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ABSTRACT. We prove that solutions to the Boltzmann equation without cut-off satisfying pointwise
bounds on some observables (mass, pressure, and suitable moments) enjoy a uniform bound in L* in
the case of hard potentials. As a consequence, we derive C'*° estimates and decay estimates for all
derivatives, conditional to these macroscopic bounds. Our L estimates are uniform in the limit s 1
and hence we recover the same results also for the Landau equation.

1. INTRODUCTION

1.1. The Boltzmann equation. The Boltzmann equation is one of the fundamental equations of
statistical mechanics. It models the evolution of a gas (or any system made up of a large number of
particles), and it was derived by Boltzmann and Maxwell in the 19th century.

The unknown in Boltzmann’s equation is a time-dependent probability density f(t,z,v) which keeps
track of the “number” of particles that at time ¢ and point x have velocity v,

Of +v-Vof =Q(f,f) in (0,00) x R" x R, (L.1)
where Q(f, f) is the so-called Boltzmann collision operator, and n > 2.
The Boltzmann collision operator acts only on the velocity variable v, and is of the form

Q)@ = [ (Fa0) = F(0)a(0) Bl = vl.cos6) dedon,
n>< n—

[o=v.]

velocities given (under elastic collisions) by

where cosf = -0, B is the so-called collision kernel, and v' and v/ are the post-collisional

;U \v—v*|(I ,:v—l—v*_]v—v*\

- 1.2
5 5 O . 5 5 (1.2)

The exact form of the collision kernel B depends on the microscopic interaction that we assume
between the particles: they interact with each other via a (repulsive) potential ¢, most typically with
an inverse-power law ¢(r) = 1/rP, with p > 1. Under these assumptions, we have

B(r,cos ) = r7b(cosb), b(cos 0) = | sin(g/2)|~ ("D, (1.3)
for some s € (0,1) and v > —n (see (1.23)) as well). In the most physically relevant case, n = 3 and

inverse-power law potentials, we actually have s = % andvy=1— ﬁ. Still, for the sake of generality, the
Boltzmann equation is typically studied for general independent parameters s € (0,1) and v > —n.

An important distinction arises often related to the “strength” of the repulsive potential ¢: when
v > 0 we talk about hard potentials, while the case v < 0 is called soft potentials.
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The limiting case p — oo corresponds to hard spheres (in which the collision kernel is not singular
anymore, since s — 0), while the case p — 1 corresponds to the Coulomb interaction (in which the
Boltzmann equation becomes the Landau equation, and s — 1).

An important feature of the Boltzmann equation is that it keeps track of macroscopic information
(“observables”), but also microscopic variables, which describe the state of the particles at a given
time. All macroscopic observables can be expressed in terms of microscopic averages, i.e., integrals of
the form [ f(¢,z,v)p(v)dv. In particular, at any time ¢ and any given point z, we have the following
observables

p(t,x) = f(t,z,v)dv (mass density) (1.4)
]Rn
1
o(t,x) = p flt,z,v)vdv (mean velocity) (1.5)
R
P(t,z) = flt,z,v) (v—7)® (v—"2v)dv (pressure tensor) (1.6)
R
1 1
T(t,z) = n—ptrP = n—p f(t, z,v)|v — o|* dv (temperature) (1.7)
E(t,z) = fp|v\2 + p / f(t,z,v)|v]? dv (energy density); (1.8)

see, e.g. the survey [Vil02] for more details.

Of course, the equation can also be posed in a bounded domain €2 C R™ with appropriate boundary
conditions (see, e.g., [OuSi23]), however in this paper we focus for simplicity on the case Q = R".

1.2. Regularity for the Boltzmann equation. One of the most important and famous mathe-
matical results for the Boltzmann equation is the convergence to equilibrium for smooth solutions,
established by Desvilletes and Villani in [DeVi05]. The result may be informally summarized as
follows:

Let f be any solution to the Boltzmann equation, with appropriate decay for large velocities, such that
f stays in C°° in all variables, uniformly for all t > 0.
Then, it converges to equilibrium as t — oo faster than any algebraic rate O(t™"), k € N.

This is one of the main two results for which Villani received the Fields Medal in 2010—see [DeVi05,
Theorem 2] for a precise statement.

Their result hence reduces the problem of convergence to equilibrium to the problem of establishing
a priori bounds on moments and C* norms, uniformly in time. Furthermore, they conjectured that
one should be able to establish these bounds, conditionally to global in time a priori estimates on the
hydrodynamic fields p, v, and T.

This was essentially the program carried out by Imbert and Silvestre (and Mouhot) in the last years
[ImSi22], [Sil16, IMS20), TmSi20b, ImSi21] (see also the survey [ImSi20al), who established the uniform
C regularity and decay for (periodic in x) solutions to the Boltzmann equation , under the
assumption that the mass density p and energy E satisfy

0<mo<plta)= [ f(ta,v)dv< My, (1.9)
R

1
B(t,z) = 5 - f(t,z,v)|v]*dv < Ey, (1.10)
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and also that the entropy density is controlled
h(t,x) = flog f(t,x,v)dv < Hy (entropy density). (1.11)
R”
Their main result, which holds for v + 2s € [0, 2], can be informally summarized as follows:

Let f be any solution to the Boltzmann equation satisfying (1.9))-(1.10)-(1.11)) uniformly in t, z.

Then, [ stays in C*° in all variables (with fast decay as v — o0), uniformly for all t > 0.

Their results apply to strong solutions to the Boltzmann equation:

Definition 1.1. A function f : (0,7) x R™ x R” — R is said to be a solution to the Boltzmann
equation ([L.1) if 0 < f € C*((0,7) x R™ x R™) satisfies ([L.1)) in the pointwise sense for all (¢,z,v) €
(0,T) x R™ x R™. Moreover, we assume that f is periodic in x, that for any ¢ > 0 we have

lim 7f(t,a:,v)

o] oo [v]9

=0
locally uniformly in (¢,z), and in addition that for every (¢, ) it holds [, [D2f|(1+ |v|)7+? dv < occ.

We will use the same notion of solution in this paper.

1.3. Our results. Notice that the entropy assumption ([1.11]) is a higher integrability property for f,
and thus it is not a bound on a macroscopic observable of the form [ f(¢,2,v)¢(v)dv. The entropy
density is a natural hydrodynamic quantity, but not an observable in the usual sense (linear in f).

Notice also that the entropy assumption (together with ) is significantly stronger than a control
from below on the temperature 7' in . Indeed, the higher integrability assumption ((1.11) on the
entropy density implies in particular that f is absolutely continuous and cannot have too much mass
on any set of small measure, while a bound from below on the temperature T'(¢,z) only says that
not all particles at (¢,z) have the same velocity, i.e., any f(t,x,-) different from a Dirac’s delta has
positive temperature.

This means that the assumptions in Imbert—Silvestre [ImSi22] are still stronger than the ones proposed
in Desvillettes—Villani [DeVi05]. This gives rise to the following open problem (explicitly mentioned
in [ImSi22]):

Does the regularity program of Imbert—Silvestre remain valid if the entropy upper bound (|1.11)
1s replaced by weaker macroscopic bounds?
This is the question we study in this paper.
Our main results allow to replace the upper bound on the entropy by a lower bound on the pressure
P(t,z) > pold, > 0,

or, equivalently,

inf |e-Pe| = inf / ft,z,0)|(v—10)-el*dv > py > 0. (1.12)

eeSn—1 eesn=1 Jpn

Notice that this condition allows very singular distributions f at any given (¢,z), and the only re-
quirement is that we have “positive temperature in all directions €”. In other words, the condition is
only violated at (¢,z) when f is concentrated on a hyperplane.
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Actually, for our main results, it suffices to assume the weaker condition that at least two different
eigenvalues of (IP;;);; are positive, namely, that

inf  sup ft,z,v)|(v—70)-e/*dv > py > 0. (1.13)
oeSn1l clqo ,/R"
eeS"~

This is equivalent to saying that we have “positive temperature in at least two different directions”,
i.e., that f(¢,x,) is not concentrated on a line.

In addition to this, we also need to assume that the ¢-th moment is finite for some ¢ > 2, i.e.,
/ f(t,z,v)|v|?dv < M,. (1.14)
RTL

Note that the bounds on mass (|1.9)), energy (1.10), and entropy (L.11)), imply (1.14)) for all ¢ > 2; see
[IMS20l, Theorem 1.3(ii)].

Notice that both conditions and are given in terms of macroscopic observables of the
form [ f(t,z,v)e(v)dv.

Moreover, as explained below, we will show that replacing the lower bound on the pressure P(t, )
(equivalent to a lower bound on “directional temperatures”) by a lower bound on the temperature
T(t,z) would require completely new ideas. Our hypotheses are, in some sense, the minimal ones
under which the diffusion in Boltzmann’s equation is still n-dimensional.

Our main result applies to the case of hard potentials v > 0, and reads as follows:

Theorem 1.2. Let s € (0,1), v >0, ¢ > n, and v+ 2s < q. Let f be a solution to the Boltzmann

equation in (0,T) x R™ x R™ with n > 2 (see [Definition 1.1). Assume that f satisfies (1.9)), (1.13]),
and (1.14) with ¢ > n.

Then, for any multi-index k € N'*2" and any 7 > 0 and p > 0, it holds
k
[[v["D fHLoo([T,T}anan) < Crps

where Cy,p, depends only on n, s,~v, mg, Mo, po, My, q,p, T, k.

Notice that, in order to prove this result, the key point is to establish the case £k = 0, p = 0, that is,
an L* bound for f. Indeed, once this case is established then the entropy bound ((1.11)) automatically
holds, and we can apply the results of Imbert—Silvestre [ImSi22].

L bounds were established in Imbert—Mouhot—Silvestre [IMS20], under the entropy assumption
(1.11)), together with (1.9 and (1.10]). However, the proof in [IMS20] does not work when one replaces
the entropy bound by the pressure and moment bounds in this paper.

Our main contribution is to establish such L bounds with a completely different method, allowing
us to replace the entropy assumption by a lower bound on the pressure and some moment bounds.

Theorem 1.3. Let s € (0,1), v >0, ¢ > n, and v+ 2s < q. Let f be a solution to the Boltzmann

equation in (0,T) x R™ x R™ with n > 2 (see|Definition 1.1)). Assume that f satisfies (1.9)), ,
and (1.14) with ¢ > n.

Then, for any T > 0 we have

HfHLOO([T,T]XR”XR") <C,

C depending only on n, s, mo, Moy, po, My, q, and 7.

In particular, the entropy bound (L.11)) holds for some Hy depending only on n, s, mo, Mo, po, My, q,
and T.
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Notice also that the L> bound for positive times in [Theorem 1.3 holds for v = 0 as well (Maxwellian
molecules). However, in order to deduce [Theorem 1.2| we need to use the results in [IMS20], where in
case v = 0 the decay for large velocities is inherited from the initial condition (while for v > 0 it is an
inherent regularization for all positives times, independent of the initial condition). This is the only

reason why in [I'heorem 1.2| we need to assume v > 0.

