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Abstract. We study rigidity/flexibility properties of global solutions to the thin
obstacle problem. For solutions with bounded positive sets, we give a classification
in terms of their expansions at infinity. For solutions with bounded contact sets,
we show that the contact sets are highly flexible and can approximate arbitrary
compact sets.

These phenomena have no counterparts in the classical obstacle problem.

1. Introduction

The classification of global solutions, namely, solutions in the entire space, is a
central theme in geometry and analysis. In the setting of the classical obstacle
problem, this question has been studied for over 90 years.

It first arose in the context of null quadrature domains [23, 32]. In three dimen-
sions, it was shown that compact contact sets of global solutions must be ellipsoids
[7, 25]. This result, still under the compactness assumption, was later extended to
all dimensions [6, 21]. A short proof can be found in [12].

Without the compactness assumption, global solutions were first classified in the
plane [29], where it was shown that the contact set must either be an ellipsoid or a
limit of ellipsoids. Recently, a similar classification was achieved, first in dimensions
n ≥ 6 [11], and then in all dimensions [9].

In this work, we study global solutions to the thin obstacle problem. When posed
in Rn+1, it takes the form:

u ≥ 0 on {xn+1 = 0},
∆u = 0 in Rn+1 \ {xn+1 = 0, u = 0},
∆u ≤ 0 in Rn+1,

u(x′, xn+1) = u(x′,−xn+1) in Rn+1,

(1.1)

where we have denoted

x = (x′, xn+1) ∈ Rn × R.
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In this setting, we say that

Λ(u) = ({u = 0} ∩ {xn+1 = 0})× {0}
is the contact set ; its boundary in the relative topology of Rn is the free boundary,
namely,

Γ(u) = ∂Rn({u > 0} ∩ {xn+1 = 0})× {0};
and the positivity set is

({u > 0} ∩ {xn+1 = 0})× {0}.
The thin obstacle problem is a classical free boundary problem, originally studied

by Signorini in the context of linear elasticity [33, 34, 24]. The same equations arise
in various settings, including biology, fluid mechanics, and finance [8, 26, 5, 28, 14].
In the last two decades, the problem has also been extensively investigated within the
mathematical community; see, for example, [3, 1, 2, 22, 18, 4, 15, 20, 30, 31, 17, 19]
and references therein. For a general introduction to the topic, we refer to [27, 14].

Unlike the classical case, the classification of global solutions to the thin obstacle
problem remains incomplete. A major difference lies in the rate of growth of a
solution at infinity. For the classical obstacle problem, solutions grow quadratically.
For the thin obstacle problem, however, solutions can have different rates of growth.

Despite this, in [10] the authors established a bijective correspondence between
global solutions with compact contact sets and their polynomial approximation at
infinity. For solutions with quadratic growth, they showed that compact contact
sets are convex. Still under the assumption of quadratic growth, Eberle and the
second author proved that compact contact sets are ellipsoids [13].

The approach in [13] relies heavily on the approximation of the thin obstacle
problem by the classical obstacle problem. This is only possible for solutions with
quadratic growth. Addressing solutions solutions with general growth requires new
techniques specific to the thin obstacle problem.

In this work, we study solutions with general a growth rate and observe behaviors
that have no analogue in the classical obstacle problem.

More precisely, we identify two distinct types of behavior that illustrate the rich-
ness of global solutions in the thin setting. First, we characterize the set of global
solutions with bounded positivity set (a phenomenon that cannot happen in the
classical obstacle problem). Second, we show that even for compact sets, dropping
the quadratic growth assumption allows highly flexible contact sets. In particular,
this resolves a conjecture from [10] on the nonconvexity of compact contact sets for
superquadratic solutions.

1.1. Global solutions with bounded positivity set. We say that a function
u : Rn+1 → R has polynomial growth if there exists some m ∈ N such that∥∥∥∥ u(x)

1 + |x|m

∥∥∥∥
L∞(Rn+1)

< +∞. (1.2)

The smallest m for which (1.2) holds is the order of the polynomial growth of u.
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The main result in [10] establishes the correspondence between global solutions to
(1.1) with polynomial growth and compact contact sets, and even (in xn+1) harmonic
polynomials p with bounded negative set on {xn+1 = 0}; see Section 5 below.

In this work, by contrast, we provide a correspondence between global solutions
to (1.1) with polynomial growth and bounded positivity set, and odd (in xn+1)
polynomials p that vanish on the thin space, and whose normal derivative ∂n+1p at
{xn+1 = 0} has a bounded negative set on the thin space. In particular, we show the
existence of a broad family of global solutions with bounded positivity set. Unlike
the compact contact set case, this phenomenon is exclusive to the thin setting.

