≡ 0. But this is impossible:

0 /∈ Σn−1,nxt
κ . (5.85)

(In this case, q◦ is trivially (κ+ 1)-homogeneous and Dκ−2(q◦) = Rn×{0}.) In turn,
λ∗ = κ+ 1 and q◦ 6≡ 0. Thus, by (5.85),

Dκ−2(q) ∩ L∗ = Dκ−2(q◦) ∩ L∗ ( L∗.

Hence, by the analyticity of q,

dimHDκ−2(q) ∩ L∗ ≤ n− 2.

But then, Hβ
∞(A) = 0, a contradiction.
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Notice that Σ0
2 = Σ0,nxt

2 since Σ0,a
2 is empty and Σ̃2 = Σ2.

Lemma 5.34. Let n ≥ 3. Suppose that 1 ≤ m ≤ n− 2. Then, dimHΣm
2 \ Σm,nxt

2 ≤
m− 1.

Proof. The proof is identical to the proof of Lemma 5.33. Notice that Σm,a
2 is lower

dimensional by Proposition 5.24, and Σ̃m,a
2 = Σm,a

2 .

Lemma 5.35. Let n ≥ 2. Suppose that a ∈ (−1, 0). Then, dimHΣn−1
κ \ Σn−1,nxt

κ ≤
n− 2.

Proof. We proceed as in Lemma 5.33. By Proposition 5.28, Σn−1,a
κ is lower dimen-

sional, so we define
Σ := Σn−1,g

κ \ Σn−1,nxt
κ

and suppose that Hβ
∞(Σ) > 0 for some β > n− 2. We can assume that at 0 and for

some rj ↓ 0,

Hβ
∞(Σ ∩Brj(X◦))

rβj
≥ cn,β > 0 and λ∗ = N(0+, v∗) ≥ κ+ 1.

Furthermore, up to a subsequence r` = rj` ,

ṽr` ⇀ q in W 1,2(B1, |y|a),

where ṽr` is defined as in (5.29), and q is a global homogeneous solution to the very
thin obstacle problem with homogeneity λ∗ ≥ κ+ 1. Moreover, by Lemma 5.21(ii),

Hβ
∞(A) > 0,

where A = AΣ, and
A ⊂ B1 ∩ L∗

by Lemma 5.19.
Arguing as in Lemma 5.33, since 0 ∈ Σ, if we set

q◦ := H
1/2
κ+1(0+, v∗)q,

we find that q◦ and q are (κ+ 1)-homogeneous and non-zero.
Let us decompose q into its odd and even parts with respect to L∗ as defined in

Lemma 5.19: q = qodd + qeven. Without loss of generality and for simplicity, assume
that

L∗ = {xn = y = 0}.
On one hand, by the proof of Lemma 5.19, qodd is an a-harmonic, (κ + 1)-

homogeneous function, which by Liouville’s theorem ([CSS08, Lemma 2.7]), is a
polynomial. On the other hand, since Hβ

∞(A) > 0, there are n − 1 elements in
A, Y1, . . . , Yn−1, such that span(Y1, . . . , Yn−1) = L∗. By Remark 5.13, q is then a
polynomial. Indeed, for each Yi, there exists a sequence {X`

i }`∈N with X`
i ∈ Σ such

that |X`
i | ≤ r` and Y `

i := X`
i /r` → Yi as `→∞. In addition, if we let

f(X) := N(0+, u(X + · )− p∗,X) for X ∈ Rn × {0},
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then κ+1 ≤ f(X`
i ) (since X`

i ∈ Σ). Also, lim sup`→∞ f(X`
i ) ≤ λ∗ = κ+1 (f is upper

semicontinuous). So Almgren’s frequency at 0+ is continuous along the sequences
{X`

i }`∈N and i ∈ {1, . . . , n−1}. Therefore, the hypotheses of Remark 5.13 hold, and
we have that

qeven(X + τYi) = qeven(X) + τci Exta(x
κ
n), (5.86)

(recall, L∗ = {xn = y = 0}). Since {Yi}1≤i≤n−1 spans L∗, for any X = (x′, xn, xn+1) ∈
Rn+1,

X = (0, . . . , 0, xn, xn+1) + (a1 · x′)Y1 + · · ·+ (an−1 · x′)Yn−1,

for some fixed vectors a′j ∈ Rn−1 for j ∈ {1, . . . , n − 1}. Now applying (5.86)
iteratively, we deduce that

qeven(X) = (c1(a′1 · x′) + . . . cn−1(a′n−1 · x′)) Exta(x
κ
n) + q̄(xn, xn+1)

= (a′ · x′) Exta(x
κ
n) + q̄(xn, xn+1).

Here, q̄(xn, xn+1) = qeven(0, . . . , 0, xn, xn+1) and a′ ∈ Rn−1. As qeven is a solution to
the very thin obstacle problem which is (κ+ 1)-homogeneous and (a′ · x′) Exta(x

κ
n)

is (κ+ 1)-homogeneous, a-harmonic, and vanishes on L∗, we find that q̄ is a (κ+ 1)-
homogeneous solution to the very thin obstacle problem. By Lemma 5.58, since q̄ is
two-dimensional and (κ+ 1)-homogeneous, it is a polynomial. But q̄ is also even in
both xn and y, which implies q̄ ≡ 0. Therefore, qeven is also a polynomial. That is,
q is a (κ+ 1)-homogeneous polynomial since both qodd and qeven are polynomials.

To conclude, observe that because q is a (κ+1)-homogeneous polynomial, for any
Z ∈ A, there are sequences X` ∈ Σ and r` ↓ 0 such that |X`| ≤ r` and X`/r` → Z.
By Remark 5.12, Dαq(Z) = 0 for all α = (α1, . . . , αn, 0) such that |α| ≤ κ− 2, i.e.,

A ⊂ B1 ∩ L∗ ∩Dκ−2(q) = B1 ∩ L∗ ∩Dκ−2(q◦).

Since 0 /∈ Σn−1,nxt
κ ,

Dκ−2(q) ∩ L∗ = Dκ−2(q◦) ∩ L∗ ( L∗,

and by the analyticity of q,

dimHDκ−2(q) ∩ L∗ ≤ n− 2.

But then, Hβ
∞(A) = 0, a contradiction.

In some of the end point cases, we can say more.

Corollary 5.36.

(i) If n = 2 and a ∈ [0, 1), then Σ1
κ \ Σ1,nxt

κ is countable.

(ii) If n = 2 and a ∈ (−1, 0), then Σ1
κ \ Σ1,nxt

κ is countable.

(iii) If n ≥ 3 and m = 1, then Σ1
2 \ Σ1,nxt

2 is countable.

Proof. We separate each case.
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(i) Notice that if n = 2 and a ∈ [0, 1), then Σ1,a
κ is discrete by Lemma 5.26.

Repeating the proof of Lemma 5.33, but assuming, to the contrary, that Σ1,g
κ \

Σ1,nxt
κ has accumulation points, we deduce that Σ1,g

κ \Σ1,nxt
κ is discrete as well.

The result follows.

(ii) By Lemma 5.27, we see that Σ1,a
κ is countable. In addition, repeating the

arguments used to prove Lemma 5.35, we deduce that Σ1,g
κ \Σ1,nxt

κ cannot have
accumulation points.

(iii) Following the proof of (i), but using Lemma 5.34, we conclude.

This completes the proof.

The next pair of statement concern the almost monotonicity of a Monneau-type
energy and the uniqueness and continuity of second blow-ups at points in Σm,nxt

κ .

Lemma 5.37. Let X◦ ∈ Σm,nxt
κ ∩K for some compact set K ⊂ B1 ∩ {y = 0}, q◦ be

as in Definition 5.2, and Hλ be as in (5.25). Then,

d

dr
Hκ+1(r, u(X◦ + · )− p∗,X◦ − q◦) ≥ −CK

∥∥∥∥ qκ◦
pκ−1
∗,X◦

∥∥∥∥
L∞(B1∩{y=0})

.

Proof. Without loss of generality, assume that X◦ = 0 ∈ Σm,nxt
κ . Set

w := v∗ − q◦.

Since
d

dr
Hλ(r, w) =

2

rn+a+2λ+1

∫
∂Br

w(∇w ·X − λw)|y|a,

arguing as we did to show (5.23), we find that

d

dr
Hκ+1(r, w) ≥ 2

rn+a+2κ+2

∫
Br

wLaw.

Now observe that

wLaw = −(p∗ + q◦)Lau.

From the numerical inequality 1− ξ+ ξκ ≥ 0 for all ξ ≥ 0 and as q◦|Rn×{0} = 0 when
p∗|Rn×{0} = 0, we see that

p∗ + q◦ ≥ p∗ − |q◦| ≥ −
qκ◦
pκ−1
∗

on Rn × {0}

(recall that κ is even and p∗ ≥ 0 on Rn × {0}). Therefore, using that Lau is a
non-positive measure supported on B1 ∩ {y = 0}, we deduce that

d

dr
Hκ+1(r, w) ≥ − 1

rn+a+2κ+2

∫
Br

qκ◦
pκ−1
∗

Lau.
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Because Dαq◦ vanishes for all α = (α1, . . . , αn, 0) with |α| ≤ κ−2 on L∗, we have
that qκ◦/p

κ−1
∗ is locally bounded on Rn×{0}. Moreover, qκ◦/p

κ−1
∗ is a 2κ-homogeneous

polynomial. Thus,

− 1

rn+a+2κ+2

∫
Br

qκ◦
pκ−1
∗

Lau ≥ −
C

r3

∥∥∥∥ qκ◦
pκ−1
∗

∥∥∥∥
L∞(B1∩{y=0})

∫
B1/2

|Lau2r|,

as r2−aLau(rX) = Laur(X). Now from the proof of Proposition 5.13, we know that

−
∫
B1/2

|Lau2r| = −‖v2r‖L2(∂B1)

∫
B1/2

|Laṽ2r| ≥ −C‖v2r‖L2(∂B1).

Moreover, thanks to Lemma 5.8,

−‖v2r‖L2(B1) ≥ −C‖v2r‖L2(∂B1) ≥ −Crλ∗ .
In turn,

d

dr
Hκ+1(r, w) ≥ −Crλ∗−3

∥∥∥∥ qκ◦
pκ−1
∗

∥∥∥∥
L∞(B1∩{y=0})

,

which, after recalling that λ∗ ≥ κ+ 1 ≥ 3, proves the lemma.

Proposition 5.38. For every X◦ ∈ Σm,nxt
κ , there exists a unique (κ+1)-homogeneous,

a-harmonic polynomial q∗,X◦ such that

u(X◦ + r · )− p∗,X◦(r · )
rκ+1

⇀ q∗,X◦ in W 1,2(B1) as r ↓ 0, (5.87)

Dαq∗,X◦ vanishes on L(p∗,X◦) for any α = (α1, . . . , αn, 0) with |α| ≤ κ− 2, and

‖q∗,X◦‖2
L2(∂B1,|y|a) = Hκ+1(0+, u(X◦ + · )− p∗,X◦).

Moreover, the convergence in (5.87) is uniform on compact subsets of B1 ∩{y = 0},
and the map

Σm,nxt
κ 3 X◦ 7→ q∗,X◦

is continuous.

Proof. Without loss of generality, we take X◦ = 0. Let q◦ denote the limit along the
sequence r` given by Definition 5.2. Let q̃◦ be another limit taken through another
sequence, r̃`, such that (after relabelling if necessary) r̃` ≤ r`. Then, by Lemma 5.37,
we have that

Hκ+1(r`, v∗− q◦) ≥ Hκ+1(r̃`, v∗− q◦)−C
∥∥∥∥ qκ◦
pκ−1
∗

∥∥∥∥
L∞(B1∩{y=0})

|r`− r̃`| for all ` ∈ N.

Thus, using that r−κ−1
` vr` → q◦ strongly in L2(∂B1, |y|a),

0 = lim
`→∞

∫
∂B1

(r−κ−1
` vr` − q◦)2|y|a

≥ lim
`→∞

(∫
∂B1

(r̃−κ−1
` vr̃` − q◦)2|y|a − C

∥∥∥∥ qκ

pκ−1
∗

∥∥∥∥
L∞(B1∩{y=0})

|r̃` − r`|
)

=

∫
∂B1

(q̃◦ − q◦)2|y|a.

And so, q̃◦ = q◦, and the limit is unique. The remainder of the proof follows the
proof of [FS18, Proposition 4.5].
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Remark 5.18. Thanks to Proposition 5.38, Definition 5.2 can be amended to say for
every sequence r` ↓ 0, instead of just a sequence.

An important consequence of Proposition 5.38, particularly, the uniform con-
vergence in compact sets of the limit (5.87), is the following: for each compact set
K ⊂ B1 ∩ {y = 0}, we have a modulus of continuity ωK such that

Hκ+1(r, u(X◦ + · )− p∗,X◦ − q∗,X◦) ≤ ωK(r) for all X◦ ∈ K ∩ Σm,nxt
κ .

This modulus of continuity allows us to prove the following regularity result, a
precursor to our main results.

Theorem 5.39. The set Σm,nxt
κ is contained in the countable union of m-dimensional

C2 manifolds.

Proof. The proof will be completed in two steps.

Step 1: Let Eh be the compact sets defined in the proof of Theorem 5.30, and set

Eh,m := Σm
κ ∩ Eh and Enxt

h,m := Σm,nxt
κ ∩ Eh.

Observe that by Lemma 5.33 and Lemma 5.34,

dimHEh,m \ Enxt
h,m ≤ m− 1

when m ≥ 1. Hence, for any j ∈ N, we can find a family of balls {B̂i}∞i=1 such that

Eh,m \ Enxt
h,m ⊂ Oj :=

∞⋃
i=1

B̂i and
∞∑
i=1

diam(B̂i)
m−1+ 1

j <
1

j
.

In particular,

Hm−1+ 1
j

∞ (Oj) <
1

j
.

Now define

Uj :=

{
X ∈ Rn+1 : dist(X,Eh,m \ Eh,m) <

1

j

}
and Kj := Eh,m \ (Oj ∪ Uj).

Notice that Oj and Uj are open, Kj is closed, and

Kj ⊂ Enxt
h,m.

Moreover, we have that
∞⋃
j=1

Kj = Eh,m \
∞⋂
j=1

Oj.

Indeed, using the continuity of the map Σκ 3 X◦ 7→ p∗,X◦ (see [GR19, Proposition
4.6]) and that Eh is closed and contained in Σκ, we find that

Eh,m \ Eh,m ⊂
⋃

d≥m+1

Eh,d,
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so that
⋂∞
j=1 Uj is disjoint from Eh,m. Finally, by construction, Hβ

∞(
⋂∞
j=1Oj) = 0 for

all β > m − 1, which implies that dimH
⋂∞
j=1Oj ≤ m − 1. In turn, if we can show

that Eh,m is contained in a m-dimensional C2 manifold, then Σm
κ can be covered by

a countable collection of m-dimensional C2 manifolds along with a set of Hausdorff
dimension at most m− 1.

Step 2: This step is essentially identical to the second half of the proof of Theo-
rem 5.30. For completeness, however, we provide some details regarding the justifi-
cation of hypothesis (ii) in the statement of Whitney’s Extension Theorem.

For X◦ ∈ Kj, define

PX◦(X) := p∗,X◦(X −X◦) + q∗,X◦(X −X◦).

Now let X◦, Z◦ ∈ Kj and r := 2|X◦ − Z◦|. Arguing as we did in the proof of
Theorem 5.30, but using Proposition 5.38, we see that there exists a modulus of
continuity ωKj such that

1

rκ+1
‖[PZ◦ − PX◦ ](r · )‖L2(B1/2(r−1X◦),|y|a) ≤ 2ωKj(r).

So since all norms are equivalent on the finite dimensional space of polynomials of
degree less than or equal to κ+ 1,

‖[PZ◦ − PX◦ ](r · )‖Cκ+1(B1/2(r−1X◦)) ≤ 2ωKj(r)r
κ+1,

for any X◦, Z◦ ∈ Kj with r = 2|X◦ − Z◦|. In turn, given |α| ∈ {0, . . . , κ+ 1},

|DαPZ◦(X◦)−DαPX◦(X◦)| ≤ 2ωKj(|X◦ − Z◦|)|X◦ − Z◦|κ+1−|α| for all X◦ ∈ Kj.

Thus, thanks to the Whitney’s Extension Theorem, Lemma 5.29, we conclude.

Theorem 5.40. In the non-degenerate case, the set Σm,nxt
κ is contained in a single

m-dimensional C2 manifold.

Proof. The proof follows the proof of Theorem 5.39, but with the same modifications
as the proof of Theorem 5.31.

To finish, we present the proofs of our two main results.

Proof of Theorem 5.1. We prove each case separately.

(i) As in the proof of Theorem 5.5(i), this case holds by Lemma 5.18.

(ii) Σ1
2 \ Σ1,nxt

2 is countable by Corollary 5.36. So the proof follows from Theo-
rem 5.40.

(iii) Σm,nxt
2 is contained in an m-dimensional C2 manifold by Theorem 5.40. On the

other hand, dimHΣm
2 \ Σm,nxt

2 ≤ m− 1 by Lemmas 5.33, 5.34, and 5.35.

(iv) See Proposition 5.32.

This concludes the proof.
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Proof of Theorem 5.2. We consider each case separately.

(i) See Lemma 5.18.

(ii) See the proof of Theorem 5.1(ii), but consider Theorem 5.39 instead of Theo-
rem 5.40.

(iii) See the proof of Theorem 5.1(iii), but consider Theorem 5.39 instead of The-
orem 5.40.

(iv) Σ1
κ \Σ1,nxt

κ is countable by Corollary 5.36, and Σ1,nxt
κ is contained in the count-

able union of one-dimensional C2 manifolds by Theorem 5.39.

(v) Σn−1,nxt
κ is contained in the countable union of (n − 1)-dimensional C2 mani-

folds by Theorem 5.39. On the other hand, dimHΣn−1
κ \ Σn−1,nxt

κ ≤ n − 2 by
Lemmas 5.33 and 5.35.

(vi) See Theorem 5.5(iv).

This concludes the proof.

5.8 The Very Thin Obstacle Problem

This section is dedicated to studying, what we have called, the very thin obsta-
cle problem for La when a < 0: a minimization problem like (5.1), but for a ∈
(−1, 0) and subject to a codimension two obstacle constraint. Alternatively (see
Section 5.1.1), this problem corresponds to the fractional thin obstacle problem.
Namely, we consider

min
w∈C

{∫
B1

|∇w|2|y|a
}
, with a ∈ (−1, 0), (5.88)

where C is the convex subset of the Sobolev space W 1,2(B1, |y|a) defined by

C := {w ∈ W 1,2
0 (B1, |y|a) + g : w(x′, 0, 0) ≥ 0 and w(x,−y) = w(x, y)},

given some boundary data g ∈ C(B1) (even with respect to y) such that g|∂B1∩{xn=y=0} ≥
0. The condition that w is non-negative on the very thin space Rn−1 × {0} × {0}
needs to be understood in the trace sense, a priori. Notice that since a < 0, the
condition w ≥ 0 on B′1 × {0} × {0} is relevant; the very thin space has non-zero
a-harmonic capacity if and only if a ∈ (−1, 0). Indeed, recalling the proof of Propo-

sition 5.15, the (“double”) trace operator τ : W 1,2(B1, |y|a)→ W s− 1
2
,2(B′1) ⊂ L2(B′1)

is well-defined and continuous.
In this setting, the Euler–Lagrange equations characterizing the unique solution

u to (5.88) are 
u(x′, xn, y) ≥ 0 in B1 ∩ {xn = y = 0}

Lau ≤ 0 in B1

uLau = 0 in B1

Lau = 0 in B1 \ Λ(u)
u(x, y) = u(x,−y) in B1

(5.89)
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where, as expected,
Λ(u) := {(x′, 0, 0) : u(x′, 0, 0) = 0}

is the the contact set. The free boundary here is the topological boundary in Rn−1

of Λ(u):
Γ(u) := ∂Λ(u) ⊂ Rn−1 × {0} × {0}.

We close this introduction with a lemma that proves an analogous representation
of u to that in (5.6) for the solution to the thin obstacle problem. Recall that (as
defined in Subsection 5.1.5) Dr denotes the two-dimensional disc centered at the
origin of radius r > 0.

Lemma 5.41. Let u be such that Lau = 0 in B1 \ {xn = y = 0}. Then,

Lau(x′, xn, y) = fa(x
′)Hn−1 B′1,

where

fa(x
′) := lim

ε↓0

∫
∂Dε

uν |y|a dσ(xn, y)

= lim
ε↓0

∫
∂Dε

(xn
ε
∂nu(x′, xn, y) +

y

ε
∂yu(x′, xn, y)

)
|y|a dσ(xn, y).

In particular, if u is the solution to (5.89), then

Lau(x′, xn, y) = fa(x
′)Hn−1 Λ(u).

Proof. For every ϕ ∈ C∞c (B1),

〈Lau, ϕ〉 := −
∫
B1

∇u · ∇ϕ|y|a

= − lim
ε↓0

∫
B1∩{x2

n+y2≥ε2}
∇u · ∇ϕ|y|a

= lim
ε↓0

∫
B1∩{x2

n+y2=ε2}
uν ϕ|y|a

=

∫
B′1

fa(x
′)ϕ(x′, 0, 0) dx′,

recalling that Lau = 0 in B1 \ {xn = y = 0}.
In the following subsections, we prove a collection of results on the very thin

obstacle problem, (5.88) or, equivalently, (5.89).

5.8.1 A Non-local Operator

It is now well-known that the fractional Laplacian, or s-Laplacian, of a function v
defined on Rn can be reinterpreted as a weighted normal derivative of the a-harmonic
extension of v to the upper half-space Rn+1

+ (see [MO69, CSS08]). In particular, if
we let v̄ denote this extension,

−cn,s(−∆)sv(x) = lim
y↓0

ya∂yv̄(x, y).
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This reinterpretation has been extremely useful in studying the thin obstacle prob-
lem (see [CS07] and cf. (5.6)).