1.4. Strategy of the proof. The Boltzmann collision operator can be written via Carleman coordi-
nates as follows

where ¢, > 0 is a constant, depending only on the Boltzmann collision kernel B, and Lk, is an
integro-differential operator of the form

Liyale) = [ (glo+ ) = g(o) Kyw,0+ ) b

The kernel Ky : R" x R™ — [0, 00] depends on the function f as follows:

277,—1
Ky(v,v') = —— f(v+w)B(r,cos O)r " dw (1.16)
|'U -V ‘ wlv' —v
with
2 12 2 w—(v—v) w—(—v)

— |y — f = . 1.17
re=lv—2"+ |wl?, cos =) oW =0 (1.17)

and satisfies the following pointwise upper and lower bound (see [Sil16, Corollary 4.2])
Kp(v,v+h) < |h| "2 < f(v+w) w2t dw) , (1.18)

wlh

where the constants hidden behind the symbol =< only depend on B, and will be neglected in the
sequel.

Thus, the Boltzmann equation can be written as a nonlinear kinetic integro-differential equation,
where the kernel K; depends on the solution f itself.

1.4.1. Ellipticity conditions. A key observation in the program of Imbert—Silvestre is that, if we have

a priori bounds on the mass, energy, and entropy densities (1.9)-(1.10)-(1.11), then the kernel K is
uniformly elliptic in the following sense:

A
Ki(v,v+h) > ——=1¢,(h) for some cone C,, 1.19
f ‘h|n+23

where A > 0 and the cone C, depend only on mg, My, Ey, Hy, and v.

The existence of these cones C, comes from the fact that we have a uniform bound on the entropy
density. Unfortunately, if we only assume a lower bound on the pressure ((1.12)), then all the mass of
f could be concentrated on a set of zero measure, and (|1.19)) could fail.

Still, we prove that under our macroscopic assumptions (bounds on mass, pressure, and moments) we
have the following weaker ellipticity conditions for K.

Proposition 1.4. Let s € (0,1), and let f be nonnegative and satisfying (11.9), , and (1.14)) for
some q > 2. Then, the Boltzmann kernel K = Ky given by (2.2]) with vy € R™ satisfies:
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(i) (Upper bound) For any r > 0 and any v € By:

/ K(U,v+h)dh+/ K(v+ h,v)dh < Ar—2%,
R"\ B, R™\ B,

(ii) (Nondegeneracy) For any r >0 and v € By

inf K(v,v+h)(h-e):dh > Ar?™2 > 0. (1.20)
ecS"1 /B,

(iii) (Coercivity) For any g supported in Bs:

| [ 60) = a0)PK o) dodv’ = Nl ey = Al (1.21)
2 n

(iv) (Cancellation condition) For any r € (0,1) and v € Bs:

/ (K(v,0+h) — K(v+ b)) dh’ < Ar 2

T

/ (K(v,v+h) — K(v+ h,v))hdh’ <AL +717%) dfs>
B,
uniformly in vg, for some constants X and A depending only on n, s, v, mg, Mo, po, My, and q.

The nondegeneracy condition (ii) is the minimal hypothesis to ensure that the diffusion given by K
is really n-dimensional; see [FeRo24l, Proposition 2.2.1].

The upper bounds (i) and (iv) are rather simple to prove, since they do not rely on any entropy or
pressure lower bound, and have already been established in [ImSi22]. In contrast, the verification of
the nondegeneracy (ii) and coercivity (iii) are more delicate, and were established in [ImSi20b, ImSi22]

under the assumption ([1.19)) (see also [ChSi20]).

A key contribution of the current paper consists in the verification of the two conditions (ii) and
(iii) under pressure and moment bounds. We will establish these properties in [Theorem 4.1 and
Theorem 5.1| respectively. To verify the condition (iii), we rely on the results of Gressmann—Strain
[GrSt11].

It is important to notice that the conditions (ii) and (iii) can fail if we only assume the energy bound

(1.10) instead of ([1.14]) for some g > 2; see |Remark 3.2/ This is a first reason why we need to assume

higher order moments.

1.4.2. From ellipticity to reqularity. [Proposition 1.4]is a crucial ingredient for our proof, as it tells us
that under our macroscopic assumptions, the diffusion coming from K is n-dimensional, and thus
there is hope to establish some regularity results.

In the program of Imbert—Silvestre, some of the main steps of the proof are the following:

e Prove an L* bound for solutions, subject to the macroscopic bounds on mass, energy, entropy.
This was done by Imbert—Mouhot—Silvestre [Sil16], TMS20)].

e Establish a C* — L™ estimate, and deduce that solutions are C* [ImSi20b, TmSi22].

e Establish a higher order Schauder estimate, and deduce that solutions are C*° [ImSi21], TmSi22].

The entropy bound is crucially needed for the L> bound. Indeed, the proof of [IMS20] does not
work if we only assume (i)-(ii)-(iii)-(iv) above, and thus we need a completely different proof under
these weaker assumptions. Notice also that this is the only missing step, because once we have an L™
bound for solutions then the entropy is automatically bounded and we can apply the existing results.
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Our proof of the L* bound (Theorem 1.3|) relies on the C* — L estimate from [ImSi20b], which
holds exactly under the assumptions (i)-(ii)-(iii)-(iv). Namely, the idea is that, under our macroscopic

bounds ((1.9)), (1.12]) (or (1.13])) and (1.14]), any solution will satisfy a bound of the type
[fllce < Cllfllze,

for some C that does not depend on || f||z~ (in particular we do not need the bound on the entropy
here). If this was true globally (which is not the case), by an interpolation argument (in kinetic spaces)
we would show

[fllee S Nfllze < Csllfllr + 61l fllce

and then we could reabsorb the term on the RHS to deduce || f|ce < || f]|z1, and in particular

[fllzee S M1f Mz

which is the estimate we want. This type of argument works well for harmonic functions (or elliptic
equations), but it is much more delicate here because of the kinetic scaling, the degeneracy of the
kernel Ky as v — oo, and the exponent v in the equation. Despite all this, we manage to make the
argument work provided that we have finite moments of some order ¢ > n.

1.4.3. Related results. Let us close this subsection by emphasizing that our technique to prove the
C® — L' estimate (resp. [Theorem 1.3 would also work for linear kinetic equations of the form

of+v-Vof=Lxf+h, (1.22)

where L is a nonlocal operator with kernel K satisfying (i)-(ii)-(iii)-(iv) from [Proposition 1.4 Our
proof heavily relies on the Hoélder estimate which was developed in [ImSi20b] for linear nonlocal
kinetic equations with bounded measurable coefficients and then applied to the nonlinear Boltzmann
equation. Recently, a great deal of attention has been paid to the study of regularity properties for
linear nonlocal kinetic equations like . A closely related question to the De Giorgi-Nash—Moser
type results from [ImSi20b] is the validity of a Harnack inequality for nonlocal kinetic equations.
Interestingly, it turns out that the Harnack inequality fails to hold for solutions to , already in
case L = (—A,)? is the fractional Laplacian (see [KaWe24]). Let us refer to [Stol19l Loh23|, Loh24bl,
APP24] for further results on pointwise regularity estimates for solutions to . Moreover, let us
mention [ChZh18 [NiZa21l [NiZa22| Nie22|] for results on nonlocal kinetic L maximal regularity and
[mSi21), HWZ20, [Loh24] where Schauder-type regularity estimates have been established.

1.5. Convergence to equilibrium. Exactly as in [ImSi22], an immediate consequence of our
is the following improvement of the main result in [DeVi05]:

Corollary 1.5. Let s € (0,1), v > 0, ¢ > n, and v+ 2s < q. Let f be a solution to the Boltzmann
equation in (0,00) X R™ x R™ with n > 2 (see|Definition 1.1). Assume that f satisfies globally (1.9),
(L.13), and (1.14) with q > n.

Then, f converges to a Mazwellian as t — oo as described in [DeVi05, Theorem 2].

In other words, if the macroscopic observables in ((1.9), (1.13), and (1.14) remain controlled, then f
will converge to equilibrium as t — oo faster than any algebraic rate O(t~%).
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1.6. The grazing collision limit. The Boltzmann equation converges formally to the Landau equa-
tion as s — 1 (see, e.g., [Vil02]), provided that the collision kernel has the appropriate normalizing
factor

b(cos0) = (1 — s)|sin(0/2)|~"~D=2s, (1.23)

An open problem after the results of [ImSi22] is to establish regularity estimates (like those in
that remain uniform as s — 1. As explained in [ImSi22], the main difficulty lies in the
L™ estimates and decay for large velocities from [IMS20]. The proof in [IMS20] heavily uses the
nonlocality of the equation, and thus their estimates cannot be made uniform as s — 1.

Another advantage of the method we introduce in this paper is that the new L estimate we establish

here (Theorem 1.3) can be made uniform in the grazing collision limit s — 1.

Theorem 1.6. Let sg € (0,1), s € [sg,1), v >0, ¢ >n, and v+ 2s < q. Let f be a solution to the
Boltzmann equation as in|Definition 1.1, with the normalization factor (1.23|). Assume that f satisfies

(11.9), , and (1.14). Then, for any T > 0 we have
< 007

HfHLOO([T,T} xR?xR") —

with Cy depending only on n, so, mo, Mo, po, My,q, and T.
Moreover, if f satisfies (L.14) for all ¢ > n and if vy > 0, then, for any 7 > 0 and p > 0 we have

|Hv|prL°°([T,T]><]R"><R") <Gy

with Cy, depending only on n, sg, 7y, mg, Mo, po,p, T, and on My ,y1.

Note that once we have the L°° estimate from we still use the results in [IMS20] to
deduce fast decay for large velocities, and hence the estimate in [Theorem 1.2]is still not uniform as
s — 1. The use of [IMS20] can be avoided entirely, for example, when assuming that we have finite
moments of all orders ¢ > 1 (instead of some ¢ > n). In that case, becomes a robust
analog of the main result in [IMS20]. Then, the only missing ingredient to obtain a uniform version
of is to prove robust Schauder estimates for nonlocal kinetic equations (see [ImSi21]).

1.7. The Landau equation. Quite interestingly, seems to be new even for the Landau
equation, which corresponds to the limit s = 1, and is given by

Ohf+v-Vuf =V - [AV,f] +b-Vof +cf, (1.24)
where

At,z,v) = ay / (I—w®w> w2 f(t, z,v — w) dw, 1.25
() =any [ (1= 700 T ) [l A ) (1.25)
b(t, x,v) :bnﬁ/ wlw|? f(t, z,v — w) dw, (1.26)

Rn
c(t,z,v) :cnﬁ/ lw|7 f(t,z,v —w) dw. (1.27)

R

Here, ay by, Cny are constants with a, . > 0 (which we will neglect in the sequel), and v > —n.

Theorem 1.6|was not known for the Landau equation, even under the entropy bound assumption ([1.11]).
It was only known in case v < 0 (see [HeSn20]), or for space-homogeneous solutions (see [DeVi00]).