Let Pn+1 denote the set of polynomials in Rn+1. If we define

Po
n+1 :=

{
q ∈ Pn+1 : ∆(xn+1q) = 0, q is even in xn+1

{q(x′, 0) < 0} is compact

}
,

then we have the following result:

Theorem 1.1. For n ≥ 2, let u be a global solution to (1.1) with polynomial growth.
Then, the positivity set {u > 0, xn+1 = 0} is bounded if and only if

|u(x) + |xn+1|q(x) | → 0 as |x| → ∞, (1.3)

for some q ∈ Po
n+1.

Moreover, given any q ∈ Po
n+1, there is a unique u solution to (1.1) such that

(1.3) holds.

We remark again that such type of behaviour has no analogue for the classical
setting.

1.2. Flexibility of compact contact sets. We turn to global solutions with com-
pact contact sets. It is conjectured in [10, Remark 2] that such sets need not be
ellipsoids—or, in the context of their paper, convex—at least for solutions with
superquadratic growth.1

It is not difficult to construct examples supporting this conjecture: one can pro-
duce solutions whose contact set is disconnected (see Lemma 5.1), or even not simply
connected (see Lemma 5.2). In fact, as soon as we move to the lowest superquadratic
order, namely, m = 4, the contact set can depart from convexity or ellipsoidal ge-
ometry.

For instance, we prove the following:

Lemma 1.2. There exists a global solution to (1.1) with polynomial growth (1.2)
and m = 4 whose contact set is compact, nonconvex, and star-shaped.

We achieve this through a more general result, showing that solutions to the thin
obstacle problem with compact contact sets can have them to be arbitrarily close
(in Hausdorff distance) to the zero level set of a polynomial.

Proposition 1.3. Let n ≥ 2. Let f ∈ Pn with f ≥ 0 and degree m ≥ 2. Then:

1For solutions with exactly quadratic growth, such a statement would be false, as shown in [13].
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(i) For any ε > 0 there exists a global solution u to (1.1) with polynomial growth
(1.2) of order m, whose contact Λ(u) set satisfies

({f = 0} × {0}) ∩B1 ⊂ Λ(u) ⊂ {(x′, 0) ∈ Rn+1 : dist(x′, {f = 0}) ≤ ε} ∩BR,

for some constant R > 1 depending only on n.
(ii) For any ε > 0 there exists a global solution u to (1.1) with polynomial growth

(1.2) of order mε depending on ε, whose contact Λ(u) set satisfies

({f = 0} × {0}) ∩B1 ⊂ Λ(u) ⊂ {(x′, 0) : dist(x′, {f = 0}) ≤ ε} ∩B1+ε.

Remark 1.4. In part (i), if the polynomial f is m-homogeneous, the global solution
u satisfying (2.2) for some p can be taken with p = ph−cf , for some m-homogeneous
polynomial ph, and a constant cf .

As a consequence, we show that compact contact sets exhibit no rigidity at all if
one allows arbitrarily large growths. They can approximate any compact set K in
the following sense:

Theorem 1.5. Let n ≥ 2. Let K ⊂ {xn+1 = 0} be any compact set. Then, for any
ε > 0 there exists a solution u = uε to (1.1) with polynomial growth such that

K ⊂ Λ(uε) and distH(Λ(uε), K) ≤ ε,

and
distH(Γ(uε), ∂RnK) ≤ ε,

where distH denotes the Hausdorff distance between sets.

Remark 1.6. Equivalently, global solutions to the thin obstacle problem with analytic
obstacles exhibit the same flexibility. Previously, such results were only known in
the setting of C∞ obstacles; see [16, Proposition 5.2].

1.3. Structure of the paper. The paper is structured as follows:
We start with some preliminaries in Section 2. In Section 3 we prove Theorem 1.1.

In Section 4, we prove a characterization of the contact set for cubic solutions, and
pose a conjecture on the shape of positivity contact sets for solutions with cubic
growth. In Section 5 we construct some examples of global solutions with nonconvex
and compact contact set, and prove Lemma 1.2 and Proposition 1.3. Finally, in
Section 6, we prove Theorem 1.5.

2. Preliminaries

Let us start by recalling and proving some preliminary considerations that will be
useful later.

2.1. Notation. In this work, x ∈ Rn+1 and we will denote x = (x′, xn+1) ∈ Rn×R.
Likewise, we denote B′

r(x
′
◦) ⊂ Rn the ball of radius r > 0 centered at x′

◦ ∈ Rn in
dimension n, and Br(x◦) ⊂ Rn+1 the analogue in dimension n+ 1.