In this subsection, we show that an analogous reinterpretation exists for a non-
local operator of a function v defined on Rn−1 as a weighted normal derivative of
an a-harmonic extension of v to Rn+1, and in the next subsection, we will use it to
help us prove a collection of regularity results on the solution to (5.88). For a given
(sufficiency smooth) function u : Rn+1 → R, define

Fa(u)(x′) := lim
ε↓0

∫
∂Dε

uν(x
′, xn, y)|y|a dσ(xn, y). (5.90)

Hence, if v̄ : Rn+1 → R is the unique a-harmonic extension that vanishes at infinity
to Rn+1 of a given function v : Rn−1 → R that vanishes at infinity:

Lav̄ = 0 in Rn+1 \ {xn = y = 0}
v̄(x′, 0, 0) = v(x′) on Rn−1

lim|X|→∞ v̄(X) = 0,
(5.91)

then we can define the non-local operator Ia on v : Rn−1 → R by

Ia(v) := Fa(v̄). (5.92)

Notice that v̄ can be constructed as the unique solution to the following minimization
problem:

min
K

{∫
Rn+1

|∇w|2|y|a
}
, with a ∈ (−1, 0),

where

K := {w ∈ W 1,2(Rn+1, |y|a) : w = v on {xn = y = 0}, lim
|X|→∞

w(X) = 0}.

An important and interesting fact is Ia is nothing but the −a
2
-Laplacian:

Proposition 5.42. Let Ia be defined as in (5.92). Then,

Ia = cn,a(−∆)−
a
2 ≡ cn,a(−∆)s−

1
2 ,

for some positive constant cn,a depending only on n and a.

Before proving Proposition 5.42, notice that the Poisson kernel associated to
(5.91) is

Pa(x
′, xn, y) = Cn,a

(x2
n + y2)−

a
2

(|x′|2 + x2
n + y2)

n−1−a
2

. (5.93)

That is, if v : Rn−1 → R, then v ∗x′ P ( · , xn, y) = v̄. Indeed, it is easy to see
that LaPa(x

′, xn, y) = 0 when x2
n + y2 > 0 and Pa(x

′, 0, 0) is concentrated at x′ =
0. Furthermore, since Pa(x

′, r cos θ, r sin θ) = r−n+1Pa(r
−1x′, cos θ, sin θ), we deduce

that Pa is a multiple of the Dirac delta of the right dimensionality as x2
n + y2 ↓ 0.

The intuition behind (5.93) is as follows: the Poisson kernel for the fractional
Laplacian can be thought as the Poisson kernel regular Laplacian extended to a
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fractional number of additional dimensions, +a dimensions. In our case, we extend
an additional dimension, not only in y, but also in xn. So we are considering an
(1 + a)-dimensional extension starting from n − 1 dimensions. That is, (5.93) can
be recovered from the Poisson kernel for the fractional Laplacian (see [CS07]) by
renaming the variable y to |(xn, y)| (by Pythagoras) and replacing a with 1 + a and
n with n− 1.

Proof of Proposition 5.42. Thanks to (5.93), we have that

v̄(x′, xn, y) =

∫
Rn−1

v(z′)Pa(x
′ − z′, xn, y) dz′.

In turn,

Ia(v)(x′) = lim
ε↓0

∫
∂Dε

∂ν

(∫
Rn−1

v(z′)Pa(x
′ − z′, xn, y) dz′

)
|y|a dσ(xn, y).

Now since Pa is radially symmetric in the (xn, y) variables,

Ia(v)(x′) = lim
ε↓0

∂y

(∫
Rn−1

v(z′)Pa(x
′ − z′, 0, y) dz′

) ∣∣∣∣
y=ε

∫
∂Dε

|y|a dσ(xn, y)

= C lim
ε↓0

ε1+a∂y

(∫
Rn−1

v(z′)Pa(x
′ − z′, 0, y) dz′

) ∣∣∣∣
y=ε

= C(−∆)−
a
2 v(x′),

where, in the last step, we have used that Pa(x
′, 0, y) is the Poisson kernel for the

fractional Laplacian of order 1 + a in n − 1 dimensions (see [CS07, Sections 1 and
2]).

Thanks to Proposition 5.42, we can construct some useful Hölder regular barriers.

Lemma 5.43 (Hölder Barriers). Let ζ(r) : [0,∞)→ [0, 1] be a smooth function with
the following properties: ζ(r) ≡ 1 for 0 ≤ r ≤ 2, ζ(r) ≡ 0 for r > 3, and ζ ′ ≤ 0. Set
hβ(x′) := |x′|βζ(|x′|) and define

h̄β(x′, xn, y) :=

∫
Rn−1

hβ(z′)Pa(x
′ − z′, xn, y). (5.94)

Then, 
Lah̄β = 0 in Rn+1 \ {xn = y = 0}

h̄β(x′, 0, 0) = |x′|β on B′1
h̄β ≥ c in ∂B1,

for some constant c depending only on n, a. Moreover, h̄β ∈ Cγ(B1) for γ :=
min{−a, β}.

Proof. First, observe that by the definition of Pa, Lah̄β = 0 in Rn+1 \ {xn = y = 0}
and h̄β(x′, 0, 0) = |x′|β in B′1. Second, by continuity, h̄β ≥ c > 0 on ∂B1 since h̄β > 0
on ∂B1 ∩ {x2

n + y2 > 0} and h̄β = 1 on ∂B1 ∩ {x2
n + y2 = 0}. Finally, notice that

if we fix xn = 0, then h̄β(x′, 0, y) is the (1 + a)-harmonic extension of hβ to Rn (see
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the proof of Proposition 5.42); note that 1 + a ∈ (0, 1). Namely, h̄β(x′, 0, y) is such
that 

L1+ah̄β(x′, 0, y) = 0 in Rn \ {y = 0}
h̄β(x′, 0, 0) = hβ(x′) on Rn−1

lim|(x′,y)|→∞ h̄β(x′, 0, y) = 0.
(5.95)

Now by [JN17, Proposition 2.3], we have that h̄β is (locally) smooth in x′ and
is (locally) (−a)-Hölder in the y up to {y = 0}. Therefore, since h̄β is radially
symmetric in the (xn, y) variables, h̄β ∈ Cγ(B1), as desired.

We conclude this subsection with a higher regularity result.

Lemma 5.44. If u ∈ L∞(B1) is such that Lau = 0 in B1 \ {xn = y = 0} and
u( · , 0, 0) ∈ Ck+β(B′1) for k ∈ N ∪ {0} and β ∈ (0, 1], then for γ := min{−a, β},

[Dk
x′u]Cγ(B1/2) ≤ C

(
‖u‖L∞(B1) + ‖u(·, 0, 0)‖Ck+β(B′1)

)
,

for some constant C depending only on n, a, k, and β. Moreover, if u(·, 0, 0) is
continuous, then u is continuous.

Proof. The proof follows simply by combining interior estimates for the operator
La and a barrier argument on {xn = y = 0}, with the barrier h̄β constructed in
Lemma 5.43.

Suppose k = 0 and let C̄ be a constant such that

C̄ ≥ [u(·, 0, 0)]Cβ(B′1) and C̄h̄β ≥ ‖u‖L∞(B1) on ∂B1/2.

Then, C̄h̄β serves both as a barrier from above and from below at any point x′ ∈
B′1/2. This barrier combined with interior estimates for a-harmonic functions (see,

e.g, [JN17, Proposition 2.3]) directly yields the desired estimate (as in [MS06], for
instance).

If k ≥ 1, we apply the previous result iteratively, starting with β = 1, to the
derivatives Dα

x′u, up to a ball B2−k−1 , and finish by a covering lemma.

To prove the last part, let us suppose that u(·, 0, 0) is continuous. We want to
show that u is continuous as well. Let us extend u to the whole space with any
cutoff function and consider v(x′, xn, y) := u(·, 0, 0) ∗ Pa(·, xn, y). Notice that since
u(·, 0, 0) is continuous, v is continuous as well. Then, u = v + w where w satisfies
w(·, 0, 0) ≡ 0 and Law = 0 in B1 \ {xn = y = 0}. Thus, by the above result, w is
smooth and therefore, u is continuous.

Corollary 5.45. Let u ∈ L∞(B1) be a solution to (5.89). Then, u is continuous in
B1.

Proof. The continuity on the very thin space follows from a standard argument in
obstacle type problems (see [Caf98, Theorem 1]) using super-a-harmonicity of the
solution and the mean value formula on the thin space for the operator La. The
continuity in B1 then follows from Lemma 5.44.
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5.8.2 Basic Estimates

In this subsection, we prove some regularity properties of solutions to (5.88). Our
first result contains two classical estimates: an energy estimate and an L∞ estimate.

Lemma 5.46. Let u be a solution to (5.88) and (5.89). Then,

‖u‖W 1,2(B1/2,|y|a) ≤ C‖u‖L2(B1,|y|a) (5.96)

and

‖u‖L∞(B1/2) ≤ C‖u‖L2(B1,|y|a), (5.97)

for some constant C depending only on n and a.

Proof. This is standard (see [AC04] or Lemma 5.9).

Next, we prove the solutions are Lipschitz and semiconvex in the directions
parallel to the very thin space.

Lemma 5.47. Let u be a solution to (5.89). Then, for all e ∈ {xn = y = 0} ∩ Sn,

‖∂eu‖L∞(B1/4) ≤ C‖u‖L2(B1,|y|a) (5.98)

and

inf
B1/8

∂eeu ≥ −C‖u‖L2(B1,|y|a), (5.99)

for some constant C depending only on n and a.

Proof. The proofs of these estimates are identical to the proofs of Lemmas 5.11 and
5.12. That said, to get (5.98), we need to use the incremental quotients ((u(x +
he)− u(x))/h)− and ((u(x− he)− u(x))/h)−, in the spirit of Lemma 5.12, and the
continuity of u (proved in Corollary 5.45).

An easy corollary of Lemma 5.47 is that u is C−a.

Corollary 5.48. Let u be the solution to (5.89). Then,

[u]C−a(B1/2) ≤ C‖u‖L∞(B1), (5.100)

for some constant C depending only on n and a.

Proof. This is an immediate consequence of Lemmas 5.47 and 5.44.

Using Corollary 5.48, we now prove an L∞ estimate on Fa(u).

Lemma 5.49. Let u be the solution to (5.89) and Fa be as in (5.90). Then,

‖Fa(u)‖L∞(B′
1/2

) ≤ C‖u‖L∞(B1),

for some constant C depending only on n and a. That is, Lau is a locally bounded,
absolutely continuous measure, with respect to Hn−1, supported on {xn = y = 0}.
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Proof. Recall, if Lau = 0 in Br(X◦), then

‖∇xu‖L∞(Br/2(X◦)) ≤ Cr−1 osc
Br(X◦)

u (5.101)

and
‖|y|a∂yu‖L∞(Br/2(X◦)) ≤ Cra−1 osc

Br(X◦)
u. (5.102)

(See, e.g., [JN17, Proposition 2.3].) Now let x′ ∈ B′1/2. And assume that Fa(u)(x′) <

0, so that u(x′) = 0 (otherwise, there is nothing to prove). We claim that

lim
ε↓0

∣∣∣∣∫
∂Dε

(xn
ε
∂nu(x′, xn, y) +

y

ε
∂yu(x′, xn, y)

)
|y|a dσ(xn, y)

∣∣∣∣ ≤ C‖u‖L∞(B1).

(5.103)
From (5.101) and (5.102) and by Corollary 5.48, rescaled to Bε(x

′, xn, y), we have
that

sup
∂Dε

|∂nu| ≤ Cε−1−a‖u‖L∞(B1) and sup
∂Dε

||y|a∂yu| ≤ Cε−1‖u‖L∞(B1).

Hence, (5.103), as desired.

The following theorem proves that u is C1,τ in the directions parallel to {xn =
y = 0}.

Theorem 5.50. Let u be the solution to (5.89). Then, for all e′ ∈ {xn = y = 0}∩Sn,

[∂e′u]Cτ (B1/2) ≤ C‖u‖L2(B1,|y|a),

for some constants τ > 0 small and C depending only on n and a.

Proof. Define the cut-off function ξ(X) := ζ(|x′|2)ζ(x2
n + y2) where

ζ : [0,∞)→ [0, 1], ζ ′ ≤ 0, ζ ≡ 1 in [0, 1/8], and ζ ≡ 0 in [1/4,∞),

and set û(X) := u(X)ξ(X) in B1 and û(X) ≡ 0 outside of B1. Notice that

Laû = uLaξ + |y|a∇ξ · ∇u =: |y|af̂(X) in Rn+1 \ {xn = y = 0}.

Now let ŵ be such that Laŵ = |y|af̂ in Rn+1 \ {xn = y = 0}
ŵ(x′, 0, 0) = 0 on Rn−1

lim|X|→∞ ŵ(X) = 0.

(5.104)

Clearly, Laŵ = 0 in B1/8 \ {xn = y = 0}, so that by Lemma 5.44, ŵ is smooth in
B1/16. Hence, Fa(ŵ) is smooth in B′1/16.

Observe that {
La(û− ŵ) = 0 in Rn+1 \ {xn = y = 0}

û− ŵ ≥ 0 on Rn−1 × {0} × {0}.



213

Moreover, by the symmetries of ξ in the (xn, y) directions, we have that{
Fa(uξ)(x′) = 0 if u(x′, 0, 0) > 0
Fa(uξ)(x′) ≤ 0 if u(x′, 0, 0) = 0;

so {
Fa(û− ŵ)(x′) = −Fa(ŵ)(x′) if (û− ŵ)(x′, 0, 0) > 0
Fa(û− ŵ)(x′) ≤ −Fa(ŵ)(x′) if (û− ŵ)(x′, 0, 0) = 0.

Alternatively, thanks to Proposition 5.42, U(x′) := (û − ŵ)(x′, 0, 0) solves the fol-
lowing obstacle problem

U ≥ 0 in Rn−1,
(−∆)−

a
2U = −CFa(ŵ) in {x′ : U(x′) > 0},

(−∆)−
a
2U ≤ −CFa(ŵ) in Rn−1

lim|x′|→∞ U(x′) = 0.

(5.105)

By [CRS17, Proposition 2.2], recalling that Fa(ŵ) is smooth in B′1/16 and that u is

Lipschitz (5.98) and semiconvex (5.99), we deduce that U ∈ C1,τ (B′1/32). And via a

simple covering argument, U ∈ C1,τ (B′3/4).
The theorem now follows from Lemma 5.44.

The last result of this subsection is a Hölder regularity result for theX-directional
derivative of u for X ∈ B1.

Corollary 5.51. Let u be the solution to (5.89). Then, X ·∇u is continuous in B1.
In particular,

‖X · ∇u‖C τ̄ (B1/2) ≤ C‖u‖L∞(B1),

for some constants τ̄ > 0 small and C, depending only on n and a.

Proof. Let X◦ ∈ Λ(u). By (5.101), (5.102), and Corollary 5.48,

sup
Br/2(X◦)

|xn∂nu|+ |y∂yu| ≤ Cr−a.

This, Theorem 5.50, the C1,τ regularity of u in x′, and interior estimates for a-
harmonic functions in B1 \Λ(u) (see, e.g., [JN17]) yield the desired result (again, as
in [MS06], for instance).

5.8.3 Monotonicity Formulae

In this subsection, we prove that u has the same monotonicity properties as its
cousin, the solution to the thin obstacle problem. We start with Almgren’s frequency
function.

Lemma 5.52. Let u be the solution to (5.89) and 0 ∈ Λ(u). Then, Almgren’s fre-
quency function on u

r 7→ N(r, u) :=
r
∫
Br
|∇u|2|y|a∫

∂Br
u2|y|a

is non-decreasing for 0 < r < 1. Moreover, N(u, r) ≡ λ if and only if u is homoge-
neous of degree λ in B1, i.e., x · ∇u− λu = 0 in B1.
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Proof. The proof of this lemma is standard, and follows the lines of the proof that
Almgren’s frequency function is monotone on solutions the thin obstacle problem.
Nonetheless, some of the steps now require justification because of the inherent
lower regularity of the very thin obstacle problem. Justifying these steps is where
Theorem 5.50 — more precisely, Corollary 5.51 — comes into play.

Set, for 0 < r < 1,

D(r) = D(r, u) :=

∫
Br

|∇u|2|y|a and H(r) = H(r, u) :=

∫
∂Br

u2|y|2,

so that N(r) := N(r, u) = rD(r)/H(r). Notice that both quantities are pointwise
defined, since u ∈ W 1,2(B1, |y|a) ∩ C−aloc (B1), and in particular, N(r) is continuous.
Following the proof of Proposition 5.6 (where we remark that D and H were defined
differently), we immediately find that

H ′(r) =
n+ a

r
H(r) + 2

∫
∂Br

uuν |y|a

and

D′(r) =
n+ a− 1

r
D(r) +

2

r

∫
Br

∇u · ∇(X · ∇u)|y|a. (5.106)

By Corollary 5.51, the quantity H ′(r) is well-defined pointwise (and finite). On the
other hand, D(r) is absolutely continuous, being the integral in Br of an integrable
function, so that its derivative is well-defined pointwise and almost everywhere finite
(and non-negative). Thus, N(r, u) is locally absolutely continuous.

Integrating by parts in the second term of (5.106), we deduce that

1

r

∫
Br

∇u · ∇(X · ∇u)|y|a =

∫
∂Br

u2
ν |y|a −

1

r

∫
Br

(X · ∇u)Lau.

Now notice that Lau is a finite measure concentrated on {xn = y = 0} (see
Lemma 5.49), and X · ∇u is continuous (see Corollary 5.51). Moreover, by the
proof of Corollary 5.51, X · ∇u = 0 whenever Lau < 0. In turn, the second term
above vanishes. On the other hand, by the continuity of X · ∇u, the first term is
well-defined pointwise. Hence,

D′(r) =
n+ a− 1

r
D(r) + 2

∫
∂Br

u2
ν |y|a.

Integrating by parts again, observe that

D(r) =

∫
Br

|∇u|2|y|a =

∫
∂Br

uuν |y|a −
∫
Br

uLau =

∫
∂Br

uuν |y|a,

where the term
∫
Br
uLau = 0 arguing as before: u is continuous (Corollary 5.48) and

vanishes whenever Lau < 0, and Lau is a finite measure concentrated on {xn = y =
0} (Lemma 5.49).

Combing the above estimates, we determine that

N ′(r)

N(r)
=
D′(r)

D(r)
− H ′(r)

H(r)
+

1

r
= 2

( ∫
∂Br

u2
ν |y|a∫

∂Br
uuν |y|a

−
∫
∂Br

uuν |y|a∫
∂Br

u2|y|a

)
≥ 0,
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by the Cauchy–Schwarz inequality, which yields the monotonicity of N(r, u). Ana-
lyzing the equality case, we see that if N(r) is constant, then u is homogeneous of
degree N(r) (see, e.g., [ACS08, Lemma 1]).

Next we prove a Monneau-type monotonicity formula.

Lemma 5.53. Let u be the solution to (5.89) and 0 ∈ Λ(u). Given λ ≥ 0, define

Hλ(r, u) :=
1

rn+a+2λ

∫
∂Br

u2|y|a. (5.107)

For all 0 ≤ λ ≤ N(0+, u), the map r 7→ Hλ(r, u) is non-decreasing.

Proof. Arguing as in the proof of Lemma 5.52, using
∫
Br
uLau = 0, we compute that

H ′λ
Hλ

(r, u) =
2

r
(N(r, u)− λ). (5.108)

(See, also, the proof of Lemma 5.8.) The lemma then follows from Lemma 5.52:
N(r, u) ≥ N(0+, u) ≥ λ.

Now we move to the Weiss energies.

Lemma 5.54. Let u be the solution to (5.89) and 0 ∈ Λ(u). Given λ ≥ 0, define

Wλ(r, u) := Hλ(r, u)(N(r, u)− λ). (5.109)

For all λ ≥ 0, the map r 7→ Wλ(r, u) is non-decreasing.

Proof. Arguing as in the proof of Lemma 5.52, using
∫
Br
uLau = 0, an explicit

computation directly yields

d

dr
Wλ(r, u) =

2

rn+1+a+2λ

∫
∂Br

(X · ∇u− λu)2|y|a ≥ 0,

as desired.

We close this subsection with a useful limit.

Lemma 5.55. Let u be the solution to (5.89) and 0 ∈ Λ(u). Suppose that N(0+, u) =
λ∗. Given λ > λ∗,

lim
r↓0

Hλ(r, u) = +∞.

Proof. Suppose, to the contrary, we can find a sequence of radii r` ↓ 0 such that
Hλ(r`, u) ≤ C for all ` ∈ N. Then, for µ ∈ (λ∗, λ), Hµ(r`, u)→ 0 as `→∞. Hence,
as Wµ(r, u) ≥ −µH(r, u) for all r > 0,

lim inf
`→∞

Wµ(r`, u) ≥ lim inf
`→∞

−µHµ(r`, u) = 0.

By the monotonicity of r 7→ Wµ(r, u), Lemma 5.54, we find that

N(r`, u) ≥ µ,

for all ` ∈ N. But this is impossible: µ > λ∗ := N(0+, u).
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5.8.4 Blow-up Analysis and Consequences

This subsection is dedicated to the analysis of blow-ups of u at points X◦ ∈ Λ(u).
As such, for X◦ ∈ Λ(u), define

uX◦,r(X) := u(X◦ + rX) and ũX◦,r :=
uX◦,r

‖uX◦,r‖L2(∂B1,|y|a)

. (5.110)

We start by showing that blow-ups exists and are global, homogeneous solutions
to (5.89).

Lemma 5.56. Let u be the solution to (5.89) and suppose that X◦ ∈ Λ(u). Let ũX◦,r
be as in (5.110). Then, for every sequence rj ↓ 0, there exists a subsequence rj` ↓ 0
such that

ũX◦,rj` ⇀ ũX◦,0 in W 1,2(B1, |y|a) as `→∞ (5.111)

for some ũX◦,0 ∈ W 1,2(B1, |y|a). Moreover, ũX◦,0 6≡ 0 is a global, homogeneous solu-
tion to a very thin obstacle problem with zero obstacle. If, in addition, u is homoge-
neous, then ũX◦,0 is translation invariant with respect to X◦.