In particular, we deduce the following smoothness result for the Landau equation with hard potentials.
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Corollary 1.7. Let g > n. Let f be a weak solution to the Landau equation with v > 0 and v+ 2 < q.
Assume that f satisfies (1.9)), (1.13), and (1.14). Then, for any T > 0 we have

HfHLoo([T,T}anan) < Co,

with Co depending only on n,mqo, Mo, po, My, q, and 7.

Moreover, if f satisfies (1.14) for all ¢ > n and if v > 0, then, for any multi-index k € N'*27 and
any T >0 and p > 0 it holds

H’U|pDkaLoo([T,T}anan) < Ckp;

where Cyp, depends only on n,vy, mg, Mo, po,p, T, k, and on all My for ¢ > 0.
Note that, in fact, for given k, p, there exists gg so that C}, only depends on My,.
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1.9. Outline. This article is structured as follows. In Section [2| we introduce (recall) the change of
variables and kinetic Hodler spaces. In Section [3], we present several consequences of the pressure and
moment bounds. In Section 4] and Section [5| we prove that the Boltzmann kernels are nondegenerate
and coercive in the sense of (ii) and (iii) above, respectively. In Section [f] we give the proofs of our
main results for the Boltzmann equation. Finally, in Section [7] we explain how to adapt our technique
to the Landau equation.

2. PRELIMINARIES

In this section we introduce the change of variables from [[mSi22] that preserves the geometry of
the Boltzmann equation and is crucial in order to deduce global Holder estimates, as well as some
definitions on kinetic Holder spaces.

We start with the definition of the (kinetic) cylinder adapted to (¢, x,v) variables and the kernel’s
singularity (in fact, the singularity of its angular part):
Given a point 29 = (tg,zo,v0) € R*?" we denote by Q,(z0) the kinetic cylinder of radius r and
centered at zgq,

Qr(20) == {(t,z,v) € R 1 tg — 25 <t < tg, | — 20 — (t — to)vo| < % Jv—wo| <7} (2.1)
We will denote by @, = @Q,(0,0,0).

2.1. Change of variables. Note that by verifying nondegeneracy and coercivity (|1.21)) for
K; we can obtain a Holder estimate in B; by application of the main result in [ImSi20b] (see also
[Proposition 6.1]). In order to obtain a global Holder regularity estimate in Bj(vg) for some vy € R™,
we need to verify (1.20) for any v € Bs(v) and (1.21)) for functions g supported in Ba(vp). It turns out
that the verification of these translated versions of (1.20]) and (|1.21]) is not for free since the ellipticity
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constants degenerate (or explode) as |v| — oo. Clearly, in order to obtain global regularity estimates
for solutions to the Boltzmann equation, it is crucial to have uniform ellipticity for all velocities.

In [ImSi22], this problem is solved by introducing a suitable change of variables that preserves the
geometry of the Boltzmann equation and under which the ellipticity constants remain controlled:

Let v+ 2s € [0,2]. Given tg € R, zp € R™, and vy € R"™, we consider
f(t’ x? /U) = f(£7 j? ’5)7

where

- to + gz, To + IR vy + TOU) if  |vg| > 2
(tax7 U) = %(taxav) - ( |/U0"Y ’ |/U0|'Y ’ ) )

(to +t,z0 + 2 + tvg, vo + ) , if  |uo| < 2,
and 79 : R™ — R" is defined as the following transformation

a_

|vol
To(avy + w) = .
avy + w, if |ug| < 2.

vo+w Yw Ly, a€R, if |uo| > 2,

Let us also introduce the following sets, where we recall that @, is the kinetic cylinder in R'*27 (given
by (2.1)) and B, is the usual ball in R™:

87‘(20) = 76(@7")7 ET(UU) = + T()(BT)'

Clearly, when |vg| < 2, it holds Q;(20) = &,(20). Moreover, note that when f solves the Boltzmann
equation in &;(2p), then f solves

3tf+v-me:£f(ff+§ in Q1,

where
~ |U0‘7177725Kf(t~,5'71~},1}0—|—T0(’U—|—h)), if ”U()| > 27
Ky(t,z,v,0v+h) = B (2.2)
Kf(t,fc,z?,vo—i-v—i-h), if "UO| < 2,
Cb|v0|_’y_2sf(£7‘%76)(f * ’ ’ |W)(t~7i’71~))7 if |U0‘ > 2,
g(t,z,v) = B By (2.3)
eof (L, 2, 0)(f = |- |")(¢,Z,0), if fuo| <2

Note that K ¢ is still homogeneous and satisfies the non-divergence form symmetry condition.

In order to obtain a global Holder estimate for solutions to the Boltzmann equation, we need to verify
the nondegeneracy ((1.20]) and coercivity (1.21)) with K = K for any vg € R".

2.2. Kinetic Holder spaces. On the other hand, we also recall the notion of kinetic distance and
the corresponding Holder spaces:

Definition 2.1. Given two points z; = (t;, z;,v;) € R1T27 i = 1,2, we define the kinetic distance

. 1 1
de(z1,22) = nin {maX (\h —to|2s, |z1 — 22 — (t1 — t2)w| %, Juy — w, [vg — w|>} .

Given a set D C R'*?" and a € [0,1), we say that a function f : D — R is a-Hélder continuous at
20 € RI*27 if

|f(2) = f(20)] < Cydi(z,20)* forall ze D.
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We define the set Cj*(D) as the set of all functions f : D — R that are a-Hélder continuous at any
2o € D with a constant C,, that is independent of zp, and we define | f]C?( p) as the supremum over
all C,, 20 € D. Moreover, we set

[ fllceoy = I fllLe ) + [flog D) [fleopy = I1f1l Lo (p)-

Moreover, given p > 0, we define
||f||CL?fp((T,T)><R"><]R") = sup {(1 + |,U|)p||f||C?(Qr(z)) HEAES (07 ]-]a QT(Z) - (7-7 T) x R™ x Rn} )

HfHLiOzL%’p((T,T)XR"XR”) = sup {HfHLOO LL(Qr(2);(1+|v|)P dv) * re (07 1]7 QT(Z) - (T7 T) x R™ x Rn} :

t,x™v
We say that f € Cfy, if for any p > 0 and all r € (0, 1] there is Cp, > 0 such that for all Q,(z) C
(1, T) x R™ x R™) it holds ‘|f||CZP(QT(Z)) < Cp.

3. AUXILIARY LEMMAS

In this section, we present an important consequence of the pressure and moment bounds (for ¢ > 2),
which will turn out to be useful in the proofs of the nondegeneracy (1.20) and coercivity (1.21)) of the
Boltzmann kernels.

It is well-known that by and , solutions to the Boltzmann equation have some positive
mass which can be located in a ball around the center of mass v. Moreover, due to the pressure lower
bound and the moment bound for some ¢ > 2, the location of this mass can be further specified. In
particular, the following result, which is the main result of this section, states that solutions have some
positive mass located outside any linear tube of radius 6.

Proposition 3.1. Assume that f is nonnegative and satisfies ((1.9)), , and (1.14) for some
q > 2. There exist R > 0, and 6,c > 0, depending only on mq, Mg, po, My, and q, such that for any

line L C R™, denoting Ls := {x : dist(x, L) < §} the linear tube of radius 6 around L, we have

/ f(w)dw > c.
Br\Ls

Remark 3.2. Note that |[Proposition 3.1| does not hold without the assumption that the ¢gth moment
is finite for some ¢ > 2, (1.14). Indeed, when only boundedness of the mass , energy @D,
and pressure are assumed, then one can construct counterexamples to [Proposition 3.1 For
simplicity, we only give a counterexample in 2D. However, a similar construction also works in higher
dimensions. Consider for R > 1 the sets

Al = (_R_37R_3) X (_Rv R)’ AZ = (_R, R) X (_R_gaR_S)v A= (_R_I’R_l) X (_R_lvR_l))

and define fr(v) = 1a,u4,(v) + R?*14(v). Then by construction, holds true with mg := 4,
My := 8 > 4+4R~2. Moreover, it holds with Ey := C1 and with ¢1 Ey/My > ¢1C1/8 =: po
for some 0 < ¢; < C; < oo. In particular, mgy, My, Ey, and py, can be chosen independent of R.
Moreover, note that for any ¢ > 2, it holds for the gth moment of fz that v(9 > CyR?2 for some
Co > 0, so (I.14)) fails for any ¢ > 2, by taking R — co. Moreover, note that fr violates the property
in [Proposition 3.1| Indeed, given any § € (0, 1), we let L = Res, and observe that for R~! < § it holds

/Rn\L fr(w)dw = |42\ Ls| = |((-R,R) x (-R™*,R™*)) \ (= 6,6) x R")| 4R — 0.

Since the right-hand side vanishes as R — oo, the statement of |Proposition 3.1| fails for fg.

The proof of [Proposition 3.1| requires some preparatory work. We start with the following lemma.
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Lemma 3.3. Assume that f is nonnegative and satisfies (1.9) and (1.13)). Then, for any 0 < X < po
there exists n > 0 depending only on My, po, and X\, such that

sup / f(o+w)|w-e?dw>X\  forany ocS"L
eeeS,l"U*l {lw-e|=n}

Proof. We have for n > 0:
/ f(v—l—w)]w-e|2dw§n2/ f(0 +w)dw < n* My,
{lw-e|<n} R

so that

/ f(v+w)|w-e\2dw:/ f(v+w)w-e|2dw—/ £ +w)|w - e dw
{lw-e[>n} R™ {lw-el<n}

> / (@ +w)|w - e|? dw — n* M.
R

Taking the supremum for e € S*~! with e L o, and thanks to (.13, we get the desired result by
1/2
taking n = (%) : O

Moreover, if (2 + £)-moments are finite we can ensure that the mass from is contained in
a large ball.

