THE LAGRANGIAN STRUCTURE OF THE VLASOV-POISSON SYSTEM
IN DOMAINS WITH SPECULAR REFLECTION

XAVIER FERNANDEZ-REAL

ABSTRACT. In this work, we deal with the Vlasov—Poisson system in smooth physical do-
mains with specular boundary condition, under mild integrability assumptions, and d > 3.
We show that the Lagrangian and Eulerian descriptions of the system are also equivalent
in this context by extending the recent developments by Ambrosio, Colombo, and Figalli to
our setting. In particular, assuming that the total energy is bounded, we prove the existence
of renormalized solutions, and we also show that they are transported by a weak notion of
flow that allows velocity jumps at the boundary. Finally, we show that flows can be globally
defined for d = 3, 4.
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1. INTRODUCTION

In the last three decades, there has been a growing interest in the existence of solutions to
transport and continuity equations under weak regularity assumptions, motivated by physical
models where, for example, one can only assume that the total energy of a system is bounded.

The interest in the relation between continuity and transport equations and their La-
grangian structure arises in this setting. In the late 1980s, DiPerna and Lions in [16, [17]
introduced the notion of renormalized solutions and the idea of strong convergence of com-
mutators. There, they proved existence, uniqueness, and stability of regular Lagrangian flows
for Sobolev vector fields with bounded divergence. More than a decade later, Ambrosio ex-
tended this result to BV vector fields with bounded divergence, [4], and in a more recent
paper, Bouchut and Crippa were able to consider vector fields whose gradient is given by
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the singular integral of an L' function, [I3]. Finally, we also mention the work of Ambrosio,
Colombo, and Figalli, [5], where they prove the existence of a unique maximal regular flow
under very mild assumptions on the vector field, including a local integrability assumption.
(We refer the reader to [7] for an extensive summary on the theory of continuity equations
and Lagrangian flows with weak regularity assumptions on the vector fields.)

In this work, we deal with the Vlasov—Poisson system, which when posed globally corre-
sponds to a transport equation with vector field given by a singular integral. The Vlasov—
Poisson system describes the evolution of a nonnegative charge density under the action of
a self-induced electric field under no magnetic field. Given a charge density f = fi(x,v) :
(0,7) x RY x R* — [0, 00), that is, the density of particles at position x with velocity v at
time ¢, the evolution of f; is given by the transport equation

Oufi(m,v) + v - Vafilw,v) + Ef(x) - Vofi(z,v) =0, in  (0,T) x R x R% (1.1)

Here, Ei(z) denotes the electric field, which is generated by the physical density of particles at
the position z at time ¢, p(z) = [ fi(z,v) dv, through the Poisson equation, —A,Vi(z) = p(z)
and Ei(x) = V;Vi(z), so that

Biw) = ca [ m)

Both equations and form the Vlasov—Poisson system. In our work, we are inter-
ested in the Vlasov—Poisson system restricted to a physical domain ) with perfect conductor
boundary conditions, so that x € Q C R, f: (0,7T) x 2 x R? — [0, 00), and is fulfilled
in the interior of the domain. The perfect conductor boundary conditions translate into an
electric field with no tangential components at the boundary, or equivalently, the boundary
of the domain is grounded (that is, V;|so = 0); see also [21]. Then, the potential is computed
as the solution to the Poisson equation with zero Dirichlet conditions: —A,Vi(x) = pi(x) for
z € Q and Vi(z) = 0 on 092. The electric field is now given by

%dz, in [0,T) x R (1.2)
xr —Zz

E(z) =cq /Rd pit(2)VoG(z,2)dz, in[0,T) x Q, (1.3)

where G(z,z) denotes the Green function of the domain. To complete the description of
our system, we still need to set a boundary condition. Since we will be interested in the
Lagrangian structure of the solution, we set a boundary condition given by pure specular
reflection, so that we have

fe(z,v) = fi(z,v — 2(v-n(x))n(z)), on (0,00) x I x R,

where n(x) denotes the inward unit normal vector at x € 9f).

The Vlasov—Poisson system has been well-studied. Existence and regularity of classical
solutions for Q = R? were obtained under different assumptions in [25, 26| 10, 85, B9]. In
dimension 3, the existence and uniqueness of classical solutions under a smooth initial datum
is a classical result, [33, 30]. In general, though, these first results required integrability
hypothesis on the initial datum. These integrability hypothesis are needed even to define a
weak solution, as one a priori needs Eyf; to be in L!. In [I5], DiPerna and Lions, with the
introduction of new concepts, were able to define a new notion of solution and prove its global
existence under some mild initial integrability condition and boundedness of the total energy.

More recently, Ambrosio, Colombo, and Figalli, in [6], were remarkably able to reduce the
initial condition integrability to merely L' to prove existence, and they also establish that
the Lagrangian structure associated to the transport equation in the Vlasov—Poisson system
is still valid (in some weaker sense, developed in [5]) for renormalized solutions. That is,
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they are able to prove the equivalence between the Lagrangian and Eulerian structure in the
setting of renormalized solutions.

Yet, if Q # R? much less is known, even for classical solutions. In [23], Guo shows that
derivatives of solutions cannot be uniformly bounded near the boundary. Classical solutions
exist under suitable conditions on the initial datum near the boundary and the domain for
both specular and absorption boundary conditions, as shown in [22] 27, 28, 29]. On the
other hand, in [2I], Guo shows the existence of weak solutions for the more general setting
of the Vlasov—Maxwell system in 3 dimensions, with smooth domains (see also [9] 3] [}, [3§]
for existence and stability of weak solutions). Closer to the weak notion of solution that is
considered in this paper, we refer the reader to the work by Mischler [32], where the author
is able to establish existence and weak regularity results for the Vlasov equation in domains
with specular reflection, under weak assumptions on a fixed electric field and source term.
We also refer to [36],[22], and [20], and references therein, for a better understanding of the
state-of-the-art of the problem and applications.

The results by Ambrosio, Colombo, and Figalli in [6] provide a general Lagrangian structure
for weak/renormalized solutions. In the present work, we extend their results to the context
of smooth physical domains with specular reflection. In particular, we introduce the notion of
renormalized solution in a domain and an analogous definition of Maximal Regular Flow that
allows jumps in the velocity component, to account for the specular reflection condition. We
show that this notion of flow transports renormalized solutions, and, in particular, we show
that renormalized and Lagrangian solutions are also equivalent in this new situation.

Thanks to the generality of the techniques introduced in [5l [6], we can deal with the
problem at a local level, and establish that solutions evolve following certain flows far from
the boundary. In order to deal with the boundary region, we note that the existence of
flows coming from vector fields given by singular integrals is quite rigid, in the sense that, a
priori, the theory is not valid for vector fields of the form , where the Calderén—Zygmund
theory does not directly apply. Therefore, one cannot immediately use the results from [12].
In order to establish the existence of flows around the boundary, we first show that in small
balls centered at the boundary the domain and the electric field are close to the half-space
situation. Hence, we reduce the problem, after some fine estimates, to the half-space case.

For the half-space problem we note that, after a reflection, the electric field has an expression
similar to a convolution against an L' function, and we prove that this is enough to get our
result.

We divide the work as follows. In Section [2], we state our results and introduce the problem
and main definitions. In Section [3| we study the Vlasov—Poisson system in the half-space,
constructing a new problem in the whole space based on the image charge method. In Sec-
tion [ we recall the notion of Maximal Regular Flow, we introduce the notion of Maximal
Specular Flow, and prove some equivalences with the half-space problem. In Sections [6] and
[7, we prove our main results in the half-space situation, in particular showing the existence
of a renormalized solution. Finally, in Sections [§] [0 and we show our main result for the
general domains situation. We emphasize that we treat the half-space and the general domain
situation separately, as we believe that the half-space approach in a non-local way has its own
interest.

We would like to mention that we deal with the repulsive case; that is, the interaction
force between particles is repulsive, and can be used to model, for example, the evolution
of positively (or negatively) electrically charged particles under their self-consistent electric
field. In the attractive case, the sign of the electric field changes, and most of our results
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are still valid up to minor modifications of the proofs. As in [6], however, one would need
to consider an effective density instead of the physical one, as we can no longer control the
initial energy and some particles might have infinite velocity and disappear from the physical
space. Similarly, minor modifications of the current work would also allow to obtain analogous
results for the relativistic Vlasov—Poisson system in domains.

Acknowledgements: The author would like to thank Alessio Figalli for his guidance,
patience, and useful discussions on the topics of this paper.

The author acknowledges support of the ERC grant “Regularity and Stability in Partial
Differential Equations (RSPDE)”

2. MAIN RESULTS

Let © € R? be a C%! domain, with d > 3. We want to study the evolution of a distribution
function fi(z,v) = f: (0,00) x Q x R? under a self-consistent electric field generated by the
Vlasov—Poisson system, assuming a grounded boundary, (i.e., a zero Dirichlet condition). We
will also impose a specular reflection condition on the boundary.

For any point = € 912, we will denote by n(z) = n : 0Q — S9! the inward-pointing unit
normal vector to 0f) at the point x (we remark that for future convenience we have used the
non-standard convention of taking the inward unit normal). We denote, for each z € 912, the
reflection operator at x as R, : R — R?. With this convention, given a point z € 052, the
reflection of a velocity v € R? is given by

Ryv=v—2(v-n(x))n(x) (2.1)
The problem, then, is the following,
{ Of+v-Vefi+E -Vyfi=0 in (0,00) x Q x R4
fi(z,v) = fi(z, Ryv) on (0,00) x 9Q x R?,
We define the physical density for t > 0, € Q, by pi(z) = [ga fi(x,v)dv. The electric

field is then given by Ei(x) = —V,V;, where the potential V; is the solution to the following
Laplace equation with zero Dirichlet conditions,

—AVi(x) = pe(z) in (0,00) x Q,
Vi(z) = 0 on (0,00) x 09, (2.3)
im0 Vi(z) = 0 for ¢ € (0, 00).

(2.2)

The solution to the previous problem can be obtained by means of the Green function of
the domain. Thus, if we denote by Gq(x1,2z2) :  x © — R>( the Green function of €2, then

Vt(x):/QGQ(:U,z)pt(z) dz. (2.4)

Thus, we can rewrite our problem as

Of+v-Vaofi +E-Vufi =0 in (0,00) x Q x R?
pe(x) = [pa fe(x,v)dv in (0,00) x (2.5)
Ey(x) = — [ VaGal(z, 2)p(2)dz  in (0,00) x '
fi(x,v) = fi(x, Ryv) on (0,00) x 9Q x RY.
The transport structure is clear, as the problem can be written in the simpler way
Ouft +b-Vaufi =0 in (0,00) x Q x R4 (2.6)
fi(z,v) = fi(z, Ryv)  on (0,00) x 9Q x RY, '
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where the vector field b (z,v) = (v, E(x)) : Q@ x R? — R?? is divergence-free and coupled to
ft via .

This equation can be reinterpreted in a distributional sense when b; f; is in Llloc. However,
this is not true in general, and one needs to introduce the concept of renormalized solution,
[15]. This is based on the fact that, in the smooth case, one can consider C' N L> functions
B : R — R and 5(f:) still solves the equation. That is, using that the vector field is divergence-
free,

{ Otﬁ(ft) =+ divw,v(btﬁ(ft)) =0 in (O,T) x ) % Rd (2 7)
B(fe)(z,v) = B(fr)(x, Ryv) on (0,T) x 99 x R?, '

Notice also that, in general, one still needs in to make sense of the trace of 3(f;) on
(0,T) x 0Q x R?. Let us define some useful sets that will appear recurrently throughout the
work.

Definition 2.1. We define the following sets
’y?iT ={(t,z,v) € (0,T) x 9Q x R : +v - n(z) > 0},
o0 = {(t,z,v) € (0,T) x 9Q x R : v - n(z) = 0},
Yo = (0,T) x 99 x R%.

We will also denote dai2 the standard surface measure of 0€2.
Also, given T > 0, we consider the following function space,

Tor={¢ € CL([0,00) x RM) :supp ¢ € {[0,T) x Q x ]Rd} \ {(0 x 90 x Rd) UfygvT}}.
(2.8)

Finally, we will drop the subscript T' to denote T = oo, and drop the subscript (or superscript)
Q to denote Q =R% = {x1 > 0} (e.g., Tr == H%i,T’ 79 = fyg’oo, vt = ’Yﬁziti,oo)'

Throughout the work we will usually avoid the set 7?27T, which corresponds to velocities
tangent to the boundary, as in . We will do that for mathematical convenience (same as
in [21]). Notice that, in this set, the reflection property does not have any effect, and also
notice that the set is lower dimensional in the v space for each fixed z € 99.

We can now define what it means to be a renormalized solution to . A similar definition
appears in [32] and in [21].

Definition 2.2 (Renormalized solution in a domain with specular reflection). Let T' > 0, let
Q be a CY' domain and let b € L%OC([O,T] x Q0 x RGR2) ) be a divergence-free vector field. A

Borel function f; € L'([0,T] x Q x R?) is a renormalized solution of (2.6)) starting from fo if
for every B € C* N L®(R) there erists f;t Sy (7$,T) such that for every ¢ € Tar,

loc

T
| e@ostte o dedot [ [ o) + Vauprle,w) - bl o)l file,0) dedodo
QxRd 0 QxRd

+ /+ v-n(z)((x,v) — @i, va))f;’t(x, v) dt dost dv = 0.
Yo, T

(2.9)
A Borel function f; € L>®([0,T] x Q x R?%) s a distributional solution to (2.6) if it is

a renormalized solution with B fixed as any smooth bounded continuation of B(x) = x for
] <l fellzee-
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Remark 2.3. The previous definition is equivalent to asking 5(f;) to solve the Vlasov—Poisson
equation in the Green formula sense, and the reflection property in the distributional sense.
That is, we equivalently say that f; € L'([0,T] x Q x R?) is a renormalized solution of (2.6)

starting from fy if for every 8 € C' N L>°(R) there exists f; . € L (v 7 Uvg ) such that
for every ¢ € Tar

T
/ vo(z,v)B(fo(z,v))dx dv + / / [Orpe(x,v) + Vo v (x,v) - b(z, )| B(fi(x, v))dt dz dv
QxR 0 JOxR4

+ / v-n(x) oz, v)fgt(x, v)dt dos! dv = 0,
g

+ —
oY,

and

/

In the following proofs we will be using both definitions.

v-n(x) pi(z,v) (f;t(x,v) - fg,t(x, va)) dt do} dv = 0.

QT

Remark 2.4. We are dealing with divergence free vector fields, b;(z,v) = (v, E(z)). In the
more general case where f; solves but with a non-divergence free vector field b;(x, v), the
previous definition should be modified in the following way: A Borel function f; € L'([0, 7] x
Q x RY) is a renormalized solution of with a general vector field b € Li ([0,7] x € x

RY; R24) starting from fy if for every 8 € C' N L°(R) there exists f; ;€ Lfg’c(’yaT) such that
for every ¢ € Tar, (2.9) holds with the following right-hand side,

T
_/ / oi(x,0)B(fe(z,v)) divg wbe(z, v) dt dz dv.
0 JOxR4

Notice that, in general, for this definition to make sense one needs div,, b € Llloc((O,T) X
Q x RY).

Definition 2.5 (Commutativity property). We say that a renormalized solution in a domain
with specular reflection (Definition fulfils the commutativity property if there exists a
measurable function f;" : & — [0,00) such that

fg:t = 6(ft+)7
for all B € C* N L (R).

Remark 2.6. It is not a priori true that the trace of renormalized solutions can be taken in
the strong sense, i.e., that the commutativity property holds for renormalized solutions. A
counterexample can be found, for example, in |7, Remark 25| for traces taken in the temporal
domain. Nevertheless, this will become true in this case once we introduce the theory of
Lagrangian solutions.

Our first main result establishes that renormalized solutions are, in fact, transported by a
suitable notion of flow. That is, Eulerian solutions are Lagrangian.

Theorem 2.7. Let T > 0, Q@ C R? a C%! domain, and f; € L>°((0,T); L1 (2 xR%)), a weakly
continuous function. Suppose that

(i) either fi € L>®((0,T); L®°(Q xR%)) is a distributional solution to Vlasov-Poisson system
in Q with specular reflection, (2.5));

(ii) or fi is a renormalized solution of the Vlasov—Poisson system in Q with specular reflec-

tion, ([2.5) (see Definition [2.9).
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Then f; is a Lagrangian solution transported by the Mazimal Specular Flow in Q x R associ-
ated to the vector field by (see Definition ; in particular, f; is renormalized (according to

Definition , and fulfils the commutativity property (Definition .

Our second main result establishes the existence of a renormalized (and thus, by the pre-
vious theorem, Lagrangian) solution to (2.5) for a weak initial value fo € L} (2 x R?), where
L}r denotes the space of nonnegative functions in L!.

Theorem 2.8. Let Q C RY be a C*' domain. Consider fo € L1(Q x RY), py(z) =
Jga fo(z,v)dv, satisfying the finite initial energy condition,

/ o2 fo(z,v) dz dv + Ga(x, z) po(x) po(z) dx dz < oc. (2.10)
QxR QxQ

Then, there exists a global Lagrangian solution of the Viasov—Poisson system in the domain 2

with specular reflection with initial datum fo, fi € C([0,00); LL (Q2xR%)), transported by
the Mazimal Specular Flow in the domain Q2 x R? (see Definition ; which is renormalized
(Deﬁnition and fulfils the commutativity property (Deﬁnition.

Moreover, the physical density p; = [ fidv and the electric field E; are strongly continuous
in LL .(); pi, By € C([0,00); LL (2)).

Finally, we show that the initial energy bounds the total energy at all times, and thanks
to that the flow is actually globally defined in dimensions d = 3, 4.

Theorem 2.9. Let Q C R? be a C?! domain. Consider fo € L (24 x RY), po(z) =
Jga fo(z,v)dv, satisfying the finite initial energy condition, ([2.10). Let f; € C([0,00); Li, (2 x
R9)) be the solution to the Viasov-Poisson with specular reflection with initial datum
fo from Theorem . Let py = [ fidv be the physical density. Then, the following properties
hold:

(i) for everyt > 0, the energy is bounded by the initial energy,

/ o] fy dac dv +/ Ga(z, 2)pe(2)pe(2) do dz <
P o (2.11)

< / lv|% fo da dv +/ Gal(z, z)po(z)po(z) dx dz;
QxR? axQ

(ii) if d = 3,4, then the flow is globally defined on [0,00) for fo-a.e. (x,v) € Q x R%;
that is, trajectories do not blow up in finite time, and f; is the image of fo through an
incompressible flow. In particular, the map

b [ o) dudo,
QxR
is constant for any Borel function ¢ : [0,00) — [0, 00).
2.1. Notation. Throughout the whole work we will denote R := {z € R? : z; > 0},
R? := {z € R?: 21 >0} and ORY := {z € R?: 21 = 0} (and analogously with R?). We also
denote the application
" R RY, (x1,22,...,29) = (=21, 22,...,74), (2.12)

corresponding to switching the first coordinate (notice that it is an involution, 2" = (2') = z).

We will say that a function f = f(z,v) is even (resp. odd) with respect to (xi,v1) if
f(z,v) = f(2',v') (vesp. f(z,v) = —f(a’,v")). We will similarly say that f = f(x) is even
(resp. odd) with respect to 1 or {z1 = 0} if f(z) = f(2') (vesp. f(x) = —f(2') ).
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3. VLASOV—POISSON IN THE HALF-SPACE

In the following sections we consider a simpler version of the problem in hand. In particular,
we will be considering the half-space case, that is, ) = le_.

By doing so, we explore the main ideas of the final result and deduce some intermediate
lemmas that will be very useful in the final proof. We also follow a slightly different approach
by directly dealing with a problem in the whole domain, that has interest in its own.

Our problem considers the case of a grounded boundary, and in the half-space the field E
is found through the method of image charges imposing a zero potential condition on 27 = 0
(given that we assume a perfect boundary conductor; see also [21]). The image charges method
is what inspired the choice of the extended problem we consider in this section. When dealing
with general domains, we will proceed with a change of variables to reduce the problem to a
half-space situation locally.

We consider the d-dimensional Vlasov—Poisson system in the half-space: the evolution of
a distribution function fi(z,v) = f : (0,00) x R4 x R? — [0,00) under the self-consistent
field generated by the Poisson’s equation in the half-space with grounded boundary. We also
impose a boundary condition given by specular reflection. The problem looks as follows,
where now the Green function of the domain is explicit,

8tf+v-met+Et-vat:0 in(O,oo)xR;ide

pe(z) = [ga fe(z,v)dv in (0,00) x RZ

Ey(z) = -V, V; in (0,00) x R4 (3.1)
Vi =cald=2)"" fga pr(y) (lz =P~ = |a' = y"%) dy  in (0,00) x RY

ft($av) = ft(:L‘,’U/) in (0,00) X aRi X Rda

where ¢; > 0 is a dimensional constant such that cqdiv (z]z|~?) = do.
We will start by proving the statement of our main results, Theorems and for the
half-space.

Theorem 3.1. Theorem holds for Q) = Ri.
Theorem 3.2. Theorem holds for Q) = Ri.

As already mentioned, we want to reduce the problem to a whole space situation. This
will be accomplished by a symmetrisation. The aim of this section is to prove that (3.1]) (or
alternatively, Problem A) can be equivalently stated as Problem B (see below).

Problem A: This problem corresponds to (3.1)).

Oifi+v-Vaofi +E-Vofi =0 in (0,00) x R% x R?

pg(l‘) = fRd ft(:E?U)dU in (07 OO) X Ri

pf () = —p(a') in (0,00) x R¢ (3.2)
Ey(x) = cq Jga 2 (W) 7 fady = p? * K in (0,00) x R{

ft(.’lf,"l)) = ft({L’,’U/) in (07 OO) X aRi X Rd7

where we have expressed the electric field as a single convolution of a new density p? against
the kernel K = #. As defined, pf is the odd reflection of p; with respect to {z; = 0}.

Problem B: In the spirit of the previous definition, we define a new problem in the whole
R?. We consider the evolution of a function g;(z,v) = g : (0,00) x R? x RY — [0, 00), even
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with respect to (z1,v1), via the following transport problem,

gt +v- Vg + By - Voge =0 in (0,00) x RY x RY,
pe(z) = fRd gi(z,v)dv in (0,00) X Ri,
pr(z) = — [ga ge(z,v)dv in (0,00) X @,
Et(x) =cq fRd ﬁt(y)ﬁdy in (0,00) X ]Rfl'_’ (3.3)
Ey(z) = —cq fpa ﬁt(y)ﬁdy in (0,00) x R?,
L gi(w,v) = gi(2',0") in (0,00) X RY x R4

This problem is posed so that any solution induces an electric field E such that E; is odd
with respect to z1, and E; for i > 2 is even with respect to x1; that is,

(Ey(z)) = Ey(2’), in (0,00) x RY. (3.4)

Similarly, given a solution with even initial datum such that the electric field is odd in the
first component and even in the others, then the solution must be even. This should reflect
the specular reflection property from the previous problem.