Proof. By Lemma 5.52, we see that given any sequence rj ↓ 0, the family {ũX◦,rj}j∈N
is uniformly bounded in W 1,2(B1, |y|a). Hence, there is a subsequence rj` ↓ 0 such
that

ũX◦,rj` ⇀ ũX◦,0 in W 1,2(B1, |y|a).
As ‖ũX◦,rj`‖L2(∂B1,|y|a) = 1,

‖ũX◦,0‖L2(∂B1,|y|a) = 1.

Clearly, ũX◦,0 6≡ 0.
Since the family of functions {ũX◦,rj`}`∈N is locally uniformly Hölder continu-

ous (by Corollary 5.48), we have that ũX◦,rj` → ũX◦,0 locally uniformly. Moreover,
LaũX◦,rj` ⇀ LaũX◦,0 (which is non-positive) weakly* as measures (see, e.g., the proof
of Proposition 5.13). Therefore, for every ρ > 0,

0 =

∫
Bρ

ũX◦,rj`LaũX◦,rj` |y|
a →

∫
Bρ

ũX◦,0LaũX◦,0|y|a as `→∞, (5.112)

so that, since ũX◦,0LaũX◦,0 ≤ 0,

ũX◦,0LaũX◦,0 = 0 in Rn+1.

This, together with the uniform convergence of ũX◦,rj` and the weak∗ convergence
of LaũX◦,rj` to LaũX◦,0 directly yields that ũX◦,0 is a global solution to the very thin
obstacle problem with zero obstacle.

Furthermore, from the local uniform continuity of X · ∇ũx◦,r` given by Corol-
lary 5.51,∫

∂Bρ

ũX◦,rj` (X · ∇ũX◦,rj` )|y|
a →

∫
∂Bρ

ũX◦,0(X · ∇ũX◦,0)|y|a as `→∞.
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Consequently, for all ρ > 0,

N(ρ, ũX◦,0) = lim
rj`↓0

N(ρ, ũX◦,rj` ),

and, in particular,

N(ρ, ũX◦,0) = N(0+, u(X◦ + · )) =: λX◦

for all ρ > 0. (By scaling, limrj`↓0N(ρ, ũX◦,rj` ) = limrj`↓0N(ρrj` , u(X◦+ · )).) Hence,
by Lemma 5.52, ũX◦,0 is λX◦-homogeneous, and the first part of the proof is complete.

Now assume that u is λ-homogeneous. Then,∫
E

∇ũX◦,rj` (X) · (X◦ + rj`X)|y|a =

∫
E

λrj`ũX◦,rj` (X)|y|a

for any compact set E ⊂ B1. In turn, as ũX◦,rj` ⇀ ũX◦,0 weakly in W 1,2(B1, |y|a),
taking rj` ↓ 0, we find that

X◦ · ∇ũX◦,0(X) = 0 (5.113)

for almost every X ∈ B1. Finally, by Corollary 5.51 and the λX◦-homogeneity of
ũX◦,0 established above, we see that (5.113) holds for all X ∈ Rn+1.

Just as we did in the thin obstacle setting, we define the nodal set of a solution
u to (5.89):

N (u) := {(x′, 0, 0) : u(x′, 0, 0) = |∇x′u(x′, 0, 0)| = fa(x
′) = 0} (5.114)

where fa is defined as in Lemma 5.41.
In the following result, we prove an estimate on the size of the points whose

blow-ups have spines

L(ũX◦,0) := {ξ′ ∈ Rn−1 : ξ′ · ∇x′ũX◦,0(x′, 0, 0) = 0 for all x′ ∈ Rn−1}

with a certain dimensional bound.

Proposition 5.57. Let u be a solution to (5.89). Then,

dimH({X◦ ∈ N (u) : dimL(ũX◦,0) ≤ d for all blow-ups ũX◦,0}) ≤ d, (5.115)

for any d ∈ {0, . . . , n− 1}. Moreover, if d = 0, the previous set is countable.

Proof. The proof follows the first half of the proof of [FoSp18, Theorem 1.3]; and
so, we have to check that the assumptions of [Whi97, Theorem 3.2] are fulfilled. In
particular, we argue in parallel to [FoSp18, Section 8.1].

Define the upper semicontinuous function f : B′1 → R+ by

f(x′◦) :=

{
N(0+, u(X◦ + · )) if X◦ ∈ N (u)

0 if X◦ /∈ N (u),
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and for any x′◦ ∈ B′1, let Gx′◦ be the family of upper semicontinuous functions g :
Rn−1 → R+ given by

g(z′) :=

{
N(0+, ũX◦,0(Z + · )) if X◦ ∈ N (u)

0 if X◦ /∈ N (u)

where ũX◦,0 is a possible blow-up limit of u at X◦ = (x′◦, 0, 0) (as produced in
Lemma 5.56), and of course, Z = (z′, 0, 0). Observe, arguing as in [FoSp18, Lemma
5.2], that for all g ∈ Gx′◦ ,

if g(z′) = g(0), then g(z′ + τx′) = g(z′ + x′) for all x′ ∈ Rn−1 and τ > 0;

that is, g is conical, following the definitions used in [FoSp18, Section 8.1] and
[FMS15].

Furthermore, let {gj}j∈N ⊂ Gx′◦ . For each gj, we have an associated blow-up
ũX◦,0,j which has L2(∂B1, |y|a)-norm equal to 1. And arguing as in Lemma 5.56 and
then applying a diagonal argument, we can find a subsequence {ũX◦,0,j`}`∈N that
converges weakly in W 1,2(B1, |y|a) and locally uniformly in C−a(B1) to a blow-up of

u at X◦. Call ũ
(∞)
X◦,0

this blow-up and define

g∞(z′) :=

{
N(0+, ũ

(∞)
X◦,0

(Z + · )) if X◦ ∈ N (u)

0 if X◦ /∈ N (u).

By construction, g∞ ∈ Gx′◦ . Now given any convergent sequence x′` → x′∞ ∈ Rn−1 as
`→∞, by Lemma 5.52 and the upper semicontinuity of the frequency,

lim sup
`→∞

N(0+, ũX◦,0,j`(X` + · )) ≤ inf
ρ>0

lim sup
`→∞

N(ρ, ũX◦,0,j`(X` + · ))

= inf
ρ>0

N(ρ, ũ
(∞)
X◦,0

(X∞ + · ))

= N(0+, ũ
(∞)
X◦,0

(X∞ + · )).
In turn,

lim sup
`→∞

gj`(x
′
`) ≤ g∞(x′∞),

and Gx′◦ is a class of compact conical functions (see [FoSp18, Section 8.1] and [FMS15,
Definition 3.3]). Like before, X` = (x′`, 0, 0) and X∞ = (x′∞, 0, 0).

In addition, we need to check the structural hypotheses of [Whi97, Theorem 3.2],
which we do as in [FoSp18, Section 8.1(i) and (ii)]. For all g ∈ Gx′◦ , from the proof
of Lemma 5.56,

g(0) = f(x′◦).

Moreover, suppose rj ↓ 0. By Lemma 5.56, we can find a subsequence rj` ↓ 0 and
element g∞ ∈ Gx′◦ so that for any convergent sequence x′` → x′∞ ∈ B′1 as `→∞,

lim sup
`→∞

f(x′◦ + rj`x
′
`) ≤ g∞(x′∞).

In particular,

g∞(z′) :=

{
N(0+, ũX◦,0(Z + · )) if X◦ ∈ N (u)

0 if X◦ /∈ N (u)
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with ũX◦,0 being the weakW 1,2(B1, |y|a) limit of ũX◦,rj` (it is also the limit in C−aloc (B1)
of ũX◦,rj` ). Indeed,

lim sup
`→∞

N(0+, u(X◦ + rj`X` + · )) ≤ inf
ρ>0

lim sup
`→∞

N(rj`ρ, u(X◦ + rj`X` + · ))

= inf
ρ>0

lim sup
`→∞

N(ρ, ũX◦,rj` (X` + · ))

= inf
ρ>0

N(ρ, ũX◦,0(X∞ + · ))

= N(0+, ũX◦,0(X∞ + · )).

(Again, X` = (x′`, 0, 0) and X∞ = (x′∞, 0, 0).) Hence, applying [Whi97, Theorem 3.2]
(or see [FoSp18, Section 8.1]), we prove (5.115).

We close this section recalling the classification of two-dimensional homogeneous
solutions to (5.89), which was proved in [FoSp18, Proposition A.1(i)], and an im-
portant consequence.

Lemma 5.58. Let n = 1. Let u be a λ-homogeneous solution to (5.89), subject to
its own boundary data. Then,

λ ∈ {−a, 1, 2, 3, . . . }.

In addition, when λ ∈ N, u is an a-harmonic polynomial in R2.

Proof. The possible values of λ are classified in [FoSp18, Proposition A.1(i)], whence
λ ∈ N. Moreover, these integrally homogeneous solutions are polynomials; in par-
ticular, they are a-harmonic. That said, in [FoSp18], only homogeneities greater or
equal than 1 + s are considered. Within the proof of [FoSp18, Proposition A.1(i)],
however, if homogeneities in (0, 1) are also considered, then only one extra homo-
geneity appears: −a, by taking ν = −1 + s (using the notation of [FoSp18]).

Corollary 5.59. Let n ≥ 2 and u be the solution to (5.89). Then,

dimH({X◦ ∈ Λ(u) : N(0+, u(X◦ + ·)) /∈ N ∪ {−a}}) ≤ n− 2.

Proof. If Z◦ ∈ Λ(u) \ {X◦ ∈ N (u) : dimL(uX◦,0) ≤ n − 2 for all blow-ups ũX◦,0},
then there exists a blow-up ũZ◦,0 such that dimL(ũZ◦,0) = n − 1. In turn, since
two-dimensional homogeneous solutions to the very thin obstacle problem with zero
obstacle are polynomials or a multiple of |X|−a (by Lemma 5.58), we deduce that
N(0+, u(Z◦ + · )) ∈ N ∪ {−a}. Hence, from Proposition 5.57, we conclude.

5.9 Final Remark: Global Problems

In this final section, we state three global obstacle problems — all equivalent — to
provide some additional perspective on the very thin obstacle problem. Let

ψ ∈ C1,1(Rn−1) (5.116)

be our obstacle, which we assume decays rapidly at infinity.
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The very thin obstacle problem for La in Rn+1 with a ∈ (−1, 0). Our first problem
is a global version of the very thin obstacle problem for La with obstacle ψ on
{xn = y = 0}. Namely, we can consider either the global minimizer of the energy
(5.88) among those functions that sit above the obstacle ψ on {xn = y = 0} and go
to zero at infinity or, equivalently, the solution to Euler–Lagrange equations

w1(x′, 0, 0) ≥ ψ(x′) in Rn−1

Law1 = 0 in Rn+1 \ {(x′, 0, 0) : w1(x′, 0, 0) = ψ(x′)}
Law1 ≤ 0 in Rn+1

lim|X|→∞w1(X) = 0.

(5.117)

Since a ∈ (−1, 0), it makes sense to say that the solution sits above the ψ on the
set {xn = y = 0}.

The thin obstacle problem for (−∆)s in Rn with s ∈ (1/2, 1) Our second problem is
the fractional thin obstacle problem. That is, we consider

w2(x′, 0) ≥ ψ(x′) in Rn−1

(−∆)sw2 = 0 in Rn \ {(x′, 0) : w2(x′, 0) = ψ(x′)}
(−∆)sw2 ≤ 0 in Rn

lim|x|→∞w2(x) = 0.

(5.118)

The obstacle problem for (−∆)s−
1
2 in Rn−1 with s ∈ (1/2, 1). Our third and final

problem is the obstacle problem for the fractional Laplacian (−∆)s−
1
2 in Rn−1. This

problem is classical already, and its Euler–Lagrange equations are
w3(x′) ≥ ψ(x′) in Rn−1

(−∆)s−
1
2w3 = 0 in Rn−1 \ {x′ : w3(x′) = ψ(x′)}

(−∆)s−
1
2w3 ≤ 0 in Rn−1

lim|x′|→∞w3(x′) = 0.

(5.119)

Proposition 5.60. If w1(x′, xn, y) is the solution to (5.117), then w2(x′, xn) =
w1(x′, xn, 0) is the solution to (5.118), and w3(x′) = w2(x′, 0) = w1(x′, 0, 0) is the
solution to (5.119).

Proof. The fact that w2(x′, xn) is a solution to (5.118) comes from the extension
problem for the fractional Laplacian (see [CS07]). The fact that w3(x′) solves (5.119)
is due to Lemma 5.41 and Proposition 5.42.



Chapter 6

Free boundary regularity for
almost every solution to the
Signorini problem

We investigate the regularity of the free boundary for the Signorini problem in Rn+1.
It is known that regular points are (n− 1)-dimensional and C∞. However, even for
C∞ obstacles ϕ, the set of non-regular (or degenerate) points could be very large —
e.g. with infinite Hn−1 measure.

The only two assumptions under which a nice structure result for degenerate
points has been established are: when ϕ is analytic, and when ∆ϕ < 0. However,
even in these cases, the set of degenerate points is in general (n− 1)-dimensional —
as large as the set of regular points.

In this work, we show for the first time that, “usually”, the set of degenerate
points is small. Namely, we prove that, given any C∞ obstacle, for almost every
solution the non-regular part of the free boundary is at most (n − 2)-dimensional.
This is the first result in this direction for the Signorini problem.

Furthermore, we prove analogous results for the obstacle problem for the frac-
tional Laplacian (−∆)s, and for the parabolic Signorini problem. In the parabolic
Signorini problem, our main result establishes that the non-regular part of the free
boundary is (n− 1− α◦)-dimensional for almost all times t, for some α◦ > 0.

Finally, we construct some new examples of free boundaries with degenerate
points.

6.1 Introduction

The Signorini problem (also known as the thin or boundary obstacle problem) is a
classical free boundary problem that was originally studied by Antonio Signorini in
connection with linear elasticity [Sig33, Sig59, KO88]. The problem gained further
attention in the seventies due to its connection to mechanics, biology, and even
finance — see [DL76], [Mer76, CT04], and [Ros18] —, and since then it has been
widely studied in the mathematical community; see [Caf79, AC04, CS07, ACS08,
GP09, PSU12, KPS15, KRS19, DGPT17, FoSp18, CSV19, JN17, FJ20, Shi18] and
references therein.
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The main goal of this work is to better understand the size and structure of the
non-regular part of the free boundary for such problem.

In particular, our goal is to prove for the first time that, for almost every solution
(see Remark 6.1), the set of non-regular points is small. As explained in detail below,
this is completely new even when the obstacle ϕ is analytic or when it satisfies
∆ϕ < 0.

6.1.1 The Signorini problem

Let us denote x = (x′, xn+1) ∈ Rn × R and B+
1 = B1 ∩ {xn+1 > 0}. We say that

u ∈ H1(B+
1 ) is a solution to the Signorini problem with a smooth obstacle ϕ defined

on B′1 := B1 ∩ {xn+1 = 0} if u solves{
∆u = 0 in B+

1

min{−∂xn+1u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0}, (6.1)

in the weak sense, for some boundary data g ∈ C0(∂B1 ∩ {xn+1 ≥ 0}). Solutions to
the Signorini problem are minimizers of the Dirichlet energy∫

B+
1

|∇u|2,

under the constrain u ≥ ϕ on {xn+1 = 0}, and with boundary conditions u = g on
∂B1 ∩ {xn+1 > 0}.

Problem (6.1) is a free boundary problem, i.e., the unknowns of the problem are
the solution itself, and the contact set

Λ(u) :=
{
x′ ∈ Rn : u(x′, 0) = ϕ(x′)

}
× {0} ⊂ Rn+1,

whose topological boundary in the relative topology of Rn, which we denote Γ(u) =
∂Λ(u) = ∂{x′ ∈ Rn : u(x′, 0) = ϕ(x′)} × {0}, is known as the free boundary.

Solutions to (6.1) are known to be C1, 1
2 (see [AC04]), and this is optimal.

6.1.2 The free boundary

While the optimal regularity of the solution is already known, the structure and
regularity of the free boundary is still not completely understood. The main known
results are the following.

The free boundary can be divided into two sets,

Γ(u) = Reg(u) ∪Deg(u),

the set of regular points,

Reg(u) :=

{
x = (x′, 0) ∈ Γ(u) : 0 < cr3/2 ≤ sup

B′r(x
′)

(u− ϕ) ≤ Cr3/2, ∀r ∈ (0, r◦)

}
,
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and the set of non-regular points or degenerate points

Deg(u) :=

{
x = (x′, 0) ∈ Γ(u) : 0 ≤ sup

B′r(x
′)

(u− ϕ) ≤ Cr2, ∀r ∈ (0, r◦)

}
, (6.2)

(see [ACS08]). Alternatively, each of the subsets can be defined according to the
order of the blow-up at that point. Namely, the set of regular points are those whose
blow-up is of order 3

2
, and the set of degenerate points are those whose blow-up is

of order κ for some κ ∈ [2,∞].
Let us denote Γκ the set of free boundary points of order κ. That is, those points

whose blow-up is homogeneous of order κ (we will be more precise about it later on,
in Section 6.2; the definition of Γ∞ is slightly different). Then, it is well known that
the free boundary can be divided as

Γ(u) = Γ3/2 ∪ Γeven ∪ Γodd ∪ Γhalf ∪ Γ∗ ∪ Γ∞, (6.3)

where:

� Γ3/2 = Reg(u) is the set of regular points. They are an open (n− 1)-dimensional
subset of Γ(u), and it is C∞ (see [ACS08, KPS15, DS16]).

� Γeven =
⋃
m≥1 Γ2m(u) denotes the set of points whose blow-ups have even homo-

geneity. Equivalently, they can also be characterised as those points of the free
boundary where the contact set has zero density, and they are often called singu-
lar points. They are contained in the countable union of C1 (n− 1)-dimensional
manifolds; see [GP09].

� Γodd =
⋃
m≥1 Γ2m+1(u) is, a priori, also an at most (n − 1)-dimensional subset

of the free boundary and it is (n − 1)-rectifiable (see [FoSp18, KW13, FoSp19,
FRS19]), although it is not actually known whether it exists.

� Γhalf =
⋃
m≥1 Γ2m+3/2(u) corresponds to those points with blow-up of order 7

2
,

11
2

, etc. They are much less understood than regular points. The set Γhalf is an
(n− 1)-dimensional subset of the free boundary and it is (n− 1)-rectifiable (see
[FoSp18, KW13, FoSp19]).

� Γ∗ is the set of all points with homogeneities κ ∈ (2,∞), with κ /∈ N and
κ /∈ 2N− 1

2
. This set has Hausdorff dimension at most n−2, so it is always small,

see [FoSp18, KW13, FoSp19].

� Γ∞ is the set of points with infinite order (namely, those points at which u − ϕ
vanishes at infinite order, see (6.24)). For general C∞ obstacles it could be a huge
set, even a fractal set of infinite perimeter with dimension exceeding n−1. When
ϕ is analytic, instead, Γ∞ is empty.

Overall, we see that, for general C∞ obstacles, the free boundary could be really
irregular.

The only two assumptions under which a better regularity is known are:
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◦ ∆ϕ < 0 on B′1 and u = 0 on ∂B1 ∩ {xn+1 > 0}. In this case, Γ(u) = Γ3/2 ∪ Γ2

and the set of degenerate points is locally contained in a C1 manifold; see
[BFR18].

◦ ϕ is analytic. In this case, Γ∞ = ∅ and Γ is (n − 1)-rectifiable, in the sense
that it is contained in a countable union of C1 manifolds, up to a set of zero
Hn−1-measure, see [FoSp18, KW13].

The goal of this paper is to show that, actually, for most solutions, all the sets
Γeven, Γodd, Γhalf , and Γ∞ are small, namely, of dimension at most n−2. This is new
even in case that ϕ is analytic and ∆ϕ < 0.

6.1.3 Our results

We will prove here that, even if degenerate points could potentially constitute a large
part of the free boundary (of the same dimension as the regular part, or even higher),
they are not common. More precisely, for almost every obstacle (or for almost every
boundary datum), the set of degenerate points is small. This is the first result in
this direction for the Signorini problem, even for zero obstacle.

Let gλ ∈ C0(∂B1) for λ ∈ [0, 1], and let us denote by uλ the family of solutions
to (6.1), satisfying

uλ = gλ, on ∂B1 ∩ {xn+1 > 0}, (6.4)

with gλ satisfying

gλ+ε ≥ gλ, on ∂B1 ∩ {xn+1 > 0}
gλ+ε ≥ gλ + ε on ∂B1 ∩ {xn+1 ≥ 1

2
}, (6.5)

for all λ ∈ [0, 1), ε ∈ (0, 1− λ).
Our main result reads as follows.

Theorem 6.1. Let uλ be any family of solutions of (6.1) satisfying (6.4)-(6.5), for
some obstacle ϕ ∈ C∞. Then, we have

dimH
(
Deg(uλ)

)
≤ n− 2 for a.e. λ ∈ [0, 1],

where Deg(uλ) is defined by (6.2).
In other words, for a.e. λ ∈ [0, 1], the free boundary Γ(uλ) is a C∞ (n − 1)-

dimensional manifold, up to a closed subset of Hausdorff dimension n− 2.

This result is completely new even for analytic obstacles, or for ϕ = 0. No result
of this type was known for the Signorini problem.

The results we prove (see Theorem 6.21 and Proposition 6.25) are actually more
precise and concern the Hausdorff dimension of Γ≥κ(uλ), the set of points of order
greater or equal than κ. We will show that, if 3 ≤ κ ≤ n + 1, then Γ≥κ(uλ) has
dimension n − κ + 1, while for κ > n + 1, then Γ≥κ(uλ) is empty for almost every
λ ∈ [0, 1]. We refer to [Mat95, Chapter 4] for the definition of Hausdorff dimension.

Theorem 6.1 also holds true for non-smooth obstacles. Namely, we will prove
that for ϕ ∈ C3,1 we have dimH (Deg(uλ)) ≤ n − 2 for a.e. λ ∈ [0, 1]. In particular,
the free boundary Γ(uλ) is C2,α up to a subset of dimension n− 2 for a.e. λ ∈ [0, 1];
see [JN17, KPS15, AR19].
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Remark 6.1. In the context of the theory of prevalence, [HSY92] (see also [OY05]),
Theorem 6.1 says that the set of solutions satisfying that the free boundary has a
small degenerate set is prevalent within the set of solutions (say, given by C0 or L∞

boundary data). Alternatively, the set of solutions whose degenerate set is not lower
dimensional is shy.