Finally, it will be convenient to define the following one-sided normal derivative,
for a given function u : Rn+1 → R, and a given point x = (x′, 0) ∈ Rn+1∩{xn+1 = 0}:

∂+
n+1u(x) = lim

xn+1→0+
∂n+1u(x

′, xn+1). (2.1)
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2.2. Classification of global solutions with compact contact set. As already
mentioned in the introduction, the main result in [10] establishes the correspondence
between global solutions to (1.1) with polynomial growth and compact contact sets,
and even (in xn+1) harmonic polynomials p with bounded negative set on {xn+1 = 0}.

That is, let us denote

Pe
n+1 :=

{
p ∈ Pn+1 : ∆p = 0, p is even in xn+1,

{p(x′, 0) < 0} is compact

}
.

Then, [10, Theorem 1] states that a global solution u to (1.1) with polynomial
growth has compact contact set if and only if

|u(x)− p(x)| → 0 as |x| → ∞, for some p ∈ Pe
n+1. (2.2)

Moreover, given any p ∈ Pe
n+1 one can construct a unique u solution to (1.1) with

|u(x)− p(x)| → 0 as |x| → ∞.
More precisely, we have (see also the Appendix in [13]):

Theorem 2.1 ([10]). Let n ≥ 2, and let u be a solution to (1.1) with polynomial
growth and compact contact set. Then, there is a unique polynomial p ∈ Pe

n+1 such
that

u(x) = up(x) = p(x) + vp(x), (2.3)

where vp(x) is the unique solution to the thin obstacle problem with obstacle equal
to −p:

vp ≥ −p on {xn+1 = 0}
∆vp = 0 in Rn+1 \ {xn+1 = 0, u = −p}
∆vp ≤ 0 in Rn+1

vp(x
′, xn+1) = vp(x

′,−xn+1) in Rn+1

vp(x) → 0 as |x| → ∞.

(2.4)

Conversely, for any p ∈ Pe
n+1 we have that (2.3) defines a solution to (2.4) with

bounded contact set.

Notice that, in the previous statement, the contact set of u is the same as the
contact set of vp, which is the set ({vp = −p} ∩ {xn+1 = 0})× {0}.

It is then further shown that a global solution to (1.1) with compact contact set
and quadratic growth is necessarily convex (in the directions of the thin space), and
in particular, the contact set is convex. In [13] it is then proved that, in that case,
the contact set must be an ellipse. It is finally conjectured that, such a convexity
is lost with higher-order growths (and in particular, it can fail at quartic growth
already).

2.3. Comparison principle. We also recall the following comparison principle for
solutions to the thin obstacle problem (see, for example, [10, Lemma 5]):
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Lemma 2.2. Let U be a bounded domain, even in xn+1, let φ ∈ C(U ∩{xn+1 = 0}),
and let v1, v2 ∈ C(U) be two (viscosity) solutions to

vi ≥ φ on U ∩ {xn+1 = 0}
vi(x

′, xn+1) = vi(x
′,−xn+1) in U

∆vi ≤ 0 in U
∆v1 = 0 in U \ {xn+1 = 0, v1 = φ},

(2.5)

for i = 1, 2, such that

v1 ≤ v2 on ∂U.

Then,

v1 ≤ v2 in U.

As a consequence of the previous result, we get the comparability of global solu-
tions to the thin obstacle problem:

Corollary 2.3. Let φ ∈ C({xn+1 = 0}), and let v1, v2 ∈ C(Rn+1) be two global
(viscosity) solutions to

vi ≥ φ on Rn+1 ∩ {xn+1 = 0}
vi(x

′, xn+1) = vi(x
′,−xn+1) in Rn+1

∆vi ≤ 0 in Rn+1

∆v1 = 0 in Rn+1 \ {xn+1 = 0, v1 = φ},

(2.6)

for i = 1, 2. Let us suppose, moreover, that

lim inf
|x|→∞

(v2 − v1)(x) ≥ 0.

Then,

v2 ≥ v1 in Rn+1.

Proof. By assumption,

inf
Rn+1\BR

(v2 − v1) ≥ −ωR for all R > 0,

for some ωR ↓ 0 as R → ∞.
We therefore can apply Lemma 2.2 to the functions v1 and v2 +ωR, which satisfy

(2.5) with U = BR, to deduce

v2 + ωR ≥ v1 in BR.