Lemma 3.4. Assume that f is nonnegative and satisfies (1.9)), , and (1.14) for some q¢ > 2.
Then, there exist R,\ > 0 depending only on mq, Mo, po, My, and q, and 5y € (0,1) depending only on

My and py such that
/ fo4+w)dw > A for any o €SV
Brn{dist(-,(c))=do}
where (o) := {to : t € R} denotes the line spanned by o € S*~1,

Proof. First, note that by there exists g > 0 such that we have

sup / f(o+w)|w-e|?dw > 2o, (3.1)
{Jurel >80} 4

elo
ecSn—1

Moreover, by (1.14]), we have that for any p > 0 and using that (a +b)? < Cy(a? 4 b?) for all a,b > 0:

f(T)—i—w)\w-e?depQ_q/ f(w)|w —o|?dw
R7™\B,(0)

< Cgp* (Mg + (moMy)1 M) =: Cp* ™,

/(R”\Bp)ﬂ{wel>5o}

where we used that o] < Mj/mg. Let us now choose p = R so large that R>~9C' < py/8. Then, using
(3.1) and taking a supremum, we deduce

sup / f@+w)|w-ef*dw < CR*? < Po
elo J@®M\Bg)n{lw-e|>d0} 8
ecS”
1
<y [ feru)eclde
2 elo J{wel>d0}

ecsSn—1
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This implies (by the subadditivity of the supremum)

sup / f(@+w)|w-e|*dw < sup / (@ +w)|w - e|? dw,
elo J(R"\Bgr)N{|lw-e|>do} elo JBrN{|lwe|>d}
6€Sn71 6€§n71

and therefore, again by subadditivity,

P o sup / f(o+w)|w-e)>dw <2 sup / f(@+w)|w - e? dw.
4 {Jw-e[>80} Brn{lu-e[>d0}

elo elo
eeSn—1 ecSn—1
This implies
7]?02 < sup / f(0+w)dw,
8R eJ.{l BrN{|w-e|>d0}
eeS™

13

which directly gives the desired result, since {|w - e| > 6o} C {dist(:, (o)) > do} for any e L o with

ee S,

0

The following lemma implies that the mass is not concentrated on one side of the center of mass :

Lemma 3.5. Assume that f is nonnegative and satisfies (1.9) and (1.10). Moreover, assume that

there exist n, \y > 0 such that for some eq € S"~! it holds:

/ £ +w)dw > Ar.
{w-e0>n}

Then, there exist o, Ao > 0, depending only on A1,n, mg, M1, Ey, such that

/ f(04w)dw > As.
BrM{w-ep<0}

Proof. First, note that for any o > 0, we have
/ F)|(w — 7) - eo| dw < gl/ Fw)w — o) dw < Co By + (moM1)?),
R™\ By (v) R\ B, (v)
where we used that || < M;/mg. Moreover, note that due to the definition of v, it holds
fw)(w—2) -edw=0  forall eecS"
Rn”

Therefore, using also (3.2)), and (3.3]), we obtain

A <1 / f(w) dw
{(w—7)-e0>n}
g/ fw)(w — ) - egdw
{(w—2)-e0>0}

:/ F(w)(w — ) - o duw
{(w—)-c0<0)

< /R"\BQ(ﬁ) Flw)|(w — ) - eo| dw +/ F(w)|(w — 7) - eo dw

B, (9)N{(w—70)-e0<0}

< Co Y (Ey + (moM1)?) + Q/ f(w) dw.
Bo(0)N{(w—7)-e0<0}

(3.2)

(3.3)
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Altogether, choosing ¢ so large that Co~'(Eg + (moM;)?) < %, we deduce

/ f(w) dw > 21,
By (8)N{(w—0)-e0<0} 20

as desired. ]

As a consequence of the previous two lemmas, we are now in a position to prove [Proposition 3.1}

Proof of [Proposition 3.1]. First, note that since |v| < Mj/myg, it suffices to establish the existence of
R, d,c > 0 such that

/ f(v+w)dw > e (3.4)
Br\Ls

To prove (3.4), we fix R, dy, and ), to be the parameters from Hence, for any o € S*~1:

/ F(© +w) dw > A. (3.5)
Brn{dist(-,(o))>d0}

Let usset § = %0 and let Ls be a fixed linear tube of radius d along the line L := {ag+tep : t € R} C R”,
for some ag € R?, ey € S*~1.

We choose o = eg. If Ly C {dist(-, (7)) < dp = 2} we are done by (3.5)), so let us assume that
Ls C{w-e>08y/2=0} forsome e lo, ecS" L
From (3.5) we can further assume

v

A
/ fo+w)dw > =,
BrNLs 2
since otherwise (3.4) follows with ¢ = % In particular, we have

/ f(04w)dw > 57
Brn{w-e>6} 2

so that, by we obtain

/ f(o+w)dw > Ay,
Brn{w-e<0}

for some A9 > 0. The result now follows because Br \ Ls D Br N {w - e < 0}. O

4. PROOF OF NONDEGENERACY

In this section, we establish the nondegeneracy of the Boltzmann kernel K ¢ under the change of
variables for any vy € R™.

Theorem 4.1. Let s € (0,1) and v € (—n, Y| for some v9 > —n. Assume that f is nonnegative and

satisfies (1.9), , and (1.14)) for some ¢ > 2. Then, the kernel f(f given by (2.2) and (1.23]) with

vy € R™ satisfies
inf 1/ Ki(w,v+h)(h-e)2dh > r?"2  forall r>0, v€ By,
eeS" /B,

uniformly in vg, with X > 0 depending only on n,mg, Mo, po, My, q, and o.

We split the proof into two parts, treating separately the cases |vg| < 2 and |vg| > 2.
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4.1. Nondegeneracy near the origin. First, we establish a nondegeneracy estimate which does not
take into account the change of variables. This result will be used in the proof of only
in case |vg| < 2. Recall that for the bounds on Ky we assume (|1.23))

Proposition 4.2. Let s € (0,1) and v € (—n,~] for some 9 > —n. Assume that f is nonnegative

and satisfies (1.9)), , and (1.14) for some q > 2. Then, for every r >0 and v € R":
inf / Kp(v,v+h)(h-e)2 dh > A(v)r?~2, (4.1)
B

ecSn—1
where A(v) > ¢(1 + |[v])7T2572 for some ¢ > 0 depending only on n,mo, Mo, po, My, q, and 7.

First, let us rewrite K¢(v,v+h) = K¢(v; h) and deduce from (1.18)-(1.23)) that Kf(v;-) is comparable
to a homogeneous kernel for any v, so that we can write

K(v;h) < (1 — s)|h| ™" *a(v;h/|h]) where a(v;0) = f(v+ w)|w| T2+ dw. (4.2)
wl6

Therefore, using polar coordinates and also the symmetry a(v,6) = a(v,—60), the nondegeneracy
condition (4.1)) can be equivalently reformulated as follows: Check that for any v € R™ and any
e € S*1 it holds

/ a(v;0)]0 - e]*do = 2/ a(v; 0)(6 - )% df > A\(v), (4.3)
Sn—l S”_l

for some A(v) comparable to (1+ |v])?T2572. The resulting constant in (4.1]) does not depend on s due
to the following identity: (1 —s) [; |h|71 72572 dh = 12725,

Remark 4.3. Note that (4.3) vanishes if and only if there exist v € R” and e € S*~! such that for
any 6 [ e it holds

fo+w)=0 Yw L6,

or, in other words, if f is supported on a line.

The following is a standard calculus identity, it can be found in [Sil16] (see also [ImSi20al Lemma

A.10]).
/S”—l /wwg(w) dwdf = /Rn 9(2)]z| 7" da.

We will make use of the following weighted version of such identity:

/Snl </wm g(w, 0) dw) df = /Rn <~/9Lz g(z,0) dé?) 2|7t dz. (4.4)

With the help of this identity, we can derive the following equivalent version of the nondegeneracy
condition (4.1)):
Lemma 4.4. The inequality (4.1)) is equivalent to the following condition:
For every v € R™ and any e € S*™! it holds
F(0 + 2)G(z,€) 272 dz = A(v), (4.5)
R”
where M(v) =< (14 |[v])7T2572, and

G(z,e) = / 0 -e[*do = / cos®(6,¢e)df = / sin?(z, €) df = ¢(n) sin?(z, e).
sn—1n{0Lz} sn—1n{0Lz} Sn-1n{g.Lz}
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Proof. We apply ([.4) with g(w,0) = f(v + w)|w|"25710 - e|2. Then, the desired result follows from
the following computation:

/ a(v;a)\a.ePdQZ/ < f(v+w)]w|7+2s+1\9~e]2dw> dé
Sn—1 Sn—1 wl

6
:/ flo+2) (/ ya-ey2d9) 242 dz
R™ 01z

= [ fw+2)G(ze)[z["* dz,
Rn

together with (4.2))-(4.3). O

We are now in a position to prove |[Proposition 4.2}

Proof of [Proposition 4.2 Recall that by (4.5)), it suffices to prove that for any v € R” and any e € S"~!
it holds

- f(w)G(w — v, e)|w — v dw > A(v), (4.6)

where \(v) < (1 + |v — 9|)7+2572 (using also that || < Mj/mg). Let us fix v € R and e € S*" L. Let
us denote v + Re = {v + te : t € R}. Moreover, let R, J,c, be the constants from [Proposition 3.1}, and
let Ls denote the tube of radius § around v + Re.

We claim that there exists ¢ > 0, depending only on R, d, ¢, such that

inf  Gw-—v,e)>el+v—1u)"2. 4.7
wGBR(Q_})\Lé( ) = e(1+] ) (4.7)

This follows because, by assumption,

inf  dist(w,v+ Re) >4,
wEBR(V)\Ls

and hence, for any w € Bgr(v) \ Ls:

dist(w, v + Re)? 52
- ain2 _ ’
G(w —v,e) <sin®(w —v,e) = =P > SRE+ 20— (4.8)
where we have also used that
lw —v|? < 2w — 5> + 2Jv — 7|® < 2R? + 2jv — 3|%.
This yields (4.7). Moreover, note that for some ¢ > 0, depending only on R, §, we have
inf  |Jw—wv|>max (5, |v—0—R)>(1+|v—1]).
weBR(V)\Ls
Consequently, we deduce from [Proposition 3.1 and the previous inequalities:
f(w)G(w — v, e)|w — v 172 dw > / f(w)G(w — v, e)|w — v[77% dw
R Br(v)\Ls
>elefo-o) ™ [ fw)du (4.9)
Br(v)\Ls

> éc(l 4+ v — o))7T2572

for some ¢, ¢ > 0, depending only on mg, Mo, po, My, q, as desired. O
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4.2. Nondegeneracy under change of variables. In this section we prove the nondegeneracy

condition for |vg| > 2, thereby concluding the proof of [Theorem 4.1

Proof of [Theorem 4.1 The proof is complete once we can show the following property:
For any e € S* ! and any vy € R?, and v € Ba:

Kp(v,0)|(v) —v)-ef*dv' > r*72)\ for all 7> 0.
By (v)

We fix any r > 0. Note that we only need to consider the case ]110] > 2 due to [Proposition 4.2 and
the definition of 7y in case |vg| < 2. Indeed, if |vg| < 2 we have Kf(v,v") = K¢(vo + v,v9 + v'), and
by [Proposition 4.2

Ki(v,0")|(v) —v) -ef>dv’ = K (vg 4+ v,v9 +0)|(v —v) - el dv/
BT(U) BT(U)

> c(l + ‘UO + U|)W+2372r2723 > )\r27257
for |v] < 2 and |vg| < 2. Let us therefore assume |vg| > 2. We divide the proof into three steps.

Step 1: Using the definition of Kf(v,v') and writing & = vg + mov and h = 7(v/ — v), We rewrite

K (v,0)|(v) —v) - e* dv
By (v)

= |vp| 7177728 ) K (vo + 100,00 + 100)|(v/ — ) - ]2 dv/
(v

_ |v0|_1_7_25/ K (5,5 + )l ' - ef?| det 70|~ ds
E,
— o 7 [ K004 Bl el d

x(1—5)|v0]_7_25/ || 2 (/ ~f(f)er)|wn+2s+1c1w> 7 - e df,
E, wLlh

where in the last step we have used (4.2)), and where E,. = E,.(0) is the ellipsoid centered at the origin
with side length r/|vg| in the vo-direction, and side length 7 in all directions perpendicular to vp.