In particular, we can say that for almost every boundary data (see [OY05, Defi-
nition 3.1]) the corresponding solution has a lower dimensional degenerate set. This
is because adding a constant as in (6.5) is a 1-probe (see [OY05, Definition 3.5]) for
the set of boundary data, thanks to Theorem 6.1.

We will establish the following finer result regarding the set Γ∞(uλ). While it
is known that it can certainly exist for some solutions uλ (see Proposition 6.8), we
show that it will be empty for almost every λ ∈ [0, 1]:

Theorem 6.2. Let uλ be any family of solutions of (6.1) satisfying (6.4)-(6.5), for
some obstacle ϕ ∈ C∞. Then, there exists E ⊂ [0, 1] such that dimH E = 0 and

Γ∞(uλ) = ∅,

for every λ ∈ [0, 1] \ E.
Furthermore, for every h > 0, there exists some Eh ⊂ [0, 1] such that dimM Eh = 0

and
Γ∞(uλ) ∩B1−h = ∅,

for every λ ∈ [0, 1] \ Eh.

We remark that in the previous result, dimH denotes the Hausdorff dimension,
whereas dimM denotes the Minkowski dimension (we refer to [Mat95, Chapters 4
and 5]). As such, the second part of the result is much stronger than the first one
(e.g., 0 = dimH

(
Q ∩ [0, 1]

)
< dimM

(
Q ∩ [0, 1]

)
= 1).

Let us briefly comment on the condition (6.5). Notice that such condition can be
reformulated in many ways. In the simplest case, one could simply take gλ = g0±λ.
Alternatively, one could take a family of obstacles ϕλ = ϕ0±λ (with fixed boundary
conditions); this is equivalent to fixing the obstacle ϕ0 and moving the boundary
data gλ = g ∓ λ. Furthermore, one could also consider gλ = g0 + λΨ for any Ψ ≥ 0,
Ψ 6≡ 0. Then, even if the second condition in (6.5) is not directly fulfilled, a simple
use of strong maximum principle makes it true in some smaller ball B1−ρ, so that
gλ+ε ≥ gλ + c(ρ)ε on ∂B1−ρ ∩ {xn+1 ≥ 1

2
− ρ/2}. By rescaling the function and the

domain, we can rewrite it as (6.5).

Regularity results for almost every solution have been established before in the
context of the classical obstacle problem by Monneau in [Mon03]. In such problem,
however, all free boundary points have homogeneity 2, and non-regular points are
characterised by the density of the contact set around them: non-regular points are
those at which the contact set has density zero. In the Signorini problem, instead,
the structure of non-regular points is quite different, and they are characterised by
the growth of u around them (recall (6.2) and the definition of Γeven, Γodd, Γhalf , and
Γ∞). This is why the approach of [Mon03] cannot work in the present context.

More recently, the results of Monneau for the classical obstacle problem have
been widely improved by Figalli, the second author, and Serra in [FRS19]. The
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results in [FRS19] are based on very fine higher order expansions at singular points,
which then lead to a better understanding of solutions around them, combined with
new dimension reduction arguments and a cleaning lemma to get improved bounds
on higher order expansions.

Here, due to the different nature of the problem, we do not need any fine ex-
pansion at non-regular points nor any dimension reduction. Most of our arguments
require only the growth of solutions at different types of degenerate points, combined
with appropriate barriers, and Harnack-type inequalities. The starting point of our
results is to use a simple (but key) GMT lemma from [FRS19] (see Lemma 6.19
below).

6.1.4 Parabolic Signorini problem

The previous results use rather general techniques that suitably modified can be
applied to other situations. We show here that using a similar approach as in the
elliptic case, one can deduce results regarding the size of the non-regular part of the
free boundary for the parabolic version of the Signorini problem, for almost every
time t.

We say that a function u = u(x, t) ∈ H1,0(B+
1 × (−1, 0]) (see [DGPT17, Chapter

2]) solves the parabolic Signorini problem with stationary obstacle ϕ = ϕ(x) if u
solves {

∂tu−∆u = 0 in B+
1 × (−1, 0]

min{−∂xn+1u, u− ϕ} = 0 on B1 ∩ {xn+1 = 0} × (−1, 0],
(6.6)

in the weak sense (cf. (6.1)). A thorough study of the parabolic Signorini problem
was made by Danielli, Garofalo, Petrosyan, and To, in [DGPT17].

The parabolic Signorini problem is a free boundary problem, where the free
boundary belongs to B′1 × (−1, 0] and is defined by

Γ(u) := ∂B′1×(−1,0]

{
(x′, t) ∈ B′1 × (−1, 0] : u(x′, 0, t) > ϕ(x′)

}
,

where ∂B′1×(−1,0] denotes the boundary in the relative topology of B′1 × (−1, 0]. Anal-
ogously to the elliptic Signorini problem, the free boundary can be divided into
regular points and degenerate (or non-regular) points:

Γ(u) = Reg(u) ∪Deg(u).

The set of regular points are those where parabolic blow-ups are parabolically
3
2
-homogeneous. On the other hand, degenerate points are those where parabolic

blow-ups of the solution are parabolically κ-homogeneous, with κ ≥ 2 (alternatively,
the solution detaches at most quadratically from the obstacle in parabolic cylinders,
Br× (−r2, 0]). Further stratifications according to the homogeneity of the parabolic
blow-ups can be done in an analogous way to the elliptic problem, see [DGPT17].

The set of regular points Reg(u) is a relatively open subset of Γ(u) and the free
boundary is smooth (C1,α) around them (see [DGPT17, Chapter 11]). The set of
degenerate points, however, could be even larger than the set of regular points.

In this manuscript we show that, under the appropriate conditions, for a.e. time
t ∈ (−1, 0] the set of degenerate points has dimension (n− 1− α◦) for some α◦ > 0
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depending only on n. That is, for a.e. time, the free boundary is mostly comprised
of regular points, and therefore, it is smooth almost everywhere.

In order to be able to get results of this type we must impose some conditions
on the solution. We will assume that

ut > 0 in B+
1 ∪ [(B′1 × (−1, 0]) ∩ {u > ϕ}] , (6.7)

that is, wherever the solution u is not in contact with the obstacle ϕ, it is strictly
monotone. Alternatively, by the strong maximum principle, the condition can be
rewritten as

ut ≥ 0, in B+
1 × (−1, 0],

ut ≥ 1, in
(
B+

1 ∩ {xn+1 ≥ 1/2}
)
× (−1, 0],

up to a constant multiplicative factor.
Condition (6.7) is somewhat necessary. If the strict monotonicity was not re-

quired, we could be dealing with a bad solution (with large non-regular set) of the
elliptic problem for a set of times of positive measure, and therefore, we could not
expect a result like the one we prove. On the other hand, if one allowed changes in
the sign of ut (alternatively, one allowed non-stationary obstacles), then the result
is also not true (see, for instance, the example discussed in [DGPT17, Figure 12.1]).

Condition (6.7) is actually quite natural. One of the main applications of the
parabolic Signorini problem is the study of semi-permeable membranes (see [DL76,
Section 2.2]):

We consider a domain (B+
1 ) and a thin membrane (B′1), which is semi-permeable:

that is, a fluid can pass through B′1 into B+
1 freely, but outflow of the fluid is

prevented by the membrane. If we suppose that there is a given liquid pressure
applied to the membrane B′1 given by ϕ, and we denote u(x, t) the inside pressure of
the liquid in B+

1 , then the parabolic Signorini problem (6.6) describes the evolution
of the inside pressure with time. In particular, since liquid can only enter B+

1 (and we
assume no liquid can leave from the other parts of the boundary), pressure inside the
domain can only become higher, and the solution will be such that ut > 0. The same
condition also appears in volume injection through a semi-permeable wall ([DL76,
subsections 2.2.3 and 2.2.4]).

Our result reads as follows.

Theorem 6.3. Let ϕ ∈ C∞ and let u be a solution to (6.6) satisfying (6.7). Then,

dimH
(
Deg(u) ∩ {t = t◦}

)
≤ n− 1− α◦ for a.e. t◦ ∈ (−1, 0],

for some α◦ > 0 depending only on n.
In particular, for a.e. t◦ ∈ (−1, 0] the free boundary Γ(u) ∩ {t = t◦} is a C1,α

(n−1)-dimensional manifold, up to a closed subset of Hausdorff dimension n−1−α0.

When ϕ is analytic, then the free boundary is actually C∞ around regular points.
Higher regularity of the free boundary is also expected for smooth obstacles, but so
far it is only known when ϕ is analytic; see [BSZ17].

It is important to remark that the parabolic case presents some extra difficulties
with respect to the elliptic one, and in fact we do not know if a result analogous to
Theorem 6.2 holds in this context. This means that points of order∞ could a priori
still appear for all times (even though by Theorem 6.3 they are lower-dimensional
for almost every time).
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6.1.5 The fractional obstacle problem

The Signorini problem in Rn+1 can be reformulated in terms of a fractional obsta-
cle problem with operator (−∆)

1
2 in Rn. Conversely, fractional obstacle problems

(with the operator (−∆)s, s ∈ (0, 1)) can also be reformulated in terms of thin
obstacle problems with weights. In this work we will generally deal with the thin
obstacle problem with a weight, so that the results from subsection 6.1.3 can also
be formulated for the fractional obstacle problem.

Given an obstacle ϕ ∈ C∞(Rn) such that

{ϕ > 0} ⊂⊂ Rn, (6.8)

the fractional obstacle problem with obstacle ϕ in Rn (n ≥ 2) is
(−∆)sv = 0 in Rn \ {v = ϕ}
(−∆)sv ≥ 0 in Rn

v ≥ ϕ in Rn

v(x) → 0 as |x| → ∞.
(6.9)

Solutions to the fractional obstacle problem are C1,s (see [CSS08]). We denote
Λ(v) = {v = ϕ} the contact set, and Γ(v) = ∂Λ(v) the free boundary. As in the
Signorini problem (which corresponds to s = 1

2
) the free boundary can be partitioned

into regular points

Reg(v) :=

{
x′ ∈ Γ(v) : 0 < cr1+s ≤ sup

B′r(x
′)

(v − ϕ) ≤ Cr1+s, ∀r ∈ (0, r◦)

}
,

and non-regular (or degenerate) points,

Deg(v) :=

{
x′ ∈ Γ(v) : 0 ≤ sup

B′r(x
′)

(v − ϕ) ≤ Cr2, ∀r ∈ (0, r◦)

}
. (6.10)

More precisely, if we denote by Γκ(v) the free boundary points of order κ, then the
free boundary Γ(v) can be further stratified analogously to (6.3) as

Γ(v) = Γ1+s ∪
( ⋃
m≥1

Γ2m

)
∪
( ⋃
m≥1

Γ2m+2s

)
∪
( ⋃
m≥1

Γ2m+1+s

)
∪ Γ∗ ∪ Γ∞. (6.11)

Here, Γ1+s = Reg(v) is the set of regular points ([CSS08, Sil07]). Again, it is an
open subset of the free boundary, which is smooth. Similarly, Γ2m for m ≥ 1 are
often called singular points, and are those where the contact set has zero measure
(see [GR19]). Together with the sets Γ2m+2s and Γ2m+1+s for m ≥ 1, they are an
(n−1)-dimensional rectifiable subset of the free boundary, [GR19, FoSp19]. Finally,
Γ∗ denotes the set containing the remaining homogeneities (except infinite), and
has dimension n − 2; and Γ∞ denotes those boundary points where the solution is
approaching the obstacle faster than any power (i.e., at infinite order). As before,
the set Γ∞ could have dimension even higher than n− 1.

The type of result we want to prove in this setting regarding regularity for
most solutions is concerned with global perturbations of the obstacle (rather than



229

boundary perturbations, as before). That is, we will consider obstacles fulfilling
(6.8).

We define the set of solutions indexed by λ ∈ [0, 1] to the fractional obstacle
problem as 

(−∆)svλ = 0 in Rn \ {vλ = ϕ}
(−∆)svλ ≥ 0 in Rn

vλ ≥ ϕ− λ in Rn

vλ(x) → 0 as |x| → ∞.
(6.12)

Then, our main result reads as follows.

Theorem 6.4. Let vλ be any family of solutions solving (6.12), for some obstacle
ϕ ∈ C∞ fulfilling (6.8). Then, we have

dimH
(
Deg(vλ)

)
≤ n− 2, for a.e. λ ∈ [0, 1],

where Deg(vλ) is defined by (6.10).
In other words, for a.e. λ ∈ [0, 1], the free boundary Γ(vλ) is a C∞ (n − 1)-

dimensional manifold, up to a closed subset of Hausdorff dimension n− 2.

As before, we actually prove more precise results (see Theorem 6.21 and Propo-
sition 6.25). We establish an estimate for the Hausdorff dimension of Γ≥κ(vλ). We
show that, for 2 ≤ κ−2s ≤ n, then dimH Γ≥κ(vλ) ≤ n−κ+2s, and if κ > n+2s, then
Γ≥κ(vλ) is empty for almost every λ ∈ [0, 1]. Similarly, we can also reduce the regu-
larity of the obstacle to ϕ ∈ C4,α so that, for a.e. λ ∈ [0, 1], dimH (Deg(vλ)) ≤ n− 2
(in particular, the free boundary Γ(vλ) is C3,α up to a subset of dimension n− 2 for
a.e. λ ∈ [0, 1]; see [JN17, AR19]).

Theorem 6.4 is analogous to Theorem 6.1. On the other hand, we also have that:

Theorem 6.5. Let vλ be any family of solutions solving (6.12), for some obstacle
ϕ ∈ C∞ fulfilling (6.8). Then, there exists E ⊂ [0, 1] such that dimH E = 0 and

Γ∞(vλ) = ∅,

for all λ ∈ [0, 1] \ E.
Furthermore, for every h > 0, there exists some Eh ⊂ [0, 1] such that dimM Eh = 0

and

Γ∞(vλ) ∩B1−h = ∅,

for every λ ∈ [0, 1] \ Eh.

That is, analogously to Theorem 6.2, we can also control the size of λ for which
the free boundary points of infinite order exist.

6.1.6 Examples of degenerate free boundary points

Let us finally comment on the non-regular part of the free boundary, that is,

Deg(u) = Γeven ∪ Γodd ∪ Γhalf ∪ Γ∗ ∪ Γ∞. (6.13)
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The main open questions regarding each of the subsets of the degenerate part of
the free boundary are:

Q1: Are there non-trivial examples (e.g., the limit of regular points) of singular
points in Γeven?

Q2: Do points in Γodd exist?

Q3: Can one construct arbitrary contact sets with free boundary formed entirely of
Γhalf (alternatively, do they exist apart from the homogeneous solutions)?

Q4: Do points in Γ∗ exist?

Q5: How big can the set Γ∞ be?

In this paper, we answer questions Q1, Q3, and Q5. (Questions Q2 and Q4 remain
open.)

Let us start with Q1. The set Γeven =
⋃
m≥1 Γ2m, often called the set of singular

points, is an (n − 1)-dimensional subset of the free boundary. Examples of free
boundary points belonging to Γeven are easy to construct as level sets of homogeneous
harmonic polynomials, such as x2

1 − x2
n+1, in which case we have Γ = Γeven = {x1 =

0}. They are also expected to appear in less trivial situations but, as far as we know,
none has been constructed so far that appears as limit of regular points (i.e., on the
boundary of the interior of the contact set). Here, we show that:

Proposition 6.6. There exists a boundary data g such that the free boundary of the
solution to the Signorini problem (6.1) with ϕ = 0 has a sequence of regular points
(of order 3/2) converging to a singular point (of order 2).

The proof of the previous result is given in Section 6.5. In contrast to what
occurs with the classical obstacle problem, the construction of singular points does
not seem to immediately arise from continuous perturbations of the boundary value
under symmetry assumptions. Instead, one has to be aware that there could appear
other points (different from regular, but not in Γeven). Thus, our strategy is based on
being in a special setting that avoids the appearance of higher order free boundary
points.

On the other hand, regarding question Q3, it is known that examples of such
points can be constructed through homogeneous solutions, in which case they can
even appear as limit of regular (or lower frequency) points (see [CSV19, Example 1]).
Until now, however, it was not clear whether such points could appear in non-trivial
(say, non-homogeneous) situations.

We show that, given any smooth domain Ω ⊂ Rn, one can find a solution to the
Signorini problem whose contact set is exactly given by Ω, and whose free boundary
is entirely made of points of order 7

2
(or 11

2
, etc.). More generally, we show that given

Ω, the contact set for the fractional obstacle problem can be made up entirely of
points belonging to

⋃
m≥1 Γ2m+1+s (the case s = 1

2
corresponding to the Signorini

problem).

Proposition 6.7. Let Ω ⊂ Rn be any given C∞ bounded domain, and let m ∈ N.
Then, there exists an obstacle ϕ ∈ C∞(Rn) with ϕ→ 0 at ∞, and a global solution



231

to the obstacle problem 
(−∆)su ≥ 0 in Rn

(−∆)su = 0 in {u > ϕ}
u ≥ ϕ in Rn,

u(x) → 0 as |x| → ∞,

such that the contact set is Λ(u) = {u = ϕ} = Ω, and all the points on the free
boundary ∂Λ(u) have frequency 2m+ 1 + s.

The proof of the previous proposition is constructive: we show a way in which
such solutions can be constructed, using some results from [Gru15, AR19].

Finally, we also answer question Q5, that deals with the set Γ∞. Not much has
been discussed about it in the literature, though its lack of structure was somewhat
known by the community. For instance, the following result is not difficult to prove:

Proposition 6.8. For any ε > 0 there exists a non-trivial solution u and an obstacle
ϕ ∈ C∞(Rn) such that 

(−∆)su ≥ 0 in Rn

(−∆)su = 0 in {u > ϕ}
u ≥ ϕ in Rn,

and the boundary of the contact set, Λ(u) = {u = ϕ}, fulfils

dimH ∂Λ(u) ≥ n− ε.

This shows that, in general, there is no hope to get nice structure results for the
full free boundary for C∞ obstacles. However, thanks to Theorem 6.5 above we know
that such behaviour is extremely rare. As before, we are answering question Q5 in
the generality of the fractional obstacle problem; the Signorini problem corresponds
to the case s = 1

2
.

6.1.7 Organization of the paper

The paper is organised as follows:

In Section 6.2 we study the behaviour of degenerate points under perturbation.
In particular, we show how the free boundary moves around them when perturbing
monotonically the solution to the obstacle problem. We treat separately general de-
generate points, and those of order 2. In Section 6.3 we study the dimension of the
set Γ2 by means of an appropriate application of Whitney’s extension theorem. In
Section 6.4 we prove the main results of this work, Theorems 6.1, 6.2, 6.4, and 6.5.
In Section 6.5 we construct the examples of degenerate points introduced in Sub-
section 6.1.6, proving Propositions 6.6, 6.7, and 6.8. Finally, in Section 6.6 we deal
with the parabolic Signorini problem and prove Theorem 6.3.
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6.2 Behaviour of non-regular points under per-

turbations

Let B1 ⊂ Rn+1, B′1 = {x′ ∈ Rn : |x′| < 1} ⊂ Rn and let

ϕ : B′1 → R, ϕ ∈ Cτ,α(B′1), τ ∈ N≥2, α ∈ (0, 1] (6.14)

be our obstacle on the thin space. Let us consider the fractional operator

Lau := div(|xn+1|a∇u) = div(|xn+1|1−2s∇u), a := 1− 2s,

with a ∈ (−1, 1), and (0, 1) 3 s = 1−a
2

. We will interchangeably use both a and s
depending on the situation. (In general, we will use a for the weight exponent, and
s for all the other situations.)

Let us suppose that we have a family of increasing even solutions uλ for 0 ≤ λ ≤ 1
to the fractional obstacle problem

Lauλ = 0 in B1 \ ({xn+1 = 0} ∩ {uλ = ϕ})
Lauλ ≤ 0 in B1

uλ ≥ ϕ on {xn+1 = 0},
(6.15)

for a given obstacle ϕ satisfying (6.14). In particular, {uλ}0≤λ≤1 satisfy

uλ(x
′, xn+1) = uλ(x

′,−xn+1) in B1, for λ ≥ 0
uλ′ ≥ uλ in B1, for λ′ ≥ λ

uλ+ε ≥ uλ + ε in B1 ∩ {|xn+1| ≥ 1
2
}, for λ, ε ≥ 0

‖uλ‖C2s(B1) ≤ M, in B1 for λ ≥ 0,

(6.16)

for some constant M independent of λ, that will depend on the obstacle (see (6.19)-

(6.20) below). Notice that solutions are C1,s in B′1/2 (or in B+
1/2), but only C2s in B1

(C0,1 when s = 1
2
).

We denote Λ(uλ) := {x′ : uλ(x
′, 0) = ϕ(x′)} × {0} ⊂ Rn the contact set, and its

boundary in the relative topology of Rn, ∂Λ(uλ) = ∂{x′ : uλ(x′, 0) = ϕ(x′)}×{0} is
the free boundary. Note that, from the monotonicity assumption,

Λ(uλ) ⊂ Λ(uλ′) for λ ≥ λ′. (6.17)

Lemma 6.9. Let uλ denote the family of solutions to (6.15)-(6.16). Then, for any
h > 0 small, x◦ ∈ B1−h, and ε > 0,

uλ+ε(x◦)− uλ(x◦)
ε

≥ c dist2s(x◦,Λ(uλ)),

for some constant c > 0 depending only on n, s, and h. In particular,

∂+
λ uλ(x◦) := lim inf

ε↓0

uλ+ε(x◦)− uλ(x◦)
ε

≥ c dist2s(x◦,Λ(uλ)),

for some constant c > 0 depending only on n, s, and h.



233

Proof. Fix some λ > 0 and ε > 0, and define

δλ,εuλ(x) =
uλ+ε(x)− uλ(x)

ε
.

We will show that the result holds for δλ,εuλ for some constant c independent of
ε > 0, and in particular, it also holds after taking the lim inf.