Letting R → ∞ we obtain the desired result. □

3. Proof of Theorem 1.1

Let us start by proving the result on the classification of global solutions with
bounded positivity set. Before that, we state and prove the following Liouville-type
result for exterior domains:
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Lemma 3.1. Let n ≥ 3, and let u : Rn → R be a function with polynomial growth
of order m (recall (1.2)) such that

∆u = 0 in Rn \B1.

Then, there exists a polynomial p of order m such that

|u(x)− p(x)| = O(|x|2−n)

|∇u(x)−∇p(x)| = O(|x|1−n).

Moreover, if u is odd (resp. even) with respect to x1, then p is odd (resp. even) with
respect to x1 as well.

Proof. Let φ ∈ C∞(R+) such that φ ≥ 0, φ(t) ≡ 1 for t ≥ 3, φ ≡ 0 for t ∈ (0, 2).
Then, take

ū(x) = φ(|x|)u(x) for x ∈ Rn.

Since ∆u = 0 in Rn \ B1, u is smooth there, and ū ∈ C∞(Rn), with ū ≡ u in
Rn \ B3 and ū ≡ 0 in B2. Moreover, if u is odd/even with respect to a coordinate,
so is ū.

Let
f(x) := ∆ū(x),

so that f ∈ C∞
c (B3). If Γn(x) denotes the fundamental solution to the Laplace

equation in Rn, we can define
wf := Γn ∗ f,

which satisfies{
∆wf = f in Rn,

|wf (x)| ≤ C∥f∥L∞(B3)|x|2−n for all x ∈ Rn,

since f is compactly supported and thanks to the decay of Γn(x). Furthermore, wf

has the same odd/even symmetries as ū and u.
Thus, ū− wf is a globally defined harmonic function with polynomial growth of

order m. By the classical Liouville theorem, there exists a harmonic polynomial p
of degree m such that ū− wf = p, and therefore,

|ū(x)− p(x)| = O(|x|2−n).

Since u = ū in Rn \ B3 this proves the first equation, and by classical harmonic
estimates applied in B|x|/2(x) we obtain the second equation. □

We can now proceed with the proof of Theorem 1.1:

Proof of Theorem 1.1. Let us divide the proof into four steps.
We show first that, given q ∈ Po

n+1, there is a unique solution to (1.1) such that
(1.3) holds and it has bounded positivity set {u > 0, xn+1 = 0}. In the last step, we
show the converse implication.

Step 1. The uniqueness of the solution follows from Corollary 2.3: if there were
two global solutions for which (1.3) holds for the same q, denoted u1 and u2, then
by triangle inequality

∥u1 − u2∥L∞(Rn+1\BR) → 0 as R → ∞,
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and thanks to Corollary 2.3 (applied for both (v1, v2) = (u1, u2) and (v1, v2) =
(u2, u1)) we get u1 = u2.

Step 2. Let us now prove the existence of a global solution, that will arise by
compactness of the sequence uR as R → ∞, where uR is the solution to

uR ≥ 0 on BR ∩ {xn+1 = 0}
∆uR = 0 in BR \ {xn+1 = 0, uR = 0}
∆uR ≤ 0 in BR

uR(x) = −|xn+1|q(x) for x ∈ ∂BR.

Indeed, since ∆uR = ∆(xn+1q) = 0 in B+
R = BR ∩ {xn+1 > 0} and uR ≥ 0 on

BR ∩ {xn+1 = 0}, by maximum principle and even extension we have

−|xn+1|q ≤ uR in BR.

On the other hand, let us suppose that {q(x′, 0) < 0} ⊂ Bρ, for some ρ ≥ 1, and
consider φ ∈ C∞

c (Bρ+1) a radial test function with φ ≥ 0 and φ ≡ 1 in Bρ, and Φ
to be a global solution to the thin obstacle problem with obstacle φ vanishing at
infinity (constructed, for example, by Perron’s method2):

Φ ≥ φ on {xn+1 = 0}
∆Φ = 0 in Rn+1 \ {xn+1 = 0, u = φ}
∆Φ ≤ 0 in Rn+1

Φ(x′, xn+1) = Φ(x′,−xn+1) in Rn+1

Φ(x) → 0 as |x| → ∞.

(3.1)

Then, by construction, 0 ≤ Φ ≤ 1 in Rn+1, ∂+
n+1Φ ≤ 0 on {xn+1 = 0} (recall (2.1)),

and by Hopf’s lemma, ∂+
n+1Φ ≤ −cρ < 0 on {xn+1 = 0} ∩ Bρ for some cρ > 0. In

particular, since we must have q ≥ −Cq > −∞ on {xn+1 = 0} and q ≥ 0 on
{xn+1 = 0} \Bρ, there exists some κ depending on Cq and ρ such that

−q(x) + κ∂+
n+1Φ ≤ 0 on {xn+1 = 0}.