Next, observe that we have the following generalization of (4.4) (see [ImSi22, eq. (5.9)]):

/ T < /R nm{m,;}g(w’m dw) dh = / ) ( /E m{ﬁm}g(ﬁ),ﬁ) I[}*Z'! dh) . (4.10)

An application of [@.10) with g(w, h) = [h|~"=2 f( + @) || T2+ 75 h - e]? yields

1 .
/ Ki(v,0)|(v —v) - el dv/
1—s By (v)

= \vo|_7_25/ / |ﬁ|_"_2sf(17 + 2D)|1D|7+28+1|T(;1B . e|2@ dh | dw
n \JEn{hLlo} kol

= |v0|—w—2s/ fo+w) (/ i |B|—n—2$+1|7(;1ﬁ.6|2 dﬁ) |1Z)|7+25 di
Rn E-n{hlw}

= [ f(o+@)G(w,e) || dw
Rn
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f(u?) (i — B, )| — 07 dai,
where

Gl — B,¢) = ]v0|_7_28/ N B2 (7Y - e d,
Bon{hL (i—)}

We notice that for any two vectors a,b € R" it holds that a-b = 1o(a) - 75 *(b). Indeed, let us assume
without loss of generality (up to a coordinate transform) that vg/|vg| = e;. Then,

a - b—zaz P = bl‘U0| +Zalb _7-0( ) T()_l(b)

1=2

Therefore, we can compute

G — 5,¢) = oo T2 / B2 57 (o) 2 d
E.n{hL(5—0)}
= Jup| 7% / ~ |24 7 (o) 2 cos? (7€)
Ern{hL(5—5)}

— sin?((@ — 5), 75" (€))7 (€) Pluo % / ~ |~ D=2s42 g,
Ern{hL(w—7)}

Step 2: Our next goal is to estimate the terms in é(ﬁ; — 0, ¢) separately. We will do so only for
W € Bgr(v), where R is the constant from [Proposition 3.1]
First, we claim that

/E - )}\E\—<n—1>—28+2dﬁz 1isr2_2s for W e Bg(v). (4.11)
M w—v

In fact, according to [fmSi22, (5.10)], we have that the set E, N {h L (& — @)} contains an (n — 1)-
dimensional ellipsoid whose smallest radius p equals

NI

pi=r (|v0]2 sin® (v, W — ¥) + cos?(vg, W — 0))

Hence, we obtain

/ |h|~ (= D=25+2 g > ¢ PP > _C 22 (|vo|2 sin?(vg, W — ¥) + cos?(vg, W — 17))371 .
E,n{hL(5—0)} I—s 1-s

Note that in case |vg] < 10(R + |v| + 1) < C, the claim (4.11) follows trivially. In case |vg| >
10(R + |v] + 1), we argue as follows: Since cos?(vg,w — 9) < 1, it is enough to estimate

lvo|? sin®(vg,vg — 2) < C for z=1w —7ov and W € Bg(v).
Observe that z € Bag(0), since |1pv| < |v| <2 < R. This property is now satisfied since the condition
|vo| > 10(R + |v| 4+ 1) implies that

. ElS ElS (9] + 2R)*
sin”(vo, vo — 2) < < < -
lvo — 212 = (Jvo| = [2)* = (lvo| = (|9] + 2R))?

< C"Uo’_2.

This proves (4.11)).
Next, we note that

2
_ Vo - €
170 1(e)\2 =1+ (\UO\Q — 1)’ ”Uo|2| =1+ (]00\2 -1) COSQ(’UQ,e). (4.12)
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Therefore, we get for any w € Br(v):
G(w — D,e) > clvg| 772 r2 2 sin? (b — 9), 75 *(e))[1 + (Jvo|® — 1) cos®(vo, e)].
We now combine all the aforementioned estimates. This yields:

/ Kp(v,0)|(v) —v) - e> dv’
B, (v)

=(1—-s5) | f(@)G—7b,e)|d—o > dw
R’n

o f(@)sin?((w — 9), 75 (e)) | — o732 dw] .

> er? 2 |ug] [+ (fuof? — 1) cos?(up, )] l/
B

Step 3: In order to conclude the proof, let us first consider, as before, the case 2 < |vg| < 10(R+|v|+1).
In this case, we apply the proof of [Proposition 4.2| (in particular (4.9) with unit vector 7, *(e) /|7, *(e)])
and obtain

K(v,o)|(v) —v) -e* dv’ > er? ™2 [/ f(@)sin?((w — 9), 75 (e)) | — o728 du?]
Br(v)

> C(l 4 ‘,[} o ﬁ|)y+25—2r2—25 > C’I“Q_QS.

Br(v)

We have also used here that |0] + |o] < C when |vg| < 10(R + |0] + 1).

Let us suppose now that |vg| > 10(R + |v| + 1). First, we observe that since v € Bs, it holds
¥ € Es(vg) C Ba(vg), and therefore for any w € Br(v):

|7]1 _ 5’7+2s - ‘UO _ ,D|'y+25 > c‘vorerQs7

where we used that |vg| > 10(R + || + 1). Thus, it remains to verify the following property:

(/B o f(@)sin? (@0 — 9), 75 (e)) dm) [1+ (Jvol? = 1) cos®(vo, e)] > ¢ > 0. (4.13)

Observe that, by the proof of [Proposition 4.2} the result holds true depending on cq once cos?(vg, €) >
co > 0 for any ¢y > 0. Indeed, thanks to (4.8)) and proceeding as in (4.9) using [Proposition 3.1| we
have

| p@) st (@ o), 75 (@) i = o1+ 5 o) 2 (1 fol)
Br(9)

and so ([4.13)) holds whenever cos?(vo,e) > ¢y > 0.

Let us fix
1

T 10(R+ 0]+ 1)’
and prove that (4.13)) also holds in the case cos?(vg,e) < co.
We start by noticing that, by the triangle inequality, and since @ € Bg(v) and |mpv| < 2,

€o

inf e, (z) dist(0 + 75 ' ()R, @)?
sin2((w—f)),7—0—1(e)):m eB, (o) dist(0 4+ 75" ()R, )

v — w|?
inf,er |vo + 75 H(e)T|> — 2(R + |0] + 1)2
‘ o2

(4.14)

)
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where we have also used |0 — @|? < C(R? + |vg|? + |9]? + 4) < C|vo|?>. On the other hand, denoting
for the sake of readability n? := cos?(vg,e) = (Tg(ﬁf < ¢p, and using (4.12)) we have

inf,cgr |vo + 7’61(6)7'|2

= sin®(vg, 75 *(€)) =1 —

[vol? [wolPl75 (e)?
() e’ (e

[volPl7g *(e) 2 75 ' (e)?

|UO‘2772 1— 772

L—n?+nwol? 1 —n2+nuol*
Thus, in order to verify (4.13]) it is enough to check (since B,(v) always contains mass, |[Lemma 3.4)

1—n? (R+\v\+1)2> , )
-2 I+ (juol” =1 >c>0,
<1+(\vo]2—1)772 ENE [T+ (|vol n?] >
or,
R+ o] +1)2
1_772_2( +||v!’2+ ) (R o+ 1A e 0.
Vo

Since n? < ¢y < W and |vg| > 10(R + |v| + 1), this inequality holds true, and the proof is

complete. O

5. PROOF OF COERCIVITY

In this section, we prove that the nonlocal energy induced by the Boltzmann equation is coercive and
that the coercivity constants do not degenerate under the change of variables for any vy € R”.

Theorem 5.1. Let s € (0,1) and v € (—n,v]. Assume that f is nonnegative and satisfies (1.9),
(L.13), and (1.14) for some q > 2. Then, the kernel Ky given by (2.2) and (1.23) with vo € R"

satisfies the following property uniformly in vg:
For any g supported in By it holds

| (60 = g)PR 0 Qwae’ = Moy = Mllager
2 n

with constants A\, A > 0, depending only on n, mo, Mo, po, My,q, and .

We recall that the fractional Sobolev seminorm [-]s(gn) is given by

2
el dvay= [ 18720 = [ at-a70,

where for us, it is important to notice that ¢, ¢ < (1 —s) as s 1 1.

(911 (rm) =

n n

Our proof is a direct consequence of the following result, which was obtained in [GrSt11]:

Proposition 5.2. Let s € (0,1) and v € (—n,7o]. Assume that f is nonnegative and satisfies (1.9)),
(11.13), and m 1.14) for some q > 2. Then, for any g it holds

/n/n V)2 K¢ (v,v") dvdv’

N\ 2 2 712y 125+ l1—s / / (5.1)
2A ] (g(v) = g()7[(L + ) (A + )] Wﬂ{d@,wgl}(v,v)dvdv,
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where A > 0 depends only on n, mg, Mo, po, My, q, and vy, and

d(w,w") \/|w w'|? + = (|w\2 lw'|2)? Yw,w' € R™

Proof. In |GrStill (11) in Theorem 1] the authors establish the following estlmateﬂ

yt2etl 1-s
D2 [ [ (00— g0 P+ P e (o) dva!
under the assumption that there exist R > § > 0 and ¢; > 0, such that
/ fv)dv > ey, (5.2)
Br\Ls

where L; is any linear tube of radius 6. Here, N¢(g) is defined as follows

:/n/n/sn_l(g(v)—g(v’))Qf(v*)B(v—v*,a)dadv*dv,

! vtUs [v—va| _ s 3
where v' = #5574 =0 is as in (L.2)).

n [GrSt1ll (11) in Theorem 1], the constant A > 0, depends only on n,q,~,d, R,c1, My. Since

we assume that ((1.9), (1.13]), and (1.14) for some ¢ > 2 are satisfied, (5.2 follows immediately by
application of [Proposition 3.1 with ¢; depending only on mq, My, po, My, q. Finally, we claim that

// o))2K 1 (v,0) do do. (5.3)

Clearly, once is established, the proof is complete. To prove , we rewrite Ny(g) using
Carleman coordinates, i.e., we set w := v}, and reparametrize the integration in o, v, from the definition
of N¢(g) by w, v’ (see also [ImSi20al, Section 2.3] and [Sil16, Lemma A.1]). This yields by the definition
of K¢(v,v") from and since under this transformation we have v, = v’ +w and w L v/ — v, and
therefore [v — v, |? \v—v +wl|? = v — V]2 + |w|?:

n—1
/ / g(v) v'))? < 2 f(W' 4+ w)B(r,cos )r "2 dw) dv’ dv

|’U/ - U| wlv' —v

/n/n V)2 K (v, v) dv’ do.