Notice that δλ,εuλ(x) ≥ 0 from the monotonicity of uλ in λ. Notice, also, that
δλ,εuλ ≥ 1 in B1 ∩ {xn+1 ≥ 1

2
}, form the third condition in (6.16). On the other

hand,
Laδλ,εuλ = 0 in B1 \ Λ(uλ),

thanks to (6.17). Now, let

r :=
h

4
dist(x◦,Λ(uλ))

and we define the barrier function ψ : B1 → R as the solution to
Laψ = 0 in B1 \ {xn+1 = 0}
ψ = 0 on {xn+1 = 0}
ψ = 1 on ∂B1 ∩ {|xn+1| ≥ 1

2
}

ψ = 0 on ∂B1 ∩ {|xn+1| < 1
2
}.

Then, by maximum principle,

δλ,εuλ ≥ ψ in B1.

Notice that, by the boundary Harnack inequality for Muckenhoupt weights A2 (see
[FJK83]), ψ is comparable to |xn+1|2s (since both vanish continuously at xn+1 = 0,
and both are a-harmonic), and in particular, there exists some c′ > 0 small depending
only on n, s, and h, such that ψ ≥ c′|xn+1|2s in Br(x◦). We have that

Laδλ,εuλ = 0, δλ,εuλ ≥ ψ ≥ c′|xn+1|2s in Br(x◦).

Now, if x◦ = (x′◦, x◦,n+1) is such that |x◦,n+1| ≥ r
4
, it is clear that δλ,εuλ(x◦) ≥ cr2s.

On the other hand, if |x◦,n+1| ≤ r
4
, then Laδλ,εuλ = 0 in Br/2((x′◦, 0)), so that

applying Harnack’s inequality in Br/4((x′◦, 0)) to δλ,εuλ,

δλ,εuλ(x◦) ≥ inf
Br/4((x′◦,0))

δλ,εuλ ≥
1

C
sup

Br/4((x′◦,0))

δλ,εuλ ≥
c′r2s

42sC
= cr2s,

for some c depending only on n, s, and h. Thus,

δλ,εuλ(x◦) ≥ cr2s = c dist2s(x◦,Λ(uλ)),

as we wanted to see.

Let 0 ∈ ∂Λ(uλ) be a free boundary point for uλ. Let us denote Qτ (x
′) the

Taylor expansion of ϕ(x′) around 0 up to order τ , and we denote Qa
τ (x) its unique

even a-harmonic extension (see [GR19, Lemma 5.2]) to Rn+1 (LaQ
a
τ (x) = 0, and

Qa
τ (x
′, 0) = Qτ (x

′)). Let us define

ūλ(x
′, xn+1) = uλ(x

′, xn+1)−Qa
τ (x
′, xn+1) +Qτ (x

′)− ϕ(x′).
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Then ūλ(x
′, xn+1) solves the zero obstacle problem with a right-hand side

Laūλ = |xn+1|af in B1 \ ({xn+1 = 0} ∩ {ūλ = 0})
Laūλ ≤ |xn+1|af in B1

ūλ ≥ 0 on {xn+1 = 0},
(6.18)

where
f = f(x′) = ∆x′(Qτ (x

′)− ϕ(x′)). (6.19)

In particular, notice that since Qτ (x
′) is the Taylor approximation of ϕ up to order

τ , we have that
|f(x′)| ≤M |x′|τ+α−2 (6.20)

for some M > 0 depending only on ϕ. We take M larger if necessary, so that it
coincides with the one of (6.16).

We consider the generalized frequency formula, for θ ∈ (0, α), and for some Cθ
(that is independent of the point around which is taken)

Φτ,α,θ(r, ūλ) := (r + Cθr
1+θ)

d

dr
log max

{
H(r), rn+a+2(τ+α−θ)

}
, (6.21)

where

H(r) :=

∫
∂Br

ū2
λ|xn+1|a.

Then, by [GR19, Proposition 6.1] (see also [CSS08, GP09]) we know that Φτ,α,θ(r, ūλ)
is nondecreasing for 0 < r < r◦ for some r◦. In particular, Φτ,α,θ(0

+, ūλ) is well
defined, and by [GP09, Lemma 2.3.2],

n+ 3 ≤ Φτ,α,θ(0
+, ūλ) ≤ n+ a+ 2(τ + α− θ).

We say that 0 ∈ ∂Λ(uλ) is a point of order κ if Φτ,α,θ(0
+, ūλ) = n+ 1− 2s+ 2κ.

In particular, by the previous inequalities

1 + s ≤ κ ≤ τ + α− θ

Thanks to [GR19, Lemma 6.4] (see, also, [BFR18, Lemma 7.1]) we know that for a
point of order greater or equal than κ, for κ < τ + α− θ, then we have

sup
Br

|ūλ| ≤ CMr
κ, (6.22)

for some constant CM depending only on M , τ , α, θ.
In general, for any point x◦ ∈ ∂Λ(uλ), we can define ūx◦λ analogously to before

as follows.

Definition 6.1. Let x◦ ∈ ∂Λ(uλ). We define,

ūx◦λ (x) = uλ(x
′ + x′◦, xn+1)−Qa,x◦

τ (x′, xn+1) +Qx◦
τ (x′)− ϕ(x′ + x′◦), (6.23)

where Qx◦
τ (x′) is the Taylor expansion of order τ of ϕ(x′◦ + x′), and Qa,x◦

τ (x′) is its
unique even harmonic extension to Rn+1.
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(Notice that, on the thin space, ūx◦λ (x′, 0) = ūλ(x
′ + x′◦, 0), but this is not true

outside the thin space.) Then, ūx◦λ (x) solves a zero obstacle problem with a right-
hand side in B1−|x◦| (in fact, in x◦+B1). With this, we can define the free boundary
points of uλ of order κ, with 1 + s ≤ κ < τ + α− θ, as

Γλκ := {x◦ ∈ ∂Λ(uλ) : Φτ,α,θ(0
+, ūx◦λ ) = n+ 1− 2s+ 2κ},

and similarly

Γλ≥κ := {x◦ ∈ ∂Λ(uλ) : Φτ,α,θ(0
+, ūx◦λ ) ≥ n+ 1− 2s+ 2κ}.

Equivalently, one can define Γλ≥κ as those points where (6.22) occurs.
Notice that the previous sets are consistently defined, in the sense that if x◦ is

a free boundary point for uλ, and τ ′ ∈ N, α′ ∈ (0, 1) are such that τ ′ + α′ ≤ τ + α,
then

Φτ ′,α′,θ(0
+, ūx◦λ ) = min

{
Φτ,α,θ(0

+, ūx◦λ ), n+ 1− 2s+ 2(τ ′ + α′ − θ)
}
,

(cf. [GP09, Lemma 2.3.1]), i.e., the definition of free boundary points of order κ does
not depend on which regularity of the obstacle we consider. In particular, for C∞

obstacles we can define the points of infinite order as

Γλ∞ :=
⋂
κ≥2

Γλ≥κ. (6.24)

We will need the following lemma, similar to [ACS08, Lemma 4] and analogous
to [CSS08, Lemma 7.2].

Lemma 6.10. Let w ∈ C0(B1), and let Λ ⊂ B1 ∩ {xn+1 = 0}. There exists some
ε◦ > 0, depending only on n and a, such that if 0 < ε < ε◦ and

w ≥ 1 in B1 ∩ {|xn+1| ≥ ε}
w ≥ −ε in B1

|Law| ≤ ε|xn+1|a in B1 \ Λ
w ≥ 0 on Λ,

then w > 0 in B1/2.

Proof. Suppose that it is not true. In particular, suppose that there exists some
z = (z′, zn+1) ∈ B1/2 \ {xn+1 = 0} such that w(z) = 0. Let us define the cylinder

Q :=

{
x = (x′, xn+1) ∈ B1 : |x′ − z′| < 1

2
, |xn+1 − zn+1| <

√
1 + a

4

}
,

and let
P (x) = P (x′, xn+1) := |x′ − z′|2 − n

1 + a
x2
n+1

so that LaP = 0. Let

v(x) := w(x) +
1

n
P (x)− ε

1 + a
x2
n+1.
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Notice that v(z) = − n
n(1+a)

z2
n+1 − ε

1+a
z2
n+1 < 0. We also have that

Lav = Law − 2ε|xn+1|a ≤ −ε|xn+1|a < 0 in B1 \ Λ,

and
v ≥ 0 on Λ.

That is, v is super- a-harmonic and is negative at z ∈ Q, then it must be negative
somewhere on ∂Q. Let us check that this is not the case, to reach a contradiction.

First, notice that, assuming ε◦ <
√

1+a
4

, on ∂Q ∩ {|xn+1| ≥ ε} we have

v ≥ 1− n

16(n+ 1)
− ε

16
≥ 0.

On the other hand, on
{
|x′ − z′| = 1

2

}
∩ {|xn+1| ≤ ε} we have

v ≥ −ε+
1

n+ 1

(
1

4
− n

1 + a
ε2

)
− ε3

1 + a
> 0,

if ε is small enough depending only on n and a. Thus, v ≥ 0 on ∂Q and on Λ, and is
super- a-harmonic in Q\Λ, so we must have v ≥ 0 in Q, contradicting v(z) < 0.

Let us now show the following proposition.

Proposition 6.11. Let uλ satisfy (6.15)-(6.16), and let ϕ satisfy (6.14). Let h > 0
small, and let x◦ ∈ B1−h ∩ Γλ≥κ with κ ≤ τ + α− a and κ < τ + α. Then,

uλ+C∗rκ−2s > ϕ in B′r(x
′
◦), for all r <

h

4
,

for some C∗ depending only on n, s, M , κ, τ , α, and h.
In particular, if x◦ ∈ B1−h ∩ Γλ, then

uλ+C∗r1−s > ϕ in B′r(x
′
◦), for all r <

h

4
, (6.25)

for some C∗ depending only on n, s, M , κ, τ , α, and h.

Proof. Let us assume that r < h
4
, and let us establish some properties of ūx◦λ+C∗rκ−2s

in Br(0) (see Definition 6.1), for C∗ yet to be chosen.
From Lemma 6.9 we know that, for any z ∈ Bh/2,

ūx◦λ+ε(z)− ūx◦λ (z)

ε
=
uλ+ε(x◦ + z)− uλ(x◦ + z)

ε
≥ c dist2s(x◦ + z,Λ(uλ))

= c dist2s(z,Λ(ūx◦λ )).

From the previous inequality applied at x ∈ Br(0) ∩ {|xn+1| ≥ rσ}, for some σ > 0
to be chosen, for r < h

4
, and with ε = C∗r

κ−2s for some C∗ to be chosen,

ūx◦λ+C∗rκ−2s(x) ≥ cC∗r
κ−2s(rσ)2s + ūx◦λ (x) for x ∈ Br(0) ∩ {|xn+1| ≥ rσ}.



237

On the other hand, notice that 0 is a free boundary point of ūx◦λ of order greater or
equal than κ. In particular, from the growth estimate (6.22), we know that

ūx◦λ ≥ −Crκ in Br(0), for r <
h

4
,

for some C depending only on n, M , s, τ , α, θ, and h. By choosing, for example,
θ = min{α

2
, τ+α−κ

2
} in the definition of the generalized frequency function, (6.21),

we can get rid of the dependence on θ. That is,

ūx◦λ+C∗rκ−2s(x) ≥ cC∗r
κσ2s − Crκ for x ∈ Br(0) ∩ {|xn+1| ≥ rσ}.

Moreover, since ūx◦λ+C∗rκ−2s ≥ ūx◦λ ,

ūx◦λ+C∗rκ−2s ≥ −Crκ in Br(0), for r <
h

4
.

Notice, also, that

|Laūx◦λ+C∗rκ−2s| ≤M |xn+1|arτ+α−2 in Br(0) \ Λ(ūx◦λ+C∗rκ−2s).

Let us rescale in domain. We denote

w(x) := ūx◦λ+C∗rκ−2s(rx).

Then w is a solution to a thin obstacle problem with right-hand side and with zero
obstacle in the ball B1, such that

w ≥ (cC∗σ
2s − C)rκ in B1(0) ∩ {|xn+1| ≥ σ}

w ≥ −Crκ in B1(0)
|Law| ≤ M |xn+1|arτ+α−a in B1 \ ({xn+1 = 0} ∩ {w = 0}).

In particular, if we take w̃ := w
(cC∗σ2s−C)rκ

, then
w̃ ≥ 1 in B1(0) ∩ {|xn+1| ≥ σ}
w̃ ≥ − C

cC∗σ2s−C in B1(0)

|Law̃| ≤ M
cC∗σ2s−C |xn+1|arτ+α−a−κ in B1 \ ({xn+1 = 0} ∩ {w̃ = 0}).

(Notice that τ +α− a−κ ≥ 0 by assumption.) We now want to apply Lemma 6.10.
We need to choose σ < ε◦(n, a), and C∗ such that

C

cC∗σ2s − C < ε◦,
M

cC∗σ2s − C < ε◦.

By choosing C∗ � ε−1−2s
◦ we get that such C∗ exists independently of r, depending

only on n, M , s, κ, τ , α, and h.
From Lemma 6.10, we deduce that w̃ > 0 in B1/2, so that ūx◦λ+C∗rκ−2s > 0

in Br/2(0). Since r < h/4, we get the desired result, noticing that ūx◦λ+C∗rκ−2s =
(uλ+C∗rκ−2s − ϕ)(·+ x◦) on B′r.

Finally, notice that thanks to the optimal regularity of solutions, if x◦ ∈ Γλ, then
x◦ ∈ Γλ≥1+s, so that applying the previous result we are done.



238 Chapter 6. Free boundary regularity for almost every solution

The following corollary will be useful below.

Corollary 6.12. Let u(1) and u(2) denote two solutions to
Lau

(i) = 0 in B1 \
(
{xn+1 = 0} ∩ {u(i) = ϕ}

)
Lau

(i) ≤ 0 in B1

u(i) ≥ ϕ on {xn+1 = 0},
for i ∈ {1, 2}. (6.26)

Then, for any ε◦ > 0 and h > 0, there exists a δ > 0 such that if

u(2) ≥ u(1), and u(2) ≥ u(1) + ε◦ in {|xn+1| > 1/2},
then

inf

{
|x1 − x2| : x1 ∈ ∂Λ(u(1)) ∩B1−h, x2 ∈ ∂Λ(u(2)) ∩B1−h

}
≥ δ.

Proof. The proof follows by Proposition 6.11. Let us denote u
(1)
λ the solution to the

thin obstacle problem (6.15) with boundary data equal to u(1) on ∂B1 ∩ {|xn+1| ≤
1/2}, and u

(1)
λ +λε◦ on ∂B1∩{|xn+1| > 1/2}. In particular, u(1) = u

(1)
0 ≤ u

(1)
1 ≤ u(2).

Moreover, thanks to the Harnack inequality we know that u
(1)
λ+ε ≥ u

(1)
λ + cεε◦ for

ε > 0 in B1 ∩ {|xn+1| ≥ 1
2
}, for some constant c. Thus, if we define

wλ := (cε◦)
−1u

(1)
λ ,

then wλ fulfil (6.16). The result now follows applying Proposition 6.11 to wλ and
using that u(1) = cε◦w0 ≤ cε◦wλ ≤ u(2) for λ ∈ [0, 1].

As a direct consequence of Proposition 6.11 (in particular, of (6.25)), we get that
if 0 ∈ ∂Λ(uλ), then 0 /∈ ∂Λ(uλ̄) for λ̄ 6= λ (since uλ+C∗δ1−s > ϕ in Bδ for δ > 0 small
enough).

In particular:

Definition 6.2. We define

Γκ :=
⋃

λ∈[0,1]

Γλκ, Γ≥κ :=
⋃

λ∈[0,1]

Γλ≥κ, and Γ :=
⋃

λ∈[0,1]

Γλ.

We also define
λ(x◦) :=

{
λ ∈ [0, 1] : x◦ ∈ ∂Λ(uλ)

}
, (6.27)

which is uniquely defined on Γ.

The fact that λ(x◦) is uniquely defined for x◦ ∈ Γ follows since Γκ ∩ Γκ̄ = ∅ if
κ 6= κ̄. In particular, if x◦ ∈ Γκ then x◦ ∈ Γλ(x◦) = ∂Λ(uλ(x◦)).

A direct consequence of Proposition 6.11 is that Γ 3 x◦ 7→ λ(x◦) is continuous:

Corollary 6.13. Let uλ satisfy (6.15)-(6.16), and let ϕ satisfy (6.14). The function

Γ 3 x◦ 7→ λ(x◦)

for λ(x◦) defined by (6.27) is continuous. Moreover, for each h > 0,

Γ ∩B1−h 3 x◦ 7→ ūx◦λ(x◦)

is continuous in the C0-norm.
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Proof. Let us start with the first statement. If x1, x2 ∈ Γ are such that |x1−x2| ≤ δ
2

for δ > 0 small enough, and λ(x1) ≥ λ(x2), then

uλ(x2)+C∗δ1−s > ϕ in Bδ(x◦)

by Proposition 6.11. In particular, λ(y) < λ(x2)+C∗δ
1−s for any y ∈ Bδ(x2), so that

λ(x1) < λ(x2) + C∗δ
1−s. That is,

|λ(x1)− λ(x2)| ≤ C∗δ
1−s

and λ(x) is continuous (in fact, it is (1− s)-Hölder continuous).
Let us now show that

Γ ∩B1−h 3 x◦ 7→ ūx◦λ(x◦)

is also continuous (in the C0-norm). From the definition of ūx◦λ(x◦)
, Definition 6.1,

and since ϕ is continuous, it is enough to show that Γ ∩B1−h 3 x◦ 7→ uλ(x◦)(x◦ + ·)
is continuous. Moreover, since each uλ is continuous (and in fact, they are uniformly
C2s), we will show that Γ 3 x◦ 7→ uλ(x◦) is continuous, in the sense that, for every
ε > 0, there exists some δ > 0 such that if x, z ∈ Γ ∩ B1−h (for some h > 0),
|x− z| ≤ δ, then

sup
B1

|uλ(x) − uλ(z)| ≤ ε.

Let us argue by contradiction. Suppose that it is not true, and that there exist
sequences xi, zi ∈ B1−h ∩ Γ such that |xi − zi| ≤ 1

i
and

sup
B1

|uλ(xi) − uλ(zi)| ≥ ε◦ > 0,

for some ε◦ > 0. In particular, let us assume that λ(xi) > λ(zi), so that uλ(xi) ≥ uλ(zi).
After taking a subsequence (by compactness, using also that ‖uλ‖C2s(B1) ≤ M), we
can assume that there exists some ball Bρ(y) ⊂ B1 such that

uλ(xi) ≥ uλ(zi) +
ε◦
2

in Bρ(y) ⊂ B1

for all i ∈ N. (The radius ρ depends only on n, ε◦, and M .) By interior Harnack’s
inequality, we have that

uλ(xi) ≥ uλ(zi) + c
ε◦
2

in Bh/2(zi) ∩ {|xn+1| ≥ h/4},

for some constant c depending on ρ and h. After translating and scaling, we are in
a situation to apply Corollary 6.12. In particular, for some δ > 0 (depending on ε◦
and h), |xi − zi| ≥ δ > 0. This is a contradiction with |xi − zi| ≤ 1

i
for i ∈ N large

enough. Therefore, x◦ 7→ ūx◦λ(x◦)
is continuous.

The following lemma improves Lemma 6.9 in case x◦ ∈ Γ2. We denote here
a− := max{0,−a}.

Lemma 6.14. Let uλ satisfy (6.15)-(6.16), and let ϕ satisfy (6.14). Let n ≥ 2, and
h > 0 small. Let x◦ ∈ B1−h ∩ Γλ2 . Then, for each η > 0 small, and for µ > λ,
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(i) if s ≥ 1
2
,

∂+
λ ū

x◦
µ (0) = ∂+

λ uµ(x◦) ≥ c distη+a−(x◦,Λ(uµ)) = c distη−a(0,Λ(ūx◦µ )),

(ii) if s ≤ 1
2
,

∂+
λ ū

x◦
µ (0) = ∂+

λ uµ(x◦) ≥ c distη+a−(x◦,Λ(uµ)) = c distη(0,Λ(ūx◦µ )),

for some constant c > 0 independent of λ and µ (but possibly depending on everything
else).

Proof. Fix some µ > 0 and ε > 0 small, and define

δλ,εū
x◦
µ (x) =

ūx◦µ+ε(x)− ūx◦µ (x)

ε
=
uµ+ε(x+ x◦)− uµ(x+ x◦)

ε
.

As in the proof of Lemma 6.9, we know that δλ,εū
x◦
µ (x) ≥ 0, δλ,εū

x◦
µ ≥ 1 on (−x◦ +

∂B1) ∩ {|xn+1| ≥ 1
2
}, and

Laδλ,εū
x◦
µ = 0 in (−x◦ +B1) \ Λ(ūx◦µ ) ⊃ (−x◦ +B1) \ Λ(ūx◦λ ). (6.28)

Let us start by showing that, for every A > 0, there exists some ρA > 0 (inde-
pendent of µ) such that, after a rotation,

Λ(ūx◦µ ) ∩BρA ⊂ {|x′|2 ≥ Ax2
1}. (6.29)

In particular, we will show that, for every A > 0, there exists some ρA > 0 such
that, after a rotation,

Λ(ūx◦λ ) ∩BρA ⊂ {|x′|2 ≥ Ax2
1}. (6.30)

(Notice that now we have taken µ ↓ λ, and since the contact set is decreasing in λ,
(6.30) implies (6.29).)

Indeed, by [GR19, Theorem 8.2], we know that

ūx◦λ (x) = p2(x) + o(|x|2)

for some 2-homogeneous, a-harmonic polynomial, such that p2 ≥ 0 on {xn+1 = 0}
(recall that we are assuming that x◦ ∈ Γλ2) and p2 6≡ 0. After a rotation, thus, we
may assume that p2(x′, 0) ≥ cx2

1. That is,

ūx◦λ (x′, 0) ≥ cx2
1 + o(|x′|2) >

c

A
|x′|2 + o(|x′|2) > 0 in BρA ∩ {|x′|2 < Ax2

1}

if ρA is small enough (depending on A, but also on the point x◦, and the function
ūx◦λ ). That is, (6.30), and in particular, (6.29), holds. Considering again the xn+1

direction, we know that for every A > 0 there exists some ρA such that, after a
rotation,

Λ(ūx◦µ ) ∩BρA ⊂ {x2
1 + x2

n+1 ≤ A−1|x′|2} =: CA. (6.31)
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Notice that ρA ↓ 0 as A→∞. Let us suppose that we are always in the rotated set-
ting so that the previous inclusion holds. Let us denote ψA the unique homogeneous
solution to 

LaψA = 0 in Rn \ CA/2
ψA = 0 in CA/2
ψA ≥ 0 in Rn,

such that sup∂B1
ψA = 1.