(We can take κ = Cq/cρ.) This means that ∂+
n+1 (−xn+1q(x) + κΦ) ≤ 0 on {xn+1 =

0}, it is harmonic on {xn+1 ̸= 0}, and smooth on {xn+1 = 0}. Hence, −|xn+1|q(x)+
κΦ is a supersolution, above uR on ∂BR, and thus

uR ≤ −|xn+1|q + κΦ in BR.

In all, we have

−|xn+1|q ≤ uR ≤ −|xn+1|q + κΦ in BR

for any R ≥ 1. We can now take R → ∞, and by compactness uR converges to
a global solution to (1.1) u, with −|xn+1|q ≤ u ≤ −|xn+1|q + κΦ in Rn+1, and
therefore, |u + |xn+1|q(x)| → 0 as |x| → ∞ (since Φ(x) → 0 as |x| → ∞). By the
previous step, moreover, u is unique.

Step 3. Let us finish this first implication by showing that u has compact positivity

2That is, Φ is the least supersolution above the obstacle on the thin space and nonnegative at
infinity.
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set on {xn+1 = 0}. Observe first that, since ∂+
n+1u(x

′, 0) ≤ 0, and u ≥ −|xn+1|q in
Rn+1, if we had u(x◦) = 0 at some x◦ ∈ {xn+1 = 0} ∩ {q < 0}, then we would have

0 ≥ ∂+
n+1u(x

′
◦, 0) ≥ −q(x◦) > 0,

a contradiction. Thus, u > 0 on {q < 0} ∩ {xn+1 = 0}, and if {q < 0} ∩ {xn+1 =
0} ≠ ∅, then u is not identically zero on the thin space.

Let now x◦ ∈ {xn+1 = 0} with |x◦| ≥ R◦ + 1, where R◦ > 0 depending only on q
is large enough so that κΦ ≤ 1

2n
and q ≥ 1 in Rn+1 \BR◦ (where Φ and κ are defined

in the previous step). Let us consider a cylinder around x◦,

Q(x◦) := {x ∈ Rn+1 : |xn+1| < 1, |x′ − x′
◦| ≤ 1}.

We will show that u(x) ≤ ξ(x) := −|xn+1|q(x) + |xn+1| − 1
2
x2
n+1 +

1
2n
|x′ − x′

◦|2 for
x ∈ Q(x◦). Indeed, first notice that since q ≥ 1 in Q(x◦), we have

∆ξ = (−2q(x) + 2)Hn({xn+1 = 0}) ≤ 0 in Q(x◦),

and ξ is a supersolution. On the other hand, we have u ≤ −|xn+1|q + κΦ ≤
−|xn+1|q + 1

2n
≤ ξ on ∂Q(x◦).

Since u is a solution to the thin obstacle problem in Q(x◦), the comparison prin-
ciple, Lemma 2.2, implies u ≤ ξ. In particular, 0 ≤ u(x◦) ≤ ξ(x◦) = 0, and
x◦ /∈ {u > 0} ∩ {xn+1 = 0}. Since x◦ was arbitrary in BR◦ ∩ {xn+1 = 0}, we deduce
that Rn+1 \ BR◦ ⊂ {u = 0, xn+1 = 0} for some R◦ > 0, and {u > 0, xn+1 = 0} is
bounded.

Step 4. Let us finally show that if u is a global solution with bounded positivity
set, then (1.3) holds for some q ∈ Po

n+1.
Indeed, let {u > 0, xn+1 = 0} ⊂ Bρ/2 ⊂ Bρ. Then, u ≡ 0 on {xn+1 = 0} \ Bρ/2,

and the odd extension

uo(x) :=

{
u(x) if xn+1 ≥ 0
−u(x) if xn+1 < 0,

satisfies

∆uo = 0 in Rn+1 \Bρ/2,

and still has polynomial growth of order m ∈ N, (1.2). By Lemma 3.1, there exists
some harmonic polynomial q̄, such that

|uo(x)− q̄(x)| = O(|x|1−n)

|∇uo(x)−∇q̄(x)| = O(|x|−n).