We want to see that solutions to Problem A in (3.2]) correspond to solutions of Problem B
in , and vice-versa. Notice, firstly, that Problem B also presents a transport structure
(similarly to Problem A via (2.6)) given by

Btgt + I;t . Vw}gt =0. (35)

where vector field by(z,v) = (v, E(z)) : R? — R2¢ is divergence-free and coupled to g; via

(3-3)-

For Problem B we need to deal with the notion of renormalized solution in the whole space
(see the analogy with Definition [2.2)). We recall it here for the reader convenience.

Definition 3.3 (Renormalized solution). Let T > 0, and let b € L ([0,T] x R?*%;R*?) be a
divergence-free vector field. A Borel function g; € L*([0,T] x R??) is a renormalized solution
of [B.5) starting from gq if for every B € C' N L®(R) and for every ¢ € CH([0,T) x R??),

T ~
y do(x,v)B(g0(x,v)) dx dv—i—/ /2d [0rpe(x, v)+V g vpe(x,v)-be(z,v)]B(g:(x,v)) da dv dt = 0.
R 0 R
(3.6)
In the case of Problem B, a function g, € L*((0,T); Ll(RQdE) even with respect to (x1,v1)
is a renormalized solution of (3.3) starting from go if setting by(z,v) = (v, E}) defined as in

(3.3) then g; solves ({3.6]).

Remark 3.4. For more general vector fields, b€ L%OC([O,T | x R24; R24), not necessarily di-
vergence free, we say that a function g; € L'([0,7] x R??) is a renormalized solution to the
transport equation in the whole space (0,T) x R? x R?, 9,g; + by - Vgt = 0, starting at go, if
for every 8 € C' N L>®(R) and for every ¢ € C1([0,T) x R??), holds with the following

right-hand side,
T ~
—/ / divy o (be(z,v)) i (2, v) B(gi (2, v)) de dv dt.
0 R2d

Notice that, in general, for this definition to make sense one needs div,, b € Li ((0,T)xR?4).



10 XAVIER FERNANDEZ-REAL

3.1. Equivalence between problems. Let us now prove that there exists a relation between
renormalized solutions in the half-space and in the whole space under symmetry conditions.

Lemma 3.5. In the statement of Definition in the setting of Problem B, (3.3), for a
solution g; € L*([0,T); L*(R??)) it is enough to consider test functions ¢ € C1([0,T) x R??)
such that

supp ¢ € {[0,T) x R x R%}\ {(0 x OR% x RY) U~9}1. (3.7)
Equivalently, g, € Le([o, T);~Ll(R2d)) is a renormalized solution of (3.3|) starting from go if
(3.6) holds for by(x,v) = (v, E;) and for any 3 € C1 N L>®(R) and for any ¢ fulfilling (3.7).
Proof. We start by claiming that, if E, is defined as in (3.3)), then

E e L=([0,T); LP (R%)) for some p > 1. (3.8)

loc
Indeed, notice that \Et(x)| < C(|pt] * |K|)(x), where K = z/|z|?. Take any p € (1, d%‘ll)

so that K € Lfo (R @), Use a local version of Young’s inequality for convolutions in any ball
Bgr(0) C RY. That is, by means of Holder inequality,

1B ) < © / ([, it - iay) o

1 p—1 p
(WK @ - »)P) o)) 5 dy) dz

e/, (L
<c (/ A IK (@ —y |pdy) (/ e \dy)pldx
— ¢ (7R / 1Ay (/ K- pPs) dy
gc(mtrmd)) 1K1y < 1

as we wanted. We are using also that |p;| € LOO([O, T); L' (R)).
Let us define, for h € L>([0,T); L= (R??)), v € C}([0,T) x R?%), and in the setting of

Problem B, (3.3)),

T
A, h) = /de Yo(x,v)h(0, z,v) dx dv+/0 0430t (2, )4V gt (2, 0) by (0, 0) | A(t, 2, v) dt dz do.

R2d
(3.9)
Let ¢ € C*°(]0,00)) be a monotone increasing function, with £ = 1 in [1,00), £ = 0 in
[0,1/2] and ¢’ < 3 in [1/2,1]. Let us define £&¢ € C1(R?) as

() —¢ (M),

e

Notice that, given any test function ¢ € CL([0,T) x R24), then 1 £°(z1,v1)E% (21,t) fulfils
the condition (3.7) for any € > 0. Let &, = & (x1,v1) and &, := £°(z1,t). Our lemma is
then equivalent to seeing that

A(v (1= €80 h) = AW, ) — AW & h) 0 ase L0, (3.10)

for any h € ~LOO([O,T);LOO(IRM)). Let us check it by taking limits term by term in the
definition of A, ([3.9)), and assuming supp ) C [0,T) x Bg x Bg for B C R%
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For the first term, notice that (1 — £5,&5,) = 0 whenever |z1| > ¢, and therefore

Yo(z,v) (1 — &5,&50) h(0, 2z, v) dodv < C dr =Ce —0asel0,

R2d BRﬂ{‘xﬂSE}

for some constant C' depending on the L* norm of vy and h, and the volume of Bpg.
For the term corresponding to 0,1 we have

T
| - gghdedsa <
0 Jr

T T
< / / / 10,(0)|h dt dz d +/ / € 0S| dt dz dv = T, + IT4.
0 B JBantie<c) 0 Jra

The term I; can be treated as before, and I; — 0 as € | 0. For the second term, notice that

1 t
|0:E5,| = R ¢ <|$1|5+>‘ =0if |z1| >ecort>e,

and is bounded by 3/¢ otherwise. Therefore,
C €
In <= dtde < Ce —0asel0.
€ 0 BRﬂ{|x1|§E}

We now check the terms corresponding to v10;,1: and Et,lavlwt. The rest of the terms
follow in a similar manner.

T
/ / 0104, (Y (1 — €,65) ) hdt da dv <
0o Jr2d

T
S/ / / v1|0z, (¢Y¢)|h dt dx dv
0 Br J Brn{|z1|<e}
T T
4 / / ONRE, D, €5, Bt da o + / / V1| Oy, E2, |5, dt da d.
0 JR2d 0 JR2d

Proceeding as before, the three terms go to 0 as € | 0.
Finally, let

T
/ By 10y, (Y11 — €,85) ) hdt da dv <
0 R2d
T ~ T ~
<[ [ ] Bl otz [ [ Bl v 08I de e
0 Br J Brn{|z1|<e} 0 R2d
=1+ 1.

We have that, by Holder’s inequality and thanks to the initial claim (3.8]),

T B 5 p=1 p—1
Iz < C/ / |Et,1|(x) dtdx < CHEt,lHLP((O,T)XBR)'<T$d (BR N {|$1| < 8})) P= Ce » .
0 BRO{‘:EHSE}
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Therefore, Is — 0 as € | 0. For the second term,

c [T .
II, < / / / |E¢ 1| (z)dtdvdz
€ Jo JBrN{|z1|<e} J Brn{lvi|<e}

T
< 2 Brn{ln|<eh € / / | By | () dtdvdz
€ Jo JBgrn{|z1|<e}

p—1

- el Pt
< CllEalle (o)< Br) - (Ti”d (Br N {|z1] < 5})) " =Cer —0asel0,

so that (3.10) follows and the result is proved. O

Remark 3.6. Notice that the previous lemma holds true for more general vector fields, not
necessary built as an electric field. That is, we only require E € L*((0,T); L5 (R%)) for some
p > 1. Moreover, the condition can actually be reduced to asking

T
gt / / / |E(z,v)|dtdedv — 0, ase — 0,
0 JzeD} JveD?2

where D! and D? are domains of volume e. Other fields, like E € L>((0,7T); L% ,(R??)) for
q > 2 or linear combinations of the previous ones, also work.

Proposition 3.7. Let f, € L>((0,T); LY(R% x R?)) be a renormalized solution of Problem
A according to Definition starting from fo. Let g: be the even extension with respect to
(x1,v1) of fi to the whole space. That is,

{ oo~ Ao mO1) <R xR 1)
gt(x,v) = fi(2',0")  in (0,T) x R? x R4, ’

Then g, is a renormalized solution of Problem B according to Definition 3.3,

Proof. First of all, for the sake of readability we will assume that f; € L>((0,T); L®(R% x

R%)). Thus, instead of considering 3(f;) we can consider directly f; (analogously with g;).
Let us define b;(z,v) = (v, E(z)) from g; as in Problem B, (3-3). We similarly define

bi(z,v) = (v, E(z)) from f; as in Problem A, (3.2)). Notice that by definition of g;, we have

Ey(z) = Ey(z) in (0,7) x RL

(Ei(x)) = Ey(«) in (0,T) x RY, (3.12)

That is, EtN is just an extension to the whole R? of E, fulfilling the symmetry property
(Ei(x)) = Ei(x).

Let us also define, for hy € L*®([0,T); L°(R% x R%)), ¢ € Tr, and in the setting of
Problem A,

A(p, h1) ::/ vo(z,v)h1(0, z,v) dx dv
R% xR4

T
+ / / [Orpe(x,v) + Vo ppe(x,v) - be(z,v)]h1 (t, x, v) dt dz dv. (3.13)
0 JRYxR4

Now fix any ¢ € CL([0,7) x R??). Thanks to Lemma we can assume that supp ¢ €

Similarly, for hy € L>([0,T); L>=(R?9)), o € C}([0,T) x Rﬁ, we define A(1, ho) as in (3.9).
{10,00) x R? x R4} \ {(0 x OR? x RY) U4}, We want to check A(¢,g;) = 0.



LAGRANGIAN STRUCTURE OF THE VLASOV-POISSON SYSTEM IN DOMAINS 13

Let oF = ¢ly, 50y, and = = @ly, <oy Consider @~ defined as @ (¢, z,v) = ¢~ (t,2/,0') in
[0, T]xR??. Thus, ¢+ and ~ can be thought as elements of 77. Now, since f; is a renormalized
solution of Problem A, we know from Definition [2.2] that there exists f,;" € L>(v;) such that

Aot f) + /+ (o (2, 0) — o (2,0))) £ (2, v)vrdt doy dv = 0.
Tr
Similarly for @,
A(¢_7ft) + /+ (@t_(xav) - @t_(xav/)) f;_(ﬂf,v)vldtd(jz dv = 0.
Tr
Now notice that on v}, 7 (z,v) = ¢; (z,v') = ¢} (x,v'), so that adding the previous two
equalities we obtain
A(QOJ'_? ft) + A(¢_7 ft) =0.
On the other hand,

T
/ / [0 (,0) 4+ v - Vo (z,v) + Ep(x) - Voo (2,v)]g¢ (2, v) dt dx dv =
0 JR? xRd
T ~
- / / [0:de(y' s w') +w' - (Vad) (v, 0") + Ee(y') - (Vo) (v, w")]ge (v, w') dt dy dw
0 JRYxRd

T
— [ ], o @)+ v Vap 520) + Bila) - Vg (00l 0) de oo
0 Ride

We have used here the symmetry property on E, 312), and (3.11). Thus, recalling the
definition of A, (3.9)), we get

A(p,g0) = Ale™, fr) + Ay, f) =0,
as we wanted. O

We also want the converse result. Before proving it, let us state the following lemma,
regarding the existence of a trace for the solution to Problem B.

Lemma 3.8. Let g, € L>((0,T); L>°(R?%)) be a distributional solution of Problem B starting
from go, (in particular, even with respect to (x1,v1)). Then g; admits a unique trace function
I'(g¢) € L>®(yr) in the sense of the Green formula,

T ~
/ 900(1.7 U)QO(Z7 'l)) dx dv + / / [8t30t(x7 U) + vl’,’ugpt(x7 'l)) : bt(xa "U)]gt(IE, U) dt dx dv
R¢ xR4 0 JRYxRd

+/ vip(z,v)I(ge) (z, v)dt doy dv = 0,
yr
(3.14)

for every test function ¢ € C1([0,T) x R? x RY).
c +

Proof. Notice that we can rewrite the expression (3.14)) using the operator A defined in (3.13)
with b restricted to (0,7) x R% x RY. Thus, we have to prove that there is some I'(g;) € L (7y7)
such that

Al g) + / orge(, 0)T(ge) (@, v)dt dog dv = O, (3.15)
YT
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for any test function ¢ € C1([0,T) x RY x RY). One can see, as in Lemma that it is
enough to consider ¢ € T (defined in Definition [2.1)).

Thus, given any test function ¢ € Tr, let us define now for any € > 0, a test function in
the whole space as

ot(z,v) in (0,7) x @ x R4
pi(z,v) =9 (1+2) p((0,22,...,24),v) in (0,T) x [—£,0) x RI~! x R (3.16)
0 in (0,T) x (=00, —¢) x R x R?,

Notice that ¢} being Lipschitz and compactly supported can be used as a test function for
Problem B. That is,

= A(¢F.g0) = Al ge) + / o5(@, 0)go(x, v) d dv

D,
T
+ / / (005 (2,0) + Vg opi (z,0) - be(x,v)]ge(x, v) dt dx dv, (3.17)
0 e

where D, := {(z,v) € R??: —¢ < 1 < 0}. We are using here again the notation introduced

in the proofs of Lemma and Proposition (13-9)-(3.13]).

Now letting e 1 0 and using that g, € L, and F € L} for p = d—Ci/Z (see (3.8)) in
Lemma , we get that, for (3.15]) to be true we must have

lim — / / v1pe((0,22,...,24),v)gt(x,v) dt dx dv = / v1(z,v)T(g)(x,v) dt doy dv,
£¢0 g e ,y;!:u,y;
(3.18)

for some I'(g;) € L®(vf Uy).
In order to do so, define, for any test function p = p(t, z2, ..., z4,v) € CH((0,T) xR xR?)
compactly supported in {v; # 0},

T
Gp(z1) = / / / p(t,zo, ..., xq,v)gt(x,v)drs ... drgdvdt, a.e. in R.
0 Rd JRd—1

We claim that G, has a continuous representative and, in particular, there exists a function

L(g:) € L®(vg Uz ) satisfying (3.18).

Indeed, it is enough to check for p of the form p = pi(t)pz(x2, ..., az,‘gl)pv1 (v1)ps(vay ..., vq)
with p¢(0) = py, (0) = 0, where we denote T = (z2,...,24) and 0 = (v, ...,vq). Let pg, (z1) €
CL(R) be a test function for G,, and compute

/ 8z1px1 Gpd:cl.
R

By using that g; is a solution for Problem B with p = pps, pzpv, pv as test function, where
pu; = o, /v1, and we get

T
/ 8ac1p:c1Gpdx1 = / / Ulgt(x7v)aac1/5dt dx dv
R R2d

/Pocl {/ / 8tp+v Vzp+ Ey - va> dtda:dv} dzry,
R2d—1 ’Ul

where we are using that p = p,, p/v1. Notice that

{/ / 8tp +v- pr + Et VvP) dt dz d’U} (.1)1) € Llloc(R)7
R2d—1 ’U1
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because g¢/v1 € Loo(supp~p) and E € Li... Thus, G, € I/Vli)cl, and in particular, it is continuous
almost everywhere. Let G, be the continuous representative. One can then define the linear
operator Lr(g:) : L'(v} U~y) — R via Lr(g:)(p) = G,(0), and noticing that |G,(0)| <
lgellzollpllr we get that Lr(g:) € (L'(vf U 'y:F))* >~ L*®°(vf U~y). This implies that, for

some I'(g¢) € L""(*}/'TF U~z ), (3.18) holds by taking p = vi¢p as the test function. O

Proposition 3.9. Let g; € L>®((0,7); L*(R??)) be a renormalized solution of Problem B
according to Definition starting from go € L'(R??). Let f; be the restriction of g; to
0,7) x RY x RY,

Then, for every B € C1 N L®(R) there exists f;t € L>®(v}), such that B(f;) and f;t
are a distributional solution to Problem A; i.e., f: is a renormalized solution according to

Definition [2.3

Proof. As in the proof of Proposition we assume that g; € L>((0,T); L=(R?)) to avoid
the use of B throughout the proof. We also recall that, by definition, g; is even with respect
to (z1,v1), i.e., gi(x,v) = gi(2', ') in [0,T) x R,

We will see that f; is a renormalized solution according to Remark That is, we want
to check that there exists some f;" € L% (v U~y ) such that for any ¢ € Tr,

Al + [ o) (wo)drdo, do =, (3.19)
YFUvr
and
/ vig(z,v) (fiF(z,0) = £, (2,0")) dtdoy, dv = 0. (3.20)
Tr

We keep using the notation introduced in the proofs of Lemma [3.5] and Proposition 3.7

(3-9)-(3.13]). The first part, (3.19)), corresponds to the result in Lemma

To see (3.20]), let us consider a smooth and compactly supported extension of ¢ to the whole
[0,T) x R*®. That is, we consider ¢ € C'([0,T) x R*®) such that ¢ = ¢ in [0,T) x R} x R%.
Let ¢~ = @lyy <0}, so that defining @, (z,v) = ¢; (2',0') in [0,T) x R‘i x R%, then we can
treat i, as a test function for Problem A, since ¢, € 7r. By Lemma again,

0=A(@ ., fi) + / v19; (,v)I'(gt)(x,v) dt doy dv. (3.21)
U

Combining this with (3.19)),
/ 019, (z,0)[(g¢)(z,v) dt doy dv +/ vie(z,v)T(g¢)(x,v) dt doy dv = 0. (3.22)
+ = + =
YrYUrr Yr YU r

We have used here that, as in the proof of Proposition [3.7] and since g; is an even solution
to Problem B,

A((bagt) - A(90+7 ft) + A(Et_a ft) =0.
From (322, using @; (z,v) = ¢¢(z,v') on v} Ury,

/+ vipr(z,v) (D(g¢)(z,v) = T(ge)(x,v")) dtdogdv =0, (3.23)
vrYUrr

and assuming ¢; is supported on 7, we have shown that (3.20]) holds. O
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4. MAXIMAL REGULAR FLOWS WITH SPECULAR REFLECTION: THE MAXIMAL SPECULAR
Frow

We would like to establish a suitable notion of flow associated to , and more generally
to the problem in a general domain with specular reflection, . Let us start by recalling
the definition of a Maximal Regular Flow in R? associated to a Borel vector field b = b;(x) :
(0,7) x R* — R? (see [5]), which contrary to Regular Flows, allows blow-ups at any time
after the initial condition. This definition will be useful in the context of Problem B, ,
but we will require another notion of flow to deal with the specular reflection.

We recall here the definition of local Mazimal Regular Flow from [5, Definition 4.4]. That
is, we consider the trajectories of a given Maximal Regular Flow (see [0, Definition 4.2]) inside
an open set A C R%. There is no specular behaviour at this point.

As in [5], in order to identify the boundary of A we define a potential function P4 : A —
[0, 00) by

Pa(z) = max{[dist(x, R\ A)]7L, m} ,

which satisfies

lim P =
iy Talo) = o0

in the sense that, for any M > 0, there exists K € A such that P4(A\ K) > M.
We also have to define the notion of hitting time and entering time with respect to A.

Definition 4.1 (Hitting and entering time in A at time s). Let 7 > 0, s > 0, A C R? open,
andn: (s — 7,5 + 1) = R? continuous. The hitting time of n in A at time s is given by
) = sup € [s.5 4 7) s ma Pa() < oo}

)

while the entering time of n in A at time s is

hy () = inf{t € (s — 7, s] : max Pa(n) < oo}.

t,5]

We put hiy(n) = hy(n) = s if n(s) ¢ A.

We note that we will refer as functions of bounded variation (or BV functions) to the func-
tions whose distributional derivative is a finite Radon measure. We will refer as absolutely
continuous functions (AC) to the functions of bounded variation whose distributional deriva-
tive does not have a singular part (with respect to the Lebesgue measure). Finally, given two
metric space X, Y, and a Borel map f : X — Y, we denote the push-forward of a measure
p € M(X) as fuu € M(Y), which is given by fuu(B) := u(f~1(B)) for any B C Y Borel,
and fulfils the change of variables formula

/ bd(fan) = / bo fdu, (4.1)
Y X
m

for any ¢ : Y — [0, 00| Borel (see [7]).
Now we are able to provide the definition of local Maximal Regular Flow in A, given by

Definition 4.2 (Local Maximal Regular Flow in A, [5]). Let b =b; : (0,T) x A — R? be a
Borel vector field. Let s € (0,T), and let X = X(t,s,2): (0,T) x (0,T) x A — R? be a Borel
map. We call X(-,s,-) a local Maximal Regular Flow (associated to b = b;) in A starting
at time s if there exist two Borel maps tIX : R = (s,T] and tox R? — [0, s) such that
X(-s,x): (t;X(x),t:X(x)) — R? satisfies
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(i) X(-,s,x) € AC’lOC((t;X(:C),tIX(fv));Rd) for a.e. x € RY. Moreover, X(-,s,x) solves the
ODE %X(t,s,x) = b (X(t,s,x)) for a.e. te (t;X(x),t::X(a:)), with X (s, s,x) =z,
(ii) for allt € [0,T], and for any A" € A,

X(t,s,)u (.Zdl_{h_,js(X(-, s,x)) <t <hh (X, s,x))}) <CcL A,

for some constant C depending only on X, A’', and s, and where h, . and hjg/ s are
defined in Definition [{.1] 7 7
(iii) for a.e. x € R? the following dichotomy follows:
o cither tj,X =T (resp. t,x = 0) and X(-,s,2) can be continuously extended to
t =T (resp. t =0) and therefore X(-,s,2) € C([s,T];R?) (resp. X(-,s,x) €
C([0,s;RY)),
® or

lim Py (|X(¢,s,2)]) = oo, (resp. lim Py (| X (t,s,2)|) = 00).
el tlt,

We will simply refer to a Maximal Regular Flow whenever A = R?. Moreover, when the set
A is clear from the context we will simply write t;tX.

The previous definition is consistent with what we intuitively understand as a flow that
might blow up, requiring local in time boundedness with respect to the Lebesgue measure,
local absolute continuity, and the fulfilment of an ODE at those points. Condition (ii) ensures
that there is not too much production of mass, and that sets with finite Lebesgue measure
go to sets with controlled Lebesgue measure. In our case, the divergence-free condition will
ensure that the constant C' = 1, and the inequality in (ii) is actually an equality (mass is
transported).

In a similar manner we can define what we call a Mazimal Specular Flow. In this case,
we would like a definition analogous for flows in € x R? that may have jumps in a velocity
coordinate, corresponding to specular reflections on the boundary. Thanks to the restrictions
imposed on these jumps we can still talk about a solution being transported by the Maximal
Specular Flow.

However, since we are now talking about velocities and positions at which reflections occur,
we need a particular structure for the vector field considered. In this case, we will talk about
a Mazimal Specular Flow in a domain Q x R? associated to a Borel vector field b = b;(z,v) :
(0,7) x 2 x R — R? x R? of the form by(z,v) = (v, Ey(x,v)), for some Borel vector field
E = Ey(z,v) : (0,T) x Q x R = R? Thus, the velocity coordinate will correspond to the
temporal derivative of the position, while the force field might still depend on all the variables.