Let η◦ > 0 denote the homogeneity of ψA (i.e., ψA(tx) = tη◦ψA(x)). It corresponds
to the first eigenvalue on the sphere Sn of La with zero boundary condition on CA/2.
Alternatively, it corresponds to the infimum of the corresponding Rayleigh quotient
among functions with the same boundary values. Notice that, as A → ∞, CA/2 →
{x1 = xn+1 = 0} locally uniformly in the Hausdorff distance, and {x1 = xn+1 = 0}
has zero a-harmonic capacity when s ≤ 1

2
(see [Kil94, Corollary 2.12]). Thus, when

s ≤ 1
2

the infimum of the Rayleigh quotient converges to the first eigenvalue of La
on the sphere without boundary conditions (namely, 0), and thus, η◦ ↓ 0 as A→∞
if a ≥ 0. Alternatively, if s > 1

2
the first eigenvalue corresponds to the homogeneity

−a (attained by the function (x2
1 + x2

n+1)−a/2), so that η◦ ↓ −a as A→∞ if a < 0.
In all, η◦ ↓ a−, with a− = max{0,−a}.

Let us choose some A large enough such that η◦ < η + a−. Now, let

r := dist(x◦,Λ(uµ)) = dist(0,Λ(ūx◦µ )),

and let ψA,r for r < ρA/2 denote the solution to LaψA,r = 0 in Br ∪
(
BρA/2 \ CA/2

)
ψA,r = 0 in (BρA/2 ∩ CA/2) \Br

ψA,r = ψA on ∂BρA/2.

Let c̄ small enough (depending on ρA, A, h, n, s, M) such that c̄ψA ≤ δλ,εū
x◦
µ on

∂BρA/2. For instance, take

c̄ = inf
x∈∂BρA/2∩C

c
A/2

δλ,εū
x◦
µ (x) > 0,

which is positive since δλ,εuµ ≥ 0, δλ,εuµ ≥ 1 on ∂B1∩{|xn+1| = 0}, and Laδλ,εuµ = 0
in (B1 \ {xn+1 = 0}) ∪ (BρA(x◦) \ CA) (recall δλ,εuµ = δλ,εū

x◦
µ (· − x◦)), and thus, by

strong maximum principle (or Harnack’s inequality, see [FKS82, Theorem 2.3.8]) we
must have c̄ > 0 depending only on ρA, A, h, n, s, M .

Now notice that c̄ψA,r ≤ δλ,εū
x◦
µ on ∂BρA/2, c̄ψA,r ≤ δλ,εū

x◦
µ on BρA/2 ∩ CA/2 \Br,

and both c̄ψA,r and δλ,εū
x◦
µ are a-harmonic in Br ∪ (BρA/2 \ CA/2) (thanks to (6.28)-

(6.31)). By comparison principle

c̄ψA ≤ c̄ψA,r ≤ δλ,εū
x◦
µ in BρA/2.

By Harnack’s inequality, there exists a constant C depending only on n and s
such that

ψA,r(0) ≥ inf
Br/2(0)

ψA,r ≥
1

C
sup

Br/2(0)

ψA,r ≥
1

C
sup

Br/2(0)

ψA ≥ crη◦ ,
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where in the last inequality we are using the η◦-homogeneity of ψA, and c depends
only on n and a. Thus,

δλ,εū
x◦
µ (0) ≥ c̄ψA,r(0) ≥ cc̄rη◦ = c distη◦(x◦,Λ(uµ)) = c distη◦(0,Λ(ūx◦µ )),

for some c > 0 that might depends on everything, but it is independent of µ and
λ, where we assumed r < ρA/2. We can reach all r > 0 by taking a smaller c > 0
(independent of λ and µ), thanks to Lemma 6.9. Recalling η◦ < η + a−, and letting
ε ↓ 0, this gives the desired result.

Using the previous lemma, combined with an ODE argument, we find the fol-
lowing.

Proposition 6.15. Let x◦ ∈ Γλ2 be any point of order 2. Then,

� If s ≤ 1
2
, for every ε◦ > 0, there exists some δ◦ > 0 such that

Γλ+δ2−ε◦
2 ∩Bδ(x◦) = ∅,

for all δ ∈ (0, δ◦).

� If s > 1
2
, for every ε◦ > 0, there exists some δ◦ > 0 such that

Γλ+δ
2 2−s

1+s−ε◦

2 ∩Bδ(x◦) = ∅,

for all δ ∈ (0, δ◦).

Proof. We use Lemma 6.14. We know that, for each η > 0 small,

∂+
λ ū

x◦
µ (0) ≥ c distη+a−(0,Λ(ūx◦µ )) for µ > λ.

On the other hand, from the optimal regularity for the thin obstacle problem, we
know that

ūx◦µ (0) ≤ Cdist1+s(0,Λ(ūx◦µ )),

which gives

∂+
λ ū

x◦
µ (0) ≥ c(ūx◦µ (0))

η+a−
1+s .

Solving the ODE between λ and µ, this yields

ūx◦µ (0)1− η+a−
1+s ≥ c(µ− λ) ⇐⇒ ūx◦µ (0) ≥ c(µ− λ)

2+2s
3−2η−|a| .

Let us now suppose that there exists some z◦ ∈ Bδ(x◦) ∩ Γµ2 . Notice that ūz◦µ has
quadratic growth around zero (since z◦ is a singular point of order 2), that is ūz◦µ ≤
Cρ2 in B′ρ × {0} for ρ > 0. Thus, using that ūx◦µ = ūz◦µ (·+ x◦ − z◦) in B′1

Cδ2 ≥ ūz◦µ (x◦ − z◦) = ūx◦µ (0) ≥ c(µ− λ)
2+2s

3−2η−|a| ,

that is, µ−λ ≤ Cδ
3−2η−|a|

1+s . In particular, whenever µ−λ > Cδ
3−2η−|a|

1+s then Bδ(x◦)∩
Γµ2 = ∅.

Taking δ and η small enough we get the desired result.
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6.3 Dimension of Γ2

In this section we prove that Γ2 =
⋃
λ∈[0,1] Γλ2 has dimension at most n− 1.

Proposition 6.16. Let m ∈ N, and suppose 2m < τ + α. Let us denote px◦2m the
blow-up of ūx◦λ(x◦)

at x◦ ∈ Γ2m. Then, the mapping Γ2m 3 x◦ 7→ px◦2m is continuous.
Moreover, for any compact set K ⊂ Γ2m there exists a modulus of continuity σK
such that

|ūx◦λ(x◦)
(x)− px◦2m(x)| ≤ σK(|x|)|x|2m

for any x◦ ∈ K.

Proof. This follows exactly as the proof of [GP09, Theorem 2.8.4] (or [GR19, The-
orem 8.2]) using that Γ2m 3 x◦ 7→ λ(x◦) and Γ2m 3 x◦ 7→ ūx◦λ(x◦)

are continuous (see

Corollary 6.13).

Singular points (that is, points of order 2m < τ + α) have a non-degeneracy
property. Namely, as proved in [GR19, Lemma 8.1], if x◦ ∈ Γλ2m, then there exists
some constant C > 0 (depending on the point x◦) such that

C−1r2m ≤ sup
∂Br

|ūx◦λ | ≤ Cr2m.

In particular, we can further divide the set Γ2m according to the degree of degeneracy
of the singular point. That is, let us define

Γ2m,j := {x◦ ∈ B1−j−1 ∩ Γ2m : j−1r2m ≤ sup
∂Br

|ūx◦λ(x◦)
| ≤ jr2m for all r ≤ (2j)−1},

so that
Γ2m =

⋃
j∈N

Γ2m,j,

and each Γ2m,j ⊂ Γ2m is compact (see [GP09, Lemma 2.8.2], which only uses the
upper semi-continuity of the frequency formula with respect to the point).

In the next proposition we are going to use a Monneau-type monotonicity for-
mula. In particular, we will use that, if we define for m ∈ N, x◦ ∈ Γλ2m,

Mm(r, ūx◦λ , p2m) :=
1

rn+a+4m

∫
∂Br

(ūx◦λ − p2m)2|xn+1|a, (6.32)

for any 2m-homogeneous, a-harmonic, even polynomial p2m with p2m(x′, 0) ≥ 0,
such that p2m ≤ C for some universal bound C, then

d

dr
Mm(r, ūx◦λ , p2m) ≥ −CMrα−1 (6.33)

for some constant CM independent of λ. (See [GR19, Proposition 7.2] and [GP09,
Theorem 2.7.2].)

Proposition 6.17. Let m ∈ N, and suppose 2m < τ + α. Let us denote px◦2m the
blow-up of ūx◦λ(x◦)

at x◦ ∈ Γ2m. Then, for each j ∈ N there exists a modulus of
continuity σj such that

‖px◦2m − pz◦2m‖L2(∂B1,|xn+1|a) ≤ σj(|x◦ − z◦|)
for all x◦, z◦ ∈ Γ2m,j.
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Proof. Suppose it is not true. That is, suppose that there exist sequences xk, zk ∈
Γ2m,j with k ∈ N, such that |xk − zk| → 0 and

‖pxk2m − pzk2m‖L2(∂B1,|xn+1|a) ≥ δ > 0 (6.34)

for some δ > 0. Suppose also that λ(xk) ≤ λ(zk).
Let ρk := |xk − zk| ↓ 0 as k →∞. Let us define

vkx(x) :=
ūxkλ(xk)(ρkx)

ρ2m
k

and vkz (x) :=
ūzkλ(zk)(ρkx+ xk − zk)

ρ2m
k

.

We have that

vkz (x)− vkx(x) = ρ−2m
k

{
uλ(zk)(ρkx+ xk)− uλ(xk)(ρkx+ xk) +Qxk

τ (ρkx
′)

−Qzk
τ (ρkx

′ + x′k − z′k)− Exta(Q
xk
τ (ρk·)−Qzk

τ (ρk ·+x′k − z′k))(x′, xn+1)
}
,

where, if p = p(x′) : Rn → R is a polynomial, Exta(p)(x
′, xn+1) denotes its unique

even a-harmonic extension.
Notice that uλ(zk) ≥ uλ(xk) (since λ(zk) ≥ λ(xk)). On the other hand, let us study

the convergence of the degree τ polynomials P k
τ (x′) = Qxk

τ (ρkx
′)−Qzk

τ (ρkx
′+x′k−z′k).

First, observe that

|P k
τ (0)| = |Qxk

τ (0)−Qzk
τ (x′k − z′k)| = |ϕ(x′k)−Qzk

τ (x′k − z′k)| = o(ρτk),

since Qxk
τ and Qzk

τ are the Taylor expansions of ϕ of order τ at xk and zk respectively,
and |x′k − z′k| = ρk. Similarly, for any multi-index β = (β1, . . . , βn−1) with |β| ≤ τ ,

|DβP k
τ (0)| = ρ

|β|
k

∣∣Dβϕ(xk)−DβQzk
τ (x′k − z′k)

∣∣ = o(ρτk).

Thus, the P k
τ = o(ρτk) (say, in any norm in B′1), and so the same occurs with the

a-harmonic extension. Notice, also, that by assumption, 2m ≤ τ . In all, we have
that

vkz (x)− vkx(x) ≥ o(1). (6.35)

On the other hand, we have

|vkx(x)− pxk2m(x)| ≤ σK,j(ρk|x|)|x|2m (6.36)

thanks to Proposition 6.16 with K = Γ2m,j, and for some modulus of continuity σK,j
depending on j. Similarly, if we denote

ξk =
zk − xk
ρk

∈ Sn,

then
|vkz (x)− pzk2m(x− ξk)| ≤ σK,j(ρk|x− ξk|)|x− ξk|2m. (6.37)

From the definition of Γ2m,j we know that

j−1r2m ≤ sup
∂Br

|pxk2m| ≤ jr2m. (6.38)
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In particular, up to subsequences, pxk2m → px uniformly for some 2m-homogeneous
polynomial px, a-harmonic, such that px(x

′, 0) ≥ 0, and

j−1r2m ≤ sup
∂Br

|px| ≤ jr2m. (6.39)

Notice that both bounds (6.38) are crucial: the bound from above allows a conver-
gence, and the bound from below avoid getting as a limit the zero polynomial. We
similarly have that pzk2m → pz for some pz 2m-homogeneous polynomial, a-harmonic,
with pz(x

′, 0) ≥ 0 and such that (6.39) holds for pz.
Combining the convergences of pxk2m and pzk2m to px and pz with (6.36)-(6.37) we

obtain that
vkx → px, vkz → pz(· − ξ◦), uniformly,

for some ξ◦ = (ξ′◦, 0) ∈ Sn. On the other hand, from (6.35), we know that px ≥
pz(· − ξ◦).

Thus, px − pz(· − ξ◦) ≥ 0, and is a-harmonic, therefore by Lioville’s theorem is
constant. Moreover, both terms are non-negative on the thin space, and both attain
the value 0 (since they are homogeneous), therefore, px = pz(· − ξ◦). Since both px
and pz are homogeneous of the same degree, this implies that px = pz.

Let us now use the Monneau-type monotonicity formula, (6.32)-(6.33), with poly-
nomials px and pz:∫

∂B1

(vkx − px)2|xn+1|a =Mm(ρk, ū
xk
λ(xk), px)

≥Mm(0+, ūxkλ(xk), px)− CMραk
=

∫
∂B1

(pxk2m − px)2|xn+1|a − CMραk ,

where we are using that ρ−2mūλ(xk)(ρx)→ pxk2m as ρ ↓ 0. Letting k →∞ (so ρk ↓ 0),
since vkx → px we get that ∫

∂B1

(pxk2m − px)2|xn+1|a → 0.

On the other hand, proceeding analogously,∫
∂B1

(vkz (·+ ξk)− pz)2|xn+1|a ≥
∫
∂B1

(pzk2m − pz)2|xn+1|a − CMραk ,

and since vkz → pz(· − ξ◦), ∫
∂B1

(pzk2m − pz)2|xn+1|a → 0.

Thus, since px = pz, we obtain that∫
∂B1

(pzk2m − pxk2m)2|xn+1|a → 0,

a contradiction with (6.34).
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Finally, we prove the following.

Proposition 6.18. Let m ∈ N, and suppose 2m < τ + α. Then, Γ2m is contained
in a countable union of (n− 1)-dimensional C1 manifolds.

Proof. The proof is now standard, and it follows applying the Whitney extension
theorem, which can be applied thanks to Proposition 6.17. We refer the reader to
the proof of [GP09, Theorem 1.3.8], which we summarise here for completeness.

Indeed, if x◦ ∈ Γ2m, and β = (β1, . . . , βn+1) is a multi-index, we denote

px◦2m(x) =
∑
|β|=2m

aβ(x◦)

β!
xβ

so that a(x◦) (the coefficients) are continuous on Γ2m,j by Proposition 6.17. Arguing
as in [GP09, Lemma 1.5.6] (by means of Proposition 6.16) the function fβ defined
for the multi-index β, with |β| ≤ 2m,

fβ(x) =

{
0 if |β| < 2m,
aβ(x) if |β| = 2m,

for x ∈ Γ2m, fulfils the compatibility conditions to apply Whitney’s extension theo-
rem on Γ2m,j. That is, there exists some F ∈ C2m(Rn+1) such that

d|β|

dxβ
F = fβ on Γ2m,j,

for any |β| ≤ 2m.
Now, for any x◦ ∈ Γ2m,j, since px◦2m 6= 0, there exists some ν ∈ Rn such that

ν · ∇x′p
x◦
2m(x′, 0) 6= 0 on Rn.

In particular, for some multi-index β◦ with |β◦| = 2m− 1,

ν · ∇x′∂
β◦F (x◦) = ν · ∇x′∂

β◦px◦2m(0) 6= 0, (6.40)

where ∂β◦ := d|β◦|

dxβ◦
. On the other hand,

Γ2m,j ⊂
⋂

|β|=2m−1

{∂βF = 0} ⊂ {∂β◦F = 0},

so that, thanks to (6.40), by the implicit function theorem Γ2m,j is locally contained
in a (n− 1)-dimensional C1 manifold. Thus, Γ2m is contained in a countable union
of (n− 1)-dimensional C1 manifolds.

6.4 Proof of main results

Finally, in this section we prove the main results. To do so, the starting point is the
following GMT lemma from [FRS19].
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Lemma 6.19 ([FRS19]). Consider the family {Eλ}λ∈[0,1] with Eλ ⊂ Rn. and let us
denote Rn ⊃ E :=

⋃
λ∈[0,1] Eλ.

Suppose that for some β ∈ (0, n] and γ ≥ 1, we have

� dimHE ≤ β,

� for any ε > 0, and for any x◦ ∈ Eλ◦ for some λ◦ ∈ [0, 1], there exists some
ρ = ρ(ε, x◦, λ◦) > 0 such that

Br(x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + rγ−ε.

Then,

1. If β < γ, then dimH({λ : Eλ 6= ∅}) ≤ β/γ < 1.

2. If β ≥ γ, then for H1-a.e. λ ∈ R, we have dimH(Eλ) ≤ β − γ.

We will also use the following lemma, analogous to the first part of Lemma 6.19
but dealing with the upper Minkowski dimension instead (which we denote dimM).
We refer to [Mat95, Chapter 5] for more details on the upper/lower Minkowski
content and dimension.

Lemma 6.20. Consider the family {Eλ}λ∈[0,1] with Eλ ⊂ Rn. and let us denote
Rn ⊃ E :=

⋃
λ∈[0,1]Eλ.

Suppose that for some β ∈ [1, n] and γ > β, we have

� dimME ≤ β,

� for any ε > 0, and for any x◦ ∈ Eλ◦ for some λ◦ ∈ [0, 1], there exists some
ρ = ρ(ε) > 0 such that

Br(x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + rγ−ε.

Then, dimM({λ : Eλ 6= ∅}) ≤ β/γ < 1.

Proof. Given A ⊂ Rn, let us denote

N(A, r) := min
{
k : A ⊂ ∪ki=1Br(xi) for some xi ∈ Rn

}
, (6.41)

the smallest number of r-balls needed to cover A. The upper Minkowski dimension
of A can then be defined as

dimMA := inf

{
s : lim sup

r↓0
N(A, r)rs = 0

}
(see [Mat95]). Notice that the definition of upper Minkowski dimension does not
change if we assume that the balls Br(xi) from (6.41) are centered at points in A
(by taking, for instance, balls with twice the radius).
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Since dimME ≤ β, we have that for any δ > 0, N(E, r) = o(rβ+δ). Let us
consider N(E, r) balls of radius r centered at E, Br(xi), with xi ∈ E. Thanks to
our second hypothesis we have that

⋃
λ∈[0,1]

{λ} × Eλ ⊂
N(E,r)⋃
i=1

(λ(xi)− rγ−ε, λ(xi) + rγ−ε)×Br(xi),

where xi ∈ Eλ(xi). Thus,

{λ ∈ [0, 1] : Eλ 6= ∅} ⊂
N(E,r)⋃
i=1

(λ(xi)− rγ−ε, λ(xi) + rγ−ε),

where the intervals are balls of radius rγ−ε. In particular, using that N(E, r) =
o(rβ+δ), we deduce that

dimM {λ ∈ [0, 1] : Eλ 6= ∅} ≤ β + δ

γ − ε .

Since this works for any δ, ε > 0, we deduce the desired result.

Remark 6.2. Notice that Lemma 6.19 is somehow a generalization of the coarea
formula. Namely, if we consider the case γ = 1, β = n, and ε = 0, and we denote
Eλ the level sets of a Lipschitz function f = f(λ) (Eλ = f−1(λ)), the the coarea
formula says that ∫ 1

0

Hn−1
(
f−1(λ)

)
dλ =

∫
B1

|∇f | <∞,

since f is Lipschitz by assumption. In particular, Hn−1 (f−1(λ)) < ∞ for H1-a.e.
λ ∈ [0, 1]. This is used by Monneau in [Mon03] for the classical obstacle problem.

This observation is also the reason why we do not expect to have a Minkowski
analogous to Lemma 6.19 (2), as we did in Lemma 6.20 for part (1).

By applying the previous lemmas together with Proposition 6.11 we obtain the
following result.

Theorem 6.21. Let uλ solve (6.15)-(6.16). Let ϕ ∈ Cτ,α, and let κ < τ + α and
κ ≤ τ + α− a.

If 2 + 2s ≤ κ ≤ n+ 2s, then,

dimH(Γλ≥κ) ≤ n− κ+ 2s for a.e. λ ∈ [0, 1],

On the other hand, if κ > n+ 2s, then

Γλ≥κ = ∅ for all λ ∈ [0, 1] \ Eκ,

where Eκ ⊂ [0, 1] is such that dimH(Eκ) ≤ n
κ−2s

.
Furthermore, for any h > 0, if κ > n+ 2s, then

Γλ≥κ ∩B1−h = ∅ for all λ ∈ [0, 1] \ Eκ,h,

where Eκ,h ⊂ [0, 1] is such that dimM(Eκ,h) ≤ n
κ−2s

.
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Proof. The proof of this result follows applying Lemmas 6.19 and 6.20 to the right
sets. Indeed, we consider the sets

Eλ := Γλ≥κ, E :=
⋃

λ∈[0,1]

Eλ.

Notice that E = Γ≥κ, and we can take β = n in Lemma 6.19. On the other hand,
we know that for any λ◦ ∈ [0, 1], x◦ ∈ Eλ◦ , there exists ρ = ρ(x◦, λ◦) > 0 such that

Br(x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + C∗r
κ−2s.

thanks to Proposition 6.11. That is, for any ε > 0 there exists some ρ = ρ(ε, x◦, λ◦) >
0 such that

Br(x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + rκ−2s−ε.

and the hypotheses of Lemma 6.19 are fulfilled, with β = n and γ = κ − 2s. The
result now follows by Lemma 6.19.