In the last line, we used that cosf and r (see (1.17) for their definitions) remain invariant when the
roles of v and v’ are swapped. The proof of (5.3)) is complete. O

We are now in a position to give the proof of

Proof of[Theorem 5.1} First, we assume that |vg| < 2. In that case, we have K(t,2,v,v") = Ky(to +
t,xo + o + tvg, vg + v, v9 + v') and deduce from [Proposition 5.2|

/32/n V)2 Ky (v,0') dod/
_2/n/n V)2 K¢ (v,v) dvd/

1The result in [GrSt11] does not keep track of the dependence on s. A quick inspection of the proof, however, shows
that if the kernel B (1.3)) is multiplied by a constant, this applies as well to the constant from [GrSt11l (11) in Theorem
1] (in the proof, the s-dependence becomes apparent only in [GrSt1ll eq. (42)]).
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= ;/n /n(g(v—%) —g(v' —vo))sz(v,v') dv dv’

Y2541 1—s

> C/n /n(g(v — o) — g(v" —v0))*[(1 + [v[) (1 + /[*)] 3 Wﬂ{d(w,)gl}(v,v’) dv dv’
L= S)/ / (9(v —v0) = g(v" — v0))?Jv = V| "> T ypy—ri<1/6} (0, 0) dv o
Ba n

> clg ]HS(R” —c(l1—s // g(v — ) — g(v" —wp))? v — /|7 dvdv/,

{|v— v’|>1/6}

where we used that
1

d(v,v') < o =o'+ glo = V|(jo] + [v']),

and that for v € By and v' € R™ with d(v,v") <1, |v/| <5 and
1
d(w.0') < Jo —2f| + gl — (o] + ') < 6fp — ]

Moreover, we also have

/] (9(0 — v0) — g(v/ — v0))*o — /| "~ dv dv/
{lo—v'[>1/6}

—n—2s ¢
§4/ ‘g('l}—’[)o)’2 (/ ‘U_'U" 2 d’[}l> dv S 17“9“%2(32)
n R™M\ By /6(v) -

Thus, by combination of the previous two estimates, we immediately deduce the desired result.

It remains to consider the case |vg| > 2. We introduce the variables © = vy +7ov and ¥’ = vg+ 190’ and
define §(v) = g(v). Then, we compute by transforming the integral twice and applying|[Proposition 5.2|
to g:

/}32/n V)2 Ky (v,0') dvd/

_2|Uo\ 1-2- // V))?K f(5,) dv o’
=gl [ @) -6 K 07 do i

o gioyqarzs+t 1 —s RN
> ool [ @00 = 0PI+ R+ R e e (5.) v
> (1 — s)|uo| 777 7/ / V))2[(1 + [vo + 70v|2) (1 + [vg + 70v/|2)]) T E X
By J B3

x d(vg + v, vo + TV ) " 2sﬂ{d(vo+mv7v0+mv/)§1}(v, v) dvdv’.

Next, we make the observation |75 !((vg + 0v) — (vo + 70v'))| = |v — /|, which implies by [TmSi22,
Lemma A.1] (with v,v" € Bs) that for some universal constant ¢ € (0, 1):

colv — v'| < d(vo + Tov, v + Tv') < cgtlv — /).

Hence, we deduce

/BQ/n 9(v) v))2K (v, 0") do dv/
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(ol0) — 0)? e
> ¢(1 = s)[op| 12 7/B/B y ‘v L (1 o + o)1+ o+ /5 v

Moreover, we observe that since |vg| > 2, for any v € Bay., and v/ € Bay, it holds that |vg + Tov| >
clvp| and therefore,
W+ s+1

[(1+ [vo + o0]*) (1 + |vo + 700" [*)] > clug|' T

Altogether, we have shown that

2 v) —g(v'))?
2 e (g(v) v')2K (v, 0") dvdv’ > ¢ 5, Jan Wlﬂv v|<eo} (v, 0") dvdu'.

From here, the desired result follows by the same computation as in case |vg| < 2. The proof is
complete. O

6. PROOF OF THE MAIN RESULT

In this section we give the proofs of our main results [I'heorem 1.3| and [Theorem 1.2]

6.1. Global Hdolder regularity estimates. First, we establish a global weighted Holder regularity
estimate for solutions to the Boltzmann equation (see [Lemma 6.5). The proof goes by application
of the Holder regularity estimate for nonlocal kinetic equations from [ImSi20b] to the Boltzmann
equation. The results from the previous sections (see [Theorem 4.1| and [Theorem 5.1)) guarantee the
applicability of their result in our setting.

The main theorem in [ImSi20b, see Theorem 1.5] on Holder regularity for solutions to nonlocal kinetic
equations (see also [ImSi22, Theorem 4.2]) reads as follows:

Proposition 6.1 ([ImSi20b]). Let f € L*°((—1,0] x By x R™) be a weak solution to
Ohf+v-Vof =Lixf+h inQ

for some h € L*°(Q1). Assume that K is nonnegative in (—1,0] x By x Ba x R™ and that the following
hold true for some 0 < A < A, sp € (0,1), and s € [sg,1):

(i) (Upper bound) For any r > 0 and any v € Bs:

/ K(v,v+h)dh+/ K(v+ h,v)dh < Ar—2,
R"\ B, R™\ By

(ii) (Nondegeneracy) For any r > 0 and v € By

1
inf / K@, v+h)(h-e)ldh>M*"2 >0 ifs<-.
ecS"1 /B, 2

(iii) (Coercivity) For any g supported in Bs:

)QK(’U v )dvdv' > Mg ]HS(RH) A||g||%2(Rn)-
Ba "

(iv) (Cancellation condition) For any r € (0,1) and v € By:

/ (K(v,v+h) — K(v+h,v)) dh’ < Ar—%,
By

N | —

/ (K (v,0+h) — K(v+ h,v))hdh’ <A +r7) ifs>

r
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Then, f is Hélder continuous in @, and for any r € (0,1) and we have

[fleg@, ) <Cr <||f||L°°((—r2570]><BT1+25XR") + TQSHhHLoo(QT))
for some C >0 and o € (0,1) depending only on n, sg, A, A.

Proof. The result is proved in [ImSi20b] see Theorem 1.5] (see also [ImSi22, Theorem 4.2]) for r = 1,
however with condition (iii) replaced by the assumption that for any g supported in By it holds

| [ 60! = ae)a) K 0.) dvdv’ > Nl ey — Al (61)

Note that under the first cancellation condition in assumption (iv), (6.1)) is equivalent to (iii), as was
mentioned in [ImSi22, Proof of Theorem 5.2]. The result for general r follows immediately by scaling.
The proof in [ImSi20b] is robust as s — 1, as was pointed out in [ImSi22, Section 1.2.2]. O

In the previous sections (see [Theorem 4.1 and [Theorem 5.1J), we have seen that the Boltzmann kernel
K is still nondegenerate and coercive in our setting. In particular, it satisfies (ii) and (iii).

The following lemma was proved in Theorem 5.2 and verifies the assumptions (i) and (iv)
for the transformed Boltzmann kernel K ¢ under the macroscopic assumptions and - It

becomes immediately apparent from the proof, that the result is robust as s — 1, and that it remains
true for v + 2s € [0, ¢] under the assumption (|1.14)) for g > 2.

Lemma 6.2 ([ImSi22]). Let ¢ > 2, so € (0,1), s € [so,1). Let v > 0 and v+ 2s € [0,q]. Assume
that f is nonnegative and satisfies and (1.14) for ¢ > 2. Then, the kernel f(f given by and
with vg € R™ satisfies (i) and (iv) in|Proposition 6.1 uniformly in vy, with constants depending
only on n, s, mo, Mo, Mg, .

By combination of [Lemma 6.2 [Theorem 4.1 and we are able to apply the previous
Holder estimate, [Proposition 6.1} to the Boltzmann equation in any bounded domain, to obtain the
ellipticity conditions in [Proposition 1.4] uniform as s 1 1:

Lemma 6.3. Let sp € (0,1), and let s € [sp,1). Let f be nonnegative and satisfying , , and
for some q > 2. Then, the Boltzmann kernel K = f(f given by and with vg € R"
satisfies (i)-(ii)-(iii)-(iv) from|Proposition 1.4 uniformly in vy, for some constants A and A depending
Only on n, so, v, Mo, MO; Do, Mq;and q.

We directly prove which in turn implies [Proposition 1.4] as well.

Proof of |Proposition 1.4 and|[Lemma 6.5. Follows from [Lemma 6.2 [Theorem 4.1 and [Theorem 5.1}
O

In order to obtain a global Holder estimate, we make use of the changes of variables from Section [2

Before we apply [Proposition 6.1) we need the following auxiliary lemma. This lemma was already
proved in Lemma 6.3] for the range p > n + v + 2s. We need the result for small values of p
as well.

Lemma 6.4. Letq>2,v> —n, s € (0,1), y+2s € [0,¢], and vy € R™. Assume that f is nonnegative
and satisfies (1.9) and (1.14) with ¢ > 2. Let f € Cg,p for some p € [0,n — 1)U (n + v + 2s, +00).
Then, for any v € By(vp):

/M fw+h)Ky(v,o+h)dh < C(1+ !UO\)_pﬂHf”cgp((o,T)anany
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where we denote M = {h € R" : |v+ h| < |vg|/8,|h| > 1/2 + |vg|/8}, and C > 0 depends only on
n,p, MUanv(I'

Proof. The case p > n + 7 + 2s corresponds to [ImSi22, Lemma 6.3] with g = f. Let us therefore
assume p € [0,n — 1). Using (1.18)), as well as the transformation (4.10]), we obtain

/ fw+h)Kp(v,v+h)dh < (1 —s)/ f(v+ h)|p|72% (/ f(v+ w)|w| T2+ dw) dh
M M R

nN{wlh}

=(1- s)/ f(v+w)|w[1F2 (/ f(v+ h)|p| 72Tt dh) dw.
R” Mn{wlh}

Next, we compute for the inner integral, given any w € R™:

( / f(v+ h)|p| 72t dh)
Mn{wLh}

< Hfucgp((o,T)anan) (/Mm{ ' |h|~(=D=25(1 4 |u + h|)7P dh)

< C(1+Juol) =072 / (Lt Jo+h) PR ) [ floo (o) xmnin)
{|v+h|<|vo|/8}N{wLh} D

<C(1+ ’U0|)7p725Hchgyp((o,T)anany

Moreover, for the outer integral we have
fot )l dw <0 [ ) (w4 o) du
R" R

< C (M + (1 + o7+ M)
where we used that 0 < v+ 2s < ¢ and |v| < 1+ |vg|. Therefore,

/M flo+ W)Ks(v,0+h)dh < O+ ’v0|)_p_2sHfHC?,p((U,T)XR"XR") </Rn f v+ w) w7+ dw)

<C@+ ’UOD_IH—W|’f“C’2p((O,T)><R"><R")a

as desired. O

Altogether, we obtain a global Holder estimate.