Still, the following definition is analogous to Definition [£.2] of Maximal Regular Flow in-
troduced in [5]. Namely, the only difference is that in the velocity component the absolute
continuity in time holds everywhere except at the boundary. This is encoded in (ii) from the
following definition: the singular part of the temporal derivative of the velocity exists only
at the boundary, and has a very particular structure due to the specular reflection condition.
Away from the boundary, (X, V) is absolutely continuous, and the following definition coin-
cides exactly with the definition of Maximal Regular Flow, and one could still have trajectories
blowing up in finite time.

Definition 4.3 (Maximal Specular Flow in a domain). Let s € (0,T), and let us consider a
Borel map
(X,V) = (X,V)(t,s,2,v) : (0,T) x (0,T) x Q x R = Q x R<.
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Let b = bi(x,v) = (v, Ey(z,v)) : (0,T) x Q@ x RY — R x R? be a Borel vector field with
E = Ey(2,v): (0,T) x QxR = RY. Let Q € R be a CY' domain. We call (X, V)(-,8,-,-) a
Maximal Specular Flow in Q x R? (associated to b = b;) starting at time s if there exist two
Borel maps t:,X,V QxR = (5,T) and toxy X R? — [0,5) such that (X,V)(-,s,z,v) :
(texv(z, v),tzxy(a:, v)) — Q x R? satisfies

(i) for a.e. (z,v) € Q x R?

X(-,s,z,0) € AClOC((t;Xy(az,v),t:X’V(ac,v));Q)
V('> Sa ZL‘, U) € BWOC((t;X7V(ZE7 U)v t;r,)gv(x’ U))? Rd)
Moreover, (X,V)(-,s,z,v) solves the ODE

d
— (X, V)(t,s,z,0) = by(X(t, s,z,0),V(t,s,x,v)), forae. te (t;va(x,v),t:X’v(x,v)),

dt
(4.2)
with (X, V)(s,s,z,v) = (z,v),
(i3) for a.e. (z,v) € Q x R4,

DV (-, s,x,v) =V (-, s,z,v)dt + DV (-, s, z,v),

where Vdt denotes the absolutely continuous part with respect to the (temporal) Lebesgue
measure, and DJV is the singular part. Moreover,

supp DiV (-, s,z,v) C {1 € (t;va(a:,v),t:X’v(x,v)) : X(7,s,x,v) € 00}

that is, |D{V'| is concentrated on X (-, s,x,v) € Q (jumps in velocity only occur at the
boundary), and is of the form

DfV(',S,l‘,U) = QZAj(Stjv
jeN
for some (t;)jen C (t; xy (2,0),t5y \ (x,v)), where &, denotes the Dirac delta at t;,
and

Aj=— lTlfol n(X(tj,s,z,0)) [V(t; —7,8,z,0) n(X(t;,s,z,v))]. (4.3)

(i) for all t € [0,T],
(X, V)(t, s, ) (.g?d L{ts oy <1< t;X’V}) < o9

for some constant C' depending only on (X, V) and s.
(iv) for a.e. (x,v) € Q x Re the following dichotomy follows:
e cither t;Xy =T (resp. t:,X,v =0) and (X,V)(-,s,z,v) can be continuously ex-
tended to t = T (resp. t = 0) and therefore (X,V)(-,s,z,v) € C([s,T];R% x R?)
(resp. (X, V)(-,s,x,v) € C([0, s]; R? x RY)),

® or
lim |(X,V)(t,s,z,v)| = oo, (resp. lim |(X,V)(t,s,z,v)| = o0).
tth’X,V AR

Remark 4.4. Note that for the half-space situation, = RZ, in condition (i) above we also
have that

Vi(-,s,x,0) € AClOC((t;X’V(x,v),tzx,v(x,v));R) fori e {2,...,d}.
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Moreover, a quick check shows that in condition (ii) above the singular part of D;V; is con-
centrated on X; = 0, that is X1(-, s,z,v)|D; V1| =0, and

DiVi(-,s,x,v) = QZajétj,
jeN

for some (t;);en C (t;X,V(:E’U)’t;r,X,V(l"v))’ where a; = lim, 4, Vi(7, 5,7, v).

The previous definition is constructed according to what we intuitively perceive as a flow
with a specular reflection condition on a boundary in the z-coordinates: it coincides with
the definition of Maximal Regular Flow at all points away from the boundary. At boundary
points, moreover, we impose specular reflection of the vector field (namely, (4.3)), so that
the resulting vector fields are absolutely continuous everywhere, except at reflection points
where the vector field is at most BV. Notice, moreover, that the jump induced only occurs
in the velocity components, and it occurs in the component normal to the boundary (i.e.,
if the boundary is a half-space with normal vector e, then the velocity will be AC in all
components except in Vi, which will be BV).

Notice that, if b; is Lipschitz, then the previous notion coincides with building the standard
flow away from the boundary, and imposing specular reflection boundary conditions. Indeed,
away from the boundary holds pointwise and when reaching a boundary point,
ensures that the velocity component instantly changes in the right specular way.

It is a priori not clear whether the restriction of even (with respect to (z1,v;)) Maximal
Regular Flows to {1 > 0} induces a Maximal Specular Flow in R¢ x R%: one needs to check
that the V; component of the velocity flow behaves in the expected way. That is why we need
the following lemma.

Lemma 4.5. Let s € (0,T), and let
(X, V)= (X, V)(t,s,2,v) : (0,T) x (0,7) x R x RY - R? x R?

be a Borel map such that (X,V)(-,s,-,-) is a Mazimal Regular Flow starting at time s asso-
ciated to b = by(x,v) = (v, By(z,v)) : (0,T) x R x RY — R? x R? for a Borel vector field
E = Ey(z,v): (0,T) x R x R? — R?.
Suppose that for a.e. (z,v) € R x R we have that
(i) to xy(@,v) =t yy(2',0') and t:’Xy(a:,v) = t;X’V(x’,v’) ,
(i) fort e (t;x,v($7”)vt::x,v(x7v))7 and for a.e. (x,v) € R x RY,

(X, V(t,s,2,0) = (X, V)(t,s,2',0). (4.4)
Then, the map
(X,V) = (X, V)(t,s,2,v): (0,T) x (0,T) x RL x R - R% x R?
defined as

Xl(t,s,x,v) = |X1(t,5,l’,’l})’
Xi(t,s,x,v) = X;(t,s,z,v), for die{l,...,d},

f/(t, S, x,v) = %X(t,s,m,v),
is well defined, and (X, V)(-,s,-,-) is a Mazimal Specular Flow in RY xR? (see Deﬁm’tion

starting at time s associated to b = by(x,v) = (v, Ex(z,v)).
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Proof. In order to check that (X, V)(, s, -,-) is a Maximal Specular Flow, it is enough to check
that

‘71('; $,Z, U) S BVloc(<t5_,X7v<$a v),tIX7V($,U));R), (4'5)

and that Definition (ii) (more precisely, Remark holds for V;; the rest of assumptions
follow trivially from the definition of Maximal Regular Flow and the symmetry of (X, V),

=)

Let us fix s € (0,T), (z,v) € R x R%, and let t+ =t ,(z,v). Let
h(t) = X1(t,s,z,v),

so that h,0th € AC).(t~,t1) for a.e. (z,v) € R? x R? by assumption (note that d;h =
Vi(t, s, xz,v)). We first want to show (4.5)), that is, we want to prove

O4h| = sgn(h)dsh € BVige(t™,tT). (4.6)
Let . € C*°(R) be an approximation of the sign function,
pe(t)=—1fort < —e, @(t)=1fort>e¢,
©e(t) is non-decreasing, 0 < . < g

In order to check (4.6)) it is enough to prove the following bound,
b
/ |0; {0:h(s)pe(h(s))} ds < C(h,a,b), for all (a,b) € (t,t), (4.7)

for some constant C'(h, a,b) depending on h and the endpoints a and b, but independent of .
Notice that, since dyh € Li and |p.| <1,

loc

b
/ Bheh] [ 0e(W)] < [9he| 1y (4.8)

a
where in the limit € | 0 the equality is attained, and it would correspond to the absolutely
continuous part with respect to the Lebesgue measure.
Let us now bound, independently of ¢, the other term in (4.7)), ff ©L(h)(Oh)?. Since O;h is
continuous, {|0:h| > 0} N (a,b) is an open set in R, and in particular, it is a countable union
of open disjoint intervals I; = (a;, b;); that is,

{|0th] > 0} N (a,b) = | J L, such that 8;h > 0 or dh < 0 in I;, for each i € N.
ieN
Now consider a fixed interval I; = (a4, b;) for some i € N, and suppose that d;h > 0 in I;.

Let I; = I; N {|h| < e}, which is still a single open interval because h is continuous and 0;h
has constant sign in I;. Then compute, by changing variables s — r = h(s),

[ cmsn@n)is = [ dnts)@ns)s

I If

- / L (r) (B~ (r))dr
h(I)

< sup aih(s) [ L(r)dr = 201h(s,),

sel? —&
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for some §; € If. We are using here that ¢, o h = 0 outside {|h| < e}. If dh < 0 in I; we
would have obtained 2|0;h(5;)| instead, so that in general,

/ L (h())(@eh(s))%ds < 208uh(si) — k(b))

I;

where we are also using that by continuity d;h(b;) = 0. Thus, using that the integrand is

non-negative
/ Duh(s
and thanks to the absolute continuity of 0,h,

b
/ Z/% )(Oh)? <23 [0ih(5i) — Oth(bi)| =2
b
/gos Y(,h) <2Z/ |8yh(s |ds§2/ |8yeh(s)| ds < C(h,a,b). (4.9)

ieN ieN ieN

Combining (4.8 and ( . yields (4.7)) which gives the desired result . We now want to
understand the structure of the dlstrlbutional derivative of d|h|.

Notice that we can consider two different cases according to whether h(I;) contains the
value 0 or not (that is, A has a root in [;). On the one hand, if |h| > 0 in I;, then for
some ¢ small enough, If = @ and fli @L(h)(0:h)? = 0. On the other hand, if 0 € h(I;) then
sup,e s O¢h(s) — Oth(ri) as € | 0 for the unique r; € I; such that h(r;) = 0. That is, if (ri)ien
denotes the set of roots of h in (a,b), then

b
/@;(h)(ath)Q%QZ\ath(m)!, as ¢€10.

1€EN

This corresponds to the singular part of the measure. Combining with (4.8) this gives

b
/ 10 |B] ()] ds = ||Ouhl| 1 (ap) +2 > 10eh(rs)],
a ieN
for any (a,b) @ (t~,t"), and for (r;);en the set of roots of h in (a,b).
Interpreting this in terms of X (¢, s, x,v) and Vi (¢, s, z,v) we obtain the desired result. [

5. UNIQUENESS OF THE CONTINUITY EQUATION

In this section we address the problem of uniqueness of the continuity equation associated
to Problem B, . Namely, we want to check that the vector field in the mentioned problem
satisfies the condition (A2) from [6, Section 4.1].

Let us rewrite the problem here in a more convenient way,

8tgt+v‘vxgt+Et‘vat:O in (0,00)XRdXRd

,5~t(x) = sgn(x1) [pa 9¢(z,v)dv in (0,00) x R? (5.1)
Ey(x) = sgn(w1)ca [pa pr(y);=fady  in (0,00) x RY, '
gt(x,v) = ge(a',0) in (0,00) x R? x R?

In particular, p;(z) = —pi(z'), and Ey(z') = (Ey(x))’.

The existence and uniqueness of a Maximal Regular Flow (see Definition transport-
ing the solution of the continuity equation with vector field b is discussed in [6] under the
assumptions on b induced by the results from the same authors in [5].
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More precisely, in order to construct a Maximal Regular Flow associated to a general Borel
vector field b : (0,T) x RY — RY, it is sufficient that the following assumptions are satisfied
(see [3]):

(A1) fo s, bt(z)|dzdt < oo for any R >0,

(A2) for any nonnegative i € LS’f(Rd) with compact support and any closed interval I =
[a,b] C [0,T], the continuity equation

d
s + div(but) = in  (a,b) x R? (5.2)

has at most one weakly™ continuous solution I > ¢ + p; such that p, = g and
Utela,pjSupp pit € RY.
We want to check that assumption (A2) is satisfied whenever the vector field b is of the
form b = by(x,v) = (v, Ey(2)) coming from (G-1).

Theorem 5.1. Let b: (0,T) x R?? — R2? be a vector field given by by(z,v) = (b14(v), bas(7)),
where

bie(v) € L¥((0,T); Wy (RG RY))
ba,t(2) = sgu(w1) K * pr,

with K = z/|z|? and |p| € L>®((0,T); M (R?) an odd measure with respect to x1; that
is, for any Borel set E C R, p(E) = —p(E') (where x € E' < ' € E). In particular,
p({z1 =0}) = 0.

Then b satisfies assumption (A2), that is, the uniqueness of bounded compactly supported
nonnegative distributional solutions of the continuity equation.

Proof. This proof follows along the lines of [0, Theorem 4.4] where Ambrosio, Colombo, and
Figalli, deal with a vector field bs given by a full convolution. At the same time, it is a variant
of a result by Bohun, Bouchut, and Crippa, [12].

Since our vector field by is almost a convolution, we will be able to repeat the proof in [6]
Theorem 4.4] in many steps. For the sake of completeness we repeat the main steps of their
proof here, which after small adaptations, help us bound all but the first component of by. In
order to get the results for the first component, we need to proceed differently and use the
precise form of by and the symmetry of the problem with respect to ;.

For the sake of readability, we do not explicitly write the time dependence on the vector field
b. Let us denote Z2(X) the space of probability measures on X, and e; : C([0, T]; RF) — RF
the evaluation map at ¢, e;(n) := n(t), where k = d or 2d depending on the context.

Let us denote 'y := C([0,T);R??), and I'% := {y € I'r : v(0) = z}, for z € R*¥. The
proof is based on the superposition principle, [8, Theorem 8.2.1], which says that nonnegative
solutions to the continuity equation yu; (with a suitable vector field) starting from i can be
represented by probability measures n € Z(I'r) concentrated on curves « solutions to the
A(t) = be(v(t)). More precisely, we can write

/de p dpy = /FT por(t) dn(v) = /de </T tp(v(t))dnx(v)> dfi(z),

where 1 = egxn. We have also considered the disintegration of 1 with respect to the map
eo (i.e., the initial value), so that n = 7, ® di(z). Notice that, in particular, if there was a
unique solution to the ODE starting from z, then 1, = ¢,,, and the unique solution to the
continuity equation starting from z would be given by p; = e;xn, with n = 4., ® dj(z).
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To prove uniqueness, suppose that p} and p? are compactly supported solutions to the
continuity equation, and let n; and 72 be the corresponding measures in & (I';) given by the
superposition principle. Define n = 7712& If we can prove that 7, (the disintegration with
respect to ep) is a Dirac delta for ji-a.e. x, then this implies that (1), and (12), are also a
Dirac delta and hence, 1 = 12 and p; = pe.

In our case, we need to consider the extended superposition principle under local integrabil-
ity bounds, [6, Theorem 5.1]. Let Br € R? and € 2(C([0,T); Br x Bg)) be concentrated
on integral curves of the vector field b with the no concentration condition (e;)gn < Co.Z? for
any t € [0,T]. Then, arguing as before, by [6l Theorem 5.1], in order to show that assumption
(A2) holds, it is enough to prove that 7, is a Dirac delta for eg4n-a.e. z.

Let 6,¢ € (0,1) be two small parameters to be chosen. Let ¢ € [0,T], fi := (eg)xn, and we
denote y(t) = (v(t),v*(t)) € R? x RZ. Define

2 _ 2
s ¢ (1) ///log <1+ 7 ( ) &l h (t)5£ (t)|>dnx(7)d77x(§)du(x). (5.3)

In order to simplify the notation, we denote du(z, &, ) := dn, (€)dn.(v)dj(x) for p € P (R? x
C([0,T7); R%?). As seen in [6, Theorem 4.4], if we assume that 7, is not a Dirac delta for
fi-a.e. x then there exists some constant 0 < a < 27" and some ¢y € (0,7 such that

Psclto) = 5 log (1+ %—T) (5.4)
and we want to get a contradiction. By dlﬁerentlatlng , we get
5+\7 - &t )I) o+ [yH(t) — &M o

The first term in the previous sum can be bounded by means of the Lipschitz regularity of by

in B as
b1(2(6) — b1 () V01l (5)
1] G 2t e < >0

For the second term, we will see that, as in the proof of [6, Theorem 4.4], in order to get a
contradiction it is enough to show

/// ‘b§25+w _bQ(gl(( ))‘)’du(:c,f,v) < C( + log <65)> (5.7)

for some constant C' depending only on d, |p|(R%), and R. Notice that we just need to bound

[ba (v (1)) — ba (& (1))
//L weteo GO+ i -] e (5.8)

where 71 (¢) and &} (¢) denote the first component of v!(t) and &!(t) respectively. Indeed, if
Y1 (t)&f (t) > 0 then

[b2(7 (1)) = b€ (1))] = | K * p(v' (1) — K % p(&" (1)),

and we are in the situation treated in the proof of [6 Theorem 4.4], where the authors deal
with vector fields given by full convolutions.
Now suppose j € {2,...,d} fixed. Let us show that,

//[y (<0 . JC)5 +(h))( )bg)é(f(:fgllt))|du(w’§’7) =¢ (1 +log <g5>> (5.9)
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where by () = (b(l)( ), - b(d)( )). We will also denote K = (K7, ..., Ky) = (x1/|z]%, ..., 2q/|2z|%)
(as an abuse of notation, here z € RY, while in the integral, = € ]RQd)

It follows by noticing that under these hypotheses, b(J )( ) = b( (2'), |b(] (v

|

115 (V1 (1)) = b5 (€1(2))| = 1K % p(r' (1)) — K p(€1(2)')], and |5 (£) — €1 (1)

so that
05 (+ (1) — b5 (€' (1))
/// £)el(£)<0 C5+|’7 (t) — EL1(¢)| du(x,§,7v) <

K+ p(yH (1) — K+ p(€ @),
= ///y%(t)&%(t)<0 C6+ [yi(t) — EL(t)] du(,€,7),

and it follows again as in [0, Theorem 4.4]. We have critically used here that p is odd with
respect to x1. The fact that we are integrating with respect to & and not &} does not play a
role in the proof of [6] Theorem 4.4].

In all, we just need to bound

K1 * p(0' (1) + K *p(ﬁl( t))]
//L £)<0 o+ 7L (t) — ()‘ du(z, €, 7) <

= ///7% (HEL(1)<0 ugsj-pm ///71 (0)€] (1) <0 |[§g:p|(f€1(())|)’dﬂ

We are using here that, since vi(t)&1(t) < 0 then |y1(t) — €1(t)] > |vi(t)| + |€1(¢)]. By
symmetry, it will be enough to bound the first term in the previous sum. Thanks to the
no-concentration condition (e¢)xn < Co-Z4,

K1+ p(y' ()] a 1K1 p@)]
///vl(t)ﬁl <o O+ i)l Gt =07 (BR)/BR 6+ |z de.

Let us find a bound of the kind (5.7)) for R =1 (other values of R > 0 follow analogously).
We define I := [ K1 p(x)|(C0 + |z1]) " dz, and let Ay := [0,27%] x B§d_1), where Bid_l)

(1) -5 (€' (#)] =
> |yt t)—él(t)’!,

denotes the d — 1 dimensional unit ball. Define also Uy := [27F,27F+1] x B%d_l). Then, for
any NV € N,
K K
I</ K« pla H L*p (5.10)
Ao C5+ |ZB1| <5+ |£B1| Ll(Ao,fd)

N
1
< C5 1K # pll 1y, 20 +ZW 1K1 * pll g1 v, 2a) -

Notice that [|K1#pll11, gay < (K1 *pllpica, , 22 We will see that it is enough to
bound ||K1 * pl| 14, 2a) for any k € NU{0}. Indeed,

||K1 * P”Ll(Ak,fd) = /

Ak xRd

Kalo = () ddo <2 [ 1ol [ 1Kol = 200lR) I Kallusga, 0
k

Also, with the notation ”KIHL}C = || K1l 1 (a,, 24)s

2 k
dxy...d dys...d
1K1 || :/ :cl/ Ldfﬂddxl :/ Y2...dya —day < 02,
k 0 Bid—l) |ZE’ [0727k]><B(d—1) (1+y%+“'+y§) /

1/xq
(5.11)
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for some constant Cy that depends only on the dimension d. Thus, for any N > 1,

C 9—k+1 C
I_2NC<5+CZC5+2’“_2NC<5 +CN. (5.12)

Choose N such that 2V¢§ = 1, so that N = C'log (é), then

r<ofisms(g)).

This proves the bound (5.7). From here, one can proceed as in [0, Theorem 4.4] to get a
contradiction with (5.4)). Indeed, combining (5.5), (5.6), and (5.7) we have

dijv<(t)gc<g+g+glog <<5>> (5.13)

for some C that depends only on d, R, |p|(R%), and Vb1 oo (ray- Integrating from 0 to to,
and using ®5¢(0) = 0 (n is concentrated on curves with fixed initial datum), we reach

P5¢(to) < Cto (C + (+Clog (6) + Clog (C)) )

Now choosing ¢ > 0 such that Ct,( < 55, and letting § | 0 we get a contradiction with

(6-4). 0

6. EXISTENCE OF SOLUTIONS FOR PROBLEM B

In this section we want to show the existence of renormalized solutions to Problem B, and
its Lagrangian structure. In particular, we will show the analogous of Theorems and
for Problem B, (3.3).

6.1. A regularised problem. In this subsection we prove the existence and conservation of
energy of solutions to a regularisation of Problem B, (3.3).

In order to find a solution to Problem B we will need to solve regularised versions of the
same problem to generate an approximating sequence. In the classical Vlasov—Poisson in the
whole space, the existence and conservation of energy of solutions to a regularised problem
(obtained by regularisation of the convolution kernel) is known (see, e.g., [18]), and follows
by a fixed point argument in the Wasserstein metric.

In this case, the same approximation also works. The only detail one has to consider is
the choice of the regularisation of Problem B. Moreover, a small error will appear on the
conservation of energy coming from the regularisation of the odd density.

Theorem 6.1. Let ho(z,v) = hg € CP(RY x RY) be even with respect to (x1,v1), that
is, ho(z,v) = ho(z',v"). Let H € C®(RY) be a rotationally invariant (H(x) = H(|z|))
reqularisation of H(z) = 4 |x*~¢, and let § € C*°(R) be an odd regularisation of sgn(x1), the
sign function. Then, the following problem has an even (with respect to (x1,v1)) distributional
solution g = g(t, x,v),

Otgt —|— (0 ngt + Et Vgt =0 mn (0, OO) x R4 x R4

pu(r) = o el v)dv, () = sen(e)le) i (0, 00) x B,

e = SV ) (6.1)
= —8(z1) [VH(z —y)p?(y)dy ~ in (0,00) x R?