The last part of the theorem follows by applying Lemma 6.20 instead of Lemma 6.19.
We notice in this case that the dependence of ρ on the point has been removed, but
now it depends on h > 0. This forces the result to hold only in smaller balls B1−h.

In particular, we can also deal with the set of free boundary points of infinite
order.

Corollary 6.22. Let uλ solve (6.15)-(6.16). Let ϕ ∈ C∞, and let Γλ∞ :=
⋂
κ≥2 Γλ≥κ.

Then,
Γλ∞ = ∅ for all λ ∈ [0, 1] \ E ,

where E ⊂ [0, 1] is such that dimH(E) = 0.
Furthermore, for any h > 0,

Γλ∞ ∩B1−h = ∅ for all λ ∈ [0, 1] \ Eh,

where Eh ⊂ [0, 1] is such that dimM(E) = 0.

Proof. Apply Theorem 6.21 to Γλ≥κ and let κ→∞.

And we get that the free boundary points of order greater or equal than 2 + 2s
are at most (n− 2)-dimensional, for almost every λ ∈ [0, 1].

Corollary 6.23. Let uλ solve (6.15)-(6.16). Let ϕ ∈ C4,α. Then,

dimH(Γλ≥2+2s) ≤ n− 2,

for almost every λ ∈ [0, 1].

Proof. This is simply Theorem 6.21 with κ = 2 + 2s.

On the other hand, combining the results from Sections 6.2 and 6.3 with Lemma 6.19
we get the following regarding the free boundary points of order 2.
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Theorem 6.24. Let uλ solve (6.15)-(6.16), and let n ≥ 2. Then

dimH(Γλ2) ≤ n− 2 for a.e. λ ∈ [0, 1].

Proof. The proof of this result follows applying Lemma 6.19 to the right sets. We
consider

Eλ := Γλ2 , E :=
⋃

λ∈[0,1]

Eλ = Γ2.

Notice that E has dimension H(E) = n − 1 by Proposition 6.18, so that we can
take β = n− 1 in Lemma 6.19. On the other hand, we know that for any λ◦ ∈ [0, 1],
x◦ ∈ Eλ◦ , and any ε > 0, there exists ρ = ρ(ε, x◦, λ◦) > 0 such that

Br(x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + r.

thanks to Proposition 6.15 (notice that 22−s
1+s

> 1 for all s ∈ (1/2, 1)). That is, the
hypotheses of Lemma 6.19 are fulfilled, with β = n − 1 and γ = 1. The result now
follows by Lemma 6.19.

In fact, the previous theorem is a particular case of the more general statement
involving singular points given by the following proposition. We give it for complete-
ness, although we do not need it in our analysis.

Proposition 6.25. Let uλ solve (6.15)-(6.16). Let n ≥ 2 and let ϕ ∈ Cτ,α for some
τ ∈ N≥4 and α ∈ (0, 1). Then, if s ≤ 1

2
,

dimH(Γλ2) ≤ n− 3 for a.e. λ ∈ [0, 1].

Alternatively, if s > 1
2
,

dimH(Γλ2) ≤ n− 1− 2
2− s
1 + s

for a.e. λ ∈ [0, 1].

Finally, if m ∈ N is such that 2m ≤ τ ,

dimH(Γλ2m) ≤ n− 1− 2m+ 2s for a.e. λ ∈ [0, 1].

Proof. This proof simply follows by analysing the previous results more carefully.
The first part follows exactly as Theorem 6.24, using Proposition 6.15 and looking
at each case separately.

Finally, regarding general singular points of order 2m, the proof follows exactly
as Theorem 6.21 using that Γ2m has dimension n− 1 instead of n thanks to Propo-
sition 6.18.

Finally, in order to control the size of points of homogeneity in the interval
(2, 2+2s), we refer to the following result by Focardi–Spadaro, that establishes that
points in Γ∗ are lower dimensional with respect to the free boundary. The result in
[FoSp19] involves higher order points as well, but we state it in the explicit form it
will be used below.
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Proposition 6.26 ([FoSp19]). Let u be a solution to the fractional obstacle problem
with obstacle ϕ ∈ C4,α for some α ∈ (0, 1),

Lau = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
Lau ≤ 0 in B1

u ≥ ϕ on {xn+1 = 0}.
(6.42)

Let θ ∈ (0, α) and let us denote

Γ̃∗ :=
⋃

κ∈(2,2+2s)

{
x◦ ∈ ∂Λ(u) : Φτ,α,θ(0

+, ūx◦) = n+ 1− 2s+ 2κ

}
. (6.43)

Then
dimH Γ̃∗ ≤ n− 2.

Moreover, if n = 2, Γ̃∗ is discrete.

Combining the previous results we obtain the following.

Corollary 6.27. Let uλ solve (6.15)-(6.16). Let ϕ ∈ C4,α. Then,

dimH(Deg(uλ)) ≤ n− 2,

for almost every λ ∈ [0, 1].

Proof. This follows by combining the previous results. Notice that

Deg(uλ) = Γλ \ Γλ1+s = Γλ2 ∪ Γ̃∗(uλ) ∪ Γλ≥2+2s.

The result now follows thanks to Proposition 6.26, Corollary 6.23, and Theorem 6.24.

Remark 6.3. Following the proofs carefully, one can see that the previous result
holds true for obstacles ϕ ∈ C3,1 if s ≤ 1

2
. The condition ϕ ∈ C4,α is only used

whenever s > 1
2
, since otherwise, in this case the previous methods do not imply the

smallness of Γ̃∗.

We can now prove the main results.

Proof of Theorem 6.1. Notice that, by the Harnack inequality, there exists a con-
stant c such that uλ+ε ≥ gλ + cε in ∂B1 ∩ {|xn+1| ≥ 1

2
}. Thus, let us consider

wλ = c−1uλ, so that wλ fulfils (6.16) and we can apply Corollary 6.27 to wλ. Since
Γκ(wλ) = Γκ(uλ) for all κ ∈ [3/2,∞], λ ∈ [0, 1],

dimH(Γ(uλ) \ Γ3/2(uλ)) ≤ n− 2.

We finish by recalling that Γ3/2(uλ) = Reg(uλ) is open, and a C∞ (n−1)-dimensional
manifold (see [ACS08, KPS15, DS16]).

Proof of Theorem 6.2. With the same transformation as in the previous proof, the
result now follows from Corollary 6.22.
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Proof of Theorem 6.4. Let us suppose that, after a rescaling if necessary, {ϕ > 0} ⊂
B′1 ⊂ Rn.

We define wλ = vλ + λ, which fulfils a fractional obstacle problem, with obstacle
ϕ, but with limiting value λ. Take the standard a-harmonic (i.e., with the operator
La) extension of wλ, which we denote w̃λ, from Rn to Rn+1. Thanks to [CS07], w̃λ
fulfils a problem of the form (6.15) in B1 ⊂ Rn+1.

Moreover, by the Harnack inequality, w̃λ+ε ≥ w̃λ + cε in B1 ∩ {|xn+1| ≥ 1
2
}

for some constant c. Now, the functions c−1w̃λ fulfil (6.16), so that we can apply
Corollary 6.27 to c−1w̃λ to obtain

dimH(Deg(vλ)) = dimH(Γ(vλ) \ Γ1+s(vλ)) ≤ n− 2.

The result now follows since Γ1+s(vλ) = Reg(vλ) is open, and a C∞ (n − 1)-
dimensional manifold (see [ACS08, JN17, KRS19]).

Proof of Theorem 6.5. With the same transformation as in the previous proof, the
result follows from Corollary 6.22.

6.5 Examples of degenerate free boundary points

Let us consider the thin obstacle problem in a domain Ω ⊂ Rn+1, with zero obstacle
defined on xn+1 = 0. That is,

−∆u = 0 in Ω \ ({xn+1 = 0} ∩ {u = 0})
−∆u ≥ 0 in Ω

u ≥ 0 on {xn+1 = 0}
u = g on ∂Ω,

(6.44)

for some continuous boundary values g ∈ C0(∂Ω) such that g > 0 on ∂Ω ∩ {xn+1 =
0}.
Proof of Proposition 6.6. We will show that there exists some domain Ω and some
boundary data g such that the solution to (6.44) has a sequence of regular points
(of order 3/2) converging to a non-regular (singular) point (of order 2). Then, the
solution from Proposition 6.6 will be the solution here constructed restricted to
any ball inside Ω containing such singular point, with its own boundary data (and
appropriately rescaled, if necessary).

In order to build such a solution we will use [BFR18, Lemma 3.2], which says
that solutions to

−∆u = 0 in Ω \ ({xn+1 = 0} ∩ {u = ϕ})
−∆u ≥ 0 in Ω

u ≥ ϕ on {xn+1 = 0}
u = 0 on ∂Ω,

(6.45)

with ∆x′ϕ ≤ −c0 < 0 and Ω convex and even in xn+1 have a free boundary containing
only regular points (frequency 3/2) and singular points of frequency 2. In particular,
they establish a non-degeneracy result stating that for any x◦ = (x′◦, 0) ∈ Γ(u) then

sup
B′r(x

′
◦)

(u− ϕ) ≥ c1r
2 for all r ∈ (0, r1), (6.46)
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for some r1, c1 that do not depend on the point x◦. More precisely, they show it
around points x ∈ {u > ϕ} and then take the limit x→ x◦ ∈ Γ(u).

On the other hand, from their proof one can also show that in fact, the convexity
on Ω can be weakened to convexity in Ω in the en+1 direction.

Let us fix n = 2. Up to subtracting the right obstacle, we consider the problem
−∆u = 0 in Ω \ ({x3 = 0} ∩ {u = 0})
−∆u ≥ 0 in Ω

u ≥ ϕt on {x3 = 0}
u = 0 on ∂Ω,

(6.47)

for some analytic obstacle ϕt, and some domain Ω smooth, convex and even in x3,
to be chosen.

Let ϕt(x) = t−(1−x2
1)2−4x2

2. Notice that, in the thin space, ∆x′ϕt = −12x2
1−4 ≤

−4, so that, by the result in [BFR18], under the appropriate domain Ω, the points
on the free boundary Γ(ut) are either regular (with frequency 3/2) or singular (with
frequency 2), and we have non-degeneracy (6.46). Let Ω′ := {x′ ∈ R2 : (1 − x2

1)2 +
4x2

2 ≤ 2}, and take any bounded, convex in x3, and even in x3 extension of Ω′, Ω.
Then, if t = 2, the solution u2 to (6.47) is exactly equal to the solution to

∆u2 = 0 in Ω \ {x3 = 0}
u2 = 0 on ∂Ω
u2 = ϕ2 on {x3 = 0},

so that, in particular, the contact set is full.
Notice that, when t < 0, the contact set is empty, Λ(ut) = ∅, and when t = 0 the

contact set is two points, p± = (±1, 0, 0) (which, in particular, are singular points).
Notice, also, that the contact set is always closed and is monotone in t, in the sense
that Λ(ut1) ⊆ Λ(ut2) if t1 ≤ t2. Let us say that a set is p±-connected if the points p+

and p− belong to the same connected component. Then, there exists some t∗ ∈ (0, 2]
such that Λ(ut) is not p±-connected for t < t∗, and is p±-connected for t > t∗. Notice,
also, that since Λ(ut) ⊂ {x′ : ϕt ≥ 0} then t∗ > 1.

We claim that Λ(ut∗) is p±-connected and has a set of regular points converging
to a singular point.

Let us first show that Λ(ut∗) is p±-connected. Suppose it is not. That is, Λ(ut∗)
is a closed set with p± on different connected components. On the other hand, Λ(ut)
is compact and p±-connected for t > t∗, and nested (Λ(ut) ⊂ Λ(ut′) for t < t′). Take

Λ̃t∗ :=
⋂

t∈(t∗,2]

Λ(ut),

then Λ̃t∗ is p±-connected (being the intersection of compact p±-connected nested
sets), and Λ(ut∗) ( Λ̃t∗ , since Λ(ut∗) is not p±-connected. In particular, there exists
some x◦ ∈ Λ(ut) for all t > t∗ such that x◦ 6∈ Λ(ut∗). But, by continuity, this is
not possible: 0 < (ut∗ − ϕt∗)(x◦) = limt↓t∗(ut − ϕt)(x◦) = 0. Therefore, Λ(ut∗) is
p±-connected.

Take Λp(ut∗) to be the connected component containing both p+ and p−. Then,
∂Λp(ut∗) must contain at least one singular point. Indeed, suppose it is not true. In
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this case, all points in ∂Λp(ut∗) are regular, and in particular, Λp(ut∗) is a compact
connected set with smooth boundary, with all points of the boundary having positive
density (in {x3 = 0}), and therefore (Λp(ut∗))

◦ is also connected. Let us denote
Λp
±(ut) the corresponding connected components of Λ(ut) containing p± for t < t∗

(notice that, by definition of t∗, Λp
+(ut) 6= Λp

−(ut). Then,

Λp,◦
t<t∗ :=

(⋃
t<t∗

(Λp
+(ut))

◦

)
∪
(⋃
t<t∗

(Λp
−(ut))

◦

)
( (Λp(ut∗))

◦ ,

given that the left-hand side is not connected, and the right-hand side is. Take
y◦ ∈ (Λp(ut∗))

◦ \ Λp,◦
t<t∗ , so that around y◦ the non-degeneracy (6.46) holds for any

t < t∗. Then, there exists some r◦ > 0, r1 > r◦ (where r1 is defined in (6.46)) such
that B′r◦(y◦) ⊂ Λp(ut∗), so that ut∗ − ϕt∗|B′r◦ (y◦) ≡ 0 and

0 < c1r
2
◦ ≤ lim

t↑t∗
sup
B′r(x

′
◦)

(ut − ϕt) = sup
B′r(x

′
◦)

(ut∗ − ϕt∗) = 0,

a contradiction. That is, not all points on ∂Λp(ut∗) are regular. By [BFR18], then
there exist some degenerate (singular) point of frequency 2, xD ∈ ∂Λp(ut∗). Now
consider ΓD, the connected component in ∂Λp(ut∗) containing xD. Since the density
of the contact set around singular points is zero, if ΓD consist exclusively of singular
points, then ΓD itself is the whole connected component Λp(ut), and p± ∈ ΓD are
singular points. Nonetheless, for small t > 0, Λ(ut) contains a neighbourhood of p±,
which contradicts the singularity of p±. Therefore, ΓD is not formed exclusively of
singular points, and then there exists a sequence of regular points converging to a
singular point.

Now, before proving Proposition 6.7, let us show the following lemma.

Lemma 6.28. Let m ∈ N>0, and let η ∈ C∞c (B2) such that η ≡ 1 in B1. Let
u+ = max{u, 0} and u− = −min{u, 0}. Then,

(−∆)s
[
(x1)2m+1+s

+ η
]
− Cm,s(x1)2m+1−s

− ∈ C∞(B1/2),

for some positive constant Cm,s > 0 depending only on n, m, and s.

Proof. We consider the extension problem from Rn to Rn+1. Namely, let us denote
u1 the extension of (x1)2m+1+s

+ η, that is, u1 solves
Lau1 = 0 in Rn+1 ∩ {xn+1 > 0}

u1(x′, 0) = (x1)2m+1+s
+ η for x′ ∈ Rn

u1(x) → 0 as |x| → ∞,
where a = 1− 2s. Then, we know that{

(−∆)s
[
(x1)2m+1+s

+ η
]}

(x′) = lim
y↓0

ya∂xn+1u1(x′, y)

for x′ ∈ Rn. On the other hand, let u2 be the unique a-harmonic extension of
(x1)2m+1+s

+ from Rn to Rn+1. That is, u2 is homogeneous (of degree 2m+ 1 + s), and
fulfils {

Lau2 = 0 in Rn+1 ∩ {xn+1 > 0}
u2(x′, 0) = (x1)2m+1+s

+ for x′ ∈ Rn.
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The fact that such solution exists, and that limy↓0 y
a∂xn+1u2(x′, y) = 0 if x1 > 0,

follows, for example, from [FoSp18, Proposition A.1]. On the other hand, notice
that, since u2 is (2m + 1 + s)-homogeneous, we have that, limy↓0 y

a∂xn+1u2(x′, y) =
Cm,s|x1|2m+1−s for x1 < 0, so that, in all,

lim
y↓0

ya∂xn+1u2(x′, y) = Cm,s(x1)2m+1−s
− .

Again, by [FoSp18, Proposition A.1] u2 is a solution to the thin obstacle problem
with operator La, so Cm,s > 0 (otherwise, it would not be a supersolution for La).

Let now v = u1 − u2. Notice that v fulfils{
Lav = 0 in Rn+1 ∩ {xn+1 > 0}

v(x′, 0) = (x1)2m+1+s
+ (η − 1) for x′ ∈ Rn.

In particular, v(x′, 0) = 0 in B′1. Let us denote Dα
x′v a derivative in the x′ ∈ Rn

direction of v, with multi-index α = (α1, α2, . . . , αn, 0). Then Dα
x′v is such that{

LaD
α
x′v = 0 in B1 ∩ {xn+1 > 0}

Dα
x′v(x′, 0) = 0 for x′ ∈ B′1.

Then, by estimates for the operator La, we know that, if we define

wα(x′) := lim
y↓0

ya∂xn+1D
αv(x′, y), w0(x′) := lim

y↓0
ya∂xn+1v(x′, y),

then wα satisfies wα ∈ Cβ(B1/2) for some β > 0 (see [CSS08, Proposition 4.3]
or [JN17, Proposition 2.3]). In particular, since wα = Dαw0, we have that w0 ∈
C |α|+β(B1/2). Since this works for all multi-index α, w0 ∈ C∞(B1/2).

Thus, combining the previous steps,

(−∆)s
[
(x1)2m+1+s

+ η
]
− Cm,s(x1)2m+1−s

− = lim
y↓0

ya∂xn+1(u1(x′, y)− u2(x′, y))

= lim
y↓0

ya∂xn+1v(x′, y)

= w0 ∈ C∞(B1/2),

as we wanted to see.

We are now in disposition to give the proof of Proposition 6.7.

Proof of Proposition 6.7. We divide the proof into two steps. In the first step, we
show the results holds up to an intermediate claim, that will be proved in the second
step.

Step 1. Thanks to [Gru15, Theorem 4] or [AR19, Section 2], we have that (−∆)s(dsη) ∈
C∞(Ωc) for any η ∈ C∞ with sufficient decay at infinity. Here, d denotes any C∞

function (with at most polynomial growth at infinity) such that in a neighbourhood
of Ω coincides with the distance to Ω, and d|Ω ≡ 0.

In particular, once d is fixed, we know that for any k ∈ N,

(−∆)s(dk+s) = f ∈ C∞(Ωc),
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and, if we make sure that d > 0 in Ωc, with exponential decay at infinity, we get

|f(x)| ≤ C

1 + |x|n+2s
.

Define, for some g with the previous decay, |g(x)| ≤ C(1 + |x|n+2s)−1, ϕg such that

(−∆)sϕg = g,

that is, one can take

ϕg(x) = I2sg(x) := c

∫
Rn

g(y)

|x− y|n−2s
dy.

Notice that

|ϕg(x)| ≤ C

∫
Rn

dy

(1 + |y|n+2s)|x− y|n−2s

≤ C

∫
|y−x|≥ |x|

2

dy

(1 + |y|n+2s)|x− y|n−2s
+ C

∫
|y−x|≤ |x|

2

dy

(1 + |y|n+2s)|x− y|n−2s

≤ C

|x|n−2s

∫
|y−x|≥ |x|

2

dy

1 + |y|n+2s
+

C

1 + |x|n+2s

∫
|y−x|≤ |x|

2

dy

|x− y|n−2s
,

where we are using that if |y−x| ≤ |x|
2

then |y| ≥ |x|
2

by triangular inequality. Notice
also that ∫

|y−x|≤ |x|
2

dy

|x− y|n−2s
=

∫
B|x|/2

dz

|z|n−2s
=

∫ |x|/2
0

r2s−1dr = C|x|2s.

In all, also using that ϕ(x) is bounded around the origin, we obtain that

|ϕg(x)| ≤ C

1 + |x|n−2s
.

Now let us define v = dk+s. We claim that, if k = 2m + 1 for some m ∈ N>0,
then v fulfils 

(−∆)sv ≥ f̄ in Rn

(−∆)sv = f̄ in {v > 0}
v ≥ 0 in Rn,

(6.48)

where f̄ is some appropriate C∞ extension of f inside Ω. Then, if we define

u := v + ϕ−f̄ ,

u fulfils, 
(−∆)su ≥ 0 in Rn

(−∆)su = 0 in {u > ϕ−f̄}
u ≥ ϕ−f̄ in Rn,

and notice that, since v > 0 in Ωc and v = 0 in Ω, by definition, we have that the
contact set is exactly equal to Ω. Moreover, by the growth of v at the boundary, the



257

free boundary points are of frequency k + s. Also, by the decay at infinity of v and
ϕ−f̄ , u→ 0 at infinity.

Step 2. We still have to show that, for an appropriate choice of f̄ , (6.48) holds for
k = 2m + 1. Notice that, in fact, in Ωc we know that f is C∞. Moreover, we only
have to show the claim for a neighbourhood of ∂Ω inside Ω, given that exactly at the
boundary we expect a unique extension of f (that is, all derivatives are prescribed
at the boundary).

That is, if we let Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ}, we have to show that there
exists some δ > 0 small enough such that (−∆)sv ≥ f̄ in Ωδ, where we recall that
f̄ is a C∞ extension of f ∈ C∞(Ωc) inside Ω.

Let z◦ ∈ ∂Ω. After a translation and a rotation, we assume that z◦ = 0 and
ν(0, ∂Ω) = e1, where ν(0, ∂Ω) denotes the outward normal to ∂Ω at 0. After rescaling
if necessary, let us assume that we are working in B1, that each point in B1 has a
unique projection onto ∂Ω, and that d|B1∩Ωc = dist(·,Ω). Moreover, again after a
rescaling if necessary (since Ω is a C∞ domain), let us assume that

{y1 ≤ −|(y2, . . . , yn)|2} ∩B1 ⊂ Ω ∩B1 ⊂ {y1 ≤ |(y2, . . . , yn)|2} ∩B1, (6.49)

so that, in particular, {−te1 : t ∈ (0, 1)} ⊂ Ω.
Let η ∈ C∞c (B2) such that η ≡ 1 in B1, and let u+ = max{u, 0} denote the

positive part, and u− = −min{u, 0} the negative part. Let α = 2m + 1 + s, and
define

u1(x) := (x1)α+η, w(x) := v(x)− u1(x) = dα(x)− (x1)α+η.