Moreover, since uo is odd in xn+1, so is q̄ = xn+1q (for some q even in xn+1 and of
degree m− 1), and we also have

|u(x) + |xn+1|q(x)| = O(|x|1−n)

|∂n+1u(x) + ∂n+1(|xn+1|q(x))| = O(|x|−n),

where q is a polynomial even in xn+1 and such that xn+1q is harmonic. Finally, if
{q < 0, xn+1 = 0} is not bounded, being q a polynomial of degree at most m− 1 on
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{xn+1 = 0} we must have a sequence xk ∈ {q < −1, xn+1 = 0} with |xk| → ∞, and
so by the previous estimate

0 ≥ ∂+
n+1u(xk) ≥ −q(xk)− C|xk|−n ≥ 1

2

for k large enough, reaching a contradiction. Thus, {q < 0, xn+1 = 0} is bounded,
and q ∈ Po

n+1. □

4. A conjecture on cubic solutions

Let us observe that, in the previous setting, we can give a characterization of
solutions with compact positivity set when the polynomials q have a specific form.
(See Lemma 5.3 below for a counterpart for global solutions with compact contact
set.)

Lemma 4.1. Let n ≥ 2. Let q ∈ Po
n+1 be of the form q = qh − 1 for some

homogeneous polynomial qh of order m ≥ 2. Then, the solution u to (1.1) given by
Theorem 1.1 with |u(x)+|xn+1|q(x) | → 0 as |x| → ∞ has a bounded and star-shaped
positivity set.

Proof. Let ur := r−m−1u(r · ) for some r ≥ 1. Then ur is a global solution to (1.1)
such that |ur+ |xn+1|qr | → 0 as |x| → ∞, where qr(x) = r−mq(rx) = qh(x)− r−m ≥
q(x), since r ≥ 1. In particular, ur ≥ u and we have

{ur = 0, xn+1 = 0} =
1

r
{u = 0, xn+1 = 0} =

1

r
Λ(u) ⊂ Λ(u) for all r ≥ 1.

That is, {xn+1 = 0} \ Λ(u) is star-shaped at the origin. □

In particular, the previous result applies to the case of global cubic solutions with
compact positivity set: in such a situation, the positivity set is necessarily star-
shaped at some point. This is the only characterization of the positivity set for
global cubic solutions available at the moment, under the assumption of having a
bounded positivity set. We conjecture the following:

Conjecture 4.2. Let u be a global solution to the thin obstacle problem (1.1) with
cubic growth and a bounded positivity set on the thin space. Then, the positivity set
on the thin space is convex, or more specifically, it is an ellipsoid.

5. A nonconvex compact contact set

In [10, Remark 2] it is conjectured that, for general growths, not all compact
contact sets are convex. Let us show its validity by means of the following simple
example, obtained using Theorem 2.1: we immediately have that one can construct
solutions with quartic growth where the contact set is not connected (and in partic-
ular, not convex).

Lemma 5.1. There exists a global solution to (1.1) with polynomial growth (1.2)
and m = 4 whose contact set is compact and nonconvex.
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Figure 1. Representation of the thin space in the counter-example
constructed in Lemma 5.1 for n = 2, where the greyed area corre-
sponds to the contact set {u = 0}.

Proof. Let p̄ ∈ Pn be defined by

p̄(x′) = p̄(x′′, xn) = 8|x′′|2 + 8(x2
n − 1)2 − 1,

and consider p ∈ Pn+1 to be its harmonic extension towards Rn+1. Let vp be the
corresponding solution to (2.4) in Theorem 2.1 (in particular, vp ≥ 0 in Rn+1). Then,
since vp is the least supersolution above the obstacle (alternatively, by Lemma 2.2
with vp and the constant function 1), and ∅ ̸= {−p > 0, xn+1 = 0} ⊂ B1/2(en) ∪
B1/2(−en), we must have (also by symmetry in xn)

{vp = −p, xn+1 = 0} ∩B1/2(en) ̸= ∅ and {vp = −p, xn+1 = 0} ∩B1/2(−en) ̸= ∅.

In all, the contact set of vp is disconnected and bounded, and in particular, it is
compact and nonconvex. See Figure 1. □

The previous is a simple example that exploits the fact that the negativity set of
a polynomial can be disconnected when the order is higher or equal than 4. Still,
each of the connected components in the previous example is convex. Let us show
that this is not needed:

Lemma 5.2. There exists a global solution to (1.1) with polynomial growth (1.2)
and m = 4 whose contact set is compact and has a connected component that is
nonconvex.

Proof. In the previous proof, take

p̄(x′) = 4(|x′|2 − 1)2 − 1

instead. By rotational symmetry, the contact set has a connected component that
is an annulus around the origin. See Figure 2. □

Again, the previous example is not very satisfactory. One could conjecture that
nonconvexity is achieved by either taking unions of convex components, or by re-
moving convex sets from already convex contact sets. Let us show, by proving
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x
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Figure 2. Representation of the thin space in the counter-example
constructed in Lemma 5.2 for n = 2, where the greyed area corre-
sponds to the contact set {u = 0}.