Go = ho in R% x R4,
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Moreover,

[ toPateodedos [ [ g] gite) do = (6.2)

t
— [, WPw(eodedos [ B @e) o+ [ K5 H o) dr
Rd x R4 R4 0
for any t > 0, where K is defined as

K. (5, H, ho) =2 /R . (sgn(z1) — 5(z1)) v - [vH * pg] (2)g» dz dv, (6.3)

for gr the solution to (6.1) with initial datum hy.

Proof. We divide the proof into the two parts of the statement. In the first step we prove
the existence of a distributional solution, while in the second step we check that the energy
defined in (6.2]) is conserved in time up to an error.

Step 1: Existence. To prove existence we proceed with a standard fixed point argument
where we build functions iteratively that converge to a distributional solution to the previous
problem.

Let Ty > 0 to be chosen, and let u ™ : (0, Tp) x R x R? for n € NU {0} defined iteratively
as the solution to

9 u"“ +uv- Vxﬂ?“ + B Vot =0 in (0,70) x Rd x R4

pi(x) = [ga 1 (,0)dv,  py"(x) = sgn(z1)pf(z) in (0,Tp) x (6.4)
Ef(w) = —s(m1>(VH *(py™)) in (0,Tp) x Rd '
pott = hg in R% x R?,

with pf = hg for t € (0,Tp). By standard Cauchy-Lipschitz theory, if b (x,v) = (v, E*(z)),
then there exists a regular flow Z,, : [0, Tp] x R? x R? — R? x R?, Z,,(t) = (X, (1), Vn(t)) such
that it solves

{ LZ,(t) =bM(Z,(t))  in (0,Tp) x RY x R (6.5)

Zn(0)(z,v) = (z,v), in RYx R '

and the solution x' ™! is given by the push-forward p™! = Zn(t)#ho-
We will prove that ,u”“ converge to some p; a distributional solution to the continuity
equation. Since each ,ut 1is even with respect to (x1,v1) by construction and uniqueness of
(6.4), if the limit y; exists, it must also be even with respect to (z1,v1).

To do so, we study the convergence of the flows in the L' norm. Before doing that,
let us define the following distance from the Wasserstein metric Wp. That is, given vq,10 €
L>®((0, Tp); My (REx R?)) such that v (t) (R x RY) = vy(t)(R? x RY) = C with C independent
of time, we define

WlTO(yl,ug) = sup Wi(vi(t),a(t))
te[0,To)

= sup sup {/ o(z,v)d(v1 — vy)(z,v) : Lip(p) < 1in RY x Rd} .
t€[0,T0] R x R4

Analogously we also define W, °(py, pa) for p1, pa € L®((0,Tp); My (R%)). We want to com-

pute VVlTO (™1, u™) (notice that conservation of mass for u” follows from the fact that the

vector field (v, E') is divergence-free). Let us call LY := {p € CO(R?) : Lip(yp) < 1}, and fix

te [0, To].
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Notice that
W) = s, [AeZal0) = enesOD o < [ 1220 = Zucs O, (6
so that, in particular,
20 sup [ 1Z,(0) = Zua(Oldho = WG ). (6.7)
te[0,To]

This is the term whose convergence we want to study. On the other hand,

[ 1200~ Zos@lano < | { / (2 <Zn_1<s>>|ds}dho

<ozt [ [ 1B - BCO- 6] dha+ [ |7 - B2} as,
0
from which
/ Za(t) — Zur(t) dho < CLZE + tho(R™)  sup  |EM(z) — B '(z)].  (6.8)
s€[0,t],zeR4
We have used here that E7' are uniformly Lipschitz independently of s and n by construction,
and that the total mass is fixed for any n and for all times in [0,7p]. The constant C, then,
is fixed depending only on the regularised functions H and s.
We can now compute

sup  |EJ(z) — By (2)| =
s€[0,t],z€R?

= sup
s€[0,t],zeR®

[ S0V - ) [ w) - 27 W] do| < CWH "0,

where we have used that 5 and VH are globally Lipschitz, and they do not depend on n. Let
us now see that, for any s € [0, ],

Wi(p™" (s), p%" 1 (s)) < Wi(p"(s), 0" (5)). (6.9)

o,n—1

Indeed, since p3" — p3 is odd with respect to z1, then for any ¢ € L{,

/ o(y) (02" = p2™ ") (y)dy =/ —o(y") (p2™ = p2™ ) (y)dy
R4 Rd

_ /Rd 90(y> _2()0(3/) (pg, pgn 1) (y)dy,
and therefore

Wi (p™"(s), p”" 1 (s)) = sup {/Rd sgn(yl)w (P —pi ")y )dy} < Wi(p"(s), "1 (s)),

peLf
where we have used that if ¢ € L{ then sgn(yl)M € L4. Thus,
sup  |E(x) — By (2)] < CW(p”", po" 1) < OWi(u" u" ™) < C2Z5_y,
s€[0,t],zeR?
where in the last inequality we have used (/6.7]).
Putting all together and taking the supremum over ¢ € [0, Ty] in we get
CTy

<=9 T
" T 1-CTy n-l
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for some constant C' depending only on the choice of regularisation functions 5 and H, and
on ho(R??). Thus, for some Ty > 0 small enough we have constructed a contraction for the
sequence (Z10),,, and since T is independent of n we can repeat the argument to reach any
positive time. In particular, this yields the L' convergence of flows with respect to n. Using
the bound , we get a limiting measure p; of the sequence pj.

One can easily check that Ej'(x) converge uniformly (in time and space) to

E(z) = 5(x1) {VET * pf} (x),

where p? = sgn(z1) [ pudv. Thus, taking limits in ([6.4) we obtain that y; solves (6.1]) in the
distributional sense, and is even with respect to (z1,v1) by construction, so that we have
constructed our solution g;. Note, moreover, that by Cauchy-Lipschitz theory, g; is smooth.

Step 2: Conservation of energy. This is standard. We refer the reader to the proof of
Step 2 in Theorem for a similar situation. O

6.2. Existence of solutions. We start by introducing a rather general result involving either
bounded or renormalized solutions to the reflected Vlasov—Poisson problem (3.3)).

This theorem essentially uses the results of [6], where the authors establish a general princi-
ple on the conditions necessary to have equivalence between renormalized and Lagrangian solu-
tions. They present an analogous statement for the Vlasov—Poisson system without boundary
in [6, Theorem 2.2].

In particular we use [6, Theorem 5.1]. This result proved by Ambrosio, Colombo, and
Figalli, states that bounded or renormalized solutions to a continuity equation whose vector
field satisfies certain conditions, are transported by the Maximal Regular Flow. Thus, we just
need to check that solutions to our reflected Vlasov—Poisson system fulfil the hypotheses
from [6, Theorem 5.1].

Theorem 6.2. Let T > 0, and g € L*°((0,7); L1 (R*)) a weakly continuous function.
Suppose that
(i) either g; € L*>((0,T); L°(R??)) is a distributional solution to the reflected Viasov—
Poisson system, Problem B (3.3)).
(ii) or g¢ is a renormalized solution of the reflected Viasov—Poisson system, Problem B (3.3)
(see Definition [3.5).
Then g; is a Lagrangian solution transported by the Maximal Regular Flow associated to the
vector field by; and in particular, g is renormalized.

Proof. To prove it we simply apply [6, Theorem 5.1] noting that the vector field b, fulfils
the conditions (A1) from Section [5| and (A2), as proved in Theorem and therefore, the
solution is transported by the Maximal Regular Flow.

In particular, by [0, Theorem 4.10], a solution transported by the Maximal Regular Flow
is renormalized.

Theorem 6.3. Let d > 3, and consider gy € Lt (R*®) even with respect to (z1,v1), p§(z) =
80 (1) fya go(, v)dv, satisfying

/ lv|%go(z,v) dz dv +/ H x pg pgdr < oo, H(x) = Cid]a:\%d. (6.10)

RAxRd R4 d - 2

Then, there exists a global Lagrangian solution (transported by the Mazimal Regular Flow)
even with respect to (z1,v1), g € C([0,00); LL (R??)), of the reflected Viasov—Poisson system
(3-3) with initial datum go. Moreover, the physical density p, = [ gidv and the electric field
Ey = sgn(w1) pf x K are strongly continuous in LL (R?); py, By € C([0,00); L (R%)).
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Proof. The proof follows along the lines of the proof of [6, Corollary 2.7] with the modifications
introduced until now for our vector field. In this case, the choice of the approximating sequence
plays a more relevant role. We divide the proof into several steps.

Step 1: Approximating sequence. Let (H,)nen with H,(z) = (¢, * H)(z) € C°(R?) be
a sequence of even functions approximating H(z) with v, (x) = n%)(nx) and 1 a standard
rotational invariant convolution kernel in C°(R?), 1 (x) = v(|x|), decreasing with respect to
|z|. Let (g8)nen with gi € C°(R%) a sequence of nonnegative even functions with respect to
(1, v1) approximating go; that is

H,— H  in L'(RY),
96 — 9o in LI(RQd).

Suppose also that (8, )nen With 8, = 8, (x1) € C*°(R) is a sequence of functions approximating
sgn(x1), such that, for a positive sequence 7, | 0 as n — 0o to be chosen later, we have

‘gn’ <1, and §n(.’IJ1) = —gn(—l'l), forz1 € R
Sp(z1) =1, for xy > 7y, Sn(x1) = -1, for xy < —rp, (6.11)
Sp(z1) — sgn(x1) in Ll(R).

Denote by gy the solutions (even with respect to (x1,v1)) of the regularised reflected Vlasov—
Poisson system constructed in Theorem

oGt +v-Vaugl + EM - Vgt =0 in (0,00) x R? x R?
P (2) = fu P (@ 0)dv, () = sgn(e)pp()  in (0,00) X RY, (6.12)
E(z) = —8n(z1)(VHn * p;°) (2) in (0,00) x RY,

with initial datum g{. Using the notation of Theorem 6.1, we are taking H=H,and 5= 35,.

Notice that the vector field b} (z,v) = (v, EJ*(z)) is Lipschitz and divergence-free, and
therefore, by standard Cauchy-Lipschitz theory, there exists a well defined and incompressible
flow Z"(t) : R?¢ — R2? transporting the solution,

gt =gyoZ™t)"t, fort € (0,00), (6.13)

and
”P?HLI(Rd) = Hgle(RQd) = HQSLHLl(RQd)‘ (6.14)
In particular, by assuming that gy are equiintegrable with respect to n, we have that g
are equiintegrable independently of n € N, ¢ € (0,00); but more importantly, independently

of the choice H,, and 5,. That is, there exists a sequence (&y,)men With &, | 0 as m — o0
such that

/ 9 1 grsmy do dv = / 96 L{gn>mydrdv < ey — 0, as m — oo, (6.15)
R xRd R xR

for all t € (0,00) and n € N. The sequence (&,,)men depends only on the initial datum, go.

Step 2: Choice of the approximating sequence. In this step we choose the approximat-
ing sequence in such a way that we keep a control on the kinetic energy of the system. Recall

that, from (6.1]), we have

/ lv2g7 (z, v)dzdv + / [Hn * p?’o] (x)py"°(z)dx = (6.16)
R x R4 R

t
— / |U’298($, v)dzdv + / [Hn % pg’o] (x)pg’o(gj)dl‘ +/ K+ (Sn, Hn,y g5 )dT
R4 xRA R 0
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for any ¢ > 0, where K, for 7 € (0,¢) is defined as

K+ (8n, Hp, g0) = Q/d ) (sgn(z1) — Sp(z1)) v - [VHn * pZ’O} (2)g2 dx dv. (6.17)
RexR
Proceeding as in [6, Lemma 3.1] there exists a sequence g} € C°(R??) and Hy,, for k, — oo

as n — 0o, such that

lim (/ |U\Qg{}dacdv+/ Hkn*pg’opg’od:c> :/ |U\Qggdxdv+/ Hxp§ pgdz. (6.18)
R2d R R2d Rd

n—o0

Notice that we can assume, without loss of generality after relabelling the indexes, that
supp gy C B, (0) and [[VHy,[[peoray < My for a given sequence M, — oo as n — oo.
Moreover, since

4270 = vy (27 ),

with b (z,v) = (v, E{'(2)), and ”EpHLOO(Rd) < HQSHLl(R%)Mm we have
d n n
12" Ol = 127()] + M.

Together with (6.13]) and supp gi C B, (0), this implies supp g;* C Bapy, (t(0). We can
now bound |KC;],

o s ) <2 [ (o) = sgn(en)| - o] - [V, 10

(2)lg?| da dv

supp g7
< OV |17 1 / o] - 19| dz do
supp g7
< M2 g8 s oy / g dz do.
{—rn<z1<r,}N{suppg?}

Now notice that, for every m € N, there exists &, | 0 as m — oo coming from (6.15)) such
that

/ 92| dz dv < m L ({—ry < @1 < 10} O {supp g}) + m
{—=rn<z1<rp}n{supp g7}
< 92y, 217 201 g

Fix m = n, and putting all together,
|Kr(Sny Hny g6)| < 4eTHgSHL1(R2d) <22dm"ne(2d*1)7Mn2d+1 + M3€n> .

2d—1

Y en? — 0 asn — oo, so that, for

2

—1/4 _
Now choose M, = ¢, — oo asn — o0, and r, =n

T € (0,1),
s (5ny Hnygp)| — 0, as n — oo, (6.19)
uniformly for 7 € (0,¢).
In particular, from , we have that for the sequence of functions constructed

t
[, wigoydedos [ [Hoxot] @i @) do < O+ [ Kol Huwgi)dr, (620
R xR4 R4 0

for some constant C' independent of n and ¢, thanks to (6.18), and the hypothesis (6.10)).
From here, a uniform bound on the kinetic energy follows by noting that

sen ([ Hox 0| (2)) = sen(a1) = sgn (5)""(@))
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so that the second term of the sum in the left-hand side of ([6.20]) is nonnegative, and therefore,

t
/ [v|2g? (x, v) dz dv < C —I—/ K+ (Sn, Hn,y g5 )dT, (6.21)
RdxRd 0
for some C' independent of n and t. Thus, for any fixed ¢, using (6.19)) we obtain
lim inf/ v|2g (z,v) dx dv < C, (6.22)
=00 JRdxRd

for some constant C' independent of n and ¢.

Step 3: Limiting solution. Once we have the approximating sequence, we need to build
the limiting solution. To do so, we proceed as in the proof of [6, Theorem 2.6], so that we
can look at each approximating solution as a transport for each level set. That is, for every

k € N (without loss of generality, Z?¢({fo = k}) = 0) we have
90" = Lngp<ra 96 = 96 = Lip<gochs1ygo, in LM(R*), (6.23)
so that, from (6.13)), for any n,k € N, ¢t € (0, 00),

7k P— -
90" = Lingnozn(n-1<ks1396 © 2" ()"

is a distributional solution of the continuity equation with vector field b}; and

n,k n,k
9 HLl(RQd) = |99 HLl(R2d)-

By construction, for each n, k € N, ¢"* is nonnegative and bounded by k + 1, so that there
exists some g¥ € L>((0,00) x R??) nonnegative such that, up to subsequences,

gt — gt weakly* in L>((0,00) x R?*?) as n — oo, for all k € N. (6.24)
Proceeding as in [0, Theorem 2.6],
19¢ 1122 (R2ay < 196 1|1 (m2ay  for all ¢ € [0, 00).
Defining
o0
g:= ng in (0, 00) x R,
k=0
then, again as in [0, Theorem 2.6], we have
lgell L eony < D NGE i geey < Y 1961 L roey = llgollr(reey  for ace. ¢ € [0,00), (6.25)

k>0 k>0

and
n

g" — g weakly in Li ([0, T] x R??), (6.26)
for every T > 0.

Step 4: Limiting densities. Let us now study what happens in the limit of the se-
quence of densities {p"},en. Since p" are bounded in L>((0,00);.#. (RY)), we already
know that they converge, up to subsequences, weakly* in L°°((0,00);.#(R%)), to some

p* € L=((0,00); .4 (R?)). This is not enough, as we would like to identify the limit.
Let us define

prlz) = / g(e.v)dv, forx € R% 1 € [0,00),
Rd
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and let us show that for some subsequence, the limit p* coincides with p. We will prove a
stronger result, namely,

T T
lim / / op? dx dt = / / opidedt, for all p € L([0,T] x RY), (6.27)
R4 0 R4

n— oo 0

for any T' > 0, and where LZ° denotes the space of L* functions with compact support.

To do so, we have to exploit that we already know g7 is weakly converging to g in L%,
and that from the bound on the kinetic energy, problems do not arise from integrating the v
variable.

First of all, from the lower semicontinuity of the kinetic energy and from , we have
that for any 7" > 0,

T T
/ / lv|? g; da dv dt < hmlnf/ / |v|? g da dv dt < CT, (6.28)
0 JRIxRI nTreo RdxRd

for some C that depends only on the initial bound of the kinetic energy. Let us check (/6.27)).
Let us consider, for each m € N, a nonnegative function &,, € C2°(By,+1) such that &, =1
in B,, and 0 < &, <1 in R%, and compute

o(t,2) (9" — gi) ém(v) dv dz dt

Rd x R4

T
+/O /fand lo(t, 2)| g7 (1 — & (v)) dvda dt

T
+/0 /%XRd [p(t,)|ge (1 = &m(v)) dv da dt.

Now we take the liminf in both sides. Note that,
T
liminf/ / lo(t, z)|gs (1 = &n(v)) dvdrdt <
0 ¢ XRd

n—oo
H@HLOO lmmf/ / [v|? gl dv dx dt < CT”QOHL
RIxR4

n—o0 m2

Rd

o(t,2) (o — pr) da dt‘ <

for every m € N, thanks to 1) and the same occurs for the last term. This, together with
the weak convergence of ¢" to g in L', gives the desired result, (6.27). We, therefore, have
that, up to subsequences and for every T > 0,

/pn(p — /p(p for all ¢ € L([0,T] x R%). (6.29)
Combining this with the fact that p;"° = sgn(z1)p} and p? = sgn(x1)p:, we also get that
/p"’ocp — /pogo for all p € L([0,T] x RY). (6.30)

The key point in reaching this conclusion has been the avoidance of accumulation of mass for
p around z; = 0, thanks to the bound on the kinetic energy.

Step 5: Limiting vector fields. Define the limiting electric field E; as
Ei(z) = —sgn(z1)(p¢ * VH)(x) = sgn(z)(p? * K)  for z € RY, (6.31)

where K () = cqx/|z|?. At this point, we would like to apply the stability results (analogous
o [I7, Theorem I1.7]) to each bounded function g* (defined in (6.24)) to check that they
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are distributional solutions of the continuity equation with vector field b; = (v, E}) and with
initial datum gf (defined in (6.23)). That is, we have to check that

b* — b weakly in Li_((0,00) x R?; R?) (6.32)

and
Ej'(z+h) — EP(z) as|h| =0, in L}, ((0,00); Ly, (RY)), (6.33)

uniformly in n. To prove it, we proceed along the lines of [6], Theorem 2.6]. In this step we

will prove (/6.32)), and in the next step we will prove (6.33)).
Recall that the sequence (H,)nen is formed by terms of the form H,(z) = (¢, x H)(x), for

some sequence of convolution kernels in R?, 4, (x) = 1,,(|x]), converging to a Dirac delta. Let
us call K, (x) = VH,(x) = —(¢p * K)(x), and we start by checking that { E"™ },cn is bounded,
for 1 <p< %, in Lf ((0,00) x R4, RY) uniformly in n; which will yield that b" has a weak
limit.

Indeed, applying twice the local version of Young’s inequality for convolutions introduced
in the first part of the proof of Lemma [3.5

IEY | o (Br) = N30 (1) (K % p7"°) (@)l Lo () < ¥ * K % 0l o8y
<lpi"°

i@ [Un * Kooy < 107l @ay |9nll 1 way 1K | o (B)
< ool ey |1 K| Lo ()
which is bounded independently of n for every R > 0. We have proceeded as in the proof
Lemma by using that v is rotationally invariant and decreasing with respect to |z|, and
the same occurs with ¥, x K.
Thus, {b"},en converges weakly in LY ((0,00) x R24;R2?) and we want to check that the

loc
limit is, indeed, b; = (v, ). That is, we will show

lim / / Elpdxdt = / / Eypdxdt, for all ¢ € C°((0,00) x RY). (6.34)
0 JRd 0 JRd

n—oo
Let
/ / (B} — Ey)pdx dt‘ < I,+II,+III,,
0 Jrd
with
I, = /0 » {(sgn(z1) ) K % p° — (sgn(z1) @) K = pf} da dt‘
= /0 - {py"° K * (sgn(z1) @) — p] K * (sgn(z1) )} dx dt|,
ty=| [ [ (et @)1 (senlen) 90K+ 77} dac
= /0 o {pi"° Ky, x (sgn(z1) @) — pp°K * (sgn(z1) p)} dz dt|,
and
Iy = / A(5n) Ko 0 — (sgn(a1)) K % pi"} da dt‘
0o Jr

[ e ) = 0 o (o)) do ]
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where we have used standard convolution properties and the fact that K(z) = —K(—x) and
K,(x) = —K,(—x).

In order to bound the first term, notice that K * (sgn(z1)¢) is bounded and continuous
(being the convolution of an L' function and an L> function), decaying at infinity and with
compact support in time; thus, from the weak convergence we get

I, —0 asn— oc.

For the second and third term, we start by claiming that, for any fixed ¢ € C°((0, 00) x R?),

i [|K # (9 50 (21)) — K # (580(20))| o000y ) = 0 (6.35)
and
Tim Ky # (980 (21)) — Ko % (580(20) | o (0,00 = 0. (6.36)

and in particular, (¢sgn(z1)) * K is continuous.
Indeed, denoting R?  D,, = {—r, < 21 < .} N (Ugsosupp @), with 7, from (6.11]), then

‘ /Rd(gn(yl) —sgn(y1))e(t, y) Kn(z — y) dy‘ <

< 2|l oo ((0,00) x4 /]Rd Un(z) i K(z—y—2)dydz— 0 asn — oo, uniformly in z € R?.

It similarly follows that
lim [ Ky + (sgn(z1) @) — K (sgn(z1) ©)l| Lo ((0,00)xre) = 05 (6.37)

n—oo

using that [iy, * (sgn(z1)e)] (y) converges to sgn(yi1)e(y) whenever y; # 0, and is bounded
otherwise.

Thus, in order to bound the second term, I1,,, we use that p;"° are uniformly in L°°((0, o00); L' (R%))
(with respect to n) and that, by (6.37), K, * (sgn(z1)¢) converges uniformly (in z) to
K x (sgn(x1) ¢), so that

I, -0 asn— .

Finally, for the third term we simply use that p;"° is uniformly in L>°((0, c0); L' (R%)) with

respect to n together with to get

I, -0 asn— oo.
In all, we have proved ((6.34)), which at the same time implies (6.32)).