Lemma 6.5. Let ¢ > 2, sp € (0,1), s € [sg,1). Let v > 0 and v+ 2s € [0,q] and T > 0. Let f be

a solution to the Boltzmann equation in (0,T) x R™ x R™ (see [Definition 1.1) satisfying (1.9), (1.13]),
and (L.14) with ¢ > 2. Then, there exists ag > 0 depending only on n, so, mo, Mo, po, and My, such

that for all a € (0, ) and p € (a,n — 1)U (n + 25+ 7, +00) the following holds:
If f e Cgp((O,T) x R" x R") then f € CF,_ (1, T) x R" x R") for any 7 € (0,T), and the following
estimate holds for all 0 < 11 < 1o < T with |72 — 11| < 1,

1/ lleg

o2 T)xRAxR) S C(r2 — 7’1)_73||f”02p((7—1,T)><[R{"><Rn)a

where C' > 0 depends only on n, so, p, mo, Mo, po, q, M.
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Proof. Note that the claim follows once we show that for any zg, z € (72,7) x R™ x R™ it holds
f(20) — f(2)] < C(r2 — 11) " 25dp(20,2)*(1 + 00D TN fllce ((ry 1) xRn xm)- (6.2)

Let us set 7 := (19 — 7'1)%. Then, for any zg € (12, T) x R™ x R™, we have Q,(z0) C (11,T) x R” x R™.
We fix zp = (to, o, v0) € (12,T) x R™ x R", and divide the proof into two steps.

Step 1. First, we consider the case |vg| < 2. We apply the change of variables 7y to f, set f(t,z,v) =
f(t,,0) = f(to +t,20 + x + tvg, vo + v) and observe that f solves (recall (1.15])

atf‘*‘v‘vxfzﬁf(ff“‘ﬁ in Qp,
where
h(t x,v) = cb(f *y ||V f (t x,v).

By the mass and moment bound, and since v € (0, q] (alternatively, by [ImSi22, Lemma 2.3|, which
works in the exact same way if ¢ > 2) we have for some C' > 0, depending only on My, M,, and g,

12| oo (@) < C(L = 8)| Fll oo (@ (1 + o)™ = Cllfll oo (@ a0y (1 + [00])7 < Cllf | o ((r1,7) xR xR

where we also used that |vg| < 2. Moreover, by [Lemma 6.2} [Theorem 4.1} and [Theorem 5.1} the kernel
Ky satisfies the assumptions (i), (ii), (iii), and (iv) of IProposition 6.1| (see [Lemma 6.3). Thus, an

application of |Pr0p081t10n 6. 1| to K 7 yields that for any z1, 22 € Q,/2:

1F(21) = F(z2)] < Cr (Il oo ((r2e,0)x .10 ) + 725 1Bl oo ) )21, 22),
where d; denotes the kinetic distance (recall . Undoing the change of variables, and
choosing 21 = 0 implies that for any Z; € Q,/2(20):
70) = £(22)] = F(0) = Fz2)] £ Or (e rngprnciny + 721 o1y i) 0, 22)°
< Or™ || fll oo ((r1,7) xR xRmY de (20,5 22),
where we also used that dy(0, z2) = dg(z0, Z2). This immediately implies for zyp € (12, T) xR™ x Bo.

Step 2. Let us now consider zy € (72,7) x R™ x R™ with |vg| > 2. Let ¢ € C*°(R") be a cut-off
function that is supported in Bj,|/s, satisfies 0 < ¢ <1, and ¢ =1 in Bj,,|/9. In particular, note that
¢ vanishes in F1(vg). Then, we define g(t,z,v) = (1 — ¢(v)) f (¢, z,v) and observe that g solves

Og+v-Veg =Lk, g+h1+hy in(0,7) xR" x E(vo).

Here,

hi(t,x,v) = d(v+h)f(t,z,v+ h)K¢(v,v + h)dh, ho(t,x,v) = cp(f *o |- [7) f(t, x,0),
R™

As before, by the mass and moment bound,
1Rl oo (£, (20)) < Cllf oo e, (z0)) (1 + vo])T < C(1 + |Uo!)_pﬂHf||cg’p((n,T)anan)- (6.3)

Moreover, for h; we observe that by construction of ¢, and for v € By (vp), the domain of integration
is restricted to M = {h € R™ : |v + h| < |vg|/8, |h| > 1/2 + |vo|/8}. Hence, we obtain by
and using that &.(29) C £1(20) C Q1(20) C (11,T) x R™ x R™:

sl S sup [ 620+ (o0 W < OO+ 00Tl ke
veD1 1)0
(6.4)
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Then, we apply the change of variables Tg to g, set §(t,z,v) = g(f, %, 7) and observe that § solves
0§ +v- Vo =L g+h nQ,

where i~z~(t, x,v) = |vg| "7 (hy (£, &,0)+ha(t, %,7)). By|Lemma 6.2, [Theorem 4.1} and [Theorem 5.1} the
kernel K ; satisfies the assumptions (i), (ii), (iii), and (iv) of [Proposition 6.1| Therefore, [Proposition 6.1|
is applicable to Ky, and for any 21,22 € Q2

19(z1) — g(22)| < Cr™*([|gll oo ((—r25,0)x B,1 42, xR) T 2|7l oo, e (21, 22)
Now, by construction
1911 Lo0 (—r25,0)x B, 1 420 xBP) < ”fHLOO((fr%,O)xBTl_,.QsX(R”\B|UO|/9)) < CL+[ool) Pl llco ((r,m)xrnxrn);
and by and (6.4)), using also that if z € Q,, then Z € & (20) C (11, T) x R" x R™:
1Bl 2o (@) < 100l Y25 A | oo (e (20)) + 100l T2 B2l Lo g, (20)) < C(1 + |U0’)7p72s||f||cgp((n,:r’)anan)'

Altogether, choosing 21 = 0, this implies for any 2 € &, /5(20):
1/ (z0) = f(Z2)] = [ £(0) = f(22)| = 13(0) = §(=2)| < Cr™*(1+ o) PUfllco (/) wmnwmm)de(0, 22)°
< Cr 1+ o) P fll g ((ry 1) xm)de (20, 22),

where we also used that § = f in Q1/2 and dy(z1, 22) < (1 + |vo|)de(Z1, Z2). Moreover, if Z3 & &, /5(20),
we have dy(z0, Za) > cr(1 + |vg|) ™! and therefore it holds

|f(20) = f(Z2)| < 2[[fllLoo((ry,7) xRA xR
< O Jwol) Pl fllcg (i ryxrxrny < O™ (1 + |UO\)7P+O‘HfHcg,p((n,T)anan)dE(ZO»52)a-

Hence, we have verified (6.2)) also for zyp € (12, T) x R” x R™ with |vg| > 2 and the proof is complete. [J

6.2. Replacing decay estimates by interpolation. The estimate in is not satisfactory,
since we do not have an estimate of || f|| 9 only in terms of universal constants and the macroscopic

bounds. Such decay estimate was established in [Sil16, IMS20], but the proof heavily relies on the
existence of nondegeneracy cones, which in turn relies on the boundedness of the entropy. It seems like
the technique in [Sil16, IMS20] cannot easily be generalized so that it works solely under temperature
and moment bounds.

We will circumvent proving decay estimates by establishing an interpolation result, which allows us
to estimate the Cgp_ ,, horm from by a higher moment of f.

We have the following interpolation result.

Lemma 6.6. Let f € CF ((1,T) x R" x R") for some o € (0,1). Then, for anyr >0
”f”cgp((n:r)anan) < raHfHCgp((T,T)XR”XR”) + 07”_”HfHLgszl}yp((r,T)anan),

where C' > 0 depends only on n. Moreover, it holds for any e € (0,1):

1 llcg (rmyxmnsrny < el flleg, . (rmyxmnxrmy + Ce [ fllngs rr  ((rm)xrnxRn)-

Proof. Let (t,z) € (1,T) x R™ be fixed. First, we claim that for any r > 0 and v € R™:
|f(t7 z, U)‘ < T’aHf(t, z, ')HCS,‘(BT(U)) + CT?an(ta Z, ‘)HLl(Br(v))'
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To see this, we compute
’f(ta J,‘,U)| S ‘f(tal‘a U) - (f(ta z, '))7”,11 + f(t’ z, ')r,y

< s;gp( )If(t,x,v) — [tz w)[ +er " f(E ) By
we by (v

< Ta‘|f(t7 L, ')HC"(BT(U)) + C’I”_an(t, L, ')HLl(Br(v))v
where we denoted (f(t,x,"))ry = fBT(U) f(t, z,w) dw.
Multiplying both sides of the estimate by (1 + |v|)P
(L + W)PIf(E 2, 0)] < (U4 [D)PIF (250 ) log s, ) + Cr " (L4 DPILF(E 2, ) |2 (s, o))
so that taking the supremum over v gives the first inequality. Moreover, fixing r = (1 + |v])~! < 1,
L+ [DPIf(tz, )] < (L + )Pt 2, )loa(s, @) + Ce™ (1 + )P F(E 2, ) L1 (B

we obtain, after taking again the supremum over v, the second inequality. This concludes the proof. [

Moreover, we will make use of the following standard iteration lemma, which can be found for instance
in |Giu03, Lemma 6.1]:

Lemma 6.7. Let F : [T1,T3] — [0,00) be bounded. Assume that there are A >0 and v > 0 such that
for every Ty < t1 <ty <15 it holds

F(tl) < F(tz) + A(tz — tl)iv.

N

Then there is a constant ¢ > 0, depending only on 7y, such that for every Th < s1 < s9 <Th
F(s1) <cA(sa—s1)77.

For the sake of completeness, let us give a proof of this lemma.

Proof. We set 79 = 51 and 7;11 = 7; + (1 — 0)o'(s2 — s1) for some o € (0,1) to be chosen later. Then,
=1
F(s1)=F(r0) <27"F(r) + Al —0) T(sa = s1) 7> 270",
i=0

1
Choosing ¢ = 2" 2v we obtain

F(s1) < kl m Z*k(su'p F(1j)) + Al —0) V(s — 31)*722*% < cA(sy—s1)7".

i
— 00
J i=0

0

By combination of |[Lemma 6.5 and [Lemma 6.6) we obtain a global Holder estimate only in terms of
macroscopic bounds and universal constants.

Theorem 6.8. Let ¢ > n, so € (0,1), s € [sg,1). Lety >0, and y+2s € [0,q]. Let f be a solution to
the Boltzmann equation in (0,T) x R™ x R™ (see [Definition 1.1)) satisfying (1.9), (1.13), and (1.14).

Assume, in addition, that either ¢ < 2n —1 or ¢ > 2n + v + 2s.
If f e C’?’qfn((O,T) x R™ x R™), then f € CZP((T, T) x R™ x R™) for any 7 € (0,T) and the following
estimate holds true

Hf||cgp((r,T)anan) <C, pP=qg—n—aqa,
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for some a € (0,¢ —n) and C > 0 depending only on n, so, mo, Mo, po, My, q, and C depending also
on T.