Lemma 1.2, that this is not the case, and we can in fact construct counter-examples
that are simply connected.

Before constructing it, we first state and prove the following independent lemma
(cf. Lemma 4.1):

Lemma 5.3. Let n ≥ 2. Let p ∈ Pe
n+1 be of the form p = ph − 1 for some

homogeneous polynomial ph of order m ≥ 2. Then, the solution u to (1.1) with
|u(x)− p(x)| → 0 as |x| → ∞ has a compact and star-shaped contact set.

Proof. Let ur := r−mu(r · ) for some r ≤ 1. Then ur is a global solution to (1.1)
such that |ur − pr| → 0 as |x| → ∞, where pr(x) = r−mp(rx) = ph(x)− r−m ≤ p(x),
since r ≤ 1. In particular, ur ≤ u and we have

{ur = 0, xn+1 = 0} =
1

r
{u = 0, xn+1 = 0} =

1

r
Λ(u) ⊃ Λ(u) for all r ≤ 1.

That is, Λ(u) is star-shaped at the origin. □

Lemma 1.2 follows, in fact, from the much more general statement in Proposi-
tion 1.3, which says that compact contact sets of global solutions can be arbitrarily
close to zero level sets of polynomials, and we prove next, after the following pre-
liminary lemma:

Lemma 5.4. Let n ≥ 2. Let vk be the global solution to (2.4) with p(x) =
pk(x

′, xn+1) = |x′|k − 1. Then,

B1−cn,k
∩ {xn+1 = 0} ⊂ {vk = −pk, xn+1 = 0} ⊂ B1 ∩ {xn+1 = 0}, (5.1)

for some constant cn,k depending only on n and k such that cn,k ↓ 0 as k → ∞.

Proof. The second inclusion in (5.1) is clear, since −pk ≤ 0 in Bc
1 ∩ {xn+1 = 0}. On

the other hand, the first inclusion always holds for some cn,k > 0, since the solution
has rotational symmetry in the thin space and the contact set is star-shaped by
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Lemma 5.3. Let us quantify the value of cn,k. In order to do it, we will bound the
solution vk from above by appropriate barriers.

Let us define, for A ≥ 0 and t ≥ 0,

ΓA,t(x) := A|x|1−n + t,

which is harmonic outside of the origin, and nonnegative at infinity for t ≥ 0. Then,
ΓA,t ≥ vk for t ≥ 1, and we can slide it from above by decreasing t until we touch
the solution vk:

t∗ = t∗(A, k) := min{t > 0 : ΓA,t ≥ vk in Rn+1}.
Then, if t∗ > 0, ΓA,t∗ and vk are tangent at a point x∗ (with x∗ = 0 if and only if

A = 0). By the strong maximum principle, vk cannot be harmonic around x∗, and
x∗ ∈ {vk = −pk, xn+1 = 0}, that is, x∗ belongs to the contact set. Hence, we have
that the set

Sk :=

{
x ∈ Rn × {0} :

ΓA,t ≥ −pk on {xn+1 = 0} and ΓA,t(x) = −pk(x)
for some A ≥ 0, t > 0.

}
is contained in the contact set,

Sk ⊂ {vk = −pk, xn+1 = 0}. (5.2)

We immediately have that 0 ∈ Sk, taking A = 0 and t = 1. Moreover, we also have
that x∗ ∈ {xn+1 = 0} with |x∗| = ρ > 0 is such that x∗ ∈ Sk if and only if

g(r) := Ar1−n + t− 1 + rk ≥ 0 for r > 0, and g(ρ) = 0,

for some A > 0 and t ≥ 0. The minimum of g, r̄, is achieved when g′(r̄) = 0, that
is,

r̄ =

(
(n− 1)A

k

) 1
n+k−1

.