Notice that, by Lemma 6.28,

(−∆)su1(x)− Cm,s(x1)2m+1−s
− ∈ C∞(B1/2), (6.50)

for some positive constant Cm,s > 0.
We begin by claiming that

w1(x1) := [(−∆)sw](x1, 0, . . . , 0) ∈ C2m+1−s+ε((−1/2, 1/2)), (6.51)

for some ε > 0.
Indeed, let any z1 ∈ (−1/2, 1/2). Let us denote for γ ∈ (0, 1], δ

(γ)
e1,h

the incremental
quotient in the e1 direction of length 0 < h < 1/4 and order γ; that is,

δ
(γ)
e1,h

F (y◦) :=
|F (y◦ + he1)− F (y◦)|

|h|γ .

Since d ≡ (x1)+ on {x2 = · · · = xn = 0} ∩ B1, we have that w(x1, 0, . . . , 0) = 0 on
(−1, 1). Now notice that, for any ` ∈ N, γ ∈ (0, 1],

δ
(γ)
e1,h

d`

dx`1
w1(z1) =

{
δ

(γ)
e1,h

∂`e1
[(−∆)sw]

}
(z1, 0, . . . , 0) =

∫
Rn

δ
(γ)
e1,h

∂`e1
w(z̄1 + y)

|y|n+2s
dy,

(6.52)

where z̄1 = {z1, 0, . . . , 0} ∈ Rn, and we are using that δ
(γ)
e1,h

∂`e1
w(z̄1) = 0. In order to

show (6.51), we will bound

lim
h↓0

∣∣∣∣δ(γ)
e1,h

d`

dx`1
w1(z1)

∣∣∣∣ ≤ C in B1/2, (6.53)



258 Chapter 6. Free boundary regularity for almost every solution

for some C, for ` = 2m and for γ = 1− s+ ε for some ε > 0.
We need to separate into different cases according to z̄1 + y. Notice that the the

integral in (6.52) is immediately bounded in Rn \ B1/2 because w ∈ Cα and the
integrand is thus bounded by C|y|−n−2s. We can, therefore, assume that y ∈ B1/2 so
that z̄1 + y ∈ B1.

Let us start by noticing that, from (6.50), together with the fact that (−∆)sv is
smooth in Ωc, we already know that w1 ∈ C∞([0, 1/2)), so that we only care about
the case z1 < 0.

Let z1 < 0, so that z̄1 ∈ Ω. If z̄1 + y ∈ Ω ∩ {x1 < 0} ∩ B1, then w(z̄1 + y) = 0.
If z̄1 + y ∈ Ω ∩ {x1 > 0} ∩ B1, then |w(z̄1 + y)| = |z1 + y1|α and |∂`e1

w|(z̄1 + y) =
C|z1 + y1|α−` ≤ C|y|2(α−`); where we are using that z1 + y1 ≤ |(y2, . . . , yn)|2 ≤ |y|2,

see (6.49). Similarly, limh↓0 |δ(γ)
e1,h

∂`e1
w|(z̄1 + y) ≤ C|z1 + y1|α−`−γ ≤ C|y|2(α−`−γ).

Conversely, if z̄1 + y ∈ Ωc ∩ {x1 < 0} ∩ B1, |w(z̄1 + y)| = dα(z̄1 + y) and
|∂`e1

w|(z̄1 +y) ≤ Cdα−`(z̄1 +y) ≤ C|y|2(α−`), where we are using (6.49) again. Taking

the incremental quotients, limh↓0 |δ(γ)
e1,h

∂`e1
w|(z̄1+y) ≤ Cdα−`−γ(z̄1+y) ≤ C|y|2(α−`−γ)

Finally, if z̄1 + y ∈ Ωc ∩ {x1 > 0} ∩ B1, both terms in the expression of w are
relevant. Using that |aβ − bβ| ≤ C|a− b||aβ−1 + bβ−1| we obtain that

|w(z̄1 + y)| ≤ C|d− u1|
(
dα−1 + uα−1

1

)
(z̄1 + y).

Notice that on {x2 = · · · = xn = 0} ∩ B1, d = u1 and ∂id = ∂iu = 0 for
2 ≤ i ≤ n, so that in fact |d− u1|(z̄1 + y) ≤ C|y|2. On the other hand, we also have
that dα−1(z̄1 + y) ≤ C|y|α−1, so that

|w(z̄1 + y)| ≤ C|y|α+1. (6.54)

Notice, also, that w ∈ Cα (i.e., ∇`+1w ∈ Cs). By classical interpolation inequal-
ities for Hölder spaces (or fractional Sobolev spaces with p = ∞) we know that, if
0 < γ < 1,

‖∇`w‖Cγ(Br(z̄1)) ≤ C‖∇`+1w‖
`+γ
α

Cs(Br(z̄1))‖w‖
1+s−γ
α

L∞(Br(z̄1))

(see, for instance, [BL76, Theorem 6.4.5]). Thus, in our case we have that

lim
h↓0

∣∣∣∣δ(γ)
e1,h

d`

dx`1
w

∣∣∣∣ (z̄1 + y) ≤ C|y|(α+1) 1+s−γ
α . (6.55)

Thus, putting all together we obtain that

lim
h↓0

∣∣∣δ(γ)
e1,h

∂`e1
w
∣∣∣ (z̄1 + y) ≤ C max

{
|y|2(α−`−γ), |y|(α+1) 1+s−γ

α

}
.

If we want (6.53) to hold, we need (by checking (6.52))

2(α− `− γ) > 2s and (α + 1)
1 + s− γ

α
> 2s, (6.56)

for some 1− s < γ < 1, and ` = 2m (recall we need to show γ = 1− s+ ε for some
ε > 0). The first inequality holds as long as γ < 1. The second inequality will hold
if

γ < 1 + s− 2sα

α + 1
= 1− α− 1

α + 1
s.
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Thus, we can choose γ = 1− s+ ε with 0 < ε < 2
α+1

s and (6.51) holds with this ε.
Now, combining (6.51)-(6.50) we obtain that

fv := [(−∆)sv](x1, 0, . . . , 0)− Cm,s(x1)2m+1−s
− ∈ C2m+1−s+ε((−1/2, 1/2)).

In particular, if we recall that f̄ ∈ C∞(B1) is a C∞ extension of (−∆)sv inside Ω,
and noticing that fv−f̄(x1, 0, . . . , 0) ≡ 0 for x1 > 0, we have that f̄(·, 0, . . . , 0)−fv ∈
C2m+1−s+ε((−1/2, 1/2)) and

fv − f̄(x1, 0, . . . , 0) = o(|x1|2m+1−s+ε),

or

[(−∆)sv](x1, 0, . . . , 0) = Cm,s(x1)2m+1−s
− + f̄(x1, 0, . . . , 0) + o(|x1|2m+1−s+ε).

Thus, since Cm,s > 0, [(−∆)sv](x1, 0, . . . , 0) ≥ f̄(x1, 0, . . . , 0) if |x1| is small enough
(depending only on n, m, s, and Ω), as we wanted to see.

We have that, for a fixed f̄ extension of f inside Ω, (−∆)sv ≥ f̄ in Ωδ for some
small δ > 0 depending only on n, m, s, and Ω. Up to redefining f̄ in Ω \ Ωδ/2, we
can easily build an f̄ ∈ C∞ such that (−∆)sv ≥ f̄ in Ω, as we wanted to see.

To finish, we study the points of order infinity. To do that, we start with the
following proposition.

Proposition 6.29. Let C ⊂ B1 ⊂ Rn be any closed set. Then, there exists a non-
trivial solution u and an obstacle ϕ ∈ C∞(Rn) such that

(−∆)su ≥ 0 in Rn

(−∆)su = 0 in {u > ϕ}
u ≥ ϕ in Rn,

and Λ(u) ∩B1 = {u = ϕ} ∩B1 = C.

Proof. Take any obstacle ψ ∈ C∞(Rn) such that suppψ ⊂⊂ B1(2e1), with ψ > 0
somewhere, and take the non-trivial solution to

(−∆)su ≥ 0 in Rn

(−∆)su = 0 in {u > ψ}
u ≥ ψ in Rn.

Notice that u > ψ in B1 (in particular, u ∈ C∞(B1)). Let fC be any C∞ function
such that 0 ≤ fC ≤ 1 and C = {fC = 0}.

Now let η ∈ C∞c (B3/2) such that η ≥ 0 and η ≡ 1 in B1. Consider, as new
obstacle, ϕ = ψ + η(u− ψ)(1− fC) ∈ C∞(B1). Notice that u− ϕ ≥ 0. Notice, also,
that for x ∈ B1, (u− ϕ)(x) = 0 if and only if x ∈ C. Thus, u with obstacle ϕ gives
the desired result.

And now we can provide the proof of Proposition 6.8:

Proof of Proposition 6.8. The proof is now immediate thanks to Proposition 6.29,
since we can choose as contact set any closed set with boundary of dimension greater
or equal than n − ε for any ε > 0, and points of finite order are at most (n − 1)-
dimensional.
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6.6 The parabolic Signorini problem

We consider now the parabolic version of the thin obstacle problem. Given (x◦, t◦) ∈
Rn+1 × R, we will use the notation

Qr(x◦, t◦) := Br(x◦)× (t◦ − r2, t◦] ⊂ Rn+1 × R,
Q′r(x

′
◦, t◦) := B′r(x

′
◦)× (t◦ − r2, t◦] ⊂ Rn × R,

Q+
r ((x′◦, 0), t◦) := B+

r ((x′◦, 0))× (t◦ − r2, t◦] ⊂ Rn+1 × R.

We will denote, Qr = Qr(0, 0), Q′r = Q′r(0, 0) and Q+
r = Q+

r (0, 0). We consider
the problem posed in Q+

1 := B+
1 × (−1, 0] for some fixed obstacle

ϕ : B′1 → R, ϕ ∈ Cτ,α(B′1), τ ∈ N≥2, α ∈ (0, 1],

that is, {
∂tu−∆u = 0, in Q,

1

min{u− ϕ, ∂xn+1u} = 0, on Q′1.
(6.57)

The free boundary for (6.57) is given by

Γ(u) := ∂Q′1{(x
′, t) ∈ Q′1 : u(x′, 0, t) > ϕ(x′)},

where ∂Q′1 denotes the boundary in the relative topology of Q′1. For this problem, it
is more convenient to study the extended free boundary, defined by

Γ(u) := ∂Q′1{(x
′, t) ∈ Q′1 : u(x′, 0, t) = ϕ(x′), ∂xn+1u(x′, 0, t) = 0},

so that Γ(u) ⊃ Γ(u). This distinction, however, will not come into play in this work.

In order to study (6.57), one also needs to add some boundary condition on
(∂B1 × (−1, 0]) ∩ {xn+1 > 0}. Instead of doing that, we will assume the additional
hypothesis ut > 0 on (∂B1×(−1, 0])∩{xn+1 > 0}. That is, there is actually some time
evolution, and it makes the solution grow. Recall that such hypothesis is (somewhat)
necessary, and natural in some applications (see subsection 6.1.4).

Notice, also, that if ut > 0 on the spatial boundary, by strong maximum principle
applied to the caloric function ut in Q1 ∩ {xn+1 >

1
2
}, we know that ut > c > 0 for

xn+1 >
1
2
. Thus, after dividing u by a constant, we may assume c = 1, and thus, our

problem reads as
ut −∆u = 0 in Q+

1 × (−1, 0],
min{u− ϕ, ∂xn+1u} = 0 on Q′1,

ut > 0 on (∂B1 × (−1, 0]) ∩ {xn+1 > 0},
ut ≥ 1 in Q1 ∩ {xn+1 >

1
2
}.

(6.58)

In order to deal with the order of free boundary points, one requires the intro-
duction of heavy notation, analogous to what has been presented in the elliptic case,
but for the parabolic version. We will avoid that by focusing on the main property
we require about the order of the extended free boundary points:
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Definition 6.3. Let (x◦, t◦) ∈ Γ(u)∩Q1−h be an extended free boundary point. We
define

ux◦,t◦(x, t) := u((x+ x′◦, xn+1), t+ t◦)− ϕ(x′ + x′◦) +Qx◦
τ (x′)−Qx◦,0

τ (x′, xn+1),

where Qx◦
τ is the Taylor polynomial of order τ of ϕ at x◦, and Qx◦,0

τ is its harmonic
extension to Rn+1.

We say that (x◦, t◦) ∈ Γ(u) ∩ Q1−h is an extended free boundary point of order
≥ κ, (x◦, t◦) ∈ Γ≥κ, where 2 ≤ κ ≤ τ , if

|ux◦,t◦| ≤ Crκ in Q+
r ,

for all r < h
2
, and for some constant C depending only on the solution u.

Notice that, in particular, the points of order greater or equal than κ as defined
in [DGPT17] fulfil the previous definition. Notice, also, that we have denoted by
Γ≥κ the set of points of order ≥ κ.

Thus, we can proceed to prove the following proposition, analogous to Proposi-
tion 6.11:

Proposition 6.30. Let h > 0 small, and let (x◦, t◦) ∈ Q+
1−h ∩ Γ≥κ with t◦ < −h2,

where 2 ≤ κ ≤ 3. Then,

u(·, t◦ + C∗t
κ−1) > ϕ in B′t(x

′
◦), for all 0 < t < Th,

for some constant C∗ depending only on n, h, u, and Th depending only on n, h, τ ,
κ, u.

Proof. Let us assume, for simplicity in the notation, that x◦ = 0, and t◦ = −1
2
, and

we denote u := u0,−1/2. Notice that, by the parabolic Hopf Lemma, since ut ≥ 0 in
Q1 and ut ≥ 1 in Q1 ∩ {xn+1 ≥ 1

2
} we have that for some constant c and for any

σ > 0,
ut ≥ cσ in (B+

1/2 ∩ {xn+1 ≥ σ})× [−1/2, 0].

Notice, also, that since (0,−1/2) ∈ Rn+1×R is an extended free boundary point
of order ≥ κ, we have that, for r > 0 small enough,

u(·,−1/2 + s) ≥ u(·,−1/2) ≥ −Crκ in B+
r , (6.59)

for s ≥ 0 by the monotonicity of the solution in time.
On the other hand, since ut ≥ crσ in {xn+1 ≥ rσ}, we have that

u(·,−1/2 + s) ≥ c(rσ)s+ u(·,−1/2) in {xn+1 ≥ rσ} for s ≥ 0.

As in (6.59), this gives

u(·,−1/2 + s) ≥ c(rσ)s− Crκ in {xn+1 ≥ rσ} ∩B+
r for s ≥ 0.

Let w(y, ζ) = u(ry,−1/2 + r2ζ). Then we have that

w(y, ζ) ≥ −Crκ, for y ∈ B+
1 for ζ ≥ 0,



262 Chapter 6. Free boundary regularity for almost every solution

and

w(y, ζ) ≥ c(rσ)r2ζ − Crκ, for y ∈ {yn+1 ≥ σ} ∩B+
1 for ζ ≥ 0.

Notice, also, that since

|(∂t −∆)u| = o(rτ−2) in B+
r ,

then
|(∂ζ −∆y)w| = o(rτ ) in B+

1 .

Considering now w̄(y, ζ) := σ
Crκ

w(y, ζ), we have that

w̄(y, ζ) ≥ −σ, for y ∈ B+
1 and ζ ≥ 0,

w̄(y, ζ) ≥ cr3−κσ2ζ − σ, for y ∈ {yn+1 ≥ σ} ∩B+
1 and ζ ≥ 0,

and
|(∂ζ −∆y)w̄| ≤ σ in B+

1 ,

for r > 0 small enough. Let us take ζ = C∗r
κ−3, for some C∗ depending on n and σ

such that cr3−κσ2ζ−σ ≥ 1. Then, by [DGPT17, Lemma 11.5] (which is the parabolic
version of Lemma 6.10 for a = 0), there exists some σ◦ > 0 depending on n such

that if σ ≤ σ◦, then w̄(·, C∗rκ−3) > 0 in B+
1/2. In particular, recalling the definition

of w̄, this yields the desired result.

As in the elliptic case, the non-regular part of the free boundary is Γ≥2 (see
[DGPT17, Proposition 10.8]). Thanks to Proposition 6.30 we will obtain a bound
on the dimension of Γ≥κ ∩ {t = t◦} for almost every time t◦ ∈ (−1, 0] if κ > 2. For
the limiting case, κ = 2, one has to proceed differently, analogous to what has been
done in the elliptic case.

Let us start by defining the set Γ2. We say that a point (x◦, t◦) ∈ Γ(u) ∩ Q+
1−h

belongs to Γ2, (x◦, t◦) ∈ Γ2∩Q+
1−h, if parabolic blow-ups around that point converge

uniformly to a parabolic 2-homogeneous polynomial.
Namely, consider a fixed test function ψ ∈ C∞c (Rn) such that suppψ ⊂ Bh,

0 ≤ ψ ≤ 1, ψ ≡ 1 in Bh/2, and ψ(x′, xn+1) = ψ(x′,−xn+1). Then ux◦,t◦(x, t)ψ(x) can
be considered to be defined in Rn

+ × (−h2, 0], and we denote

Hx◦,t◦
u (r) :=

1

r2

∫ 0

−r2

∫
Rn+
ūx◦,t◦(x, t)ψ(x)G(x, t) dx dt,

where G(x, t) is the backward heat kernel in Rn+1 × R,

G(x, t) =

{
(−4πt)−

n+1
2 e

|x|2
4t if t < 0,

0 if t ≥ 0.

We then define the rescalings

ux◦,t◦r (x, t) :=
ūx◦,t◦(rx, r2t)

Hx◦,t◦
u (r)1/2

.
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Then, we say that (x◦, t◦) ∈ Γ2 if for every rj ↓ 0, there exists some subsequence
rjk ↓ 0 such that

ux◦,t◦rjk
→ px◦,t◦2 uniformly in compact sets,

for some parabolic 2-homogeneous caloric polynomial px◦,t◦2 = px◦,t◦2 (x, t) (i.e., p2(λx, λ2t) =
λ2p2(x, t) for λ > 0), which is a global solution to the parabolic Signorini problem.
The existence of such polynomial, the uniqueness of the limit, and its properties,
are shown in [DGPT17, Proposition 12.2, Lemma 12.3, Theorem 12.6]. Moreover,
by the classification of free boundary points performed in [DGPT17] we know that

Γ(u) = Reg(u) ∪ Γ≥2.

In addition, by [Shi18, Proposition 4.5] there are no free boundary points with
frequency belonging to the interval (2, 2 + α◦) for some α◦ > 0 depending only on
n. Thus,

Γ(u) = Reg(u) ∪ Γ2 ∪ Γ≥2+α◦ . (6.60)

Proposition 6.31. The set Γ2 defined as above is such that

dimH(Γ2 ∩ {t = t◦}) ≤ n− 2, for a.e. t◦ ∈ (−1, 0].

Proof. We separate the proof into two steps.

Step 1. By [DGPT17, Theorem 12.6], we know that

ūx◦,t◦(x, t) = px◦,t◦2 (x, t) + o(‖(x, t)‖2),

where ‖(x, t)‖ = (|x|2 + |t|)1/2 is the parabolic norm. Here px◦,t◦2 is a polynomial,
parabolic 2-homogeneous global solution to the parabolic Signorini problem. In
particular, it is at most linear in time. On the other, since ut ≥ 0 everywhere,
the same occurs with the parabolic blow-up up, i.e., px◦,t◦2 is non-decreasing in
time. All this implies that px◦,t◦2 is actually constant in time, so that we have that
px◦,t◦2 = px◦,t◦2 (x) is an harmonic, second-order polynomial in x, non-negative on the
thin space {xn+1 = 0}, and we have

ūx◦,t◦(x, t) = px◦,t◦2 (x) + o(‖(x, t)‖2).

On the other hand, also from [DGPT17, Theorem 12.6], Γ2 3 (x◦, t◦) 7→ px◦,t◦2

is continuous. These last two conditions correspond to Proposition 6.16 and Propo-
sition 6.17 from the elliptic case. In particular, one can apply Whitney’s extension
theorem as in Proposition 6.18 to obtain that the set

πxΓ2 := {x ∈ Rn+1 : (x, t) ∈ Γ2 for some t ∈ (−1, 0]},

is contained in the countable union of (n− 1)-dimensional C1 manifolds. That is,

dimH(πxΓ2) ≤ n− 1,

πxΓ2 is (n− 1)-dimensional.

Step 2. Thanks to Step 1, and by Proposition 6.30 with κ = 2, proceeding analo-
gously to Theorem 6.21 by means of Lemma 6.19, we reach the desired result.



264 Chapter 6. Free boundary regularity for almost every solution

Proposition 6.32. Let a > 0. Then,

dimH(Γ≥2+a ∩ {t = t◦}) ≤ n− 1− a, for a.e. t◦ ∈ (−1, 0],

Proof. The result follows by Proposition 6.30 with κ = 2+a, proceeding analogously
to Theorem 6.21 by means of Lemma 6.19.

We can now give the proof of the main result regarding the parabolic Signorini
problem.

Proof of Theorem 6.3. Is a direct consequence of (6.60), Proposition 6.31, and Propo-
sition 6.32 with a = α◦ depending only on n, given by [Shi18, Proposition 4.5]. The
regularity of the free boundary follows from [DGPT17, Theorem 11.6].
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variazionali con condizioni unilaterale al borde, Ann. Mat. Pura Appl. (4), 83
(1969), 73-112.

[BC72] H. Beirao da Veiga, F. Conti, Equazioni ellittiche non lineari con ostacoli
sottili. Applicazioni allo studio dei punti regolari, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (3), 26 (1972), 533-562.

265



266 Bibliography
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[KRS19] H. Koch, A. Rüland, W. Shi, Higher regularity for the fractional thin
obstacle problem, New York J. Math. 25 (2019), 745-838.
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