Step 6: Proof of the second stability condition. We now want to prove (6.33)), which
we rewrite as

(509t % Kn) (@ + ) = (500, % Kn) () as [h] = 0, in Lig((0,00); Ligo(R)),  (6.38)

uniformly in n.
Let us denote, for f : RY — R, 6, f(x) := f(x+h) — f(x). We will prove that, for Bg C R,

/ |0n, (Sn p?’o x K) (x)|de — 0, as |h| =0, (6.39)
Br

uniformly with respect to n € N and ¢ € (0,00). By triangular inequality and the definition
of 5,,

10 (8 pi™" % Kp) ()| < [6n5n ()] - |0} * K ()| + [0n(p  Kn) ()] (6.40)
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Let us first prove the convergence of the second term. Given o € (0,1) and p € [1
then K = cqz/|z|? € WP(R?), so that by Young’s inequality,

’ﬁ)’

o Knllwer(py) = |7 * Kllwan(Bg) < CHP?’OHLl(Rd)”¢n’\L1(Rd) <,

for some constant C' that depends on R, d, p, o; but is independent of n and .
Now, from a classical embedding of W1 into the Nikolskii space N®! (see [2, Chapter 7])
we obtain

/ féh(p?’o * Kp)(x)|de < Clh|* — 0, as|h| =0, (6.41)
Bpgr

for some constant C' that depends only on d and R, and |h| < R.
Let us now bound

/ 68 (@)| - | % Kon(2)] do.

Br
Notice that [0,5,| < min{2,2|h1|/r,}, and that 655,(z) = 0 whenever |z1]| > r, + |h1].
Moreover,

1087 % Yo % Kl 01 ((ag j<rnt b p0Br) < 190 102 @2y K L1 (floy | <rm+ha30BR)

and ||gg || 1 (g24) < C for some constant C' that depends only on go. Let

Cr(C) = 1K L1 ({lzr)<cynBr) — 0, as ¢ =0,
thanks to the local integrability of K. Putting all together we have that

/ 16150 (2)] - [P0 % K (2)| dr < Cmin{2, 2/hn| /rn} £xc(rm + 1)) (6.42)
Br

We denote

m(h1) :=min{m € N:r,, <|hi|} - 00, as |hi|—0.
Taking the supremum with respect to n in (6.42)) (separating the cases |hi| > 7, and |h1| < 7,,),
we get

/ 10830 ()] - [ % Kp(x)| dz < C (L (2|h1]) 4+ 20k (F(ny))) — 0, as [h] =0, (6.43)
Br

independently of n and t.
Thus, combining ((6.40))-(6.41)-(6.43) we get (6.39), which yields (6.38]), as we wanted to
see.

Step 7: Conclusion of existence. Since conditions — are fulfilled, we can apply
the stability result by DiPerna-Lions, [I7, Theorem II1.7] (see also [5, Proposition 6.5]), to get
that the vector fields b, are converging strongly in L!. Therefore, weakly continuous bounded
solutions of the approximating problems converging weakly* in L are distributional solutions
in the limit. In particular, for every m € N, Gj" = 31" ; gF (recall gf defined in (6.24)) is a
distributional solution of the continuity equation with initial datum G* = >/, gé ; as it is
bounded by m + 1.

By Theorem (6.2 (i), since G™ is bounded, it is a renormalized solution and it is transported
by the corresponding Maximal Regular Flow. Since G™ converges to g, in L .((0, 00) x R24),
the limiting ¢; is also a renormalized solution; and by Theorem (ii), it is transported by
the Maximal Regular Flow. Moreover, by [6, Theorem 4.10], g; € C([0, 00); L (R??)).

Step 8: Strong LllOC continuity of density and electric field. We finally prove that
p, By € C([07 OO);Llloc(Rd))‘
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Let us start with the physical densities, p;. Fix a time to, € [0,00), and let (,)nen be a
sequence such that ¢, — to. Let R > 0 be fixed; then

/ |Ptn—Ptoo’d9?§/ / |9t — Gtoo | dv d
Br Br JRd

2
v
<[ o —oddvass [ [ Lo ) v
Br JBg Br JRN\Br R
S/ / |gtn*9tw|dvd9€+%, for all R > 0,
Br J/ By R

for some constant C' that depends only on the initial bound of the kinetic energy. We have
used here the bound on the kinetic energy in the limit, that follows, as in the Step 4, from
the lower continuity of the kinetic energy and . Taking limits on both sides, using that
gt € C([0,00); Li (R?)), and that the previous inequality holds for all R, we obtain

lim |pt, — pro|dz =0;

n—o0 BR

that is, p; is strongly continuous in L] In particular, pf = sgn(z1)p: is also strongly

continuous in LllOC
On the other hand, we recall that F; = sgn (21)p¢ * K, with K = 2/|z|%; and we want to
check the strong continuity of F; in L10C As before, we consider t, € [0,00) and a sequence

(tn)nen with ¢, — to. Let us fix some R > 0. Then, we have

/rEtn—Etwrdx/ K * (0, — p)| da
Br

< [ [ 1K=l 168, 0) - s )] dyds
Bgr JR4
= [ 166, = )1 ZCly

loc®

where we have defined, for y € R¢,

Za(ly]) = /B K(z —y)|do = /B s
R R\Y

Note that the previous definition depends only on |y| and not y. It trivially holds that Z is
bounded and decreasing, going to 0 in the limit |y| — oc.
Now, for any R > 0, and due to the bounds on the densities, Hpt0||L1(]Rd) < C, we have

/ ‘Etn—Etoo‘dCUSC(/
Br B

R

1Py, (y) — P (y)| dy + ZR(R)> , forall R >0,

for some constant C' that depends only on the initial datum mass, [|po|11(gay. Now, taking
first limits as n goes to infinity, using the strong continuity of pf in Llloc(Rd) and letting R go
to infinity, we get the desired result,

lim |E:, — Er | dx = 0;
R

n—o0

that is, E} is strongly continuous in Li (R9). O
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7. PROOF OF MAIN RESULTS IN THE HALF-SPACE

In this section we prove the main results in the half-space, Theorems [3.1]and [3.2] Through-
out the proofs we will be using the equivalence between Problem A (3.2)) and Problem B ([3.3)
studied in Section [3| Notice that Problem A (3.2) corresponds to ((3.1)).

Proof of Theorem[3.1] Extend fy evenly with respect to (z1,v1) to the whole space; that is,
consider go(z,v) = fo(z,v) in {z1 > 0} and go(x,v) = fo(2/,v) in {21 < 0}.

Now notice that Theorem corresponds to Theorem combined with Lemma and
Proposition |3.7

Indeed, once we have a renormalized solution in the whole space, g;, transported by (X, V4),

in R d
then, for any ¢ supported in R x R,

/ mewwmm=f/¢%wmmwwm
RdJr XRd 2 R2d

:% - ¢ (Xy(z,0), Vi(z,v))go(z, v) dx dv

= / H(Xi(z, ), Vi(x,v)) fo(z,v) dz dv.
R% xR4

Here, ¢° denotes the even extension with respect to (z,v) of ¢ (¢¢(2',v") = ¢°(z,v)), and
(Xt, f/t) denotes the Maximal Specular Flow as in Lemma Notice that the hypotheses of
Lemma [£.5] are fulfilled, i.e., the flow has the desired symmetry in its domain of definition,
since using the symmetries on g; for all ¢ > 0,

. (X} (z,v), V] (z,v))go(x,v) dx dv = . &% ( Xy (2!, 0'), Vi(2',v")) go(x, v) da dv,
for any even test function ¢°.
The only thing that remains to be checked is that f; fulfils the commutativity property
(Definition [2.5)).
That is, we want to check that the weak trace of ¢g; at {1 = 0} found in Lemma can
actually be taken in the strong sense. In order to check the commutativity property it is
enough to show (using the same notation as in Lemma ,

Jim [ p(Blg(t,a1,7,0)) = BT (9))) di dadv =0, (7.1)
for all p € C°((0,T) x R~ x R?) compactly supported in {v; # 0}; and for all B € C' N L.
We are assuming that g; € L, otherwise take arctan(g;) instead. If 7 is small enough, and
since in the support of p, |vi|,t > d(p) > 0 is strictly positive depending only on p, there
exists a flow in x1,

Fy = (Tp,, Xy, Vi) : DE C (—£,¢) x (0,T) x R x RY — (0,T) x R x RY,

such that I'(g) = g(x1, Fy,) = 9(Ts,, 1, Xoy, Ve, ). That is, we can look at the flow as a
function of x; instead of ¢, if x1 is small enough, and then ¢ is flowed in x; through the
path (Ty,, 21, Xy, Ve, ). This flow in 21 can be taken thanks to the inverse function theorem
applied to the standard flow in time for g, since in the domain of p, |v;| > 0 allows us to
invert the flow with respect to x; (the derivative of the X; component in the original flow,
V1, does not vanish in the domain).

Now, simply use that for x; small enough, I'(5 o g) = B o g(x1, Fy,) = B(I'(g)), and
follows from the fact that we already know that I'(g) is the trace of g in the weak sense. [
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Proof of Theorem[3.2 This directly follows again by switching between Problem A and
Problem B and using Theorem (6.3l That is, combine Lemma and Proposition
with Theorem [6.3] to get the result. The commutativity property follows as in the proof of
Theorem B.1]

One also needs to notice that

[ temde=2 [ (H@—y) ~ HE — 9)planty) dedy,
R4 RixRi

and the term H(z —y) — H(2' — y) corresponds to the Green function in the half-space. O

8. GENERAL DOMAINS

We want to use the ideas developed for the problem in the half-space to this problem. To do
so, we notice that the regularity theory for the existence and uniqueness of a Maximal Regular
Flow developed in [5] is completely local. Thus, we can consider small open sets around the
boundary, change variables, and encounter a situation close to the half-space solution. If a
local Maximal Regular Flow exists in each of such open sets, we have a flow in the whole
domain.

Let T > 0, and let us suppose that we have f; a renormalized solution to

Of+v -Vaofi +E;-Vyofi =0 in (0,T) x Q x R?

pi(z) = [ga fe(z,v)dv in (0,77) x 2 (8.1)
Ei(z) = — Jo VaGal(z,2)pi(z)dz  in (0,T) x Q '
fr(z,v) = fi(z, Ryv) on (0,T) x 99 x R%,

Suppose that the domain €2 fulfils the exterior and interior ball condition uniformly at each
boundary point with balls of radius 2 (otherwise, we can rescale). Let us also assume, without
loss of generality, that

0€9Q and n(0)=e;. (8.2)

Let us now consider a change of variables (to be determined) to go to a half-space situation.

Let
y=¢(x)=¢: By — RY
be such that ¢p(Q2 N Be) N By = {z1 > 0} N By. We also define the inverse,

r=1vY(y)=v:=¢ ': B — Bo.
Let J be the Jacobian of the change of variables,

[l 9¢1
oxry " oxg
J(r) = . )
[elo] 99q
ox1 e Ooxg

and we can assume that there is a constant Cy > 1 depending only on d such that

1
— <detJ(z) <Cy, in Bi. (8.3)
Cq
We change the velocities accordingly, so that the change of variables becomes,
(z,0) = (y,w) = (¢(x), J(x)v). (8.4)

Let
gt(y, w) = fi(w,v). (8.5)
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One can formally check that, under this situation, g; fulfills the following equation

row

g (y, w) +w - Vygi(y, w) + { {(Jl(ﬂﬁ)) o

T
} w + J(x)E(ﬂf)} - Vugi(y, w) =0,  (8.6)

for (y,w) € (By N {y; > 0}) x R% = =4 (y), and

ow; Owy

. 730.61 o 789.51
Oz By Buwg
oxg e oxy

Notice that we can also rewrite the term containing %" in terms of the Hessian of the
change of variables as

T
[(J_l(x))Taw] w = v D*¢, (8.7)
ox
in the sense
(vI D*pv); = vT D% v, forall : € {1,...,n}.

If the specular reflection at the boundary was conserved, we could repeat the arguments
from Proposition and construct a renormalized solution in By with respect to a reflected
vector field.

We claim that the following change of variables preserves the reflection, which will be seen
in the proofs below. In particular, we will be using equations and .

Consider a diffeomorphism ® : RY — R such that ®(09) C {x; = 0}. In order to construct
¢ sending 2 to a half-space, we simply consider the orthogonal projection onto 92, use @,
and translate in the e; direction the same distance we projected. That is, if z € Q and
mq : 0 — 0 is the orthogonal projection onto 0f2, then

o(x) = (mq(x)) + dist(x, 7o (z))es. (8.8)

Notice that such operation is only a diffeomorphism in a uniform neighbourhood of 952,
which we will denote €2, and we can extend by any other diffeomorphism in the rest of the
domain Q N Bs.

Notice that, in particular, we have for any = € 0f),

Jn(x) = ey, (8.9)
and
v-n(z) =Jv-e;. (8.10)

Equation above follows as in [27, Section 2]. Equation follows by noticing that
points of the form z + tn(z) go to points of the form ¢(x) + te; for all z € 9. Similarly, the
previous equalities also hold for points in Q.. That is, if we denote by N(x) the unit vector
pointing inwards €2 in the direction of the projection (N (z) = Vdist(x, Q)), then (8.9)-(8.10)
also hold for N(z) in Q.. We remark that the size of the neighbourhood €2, depends only on
the domain € and its local C*! norm.

In the next proposition we show that this change of variables allows an even extension of

the solution to solve a new distributional problem, constructed analogously to the half-space
situation.

Proposition 8.1. Let T > 0, let Q be a C%' domain as described above, (8.2), and let
fr € LL ([0, 7] x Q@ x RY) be a renormalized solution to ([2:6)) (see Definition . Under the
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above change of variables, (8.4)-(8.5))-(8.8]), define the even extension with respect to (y1,w;)
of g¢ in B,

st ={ G <o )

Let j(y) := det J(¢(y)), and define also je.(y) as the even extension with respect to y1 of j(y);

Je(y) = j(y) if y1 > 0 and jo(y) = j(y') otherwise.
For any B € C* N L*®(R), let

a1’ (y,w) = Blgf (y,w))i 2 (). (8.12)

Then, gg’ﬁ s a distributional solution to the continuity equation
0rgt” (s w) + divy (Be(y, w)gl (v, w)) =0, in (0,7) x Bi x RY,  (8.13)
where by(y,w) = (w,b2°(y,w)) : (0,T) x By x R — R x RY,
b (y, w) = [(Jl(x))Tg:;] ! w+ J(x)E(z), (8.14)

for (y,w) € (ByN{y1 > 0}) x RY, & = (), and where b>"° is defined as

2,0 _ b%(yv w) @f U1 > 0
by w) = { B2 ) if <0,

that is, the odd extension with respect to (y1,wy) to y1 < 0.

(8.15)

Proof. The proof follows along the lines of Proposition Let us assume for simplicity
that f; € L>((0,T); L>(Q x R?)), so that we can forget about the function 3, and denote
9] = gfjc 2. We know that there exists f,” € L2 (v4 ) such that for every ¢ € Tar,

loc

/ vo(x,v) folz,v) dx dv+
QxRd
T
* / / [0cpt(2,0) + Vawer(w,v) - bi(z, v)] fi (2, v) dt dz dv (8.16)
0 QxR4

+ / v-n(z)(pe(z,v) — @i, Rpv)) fi (z,0) dt do't dv = 0.
“/g,T

We now perform the change of variables, (z,v) — (y,w) = (¢(x), J(z)v), with Jacobian
determinant j72(y), that is dz dv — j72(y)dy dw. Let n;(y, w) = p¢(x,v), and let us suppose
that n;(y,w) is supported in [0,T) x (By N {y; > 0}) x RZ. Thanks to (8.10), n; € Tr, the
space defined in . Similarly, due to , we also have that 7§,T becomes 7; (see
Definition [2.1).

Proceeding as in by changing variables in (8.16]) we get

/ 10(y, w)go(y, w)j*(y) dy dw +
{y1>0} xR4

T
4 / / 00y, 0) + Ve, 0) - Be(ys gy, w)i~2(y) de dydw — (8.17)
0 J{y1>0}xRd

+ / ven(@) (nly, ) — (), Red "10)) f (), T )i ) dt doy dw = 0.
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We have also used here that the boundary measure do,dv + j~2(y)do, dw, since in the
change of variables there is no stretching in the direction normal to 0f2.

From (8.9)-(8.10) we also get ¢(v(y), RyJ 'w) = m(y,w’) and v - n(z) = w;y. Calling
g (y,w) == f;"(¥(y), J 'w), we notice that corresponds to the definition distributional
solution to the continuity equation in the half-space with specular reflection, for test
functions spatially supported in By N {y; > 0}, (see Remark . That is, we have

/ 10 (y, w)gh(y, w) dy dw +
{y120}><]Rd
T ~ .
* / / [0eme(y, w) + Ve (y, w) - by, w)]gi (y, w) dt dy dw (8.18)
0 J{y1>0} xR

4 / wi (1 (s w) — (g, w')) g (g, w) dt dor, duw = 0,
-

N+

~—

where g/"" (y,w) = g;" (y, w)j ~*(y).
To finish the proof, we proceed as in the proof of Proposition [3.7, by noticing that there

~ /
we only used the symmetry of the vector field b (y, w), i.e., bf’o(y’, w') = (bf’o(y, w)) . Notice

that we are also using here that by Remark from Lemma [3.5] it is enough to check it for
test functions in Tp. O

In the previous proposition, Proposition , we were interested in producing a solution
to a continuity equation, namely . We would also like yet another result regarding
the problem solved by the even extension, gf. In this case, thus, we obtain an analogous
result but now for a transport equation. Notice that, after changing variables the vector field
is no longer divergence-free, and therefore continuity and transport equations are no longer
equivalent. This results will be useful in the next pages.

Proposition 8.2. Let T > 0, let Q be a CY' domain as described above, (8.2), and let

fr € LL ([0, T] x Q x RY) be a renormalized solution to (2.6)) (see Definition . Under the
above change of variables, (8.4)-(8.5)-(8.8), define the even extension with respect to (yi,w1)
of g+ in Ba,
e _Jalyw)  ifyr =0
9; (Y, w) = { g/ w')  ifyr <O. (8.19)

Then, g; is a renormalized solution to the transport equation
8tgf(y7 ’LU) + Et<y7 ’LU) ' Vy,wgf(.% w) = 07 m (07 T) X Bl X Rdv (820)
where by(y,w) is defined by (8.14)-(8.15).

Proof. The proof again follows along the lines of Proposition As before, we assume for
simplicity that f; € L=((0,T); L=(2 x R?)). We know that there exists ;" € L (v¢ ) such
that for every ¢ € To 7,

T
/ SOO(Z'aU)fO(:Ev’U) dx dv +/ / [at%(%v) +vx,v90t(xav) 'bt(.’L',U)]ft(ZE,U) dtdl‘dv—'_
QxR4 0 QxR4

+ /+ v-n(z)(pe(z,v) — @iz, Rypv)) fi (z,0) dt do dv =
T,

Let n:(y, w) = p¢(w,v)j~2(x) as before, where j(z) = det(J(z)) the Jacobian determinant,

and let us suppose that 7;(y, w) is supported in [0, T) x (By N {y1 > 0}) x R%. Performing the
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change of variables, in (8.16)) we get

/ no(va)gﬂ(y,w) Cly dw +
{y1>0}><Rd
T ~
+ / / O (y, w) + Vy wni(y, w) - bi(y, w)]gi(y, w) dt dy dw (8.21)
y1>0} xRR4

+ /+ v n(@) (n(y, w) — 52 @) er((y), Rod ') £, (¥(y), J~w) dt doy dw =

T
- / / e (y, w)ge (y, w)divy, b (y, w) dt dy duw.
Y1 >0} xRd

From — we also get j2(2)¢:(¢¥(y), ReJ 1w) = ny(y,w') and v - n(x) = w. Calling
g (y,w) :== f; (¥(y), J-'w), we notice that corresponds to the definition of normalized
solution in the half-space, for test functions spatially supported in B; N {y; > 0}, and for
vector fields not necessarily divergence free (see Remark .

To finish the proof, we proceed as in the proof of Proposition [3.7], by noticing that there we

~ /
only used the symmetry of the vector field by (y, w), i.e., b>°(y/, w') = <b§’0(y, w)) . Moreover,
we also need to use that (div,b?)(y',w’) = div,b? (y, w). O

Remark 8.3. In the previous proof, we are actually using a distributional proof of the fact
that the following equality holds,

T
25 H @)V j(x) - v = divy, { [(J_l(x))T(;:] w} ,

which can also be directly checked. In a way, we are going from a continuity equation form
Oyu + div(bu) = cu to a transport equation form dyu + bVu = (¢ — divd) u

Proposition 8.4. Let T > 0, let Q) be a C’1 1 domain as described above, (8.2)); and consider

the above change of variables, . P

Suppose g§ € LL _([0,T] x By x R?) is an even function (g:(y',w') = gi(y,w)), and define
fr € LL _([0,T] x QN By x RY) as the restriction of g5 to {y1 > 0} after changing variables.
That is,

fi(z,v) = gf(y,w),  for (t,z,v) € [0,T] x QN By x R%.

Assume that gf is a renormalized solution to the transport equation,
igf (y, w) + b(y, w) - Vywgf (y,w) = 0, in (0,T) x By x R, (8.22)
where I;t(y,w) is defined by (8.14)-(8.15) via f;. Then, f; is a renormalized solution to

8tft + bt . Vm,ft =0 m (0, OO) x ) x Rd
Filr,v) = fules Rev) i (0, 00) x 99 x RY,
according to Definition 2.3,

Proof. The proof is the same as Proposition and Lemma [3.8] for gf, just using the sym-
metries of the vector field b;(y, w). A change of variables then yields the desired result. [

Let us now state a theorem, relating renormalized and Lagrangian solutions. We show here
that flowing a function fy via a Maximal Specular Flow produces a renormalized solution to
a continuity equation. This corresponds to [6l Theorem 4.10], and in this case we want to
focus on what is occurring at the boundary.
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Before stating the theorem, let us state the following lemma regarding the incompressibility
of the Maximal Specular Flow of divergence-free vector fields, b = (v, E¢(z)), in Q@ xR?. We say
that a flow is incompressible if the push-forward through the flow at any time ¢ of the Lebesgue
measure, is the Lebesgue measure. Namely, the local Maximal Regular Flow is incompressible
if condition (ii) in Definition 4.2/ holds with an equality and C' = 1. Analogously, the Maximal
Specular Flow is incompressible if condition (iii) in Definition holds with an equality and
C=1.

Under enough regularity, incompressibility is equivalent to a divergence-free vector field.
In this setting, this also holds. The Maximal Regular Flow of a divergence-free vector field is
incompressible thanks to [0, Theorem 4.3]. And using it, we can also show that adding the
specular reflection condition at the boundary cannot add compression (or expansion) of the
flow; namely, the Lebesgue measure is still preserved. The sketch of the proof of the following
lemma is done at the end of the next section, where we will have introduced the reflection
technique after changing variables in the setting of general domains.

Lemma 8.5. Let T > 0, and let b : (0,T) x 2 x R — Q x R? be a divergence-free vector
field, b = (v, Ex(x)), with E € L*>((0,T); LP(?)) for p > 1; and let (X(¢,s,x,v),V(t,s,z,v))
be its Mazximal Specular Flow (see Definition . Then (X,V) is incompressible; namely,
condition (iii) of Deﬁm’tz’on holds with an equality and C' = 1.