Proof. Let us set p = ¢ —n and fix 7 € (0,7"). By application of |[Lemma 6.5| and [Lemma 6.6/ we have
for any max{0,7 —1} <73 <7 <7 < T and any ¢ € (0,1):

1flleg

l,p—a

((r2,7) xR xRy < C(T9 — 71)_’%||f||cgﬁ((n,T)anan)

< CO(re =) 5 fllop (. myxRnxim) + (72 = 1) 73 Ce™" M,

for any o € (0, min{p, ap}), where ap > 0 and C > 0 depend only on n, so, mg, Moy, Mgy, p, po. Here

we also used that || f[| e L} (D) xRoxRe) < M1, = M. Next, let us fix a € (0, min{p, o }) and
,T ,D+mn ’

choose ¢ = (19 — Tl)i(20)7é. Then, we have shown that for any max{0,7 — 1} <7 <7 <7 <T"

_ nta
((r1,T) xR xRn) T Coma —m1)" 25 M,

1 Flleg

L, p—a

1
(2. T)xRxRn) < [ fllce

L, p—a

for some Cy > 0, depending only on C, . Let us now denote

F(r) = [l fllcg

¢ ﬁ_a((T—r,T) xRPxR"7)-

The aforementioned statement reads now as follows: for any T'— 7 < t; < to < min{7,T — (7 — 1)}
it holds

n+a

F(tz) + CQMq(tQ — tl)f 2s .

F(t1) <

N =

Note that F' is bounded since f € Cf',_ ((7,T) x R™ x R") for any 7 € (0,7") due to the assumption
that f € C?ﬁ((O, T) x R™ xR™) and M Thus, we can apply [Lemma 6.7|to F' and deduce that

[flleg, . (m)yxrrxrny = F(T' =)

n n

< Cy(min{T,T — (r — 1)} — (T — 7))~ "% M, = Csmin{r, 1}~ 2" M,

for some C3 > 0, depending only on Cs,n, sg, . O

6.3. Smoothness of solutions. As a consequence of we deduce that the entropy is
finite.

Proof of[Theorem 1.3 and[Theorem 1.6. The result follows directly from Observe that,

given v and s fixed, we can obtain any p very large by fixing ¢ = n+p+ 1 in for
example. O

As a consequence, we deduce [Theorem 1.2

Proof of [Theorem 1.2, Due to we can follow the regularity program of Imbert—Silvestre
and obtain the C'™ regularity of solutions to the Boltzmann equation in the same way as in [ImSi22].

g
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7. REGULARITY FOR THE LANDAU EQUATION
The goal of this section is to explain how to establish using the techniques developed in

this article.

First, we recall the kinetic cylinders @, (zg) and the change of variables 7y and 7y from Section |3, For
the Landau equation, we define them in the exact same way, setting s = 1. Note that when f solves

the Landau equation in &;(z), , then f solves
hf+v-Vaof = VAV, f]+b-V,f +&f in Qy, (7.1)

where (recall ([1.25)-(1.26[)-(1.27)))

~ —y—2 -1 A i’ ~ ~ -1 f S 9
Al z,v)e = ‘UOL 7 ~TO (AL 2,9)7 ) 1 ool 22, for any e € R",
A(t,z,v)e if Jvo| < 2,
b(t, x,v) = [vol =27y 'b(E, 2,0), if fo| > 2,
Y b(t7 ja f}) lf |’U0’ < 2’

At ) lvo| 7Y 2¢(t, &, 0), if |vg| > 2,
c 7x’ V)= T o~ ~ .
c(t,z,v) if |vg| < 2,

In order to prove Corollary 1.7, we first need to establish uniform ellipticity of the transformed matrix
A in By (in analogy to |Pr0position 1.4D. Moreover, we require suitable upper bounds for the lower

order terms b and ¢.

For the lower bound in the uniform ellipticity of a, we use the pressure lower bound on f and proceed

in the same way as in the proof of
Lemma 7.1. Let v > —n. Assume that f is nonnegative and satisfies ((1.9)), , and (L.14]) for

some q > 2. Then, A with vy € R satisfies
e-A(v)e >\ forall ve By, ecS*!
uniformly in vg, with A > 0 depending only on n,mg, Mo, po, My, q, and 7.
Proof. First, we explain how to estimate A (from ) without applying the change of variables.
We claim that there exists A > 0 such that
e-Aw)e > M1+ v]))? YweR?, eesS™ L (7.2)

To see this, note that by [Proposition 3.1| we have that

/ fw)dw > ¢
Br(©)\Ls

for some R > 0, d,¢ > 0, depending only on mq, Mo, po, My, q, where we denote by L the tube of
radius § around v + Re. Then, we have for any v € R” and e € S"~!

e-A(v)e = any,y/ G(w,e) w2 f(v —w)dw = anﬁ/ G(w — v, e)|w — v f(w) dw,
RTL R'!L

where
(w—v) -]

_ —1—
G(w —v,e) pr—

=1 — cos?(w — v, e) = sin®(w — v, e).
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Hence, by following exactly the same arguments as in the proof of [Proposition 4.2] we obtain that

(4.8), (4.7), and (4.9) also hold true in our setup, and thus we deduce (4.6)) with s = 1. Hence, the
i

proof of ) is complete.

We are now in a position to prove the desired result. First, note that we are done when |vg| < 2 by
(7.2). When |vg| > 2, since

70—1{<1_|Z‘®’Z|>751(e)}-e_<1—&@ﬁ)ﬂl(e)-ﬂl(@)’

we have that it holds
e Aw)e = o2 [ Glw =5, 757} (€))lw — 2 (w) du.
R’ﬂ
In case 2 < |vg| < 10(R + |7] + 1), we can apply the proof of (7.2) with v := & and e := 75 '(e) and
obtain
e-Aw)e > N1+10—17]) >e,

where we used that |0] 4 |v] < C when |vg| < 10(R + |7| + 1).
In case |vg| > 10(R + |v] + 1), we recall also (4.12)), and deduce that

w—12o) 17 (e)]?
6w .70 = 13 " ~ B I e Psinga - 0,77 (e)
=1+ (|v0|2 -1) cos2(v0, e)] sin2(w -7, T(;l(e)).

Hence, in this case we can apply exactly the same arguments as in Step 3 of the proof of
In particular, we can use (4.13)), which immediately implies the desired result. O

For the remaining properties, we recall that the aforementioned change of variables has already been
used in [CSS18] and [HeSn20] (in case v < 0). Hence, it suffices to observe that the same computations
carry over to hard potentials.

Lemma 7.2. Let ¢ > 2. Lety > 0 and v+ 2 € [0,q]. Assume that f is nonnegative and satisfies
(11.9), and (1.14) with ¢ > 2. Then, A,b,¢ with vog € R™ satisfy

sup e- A(v)e <A, b(v)| < A, l&(v)| < A1+ |ug|) 72, for all v € Bs,
ecSn—1

with A > 0 depending only on n, My, My, and q.

Proof. Following the proof of [CSS18, Lemma 2.1] it becomes apparent that also for v > 0 it holds

1 v+2 n—1
e-A(v)eSC ( +‘U‘) ’ 668 7_1
(I+o))7,  wvleeS™,

where C' > 0 depends on n, My, My, q. The modifications to the proof of [CSS18, Lemma 2.1] are
obvious in the first case. If e || v, we compute

(7.3)

e-A(v)e = / |w|?sin® (v, w)|v — w|” f(w) dw
Rd

<e / " f(w) duw + el / wl?f (w) dw < e(1+ [o])".
Rd Rd

The first identity is proved in [CSSI8, Lemma 2.1]. From (7.3)), we deduce the desired estimate for A
by following the corresponding arguments in the proof of [CSS18, Lemma 4.1].
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To prove the estimates for b and ¢, we observe that
b(o)] < CL+ )™, e(v)] < C(1+ o)),

where C' > 0 depends on n, My, My,q. The proof of the estimates for b is the same as in [CSSI8|
Lemma 2.3] in case v € [—1,0] and the proof for ¢ goes in the same way, replacing 1 + v by 7. From
here, the estimates for b and & follow from the fact that || < ¢(1 + |vo|) and |75 || < (1 + |vo]). O

Having at hand [Lemma 7.1|and |Lemma 7.2] we are now in a position to prove a global Holder estimate
for solutions to the Landau equation. This results and its proof are in analogy to using

the C* estimate from [GIMVT9).

Lemma 7.3. Let ¢ > 2. Let v > 0 and v+ 2 € [0,q] and T > 0. Let f be a weak solution to the
Landau equation in (0,T) x R™ x R™ satisfying , (1.13), and (1.14) with ¢ > 2. Then, there exists
ag > 0 depending only on n,mg, My, po, and M, such that for all o € (0,00) and p € (o, +00) the
following holds:

If f e Cgp((O,T) x R" x R") then f € CF,_ (1, T) x R" x R") for any 7 € (0,T), and the following
estimate holds for all 0 < 11 < 1o < T with |72 — 11| <1,

[ fllcg

Lp—a

((12,T)xR™ xR") <C(r2— 7’1)75HfHCgp((ﬁ,T)xR”x]R")u

where C' > 0 depends only on n,p, mo, Mo, po, My, and q.

Proof. The proof goes in the same way as the proof of [Lemma 6.5 m applying the Holder regularity
estimate from [GIMV19] to f for any zg. This is possible since f is a solution to in @, where

ri= (g — 7'1) and because of |Lemma 7. 1| and |Lemma 7. 2l We obtain for any 21, 29 € QT/Q

1 (z1) = Fz2)| < Cr=e(Iflloe (@, + 2118l 1oe (@ny)de (1, 22)"
Undoing the change of variables, choosing 21 = 0 implies that for any Z; € @, /2(20):
£ (20) = f(Z2)] = [£(0) = f(z2)| < Cr™(L1+ lool) Pl fllcn ((r 1y xR xRy de(20, 2)°,
where we also used that by
Iefll (@ < C(L+ Jvol) 2 £ll oo e zo)) < C(1+ ‘U0|)7p72Hf”C?’p((n,T)xR”x]R”)'
This concludes the proof by the same considerations as in O

We can finally conclude the proof of

Proof of [Corollary 1.7 Thanks to we can proceed in the exact same way as for the
Boltzmann equation (setting s = 1 everywhere) and deduce an analog of [Theorem 6.8 In particular,

the first part of the claim holds. Moreover, when f satisfies (|1.14]) for all ¢ > n, we have that for any
T7>0and p>0

H(]‘ + ’v|)pf”L°°([T,T]><R”X]R”) S Cp (74)
with C, depending only on n, mg, Mo, po,p, T, and on all M, for ¢ > n.

To establish a higher order version of this estimate, we can proceed in the exact same way as in
[HeSn20]. Indeed, [HeSn20, Proposition 3.2, Lemma 3.3] remain true for v > 0 without any change.
These ingredients, together with, and allow to apply the Schauder estimates
from [HeSn20] in an iterative way, in analogy to the proof of [HeSn20, Theorem 1.2]. Instead of the
Gaussian decay in [HeSn20), (3.6)], it suffices to use for suitably large p. O
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