Theorem 8.6. Let T > 0, and let b: (0,T) x Q x R* — Q x R? be a divergence-free vector
field, b = (v, Ey(x)), with E € L>°((0,T); LP(Q)) for p > 1; and let (X (t,s,z,v),V(t,s,x,v))
be its Mazximal Specular Flow (see Definition . Let fo € L'(Q2 x RY), and define

fe:=(X(t,0,-,-),V(t,0,-,)x(fo L{té):x,v >t}), tel0,T).

Then, f; is a renormalized solution of the continuity equation with specular reflection (2.6
according to Deﬁm’tion fulfilling the commutativity property (Definition (2.5))). Moreover,

the map t — f is strongly continuous on [0,T) in Li .

Proof. Consider s = 0, and denote Z;(z,v) = (X;(x,v), Vi(z,v)),:= (X (¢,0,z,v), V(¢,0,z,v)),
ty = tar - Proceeding as in [6, Theorem 4.10] just using that the flow is incompressible,
Lemma we get

f(Zi(z,0) = fo(x,v), for L?ae. (z,v) € {tz >t}. (8.23)

In particular, we also have the same for 8o f; for any f € C' N L>®, and B o f; are
distributional solutions of the continuity equation in the interior of €2, by [6, Theorem 4.10].
We still have to check the trace condition.

Take any test function ¢ = ¢(x,v) € Tor. Let us now compute

T T
/ / (8tg0+b-V<p)B(ft)dmdvdt:/ / [(Orp + b - V) o Zi] B(fo)dxdvdt
0o Jaxrd 0 Jtz>t})

T q
= _ (@] d d d
/{tz>t} 5(f0)/0 7 (poZ;) dtdrdv

where we have used here the incompressibility of the flow and . The problem in the
temporal domain integral appears only when Z; approaches the boundary of ), where the
temporal derivatives has jumps in the velocity component. To avoid that, let us take ¢.(z) a
test function defined by

be(x) =0, ifx ¢ Q, ¢(x) = min{e 'dist(z,09),1}, if z € Q.
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Then, proceeding as before,

/ / (Ohip +b- Vi) B(f,) dr dv dt = limn / / (Bup + b Vo) B(fy)be () de dv dit

e—0

. T q
=t [ B /O 9 (00 2) 0-(X,) dtd o

Let us denote, for a.e. (z,v) € Q x R, {t;};cr(z.0) for t; € [0,t7) the set of times such that

X, (z,v) € 092. We also denote Zti = lim. |9 Zi+.. Using integration by parts for absolutely
continuous functions (notice that Z; is AC when X is not on the boundary 912) we have

Td
| G teo et -

T
= S (pn 0% —pu 0 Z) 6:(X0) — pol, )6 () — / 00 ZVo.(X,) - Vi dt.
i€l(z,v) 0

Notice that the sum for i € I(z,v) is actually equal to 0, since the term ¢.(X;,) = 0 whenever
Xy, € 09. Putting all together, and denoting N (z) = Vdist(z, 02) (note that N|sq = n) we
have

//(3t90+b-V«P)ﬁ(ft)dxdudt+/ B(fo)p dx dv =

QxR4

e—0

T
= —lim ﬁ(fg)/ w0 Z Vo (Xy) - Vidtdx dv
{tz>t} 0

T
= —lime! / B(ft)p N(z) - vdtdrdv,
0o Jb.

e—0

where in the last step we are using again the incompressibility of the flow and (8.23). Here,
we have denoted D, = ({z € Q : dist(z,9Q) < e} x RY) N (Z,(-,")({tz > t})).
And we claim that

T
liml/ B(f)e N(zx)-vdtdxdv = / n(z) - veT(B(f)(z,v)dtdo't dv, (8.24)
e=0¢€ Jo D. 7§J§,TU7§;,T
for some trace function I'(B(f;)) € LOO(V;{’TU%;T). This follows exactly as the proof of
in Lemma [3.8, We can also directly apply the lémma, by first changing variables and having
a half-space situation, where the function 5 o g; is a distributional solution to a continuity
equation in the interior of (B NR%) x R%.

From the transport structure and condition (ii) of the definition of Maximal Specular
Flow (Definition [4.3), we must have

(B o fi)(z,v) =T(Bo fi)(x,Rw), for ot ® L%ae. (x,v) € d0 x RY. (8.25)

The result immediately follows from here by splitting the integral in (8.24)) into the domains
'7;5,T and g, 1. Alternatively, notice that Remark holds by (8.24) and ({8.25).

Moreover, again thanks to the transport structure, the commutativity property holds pro-
ceeding as in within the proof of Theorem

Finally, we check the strong continuity in Llloc3 and in order to simplify things we check it

at t = 0. For any § > 0, fix ¥ € C2°(Q2 x R?) such that |3 — follL1(xray < 6. Then,

/ |ft—¢\dxdv§/ ]ft—i/)|d:vdv+/ || dx dv.
OxR4 Zy()({t<tz}) Ze(-)({0<tz<t})
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From tz > 0 a.e., the last term vanishes as t | 0. Therefore, using the incompressibility and

(8.23)) as before, we have
limsup/ \ft—¢|dzdv§limsup/ |f0—1/)oZt|dxdv§/ | fo — |,
QXRd {t<tz}

tl0 t10 QxR

where in the last inequality we are using that the set of discontinuity of Z; as t | 0 has measure
zero. Hence,

limsup/ ]ft—fg\d:(:dvglimsup/ \ft—i/zlda;dv—i—/ | fo — | dx dv < 26,
t10 QxR4 t10 QxR4 QxR4

and by the arbitrariness of § > 0, we are done. O

9. UNIQUENESS OF THE CONTINUITY EQUATION AND THEOREM

As shown in [5], there exist conditions analogous to (A1) and (A2) from Section |5| that
suffice to show existence and uniqueness of local Maximal Regular Flows. In this case, keeping
the original notation in [5, Section 3], for a given open set A C R% and a Borel vector field
b:(0,T)x A — R? the following conditions imply existence and uniqueness of local Maximal
Regular Flows:

(a-A) [ [ |be(2)| dz dt < oo for any A’ € A;
(b-A) for any nonnegative i € L5°(A) with compact support in A and any closed interval
I = [a,b] C [0,T7], the continuity equation

%Mt +div(but) =0, in (a,b) x A (9.1)

has at most one weakly* continuous solution I > ¢ — p; such that p, = f and
Use[a,b)SUPP pit € A.

We want to check that condition (b-A) for the continuity equation holds for compactly
supported measures in the open set By x R for the vector field constructed in Proposition
That is, we consider a fixed vector field of the form by(y, w) = (w, b?’o(y, w)),

owl’

b (y, w) = [Jl(w)ax] w+ J(x)Ey(x), (9.2)
for (y,w) € (B1 N {y1 > 0}) x R%, 2 = 4(y), and where b>° is the odd extension with respect
to (y1,w1) (see (8.15))), such that the electric field E; is the one generated by a renormalized
solution to (2.2), with f;(z,v) € L>¥((0,T); L'(Q x R%)). We recall that when performing the
change of variables we are assuming that 0 € 9Q2 and that the normal vector at 0 is eq, ,
while at the same time we assume a domain with an exterior and interior ball condition of
radius 2.

Let us first state a result regarding pointwise estimates of the Green function Gq(x1,x2)
in regular domains ().

The following is a classical result that can be found, for example, in [24] Theorem 3.3].

Lemma 9.1. Let Q C RY satisfy the exterior and interior ball condition uniformly in R
Then, the corresponding Green function Gq(z1,x2) satisfies the following inequalities,
(i) 0< Gg(xl,xg) < C‘.’L‘l — 1‘2’27d,
(ii) ‘VleQ(Jfl,l'Q)‘ < C‘l’l — x2|1_d,
(m) ‘VMVMGQ(JA,.TQ)‘ < C\xl — x2|_d,
() |D2. . Golx1,22)| < Clzy — xo| ¢ (min{dist(z1, dQ), |1 — x2|}) ",

x1,T1
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for any x1,20 € Q, and for some constant C depending only on d and Q). Moreover, for any
x1,x2,2 € QN By, and for any a € (0,1) we have the bounds

(v) |Ga(x1,2) — Ga(xe,2)| < Clzg — 22| (\a:l — Z\Z_d_o‘ + |x2 — z|2_d_a),
(vi) |VoGa(z1,2) — Vo.Ga(xe, 2)| < Clz1 — x2|* (|x1 — |t g — z[lfd*a),

for some constant C depending only on d, €, and «.

Proof. The first three results, (i)-(ii)-(iii), can be found in [24, Theorem 3.3]. The following
result, (iv), follows by the same arguments: Let us denote d(z) = dist(z, Q). If d(z1) <
w1 — 2| we apply [24) Lemma 3.1] to V4, G+, #2) in the ball B = B1 ;. (1), to get

2

1)

[V, Vi, Ga(a1, 22)| < C(d(x1)) ™! SUp [V, G2, 22)| < Cd(x1)) Moy — 2277,
ze
where in the last inequality we are using (ii). On the other hand, if d(z1) > |x1 —z2| we apply
[24, Lemma 3.1] to V., Gq(-, z2) in the ball B’ = Bl\:m—:czl(xl)’
2

|V, Vi, Gy, 22)| < C(d(z1)) 7! sup |Va,Gal(z, 22)| < Cloy — xa| oy — 22/,
zeB’
where again, we used (ii).
Finally, result (vi) corresponds to [24, Theorem 3.5], while result (v) follows by using the
same methods as for (vi). O

In particular, notice that the first inequality (i) together with the argument to prove (3.8)
directly implies that condition (A-1) holds, and in particular (a-A) also holds for any open
set A.

Theorem 9.2. Let b : (0,T) x R? — R2? be the vector field given by by(y,w) = bs(y, w)
defined above, , and suppose Q@ C R is a C*' domain.

Then b satisfies assumption (b-A) for A = By x R?, that is, the uniqueness of bounded
compactly supported in A nonnegative distributional solutions of the continuity equation.

Proof. We proceed as in Theorem which at the same time is based on the ideas of [6]
Theorem 4.4] and [12]. We divide the proof into three steps.

Step 1: Setting of the problem. We keep the notation from Theorem and in many
steps we will refer to that proof to complete them. Again, we do not explicit the time
dependence on the vector field b.

Let B, C By C R% and Bg C R% so that B, x B C A. Let n € 2(C([0,T); B, x Bgr))
be concentrated on integral curves of the vector field b with no concentration condition,
(er)yn < Co (ZL*ILA) for any t € [0,T]. As in Theorem to show that (b-A) holds it is
enough to prove that the disintegration of n with respect to the map eq, 1., is a Diract delta
for egun-a.e., where we recall (egxn) represents the initial condition, fi.

Let 6, ¢ € (0,1) be small parameters to be chosen. We define ®5 ¢ (t) for () = (v(2),7%(t)) €

R? x R as in (5.3)),

Ty ¢l 204\ _ 2
buctt = [f 1o (1 OO DO EOY gy o

where du(z,&,7) := dng(v)dn(§)di(x). As in the proof of Theorem in particular (5.13)),
it is enough to show that

d® 1 1
d?c (t)<C <C + ¢+ (log <§(5>> , (9.4)




LAGRANGIAN STRUCTURE OF THE VLASOV-POISSON SYSTEM IN DOMAINS 47

for some constant C' independent of ¢ and 8. Let b(y,w) = (w, F°(y,w) + E(y)), where

FO(y, w) = ([J ()gﬂ W>o (9.5)

E(y) = (J(2)E(x))°,
where the superindices o denote odd extensions with respect to (y1,w;) in the sense V°(y/, w') =
(V(y,w))". We keep using the notation x = (y), and we recall E(z) is the electric field gen-
erated by a renormalized solution f € L'(Q x R?).
From (9.3) we separate the temporal derivative in three parts,

d®s ¢

o) S T+ 1T+ 111, (9.6)
with ’ () ( !
gl
/// <5+17 (t) — EL(t)[ + C72(E) — 2(t)‘du(x,§,7),
[Fo(y! (1),72(1) — Fo (€1 (1), (1))
///5+C 1’71(t) (t)’_i_hﬂ(t)_gQ(t)‘d/L(xa&’V)»
and

B(E(1))
m‘///C <6+|fy “eigp) =)

We can now proceed to bound each one of the three previous terms independently.

Step 2: Bound on I and II. The bound on [ follows as in Theorem [5.1}
Let us now bound the second term, I1. We proceed by triangular inequality:

Fo(y <>> Fo(y (1), €2(t) CF (7 (1), €2(8)) — Fo(€1(8), (1))
”<// (1) - 52<>| ‘”// C5+|7() 0] -

The first term is bounded since, for each v!(t) fixed, F°(y!(t),-) is Lipschitz, with Lipschitz

constant given by the maximum of H(J_I)Tg%?J_IH (which is bounded because ¢ is C11).

For the second term, we notice that if y!(¢) and ¢1(¢) are on the same side (v1 (¢)&1(t) > 0)
then for each fixed ¢2(t) € Bg, the incremental quotient can be bounded using that F? is
Lipschitz on each side, and for each ¢2(t). This follows from the fact that the change of
variables ¢ is C%!, since we are dealing with C?! domains.

On the other hand, if 4!(¢) and £!(¢) are on opposite sides, we have to bound

Fo(71(8),€2(8)) — Fo(€1(), (1)
/// (el <o (6 + () — €1(0) o=

///vl(tﬁl £)<0 C5f\cf:1t //[h (H)EL (1) <0 C5f’d§/f()’

for some constant C' bounding the L* norm of F° in B, x Bpg, and thus, proportional to R.
Using the no-concentration condition, (e;)xn < Co (£??L A), it follows

/] it <) aimiscms(s).
Mwelm<o 6+ @]~ g, ¢+ lm] T %)

so that the bound for 771 holds.

Step 3: Bound for I11. We refer to the appendix to bound the term I, since it involves
a technical computation that follows analogously to Theorem O
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We can now prove Theorem

Proof of Theorem [2.7. We proceed from the result in Proposition [8.1] using similar ideas to
those in the half-space situation.

Step 1. Take any ball By(zp) with zg € 0f2, and change variables such that, after a rotation
and translation, we encounter the situation from Proposition That is, we are dealing with
a vector field by (y, w) = w,bf’g) :(0,T) x By x RT — R? x R? given by (8.14)-(8.15).

Thanks to Theorem b, fulfills conditions (a-A) and (b-A) which ensure, by [5, Theorem
5.2], the local existence of a Maximal Regular Flow Y (¢, s,y, w) (see Deﬁnition in By xR
In particular we have

8ty(t7 57y7w) = Bt(y(tv 37y7w))7

for a.e. ¢t > 0 whenever it is defined. We claim (and prove in the next step) that this
flow is transporting the solution g/ := g¢fj~2? from Proposition (analogously, gi’ﬁ =
B(g¢(y,w))j-2(y) if the solution is not bounded, for f € C' N L*>®). That is, if without

loss of generality we assume s = 0 and ¢ > 0, then

V() pg0 dy dw = gldy dw,
where we are denoting )Y(t,y,w) = Y(t,0,y,w) and we recall that the push-forward of mea-

sures satisfies (see (4.1]))

/ PVt 9, w)) g (9, w) dy dw = / o(y, w)g (g, w) dy duw,
RIxR4 Ré xR

for all ¢ € C°(B; x R?). Thank to Lemma 4.5/ the flow ) induces a local Maximal Specular

Flow in the half space, ), with vector field given by (w, b? (y,w)) (see )H Thanks to the
symmetry of Y and g] we have

/ o (ty,))go s )~ (y) dy duw = / o(y, w)gely, w)§~2(y) dy dw,
Ride

d d
R+XR

for all ¢ € C’f"(BiiF x R?). Now, if we change variables back ®(z,v) = (é(z),J(z)v) and
U = &1 and denote X (t,x,v) = ¥ o Y(t, ®(x,v)), then

/ o(X(t,z,v))folx,v)drdv = / o(z,v) fe(z,v) dz dv,

QxRd QxR

for any @ € C®(QN By(rg) x RY). That is, the solution f; is transported by a specular
flow X. It is easy to check that X is the flow generated by the vector field b; by changing
variables, and the specular condition at the boundary (condition (ii) in Definition follows
using — together with the fact that )) was a local Maximal Specular Flow in the
half-space. Therefore, X is a local Maximal Specular Flow in Q x R¢ transporting the solution.
Now, by a covering argument, gluing together the Maximal Specular Flows (see [6, Lemma
4.2]), the result follows.

Step 2. The proof of the claim follows from the proof of [6, Theorem 5.1], where the authors
show that renormalized (or bounded) solutions to a continuity equation are Lagrangian. In
order to be able to apply the proof, we use Proposition [8.1

The modification of their proof is as follows:

IWe are using here the natural definition of local Maximal Specular Flow, which arises analogously to that
of local Maximal Regular Flow.
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The claim follows from [0, Theorem 4.7] and [0, Theorem 5.1] by noticing that the divergence-
free condition on their proofs can be substituted by a vector field with locally bounded di-
vergence. Then, Steps 3 and 4 of the proof of [6, Theorem 5.1] also hold using that gf’j is
a bounded distributional solution of the continuity equation and ), - gf ki p2d — gf L2
where fj, is defined as in [0, Theorem 5.1] via

0 if s <k,
Br(s) =% s—k ifl<s<k+1, (9.7)
1 ifs>k+1.

To finish the proof, if we are in situation (i) then the solution is transported, and in
particular, it is renormalized and fulfils the commutativity property by Theorem g

To finish the section, let us give a sketch of the proof of the incompressibility of the Maximal
Specular Flow.

Proof of Lemma([8.5 Notice that we can localize the problem, and just check that locally the
push-forward of the Lebesgue measure is again the Lebesgue measure. On the other hand,
away from the boundary, the vector field is divergence-free, so that the flow is incompressible
there. We just need to check that there is no divergence being produced at the boundary:
notice that if there was, we would have a singular part of the divergence of the vector field
concentrated on the boundary.

In order to do that, we just symmetrize as in the proof of Theorem Namely, we restrict
ourselves to a small neighbourhood of the boundary of the domain (which we can do, by the
localization). Then, we change variables, and we become a half-space situation. The reflection
of the vector field is a new vector field (given by ), which is no longer divergence-free due to
the change of variables. Nonetheless, we have computed the divergence in Remark which
is bounded (given that the domain is C!). Le., there is no singular part of the divergence of
the vector field concentrated on the boundary. On the other hand, after changing variables to
a half-space situation, the new Maximal Specular Flow still preserves the specular reflection,
and we can symmetrize it to get a Maximal Regular Flow (by taking the continuation across
the boundary instead of the specular reflection). This symmetrised flow does not have instant
mass destruction or production at the boundary, due to the boundedness of the divergence of
the vector field.

This shows that there is no divergence production on the boundary of the domain, and
thus the Maximal Specular Flow is incompressible. O

10. PrROOF OF THEOREMS [2.8] AND [2.9]

10.1. A regularised problem in domains. In this section we proceed analogously to Sub-
section[6.1] by proving the existence of solutions to a regularised problem of the Vlasov—Poisson
system in a C?! domain  C R?. We also prove a result regarding conservation of energy.

The result will follow as Theorem [6.1] via a fixed point argument. In this case, however,
we must consider a regularised problem with no electric field near the boundary in order to
prove the convergence of flows with jumps in the velocity coordinate. The lack of electric field
near the boundary is because, a priori, the electric field obtained after regularization of the
Green function could still have a Lipschitz constant degenerating when approaching 0f2.

Let us start by showing how we construct the electric field of the regularised problem. Let
Gq(x1,22) denote the Green function of the domain Q. Let 7 € C°°(][0,00)) be a monotone
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function, such that
F=0in [0,1], F=1 in [2,00), 0<# <2 in [0,00). (10.1)
For any ¢ > 0, we define fé : Q2 —[0,1] by
76 () = 7 (¢ dist(z, 00)),  for = € Q. (10.2)

Notice that for ¢ small enough depending on the domain, ng is regular (at least C?). We also
define G, : © x Q — [0,00) by

|21 — 2|

GY (21, m) =T <5> Gal(z1,2). (10.3)

With these previous definitions we can now define a regularised electric field with respect to
a density p € LY(Q) by

ES (z) = —75,(x) / VoGY (2, 2)p(2) dz. (10.4)
Q
We now claim the following.

Lemma 10.1. The electric field defined as (10.4) is Lipschitz, with Lipschitz constant de-
pending only on d, (, the dimension d, and the L' norm of p.

Proof. Let us simply bound ||VIE£%’6||LOO(Q):
VLB @) < 1 [ IVaGhla2lole) doa + Lgaaeanysey [ DG 2)lp(e) =, (103
where we have used that ]Vﬁé (x)] < C¢! for some constant C' depending only on 7 and €.
Now notice that, thanks to Lemma (1)-(ii),
IV2Go(x,2)] < Clyja_zissy (67 Ga(, 2)| + |VoGalz, 2)])
< Cl{|z—z|26} (5_1|£L‘ - Z|2_d + ’iL’ - Z|1_d) < Cél_da

for some constant C' depending only on d and € (and the function 7 chosen). Similarly, using
Lemma (iv),
|D2GO (2, 2)] < Clyjazizsy (67%|Ga(x, 2)| + 671 VaGa(x, 2)| + |DiGa(z, 2)|)
<O+ Clyp_saylz — 2[' 4 (min{dist(z, 09), |z — 2|}) ™"
<C (5—d + 617 (min{dist(z, 9Q), 5})—1) .

But now notice that the second term in the right-hand side of ((10.5)) is non-zero on the region
{dist(x, 02) > (}, so that putting all together we obtain

V.Eg (z)| < C (C’W’d + 5*’) /Qp(z)dz =Cs (¢ ) ol

for some constant C' depending only on d and 2. O

The following theorem is analogous to Theorem in regular domains 0 C R?, with the
specular reflection boundary condition.
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Theorem 10.2. Let Q C R? be a C>' domain. Let ho(x,v) = ho € C°(Q x RY) be such
that for all T € 09, v € R, ho(Z,v) = ho(Z, Rzv). Let T, fé, and G?Z be as above, ((10.1])-
(10.2)-(10.3), for some §,{ > 0. Then, the following problem has a distributional solution
ft - f(t,x,v),

8tft—|—v~szt+Eé’6~va_t:O in (0,00) x Q x R
z) = [pa ft x,v)dv, in (0,00) x Q,
ES (x) = —7 (@) [r, VoG (@, 2)pi(2) dz, in (0,00) x Q, (10.6)
fi(z,v) = fi(x, Ryv), on (0,T) x 0Q x R?,
fo=ho in Q x R
Moreover,
/ \v[zft(x,v) dx dv + G?—Z(az,z)ﬁt(z)ﬁt(w) dzdr = (10.7)
QxR4 QxQ

t
= [ WPho)dsdos [ Ghle2)poe)onla) dzda+ [ K26 Chodr
xR 0

QxQ
for any t > 0, where K< is defined as
Koot =2 [ (=@ | [ Vi p e d] L 0s)
QxR4 Q
for fr the solution to (10.6)) with initial datum hg.

Proof. We divide the proof into two steps.

Step 1: Existence. We start by proving the existence of a solution for time in [0,T] for
T > 0, using the same approach as in Theorem Let us define f* : (0,T) x Q x R? for
n € NU {0} as the solution to

8f”+1+v Va "Jrl—i-Efl‘g2 Vofitt =0 n(,oo)xQde

i (@ 5 fRd fir (@, v)dv, n (0,00) x

Ei@( ) = =7 (@) Jo, VoG, 20} (2) dz, i (0,00) x (10.9)
”H(x v) = f (2, Ryw), on (0,7T) x 89 x RY,

f = ho in Q) x Rd,

that is, we have created a sequence of functions iteratively solving the Vlasov—Poisson system
with specular reflection in 2 where the electric field is generated by the density of the previous
element of the sequence. Notice that, thanks to Lemma by standard Cauchy-Lipschitz
theory we can build a flow with jumps transporting the solution f! in [0, T], and proceeding
inductively (since the L! norm is conserved), we can do the same for each element of the
sequence. That is, if l_),? = (’U,Ef;:g), then there exists a regular flow with jumps Z, =

(X0, Vi) 1[0, T] x Q x RY — Q x R? such that
LZ,(t) = b} (Za(t))  for (6, Xn(t), Va(t) € (0,T) x 2 x RY,
Z,(0)(x,v) = (z,v), in QxR

and for t, € (0,7) such that X, (t.) € 09, V,.(t) = Rx (t )V (t;), where tj and t; denote

the upper and lower temporal limits at ¢,; and f"Jrl is given by fi' = Z,(t )xho. Alter-
natively, since the vector ﬁeld is divergence free and specular reflection does not produce
divergence (see Lemma one can write f7"(Z,(t)) = ho.

(10.10)
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Notice that we solve the equation classically in the interior (since the vector flow is
smooth), and the boundary conditions hold noticing that around the boundary the electric
field is 0.

Indeed, take any (¢, x,v) with ¢t € (0,7), z € 92, and v - n(x) < 0, so that we are looking
at velocities hitting the boundary instead of leaving it. By solving (with jumps)
backwards, we obtain some z., v, such that (z,v) = Z,(t)(zo,v,). Notice that, from the
structure of the flow, since we are in a region where there is no electric field (around z € 952),
for £ small enough we have that Z,(t +¢)(zo,v,) = (z + eR,v, R,v) (where we also used that
v was pointing towards the boundary, so that there is a specular reflection being produced
immediately). Now notice

FE (a+eRav, Rov) = [N (Zn(t+e) (20, v0)) = ho(@o,v0) = f7 (Zn(t) (w0, v0)) = £ (2,0)

for every € > 0. Take € | 0, and we recover the specular reflection condition.

We would like to pass the flows to the limit and proceed as in Theorem Let R > 0
be such that supp hg C R? x Bg, and notice HEfL:%HLoo(Q) < C(0) for some constant C(J)
depending only on 6, d, €2, and ||ho|| 11 xre). From

d

dt

we obtain supp f' C RY x Bryoc(s)et(0) for t > 0, and for all n € NU{0}. In particular, the

vector field b*(Z,(t)) is bounded by some constant C(6, T') in the interval [0, 7] independently
of n, and therefore, %\Zn\ is bounded independently of n but depending on 7.

On the other hand, notice that the vector fields b7 are independent of n in a (-neighbourhood

of 9Q, where b} = (v,0). Now, since f''! = Z,,(t)4ho, %|Zn\ is bounded, and Z,(t) is inde-

pendent of n in a (-neighbourhood of 02, we obtain that up to a sufficiently small time T > 0

independent of n, but depending on ¢ and 6, ft"Jrl is independent of n in a %—neighbourhood

of 09).

We can now proceed taking limits as in Theorem [6.1] by noticing that we only care about
the interior of €} and therefore the strategy there presented also works here up to minor
modifications. This yields a solution up to time Ty, but repeating the procedure we can
obtain a solution up to time T'. Since T > 0 is arbitrary, this gives the desired result.

|Zn(t)] < 1Zn(t)] + C(9),

Step 2: Conservation of energy. Let us compute

4 </ [v2 fi(z,v) da dv + GO, 2) ¢ (2)pe () dz dm) : (10.11)
dt \ Jaxra Q%0

We use that
Oifi = —v-Vaufi — ES® - Vo fi = —diva(vfy) — dive(ES fi),  in (0,00) x @ x RY, (10.12)

in the distributional sense, from which,

8tﬁt = —/ divx(vft) dv. (1013)
Rd
On the other hand,

d
— GY(x, 2)pe(2)pe(x) dz da = 2 GO, 2) s (2) 0 py () dz da, (10.14)
dt Joxa axQ
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so that, plugging in ((10.13)),

4 / G (2, 2)p(2)pe(x) dz da = —2/ G (2, 2)py(2)dive (v fy (2, v)) dz dz dv.
dt Jaxa QxQxRI
(10.15)
The divergence theorem yields
l;G%@u@ﬁxzﬁﬁvﬂvﬁﬁmv»dxzz m)G%@%@ﬁxzﬂﬂxﬂﬂv-mﬂx)ﬁﬂm)

—/QVmG‘gz(x,z)-Uﬁt(Z)ﬁ(fUav)dx’

where vq(x) denotes the outer unit normal of 0Q2 at =, and do is the standard measure at the
boundary. Integrating with respect to v and using that fi(z,v) = fi(x, Ryv) for x € 99, the
first term vanishes. Therefore, we obtain

d _

/ G(x, 2)pe (2) pe(x) dz da = 2/ V.G (z, 2) - v pe(2) fi(x,v) de dz dv.  (10.16)
dt Joxe Qx QxR

Finally, using (10.12)), we obtain

d - _ _

A R v) dado = _/ (o Pdiva(v];) da dv —/ (wl2divy (ES? fy) da dv.
dt Jaxrd QxR QxR

From the divergence theorem, and arguing as before, the first term vanishes. Applying the

divergence theorem on the second term, the boundary integral will also vanish, since Egz’a =0
in the neighbourhood of 9. Therefore,

4
dt Jaxrd
Combining this with ([10.16|) and using the definition of Eé’é we obtain the desired result. [

10.2. Proof of Theorem Let us now prove Theorem We recall Gq(z1,22) denotes
the Green function of the domain (2.

Proof of Theorem [2.8 The proof follows analogously to the proof of Theorem We divide
the proof into several steps.

[0 fo(, v) da dv = 2/Q Rdv-Eg‘sﬁ dx dv.
X

Step 1: Approximating sequence. Let us construct an approximating sequence based on
the regularised solution constructed in Theorem Let (f2)nen with £ € C2°(2 x R%) be
a sequence such that for all x € 9Q, v € RY, fi(x,v) = f(x, Ryv) and approximating go in
L' norm,
f—= fo in L*(Q x RY).

Consider also f{* the sequence of solutions to built in Theorem with § = J,, and
¢ = ¢, for some sequences (0, )nen, and (¢, )nen with d,,, ¢, — 0 to be determined. We recall
that we are using the definition of renormalized electric field introduced in (10.4))-(10.2))-(10.3]).
For the sake of readability we will denote the corresponding vector field to the n-th element
of the sequence as by(z,v) = (v, E/'(z)), as defined in (10.4).

By standard Cauchy-Lipschitz theory we can build an incompressible flow with specular
jumps at the boundary transporting the solution, Z™(t) : @ x R — Q x R such that

fr=frezr) ™t forte (0,00),

and since they are incompressible,

¢ 121y = 1 fi I oxrey = 10|21 (@xra)s (10.17)



54 XAVIER FERNANDEZ-REAL

where we recall that p}(z) = [ga f"(x,v) dv is the physical density. As in (6.15) there exists
a sequence (&,,)men depending only on the initial datum fy with €, | 0 as m — oo such that

/Qx]Rd filpnsmy dodv = /Qde foligromydrdo <epm — 0, asm — oo, (10.18)

for all t € (0,00) and n € N. That is, f;* are equiintegrable independently of n € N and ¢.

Step 2: Choice of the approximating sequence. The procedure follows in Step 2 of the
proof of Theorem can be repeated here. Notice that, again, proceeding as in [0, Lemma

3.1] there exists a sequence f§ € C°(Q2 x R%) and GI;{TI such that

lim (/ [o|? fi(x, v) da dv + Gggl(x,z)pg(z)pg(x) dz dar) =
QxR QxQ

n—oo

(10.19)

= / lv|% fo(z,v) dz dv + Ga(z, z)po(2)po(x) dz dx.
OxR4 QxQ

In order to prove it we have to use that whenever pj is bounded and compactly supported
converging to po then [, Go(x, 2)pf (2) dz converges locally in every Lj _to [, Ga(x, z)po(z) dz
by dominated convergence. We also have to use that for every n € N fixed

lim ng(x, 2)po () ph(2) dz dx = Ga(z, 2)py () pg (2) dz dz

k=00 JOxn QxQ

by monotone convergence.
At this point, proceeding as in Step 2 of the proof of Theorem one can show that there
exist sequences d,,, ¢, — 0 such that

(K (8,0, G, B — 0 as n — oo, (10.20)

uniformly for 7 € (0,t), for every ¢ > 0. We recall that K is given by (10.8). In particular,
again as in Theorem [6.3] we obtain a uniform bound for the kinetic energy,

lim inf/ lo fi (x,v) dzdv < C, (10.21)
QxR4

n—oo
for some constant C independent of n and ¢.

Step 3: Limiting solution. Transporting level sets as in Step 3 of Theorem [6.3] we can
construct a sequence of functions f;" * hounded by k + 1 transporting level sets of the initial
datum, with

7k ’k/.
£ e oxre = 1F 7" Lt @xras
and such that

ok fk weakly”™ in L>((0,00) x @ x RY) as n — co, for all k € N, (10.22)
Defining
F=>_F% in(0,00) x QxR (10.23)
k=0
then,
| fell i oxray < [l follioxrey  for ace. t € [0, 00), (10.24)
and
fT—f weakly in LL_([0,T] x Q x R%), (10.25)

for every T > 0.
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Step 4: Limiting densities. Again, as in Theorem if we define the limiting density
pi(z) = [ga fe(z,v) dv, one can prove using the bound on the kinetic energy (10.21)) that

p" —p weakly in LL ([0,T] x Q), (10.26)
that is, the densities weakly converge to the density of the limit, up to subsequences.

Step 5: Limiting vector fields. We would like now to apply the results analogous to the
Di Perna and Lions in [I7] to get that the limiting solution is actually a renormalized solution.
In order to do that, we have to get rid of the specular reflection condition, by invoking the
change of variables and the odd reflections of the electric field already introduced in the
previous sections.

That is, let us fix any point on the boundary and after a translation and rotation let us
assume 0 € 00 and n(0) = e;. After a rescaling we also assume that the domain Q fulfils
the exterior and interior ball condition at each boundary point with balls of radius 2. We
will first prove that the limiting solution is actually renormalized in Bj, from which it will
be renormalized everywhere (by a covering argument and taking further subsequences), and
therefore it will be transported by a Maximal Specular Flow in € x R¢,

We perform the change of variables from Section |8 and we will keep using the notation
there introduced; (z,v) — (y,w) = (¢(z), J(z)v). Let us define

9¢ (y,w) = f{'(z,v),
and g;"(y,w) its even extension with respect to (yi,ws); that is, ¢, (y,w) = ¢/ (y,w) if
y1 > 0 and g;" (y,w) = gi*(y', w’) otherwise.
We analogously define gf’k(y,w) and g§(y,w) in (0,T) x By x R? from fF(z,v) and f;, the

limits in (10.22])-(10.23); so that

o0
=S gt (10.27)
k=0

By Proposition we have that g;"" are renormalized solutions in B; x R? to the transport
equation

Ogy" (y,w) +w - Vg, " (y, w) + F™(y,w) - Vg, " (y, w) = 0, (10.28)
where
F™My,w) := FY(y,w) + Fy"°(y)

and FY, F,"° are the odd extensions with respect to (y1,w1) of

T
Fi(y,w) := [(J_l(ac))Tg;)} w=vI D*pv

and
Fi(y) = J(2)E" (),

that iS7 Flo(va) = Fl(y)w)7 F;,n(y) = FQn(y)7 if Y1 Z 07 and Flo(va) - (Fl(y,)w,))lu
Fy"(y) = (F&(y')), otherwise. By means of the same reasoning as in Theorem |6.3[ we want
to show that the even extension, g7, to

gt(y,w) = fi(y,w),

is a distributional solution in By x R% to

Orgi (y, w) +w - Vygi (y, w) + F(y,w) - Vygi (y, w) =0, (10.29)
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where now F' = FY + Fy, and Fy is the odd extension with respect to (yi,w;) of J(x)E(z),
with

E(z) = — /Q V.Gal(z, z)p(z) dz.
In order to do that, as in Theorem it will be enough to show
Fy° =~ F¢ weakly in L] .((0,00) x By;R%), (10.30)
and
Fy(y+h) — F(y) as |h| =0, in Lig((0,00); Lige(B1)) (10.31)
uniformly in n.

Step 6: Proof of the first and second stability condition. We refer to the appendix to
show that ((10.30[)-(|10.31)) actually hold, since it is a technical computation.

Step 7: Conclusion of existence. Since conditions - are fulfilled, by the same
arguments as in [17, Theorem I1.7] the vector fields (w, F™) are converging strongly in L'.
Therefore, weakly continuous bounded solutions of the approximating problems converging
weakly* in L are distributional solutions in the limit (notice that the divergence of the
vector field is constant in n). In particular, for every m € N, Gi* = >/ g/ * (recall agr ok
from (10.27))) is a distributional solution of the continuity equation in (0,7) x B; x R? with
vector field (w, F') and with initial datum G§* = >/ gg’k; as it is bounded by m + 1.
Then, by Proposition (which is based on Proposition we have that 7" = S0 fF
are distributional solutions to in (0,7) x (By/2N ) x R? according to Definition

and in particular, by a covering argument, they are distributional solutions in (0,7") x € x R,

By Theorem (i), since F™ is bounded, it is a renormalized solution and it is transported
by the corresponding Maximal Specular Flow. Since F™ converges to f; in Llloc( (0,00) x £ x
]Rd), the limiting f; is also a renormalized solution; and by Theorem (i), it is transported
by the Maximal Specular Flow. Moreover, by Theorem fr € C([0,00); L}OC(Q x R%)) and

fulfils the commutativity property.

Step 8: Strong Llloc continuity of density and electric field. The strong continuity of
the densities p € C([0,00); L (2)) follows exactly as in Step 8 of the proof of Theorem

loc

and the strong continuity of the electric fields, E € C([0,00); LL _(©2)), also follows like in

Step 8 of the proof of Theorem combined with the estimates on the Green function from
Lemma [0.11 O

10.3. Proof of Theorem We can now prove the result regarding the bound of the total
energy for positive times.

Proof of Theorem[2.9. We divide the proof into four steps. We will be using the notation
from the proof of Theorem 2.8, where we built a sequence of functions f;* converging weakly

to ft-

Step 1: Weak uniform equicontinuity in time of densities. We start by proving the
weak equicontinuity in time of the densities of the approximating sequence. Notice that, in
the interior of €2,

Orpt + divy, </ v fe(z,v) dv> =0,
Rd
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and the same holds for each f* and p}'. Let us now prove that ¢ — fRd pp€ are equicontinuous

for any ¢ € C°(Q):
/Q(p —pY) ‘— /@p Edxdr| = lex </ vff(:n,v)dv) Edxdr
/ / |v| fF(z,v) de dvdT| +

< V€] L~
) v 7z, v)E(x) dol dv dr )| .

8Qde

Using the symmetry of g7 in the boundary, g2 (z,v) = g (z, Ryv), and integrating first in the
v variable, the second term vanishes. By Holder inequality, we have

2
n 2 ' .
</Q><Rd |U’f7 (ZL‘, U) dz d'U) S </Q><Rd |U’ f’?’ (ZL',’U) dx d’U) /Qp7—($) dl'a

which is bounded by the uniform bound in n of the kinetic energy, ([10.21f), and the uniform
bound on the L! norm of f}*. Therefore, we have

‘/Q(p? - p9)€

the weak equicontinuity in time of the densities. This, together with the weak* convergence

of measures (|10.26)), implies

lim sup
N0 40,7

< O VE]lzeo|r — sl

/5 Y — pe)(x)dz| =0, (10.32)

the uniform convergence in t of [ pp€.

Step 2: Weak lower semicontinuity of the potential term and bound on energy.
We prove that, for any nonnegative ¢ € C2°((0,00)) we have

/°° o(t) Gaol(x, 2)pi(x)pi(z) de dz dt
’ e (10.33)

< liminf/ ¢(t)/ Gg’jl(x,z)p?(x)p?(z) dx dz dt.
oo Jo QxQ
Thanks to (10.32)) and Fubini’s theorem we have that pf'(z)dz ® p}(z)dz ® dt € M((0,T) x
Q x R?) converge against continuous functions to p;(x)dz @ p(z)dz @ dt. In particular, for
any m € N fixed, we have that
/ o(t) Glg"l (x, 2)pe(x)pe(z) dzdt < lim inf/ o(t) G];{# (z, 2)pi (x)pi (2) dx dz dt
0 QxQ 0 QxQ

n—oo

< liminf/ o(t) Gggl(x, 2)pi(x)p}(z) dx dz dt,
0 QxQ

n—oo

where in the last inequality we have used that Gg’”l is increasing in m € N and nonnegative.
For the same reason, the left-hand side converges (by monotone convergence theorem), and
in particular we obtain the desired result, .

Finally, from the lower semicontinuity of the kinetic energy, , we immediately have

that -
/ / (t)|v] ftda:dvdt<hrnmf/ / () |v]2 f1 da dv dt;
QxRE n—oo R xRd
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which combined with (10.7)-(10.20))-(10.33])-(10.19) yields that, for any ¢ € C°((0,00)),

/OO o(t) {/ [v|? f¢ da dv + Ga(z, 2)pe(z) pe(z) dz dz} dt
0 QxR QxQ

o0 —
<tmint (o { [ pEfraras [ Gl @@ dods )
X X
< liminf/o o(t) {/Q y v f3 v dv + /Q 0 G];{:l(:r:, 2)po (z)pg (=) dx dz} dt
X X

n—o0

:/OOO 6(1) {/QR w2 fo dxdv—i—/QXQ Gal, 2)po(x) po(2) dxdz} dt

In particular, (2.11) holds for a.e. ¢ > 0. The boundedness of the energy for all times
follows form the fact that f; € C(]0,00); Q2 x RY) and p; € C([0,00); ).

Step 3: Bound on L? norm of electric field. We will show that for any nonnegative L'
Ga(z,2)&(z)€(2) drdz >

function &, then
2
V/Gg(x,z)f(z) dz
QxQ Q

For ¢ € C*(R%) and R > 0, extending G by 0 outside 2, we have

[ eatw e = [ [v [ ot
/8BR mQ/GQ:M: V/ngz)g(z).yBR

+/8mBR/QGQ(!E,Z)é(z)V/QGQ(x,z)g(Z).n(iv)‘

Since Gq(z,2) < Clz — 2|>~% and |V,Ga(z,2)| < Clz — 2|'79, it is easy to check that
the second term above tends to 0 as R — oo. The third term is equal to 0 exactly, since
Gal(z,z) = 0 for z € Q. By approximation the same holds for ¢ € L3°(R?). Finally, taking
& = min{lp, &(z), k} and by monotone convergence we have that

da. (10.34)

Go(x,2)&(x)€&(z)drdz = lim Gal(x, 2) & (x) & (2) dx dz
QxQ k=00 Jaxa
2
:hégicgf V/QGQ(x,z)fk(z) dz| dx

dzx,

2
\Y /Q Ga(x,2)&(z)dz

where in the last step we have used the lower semicontinuity of the L? norm with respect to
the weak convergence of & to €.

Step 4: Proof of (ii). Let us prove the no-blow up criterion for fy-a.e. (z,v) € Q x R? of
the Maximal Specular Flow, in d = 3, 4.

Let call Z7(z,v) = Z(t,s,xz,v) = (X(t,s,z,v),V(t, s,x,v)) the Maximal Specular Flow,
and similarly tiz(m,v) = t§X7V(m,v). Take T' > 0, so that (t;Z,t:Z) C [0,T]. Let us show
that for fs-a.e. (z,v) we can take t_, =0 and t:Z =T, for s € [0,T].
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In particular, it will be enough to show

sup  |loglog(2+ |Z;|) — loglog(2 + |Z}])| < oo, (10.35)
t,  <rr<tl,

for fs-a.e. (z,v) € Q x RY Let us proceed,

[ loglog(z+|22)) ~ loglog(2 + | 22|, dodo <
QxRd

t+
i2)d
g/ / 1S g log(2 + | 25))| dtf, da dv
OxRa 7Z dt

1b(25)]
s dx dvdt
/ /Md A+ 12N log2 + 127 1=

|be(x,v)]
: /0 /Qde (14 |(z,v)]) log(2 + | (x,v)]) Ji(z,v) dx dvdt < oco.

We have used here the incompressibility of the flow and the transport structure. The last
inequality follows as in [0, Theorem 2.3] by means of , choosing £ = p; and noticing
that the right-hand side of is now precisely the L* norm of the electric field E;. Now,
taking s = 0 shows that trajectories do not blow up in finite time for fo-a.e. (z,v) € Q x R%
and since for every s € [0,T] we can set ¢, = 0 and tIZ =T for fs-ae. (z,v) € QxRY,

there is no appearance of mass from infinity at any time (given that the flow can be extended
back up to t_, = 0), and f; is the image of fy through an incompressible flow. O

APPENDIX

We include in this section the technical computations from the work. We start with the
proof of Step 3 in Theorem

Proof of Step 3 Theorem We have to bound the term, I71. We divide this proof into
three further steps.

Step 1. We approach the problem parallelly to what we did for the half space, although now
the electric field is not given by the convolution against an L' function. We consider two
different cases, according to whether v!(¢) and ¢!(¢) are on the same side or not. That is, we
let

NI <IIr +111_,

_ |E(yL(t)) — B(EL (1)) i
Hli///im)&%(t»oc Gt ) - el 1)

Let us start focusing on I11;, and without loss of generality we will assume that both
Y1), €1 (t) € {y1 > 0} (otherwise we use the symmetry of the field).

Notice that, using a triangular inequality as in previous steps and the fact that J(x) is
Lipschitz, we only need to bound

£ (v(v'(1) — E (¥(€' 1) | .
///7% Hel ¢ G+ () =€) dp(z, &, 7)- (10.36)

with
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We recall that, from (2.4),
E(x) = / V.Gal(z, x2)p(xe)dzs,
Q

for some p € L'(Q2) by assumption. We also recall that the Green function satisfies

—Az, Ga(z1,x2) = —Ay,Ga(z1,22) = d(x1 — 22), for 1,20 € Q
Go(x1,22) =0 otherwise,

where we have extended it by 0 outside the domain €2, in the whole R? x R?. On the other
hand, we define by I'(z; — x2) the fundamental solution in the whole R? for d > 3, that is,
I'(z) = w;'|z[>~? for some dimensional constant w,.

From the integrability of E (see Lemma [9.1)) it is easy to see that in we are only
interested in the cases where |y!(t) —£1(¢)| is small. On the other hand, if both y!(¢) and &1 (¢)
are uniformly far from the boundary {y; = 0} (that is, ¥(y'(¢)) and % (&!(¢)) are uniformly
far from 0Q), then Dq(x1, z2) := Go(x1,x2) —'(x1 — 22) is harmonic in 27 and with uniform
bounds in the boundary, thus smooth in the interior. Hence, if we denote z¢ = 1 (¢!(t)) and
zy = P(y1(t)), and V; denotes the gradient with respect the first d coordinates, we have

B () = B (o)l <| | (V1Da(2,2) = ViDa (2¢.0) ) plo)da

+

/ (VI (2 — 2) — VI (z¢ — z) ) p(x)d
RA\Q

+

/]Rd (VI (2 — 2) — VI (2¢ — ) ) p(z)dz

Notice that the first two terms in the previous expression are bounded when plugged into
(10.36)) if 2, and z¢ are uniformly far from 02, due to the smoothness of Dg and I' in the
corresponding integration areas. On the other hand, the last term corresponds to the case
dealt in [0, Theorem 4.4], the convolution of a singular integral (given by the fundamental
solution in R?%) against an L' function.

We can, therefore, assume that z, and z¢ are close to the boundary. In particular, we will
assume that they have unique projections, so that in the expression

/Q (V1Ga (zy,2) = ViGa (2, @) ) p(a)dx

™

[E(29) — E(z¢) | <

+

9

/Q\Q (ViGaq (24, %) — V1Ga (2¢, z) ) p(z)dz

the second term is immediately bounded due to the regularity of G in the integration domain
(we recall Q; denotes the domain of unique projection). Thus, when computing the electric
fields, we only care about the contribution of the densities close to the boundary.

Let us define, for z € Q,, Px as the reflected point with respect to 0. That is,

Pr=x2+2(n(z) —x) € R4\ Q.

We analogously define the same operator for the points on (R?\ 2),. The sets of unique
projection from either side are comparable, since we have exterior and interior ball condition
for €.

Using the same ideas as in Theorem we can consider, for zo € Q,

Go(zy,29) ='(z1 — 22) — I'(xy — Pxo) — H(x1,x2),
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where H fulfills, for each x5 € Q,

{ Ay H(xz1,29) =0, for 1 € Q

H(%‘lyl‘Q) = F(l‘l — xg) — F(ml — P;L-2) for z; € 99 (10.37)

Putting all together we have

/ ViGa (zy, ) p(x)de =
Qr

= VI' (2, — x) p(x)dx + VI (zy — Px) p(x)dx + ViH (zy,x) p(x)dx.
Qr Qo Qr

Let us now denote pr(z) = p(7)1zeq,y +ir(2)p(Pr)l{zcpq,}, Wwhere P is the reflected of
the Q. with respect to 99, and jp(x) is the Jacobian determinant of the change of variables
x + Px. Notice that the L' norm of p, is bounded by the L' norm of p(z). If we change
variables in the previous expression we have

/ ViGa (zy, ) p(x)dx = VI' (zy — @) pr(x)dz + / ViH (zy,x) p(z)dz.
Qr Qr

R4

As can be seen, the first term is again of the form treated in [6, Theorem 4.4], a convolution
of the gradient of the fundamental solution against an L! function. Putting it back in ((10.36)
the corresponding bound follows. Therefore, we have reduced the bound on I71; to finding

a bound for
B (v (7' (1) = Eu (p(£'(1))) |
//[yi(t)gi(t)zog Co+ Y1 (t) — €1(2)] du(z,€,7), (10.38)

where Ejy is given by
Ey(xy) = / V1H (21, x) p(x)dz.
Qr

for some function p € L'(Q2), and H is the solution to (10.37)).

Step 2: Bound for II1. Let us denote by M)h the local Maximal Function of a locally finite
measure & for A > 0; that is,

- 1 -
Myji(z) = sup dlfil(y), zeR%

0<s< | Bs| JB,(x)

If i = h.Z? we will denote Myh instead. From standard theory for local Maximal Functions
(see [37]) we know that if h € BV (R?) then there exists some set N with .Z4(N) = 0 such
that

\h(z) = h(y)| < calz — y| (MyDh(z) + MyDh(y)) (10.39)
for z,y € R*\ N and |z — y| < A. Tt is also well known that, for any p > 1,
HM)\hHLP(BS) < Cdp ||h||LP(BS+/\) ) (10.40)

for any s > 0 and for a constant ¢4, depending only on d and p, which blows-up as p | 1.
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Let us now first combine (|10.39)) with (10.38]), to get

IViH (4 (1), ) = V1 H ($(€' (1)) |
///V%(t)f%(t)zo /QW ¢ IvL(t) — £L(t)] p(x)dedp <

2 1 2 1
€/Q,, //L%(t)g}(t)m IMADTH ((v' (), x) + MaDTH ((€(t)), x) | dp p(a)dw <

< CC/ / |M\D?H (2, )| dzp(x) d,
Qr r

where in the last inequality we are using the no-concentration condition, (e;)xn < Co (.,2” 2d I_A) ,
we are taking A small independently of the other parameters (say, for example, A = 1/8), and
we changed variables while using that the determinant of the Jacobian is bounded, .
Now, thanks to , we can bound

¢ / / IMAD2H (2, ) | dzp(x) dir < Cyl / |D2H ()| pogsypl() dz. (1041
Qr - Qr

Therefore, in order to complete the bound, it is enough to show that H(-,z) € W2P(B;NQ)
uniformly for every = € €, and for some p > 1, since p is in L'. But since H solves the
Laplace equation , by standard elliptic theory (see, e.g., [31]) it is enough to show that
H(-,z) =T(-—x)—T(-— Pz) € W2~1/PP(9Q) uniformly for every = € Q, and for some p > 1.

Let us suppose, after a rotation and translation, that z9 = (§,0,...,0), 7(xg) = 0,and { > 0
is small independently of the other parameters. With this setting, Pxg = —z9 = (=¢&,0,...,0),
and from the regularity of the domain 2 we have that

INN By C {|z1] < |zol® + ... |zq* = |2/?}, (10.42)
where we will also be using the notation z = (21,2') € R x R, We want

1 1
| —zoT2 |- Fao|?2

Wy :=T( —20) = T(- + m0) = Cy { } e W21/rr(9Q),  (10.43)

with a bound independent of xy and for some p > 1.
We start by claiming that, for any = € 92 N B1, and for any k € N,

1 1 < C
|z —xolF |x+x0lF| T o+ @]

(10.44)

for some constant C' depending only on d. Indeed, since |z — x| and |z + x| are always
comparable, we can assume |x — x| < |z + x¢| and compute

1 1 |z + xo| — |2 — 20 |z + 20| — | — 20|
- <C
|z —zo|k  |x+x0|F ~ |z — zo|Ft1 - |z — z0|F+2
Let us suppose, without loss of generality, that z = (s2,5,0,...,0), for some s € (0,1).

Notice that
|+ 20 — |z —xo|? = (¥ + &)* +5° — (5° — )% — s* = 4s%C.

Now notice that s < |z — z¢| and that £ < |z — z¢|, which yields the claim, (10.44)).
Thanks to (10.44) together with (10.43)), it is clear that ¥,, € L} (9€) whenever p < %.

Let us next prove that ¥, € WP (092). It is enough to show that tangential derivatives

loc

to 02 of Wy, are in LP. Let D, VU, (z) = 7(x) - V¥, (x) denote any tangential derivative,
for z € 0Q and 7(z) € S tangent to 0Q at z. From the C'! regularity of the domain,



LAGRANGIAN STRUCTURE OF THE VLASOV-POISSON SYSTEM IN DOMAINS 63

it follows that for some constant C' depending only on the dimension, |71 (x)| < C|z/|, and
therefore,

D0y ()] < C (121100 Wiy (2)] + 00y W (@) + -+ + [0, W (2)]) (10.45)
for any tangential derivative. Let us know compute , for i € {2,...,d},
1 1 C
0y, W = C|x; —
e oo = ol | ™ ool = o=z
where we used ([10.44)) together with the fact that |z;| < |z — zo|.
On the other hand,
— +£
"Mo.. o — r1—¢§ o
21100, )] = o (P~
1 1 2¢ || c
/
_ _ _ <
) (o~ o) oo S e

where we combined again (10.44)) with £ < |x — z¢| and |2/| < |z — 2. In all, we have that ,

putting it back in ((10.45)),
C C d—1

|z — @l T |22

and thus, U, € VVllocp(ﬁ(Z) for p < &=L
Let us denote Dzm second derivatives along 99, for 71, € S9! tangent vectors to 0.

Similarly to derivation of ((10.46)) it follows that

c C

2
|‘D7'17'2\I’i130(x)| S |IL’*SU0|d71 S ’l‘|d717

which, unfortunately, does not belong to any LP space for p > 1 in 0).

We define F*0(x) := |x|D;Vy,, so that using the previous inequalities one can show
¢ 1 d—1 d—1
[2[d3 > |F%| e L™ (9Q) N W2 (9Q) € W*(99), for ry < T3 "2 < T

where s and r follow from the interpolation property between fractional Sovolev spaces (see
[11, Theorem 6.4.5]) and fulfill

_— 1—s n s -t < d—1
T\ n ) d—3+s
On the other hand, it is also known that if hy € W*P1 N L9 (02 N By), and hy € W% N

LP2(9QN By), then hihy € WHP(9QN By)y), with s € (0,1) and 1 > £ = L L = L4 L > 0;
with a bound

||h1h2||wsyp(anBS/4) <C (thnws’m (692N B1) ||h2”LP2(8QmB1) + ||h1||L'J1 (0QNB1) Hh?HWS’q?(@QﬁBl)) :
(10.47)

This result is a local version of the Runst—Sickel lemma, that can be found, for example, in [34]

Section 5.3.7] or in [19, Theorem 3]. We use with hy = F20 and hy = - € Wh't (99)

loc
for (1+1¢)rs <d—1, and therefore hihy = D, V,,. Putting all together in (10.47)) we should
have
Pt <d-1 <471 L4-!
b1 d—3+s D2 Q1 d_3 a2 11s

I
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so that
1 S d—2+s
D d—1
If we want s = 1 — ]13 we must have p < Cf%l, and in this case we have a bound for

||DT\I/;BOHW1_1/p,p(3§mBl) independent of xy. Therefore,

[P lw2-1/009008,) < O,

from which H(-,x) € W*P(B; N Q) and (10.41)) can be bounded by C¢. We have, therefore,
shown that a bound of the type (9.4)) holds for the term I71.

Step 3: Bound for II1_. We finally have to bound the remaining term, 111,

By () — BE(W)
HI- = ///K <5+w<> e o)

As in the proof of Theorem . thanks to the symmetries of the vector field E and the fact
that now ~!'(¢) and ¢!(t) are on opposite sides, we are only required to bound

B0 (JE)1 o))
/// TR Yo 17y K e a YR

where we have used again the no-concentration condition no-concentration condition, (e;)xn <
Co (jf 2dI_A), and where the subindex 1 denotes the first coordinate of the vector field.

If we define Ay := [0,27%] x BY™Y as in the proof of Theorem and we recall that V;
is the gradient in the first d components, we just have to bound

I(TE)1 0 llsa, g0y = / (TE)1 04)()\dy

/ / (W) V1 Calb(y), =)}, pl2)] d= dy

Ak

- / olz / e - (J () ViGa(b(y), 2)]| dyd=.
Q Ap

Since v(y) is close to the boundary, JT (¢(y))e1 = Vo¢1(¥(y)) = n(2p(y)), and thus, n((y)) -
V1 is the derivative in the direction normal to 92, which we will denote 9}. That is,

1B 0 1, 0y < /Q o(2) /A 0L Gal(y), 2)| dy d.

Following as in (5.10) and (5.12) from Theorem it is enough to show

I(JE)1 0911 (a0 < C27F. (10.48)
Let us actually prove that, for any z € ),
[ 10kGatwt). )] dy < o2 (10.49)
A

Notice that if z is far from 1 (y), from the regularity of the Green function the previous result
follows immediately. Thus, we can assume that z is close to 1(y), and for k large, in particular,

z,1(y) € Q2
Let us start by bounding, for = € Q, d1Gqo(z,2). Keeping the notation from Step 2, we

write the Green function as

Go(zy,29) =T(z1 — 22) — I'(Pxy — 22) — fNI(:cl,xg),
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where now H(x1,x) fulfills

Ay, H(x1,29) =0, for 9 € Q (10.50)

H(xzy,29) =T(z1 — x2) — T'(x1 — Pxg) for xo € O )

In particular, we can compute 91 Gq(z, 2) as
1 n(z)-(x—2) n(z) (Pr—2)
_ _ — Hy(z,2), 10.51
0,Gaq(x, z) Py Po— 2] (z,2) (10.51)
where H,, solves

A H,(x,z) =0, for z € Q (10.52)

Hy(x,z) = "(ﬁ)'_(jﬁz) — ”(gifflzz) for z € 092. '

Notice, on the one hand, we have |x — z|,|Pz — z| > |z| and on the other hand, |n(x) - (z —
2)|,In(z) - (Px — 2)| < 26(x) for z € 9Q N By due to the regularity of the domain 0). Here,
and it what comes, d(x) := dist(z, 9€2). By the maximum principle, therefore, we have

|H,(z,2)| < CT(’C? (10.53)

Now, using the properties of the change of variables together with the fact that ¥ (y) is
close to the boundary, we have that

LWWWMQﬂ

On the other hand, if we denote ¢(z) = Z, we have that [¢(y) —z| = [¢(y) =¥ (Z)| > cly—Z],

and using (8.10) and the closeness of z to ¥ (y) we also have |n(¢(y)) - (¥(y) — ¥(2))| <
C|(y — 2) - e1]|. Putting all together in ((10.51]), and using the analogous strategy for the term

containing Px — z, we get

z
91Ga((y), 2)] < sup =21
ZEAg |y - ‘

and as in Theorem we have, maybe for a bigger constant,
/ |05 G (W <c/ ‘y1d<02’f

The last inequality now follows from (5 . This proves the bound ({9.4) following as in ([5.12))
for the remaining term I77_; and the theorem is proved.

Proof of Step 6 Theorem We divide it into two parts, the proof of (10.30|) and (10.31]).

Step 1: Proof of (10.30): We start by proving (10.30]). Notice that the weak convergence in
L' is not affected by the odd reflection and the change of variables. It is enough to show that

E" —~ F weakly in L, ((0,00) x (2N By); RY),
that is, it is enough to show that

lim
n—oo

/ /(Ef — Ey)pdr dt' =0, forall pe L°((0,00) x 2N By), (10.54)
0 Q

where L2° denotes the set of bounded functions with compact support. Let

00
0 Q
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with _ ( | 9Gala 2ot (2) = ) dz) pudt],
. (/ v Gl ) VxG?f(waz)} o (2) dz) o dz dt|,
. II1, = 1 — )) </Q VoG (2, 2)p7(2) dZ) p dw dt’ :

We start with I,,. By Fublnl we have

</v Gol(z,2)p )m){ (z)pt(z)]dzdt‘.

Now notice that, by the bounds on the Green function,

dx
/V Go(z, 2)p(z)dz| < HSOHLOO/ Tt S Cllellns=,
B> ‘$|

for some constant C' depending only on the dimension d. Thus, we can use the weak conver-
gence (|10.26) to get that I,, — 0 as n — oo.
On the other hand, we have

V.G (2, 2)| < %F' (’x . Z') Galz, 2)| + 7 ('9” = Z) IV.Galz, 2)|. (10.55)

From the bounds on the Green function G and the definition of 7 it is easy to check that, in
particular, we have

TL_

V.G (x,2)] < Cla — z|', (10.56)
for some C' depending only on the dimension d and 2, but independent of §.
Let us now bound I1I,,. We denote ) := {z € Q : dist(z,9Q) < (}. By Fubini, the bound

(10.56)), and the definition of 7"4" we have

/ / / |z — z|' Y dx | pi(2) dz dt]| .
0 Q QQ<7lﬁ32

yl—d

11, < Cllg] L

Now, since p? has L' norm bounded independently of n and ¢, |z
|Qa¢, N Ba| — 0 as n — oo, we have that 111, — 0 as n — oo.
We can finally bound I1,,. Proceeding as in ({10.55))

s [ ([ (D) o)
/ /(/ < 5nz‘)|Gﬂ(w,z)!p?(z)dz) | da dt.

Using Fubini, the bounds on Gq, and the definition of ¥ we obtain

11n50\|<p||m/ / / o — 2 da | p(2) dz dt, +
0o Ja \UBas, (2)
+C||SDHL°°5n1/ / / |z — 2>~ 4dx | pi(2) dzdt
0 Q Bg(gn(z)

< Cllgllofl | (lal'™ 4 8 ol do = Cllglliello 12

Bas,,

is locally integrable and
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therefore, since 0, — 0, I, — 0 as n — oo. This proves (10.54)), as we wanted to see.

Step 2: Proof of (|1 . Let us now show that the second stability condition, , holds.
As in Theorem [6.3 - 1t is enough to show that

F5 lwes(s, ) < C, (10.57)

for some C independent of n and ¢, and for some o > 0, p > 1. Notice that (F,"°);(y) can
be expressed as the sum of two terms in each component i € {1,...,n}; namely, (F5):(y) +
(F3);(y') for 2 < i < mand (F)1(y) — (F2)1(y'). Now, by the subadditivity of the seminorm,
if one can show

[Fy lwen(s, ) < C, (10.58)

we are done. Notice that we are considering the natural extension of the vector field to y; < 0
by 0.

We are going to use the product rule result ([34, Section 5.3.7] or [19, Theorem 3]) that
already appeared in (| several times throughout the proof. Let us restate it here:

If hy € WP ﬂL‘H( ) and hg € W9 N LP2(By), then hihy € W*P(By,4), with s € (0,1)

and1> 171+172 q—1+—>0 with a bound

Fethzllgen(y ) < € (Morlhyron ey WAl zoa oy + oln iy Whzllwmsacsyy) - (1059)

Thanks to this result and the regularity of the Jacobian matrix J, it immediately follows
that it is enough to bound the W*P(Bs,,) norm of E"(¢(y)) for some a > 0, p > 1. We
recall

E"(¥(y)) = B (y) = —7g (b(y)) /Q VoG (0(y), 2)pf (2) dz =: =7 (b(y) E™ (1).

By definition of the change of variables, notice that TC” (W(y)) = 7(¢; 1), and it is a
sequence in n approximating the Heaviside step function in the direction y;. In particular, it
is easy to check that

[ (Cn )] 5P(B3)4) <C,

for some C' independent of n, provided sp < 1. On the other hand, by Young’s inequality and
(10.56) it is easy to check that E% & L. fory < d%‘ll. Thus, putting all together and using

(10.59)), we can check that it will be enough to bound [E‘S"]Ws,p(Bg/U for some 0 < s < é and
L<p<g 1d+sd

A simple computation shows that, if H(y fQ z) dz, then
[Hlwsw(p) < HP”LP(Q) sup [K(vz)]ww(By (10.60)
ze

Indeed, using Holder’s inequality and Fubini’s theorem,

K(y1, z) — K(ys, dz|?
[H:I%/s,p(B) S/ ‘fQ’ (yl Z) (gd/i Z)|p(Z) Z‘ dyl dyg
BxB |y — y2|ttsP
1 f K (y1,2) — K(y2,2)|Pp(2) dz
< /B el = Ay > < o]0y U0 LK, 2 gy



68 XAVIER FERNANDEZ-REAL
Notice that

£ = [ (=) 9,60 0t as+

n

(10.61)
1 (o) ==\ dly) -2 e s

We start by taking K(y,z) =7 (W) V.Ga(¥(y), z) in (10.60). Using again (10.59)) and
noticing that the first term involving 7 belongs to WP (B;) independently of n for 5p < 1 (as
before for the approximations of the Heaviside function), we need to bound

[VaGa(¥(), 2)lwsw(y)

independently of z, for some s > 0 and p > 1. By the equivalence of Sobolev and Besov spaces
for fractional order derivatives we have

VaGa(), Mwes(s) < ClV2Ca((),2)]p; (5

1
<C (/0 71 qup [/B IV.Ga((y + h), 2) — VoGa(¥(y), 2)[P dy] dt)

|h|<t

Now, thanks to Lemma (vi) and the bound on the Jacobian of the change of variables, for
any « € (0,1) there is a constant C' depending only on d, €, and «, such that

[VoGa(¥(:), 2)lwsw(py) <
1
—sp—1 pa _ |1-d—a _ J|1-d—« 4
gc(/ot g | [ (1) - A0 4 foty) )dy}dt)

1
1 1
<C (/ la—s)p—1 [/ |y|P—Pd—re dy] dt) ! ’
0 Bi

which is going to be bounded if 1 > a > s and p < ﬁi_l < #‘;_1.

On the other hand, we can also take K(y, z) = i?’ (Iw(zgi—Z\) ﬁgzg:;GQ(d)(y), z) to com-

plete the bound from (|10.61f). In this case, proceeding via the Besov seminorm as before, and
by means of the triangular inequality, we obtain
[K(, 2)lwer(my) <

1
—1 —sp—1 L (1(y+h) - Z‘) _ /<|¢(y) — Z’)
<6, (/o t |§L1‘l£t [/Bl T <5n T 5
1
—1 —sp—1 —/ W}(y) B Z|>
cont( [ [ [P

=1I,+11,.

B =

lGalvty+ .2 ] )

hSA

| Galw(y+ 1), 2) - Gal(y), o o] i)

B =

RSA
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In order to bound I,, we start by noticing that 7 is smooth and, in particular, C% for g € [0, 1].

For a B to determined, and using the bounds on the Green function, we have
1

P

1
05t ([ et o5 [ (Gatu(w). 2P dy
0 |h|<t Ds,,

1 1
1 1 >
<cs / ¢(f—lp1 / Wy dyar | < ool ( / t(ﬁ_s)p_ldt)p,
0 Bas,, 0

where Ds, denotes the set where 7 (8, !|¢(y + h) — z|) — 7 (6, *[¢(y) — 2|) is non-zero, and
where we are using all the time that the change of variables v is regular. If we want this last
term to be bounded we need > s and 1 —d+d/p— 3 > 0; that is, p < ﬁ. By choosing
s < 8 <1 we can choose p > 1 and we are done.

Using a similar method, in this case via Lemma (v), we can bound 11, as

P

1
I1, <Cs;t / t=*P~1 sup |h|pa/ ly| 4= qy dt
0 |h|<t Basn,

1
) 1
< O§Lmd—atd/p ( / #la=s)p=1 dt) "
0

which is going to be bounded if « > s and p < ﬁ. As before, it is enough for us to
choose s < a < 1 to get the desired result. This completes the proof of the second stability

condition, ((10.31)).
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