Then, we can take ρ = r̄ if and only if g(r̄) = 0 for some A > 0 and t ≥ 0. Given A,
t is immediately fixed by g(r̄) = 0, and we get the condition

t = 1− r̄k − Ar̄1−n = 1−
(
κ− κ

κ+1 + κ
1

κ+1

)
A

κ
κ+1 ≥ 0,

where κ = k
n−1

. This gives a condition on A, which can be equivalently written in
terms of r̄ as

r̄ ≤ ρ̄(k, n) := κ− 1
(n−1)(κ+1)

(
κ− κ

κ+1 + κ
1

κ+1

)− 1
(n−1)κ

< 1, κ =
k

n− 1
. (5.3)

Thus, we have that x∗ ∈ Sk if and only if |x∗| ≤ ρ̄(k, n), and thanks to (5.2) we
get that (5.1) holds with cn,k := 1 − ρ̄(n, k). Finally, from (5.3) we get cn,k ↓ 0 as
k → ∞. □

Thanks to the previous result, we get:

Proof of Proposition 1.3. We will construct solutions vp to (2.4) for some p ∈ Pe
n+1,

so that our desired solution is up = vp + p.
Let vk be the global solution to (2.4) constructed in Lemma 5.4, and let ρ̄(n, k) =

1− cn,k. Let wk be the rescaling wk(x) = vk(x/ρ̄(k, n)), that is, the global solution
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Figure 3. Representation of the thin space in the counter-example
constructed in the proof Lemma 1.2 for n = 2, where the greyed
area corresponds to the contact set {u = 0}, and the blacked lines
correspond to the zero level set of q(x, y) in a ball. (This is, in fact, a
numerical representation in MatLab of the corresponding setting.)

to (2.4) with p = pk(·/ρ̄(n, k)), where without loss of generality we take pk to be the
harmonic extension of |x′|k − 1 towards Rn+1. By Lemma 5.4 rescaled, and taking
k even (so that p is polynomial), we get

B1∩{xn+1 = 0} ⊂ {wk = −pk(·/ρ̄(k, n)), xn+1 = 0} ⊂ B1/ρ̄(n,k)∩{xn+1 = 0}. (5.4)

We claim that our desired solution is uβ := vsβ + sβ, where vsβ is the solution to
(2.4) with p = sβ and

sβ(x) := pk(x/ρ̄(n, k)) + βfext(x),

for some β > 0 large enough, where we have denoted by fext ∈ Pn+1 the (even)
harmonic extension of f towards Rn+1. Indeed, since sβ ≥ pk(·/ρ̄(n, k)), then wk is
a supersolution for the problem with obstacle sβ, and vsβ = −sβ in B1 ∩ {xn+1 =
0} ∩ {fext(x) = 0}. That is,

({f = 0} × {0}) ∩B1 ⊂ {uβ = 0} ∩ {xn+1 = 0}.

On the other hand, for any ε > 0 there exists some β > 0 large enough so that

sβ(x) > 0 in {(x′, 0) ∈ Rn+1 : dist(x′, {f = 0}) > ε}

(since f ≥ 0), and together with (5.4) gives, for this β,

{uβ = 0} ∩ {xn+1 = 0} ⊂ {(x′, 0) ∈ Rn+1 : dist(x′, {f = 0}) ≤ ε, |x′| ≤ 1/ρ̄(n, k)}.

By choosing k = 2 we get the first result, with R = 1
ρ̄(n,2)

, which is explicit, (5.3).

Notice, also, that to get Remark 1.4 we can take k = m (which is even, since f ≥ 0),
in which case the constant R also depends on m.

Finally, in order to get the second part of the statement, we simply observe that
taking k large enough we can make sure that 1

ρ̄(n,k)
≤ 1 + ε. □
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We can now construct the example from Lemma 1.2, which we represent in Fig-
ure 3:

Proof of Lemma 1.2. Take f(x, y) = x2y2 for n = 2 in Proposition 1.3, and we are
done thanks to Remark 1.4 and Lemma 1.2. □

6. Approximating any compact set

We start by proving the following abstract result on the approximation of level
sets by continuous functions:

Lemma 6.1. Let n ≥ 1. Let g ∈ C(B1) with g > 0 on ∂B1. Then, for any ε > 0
there exists η̄ > 0 such that

distH({g ≤ 0}, {g ≤ η∗}) ≤ ε, for all η∗ ∈ (0, η̄],

and that for any A ⊂ B1 such that {g < η} ⊂ A ⊂ {g ≤ η̄} for some η > 0 we have

distH(∂{g ≤ 0}, ∂A) ≤ ε.

Proof. For the first part, we can take, for example,

η̄ = inf
{x′∈B1:dist(x′,{g≤0})>ε}

g(x′) > 0. (6.1)

For the second part, observe that on the one hand, for any x ∈ ∂A ⊂ {η ≤ g ≤ η̄},
by the first part we have

dist(x, ∂{g ≤ 0}) = dist(x, {g ≤ 0}) ≤ distH({g ≤ η∗}, {g ≤ 0}) ≤ ε.

We now claim that, up to making η̄ smaller, we can also assume that

for all x̄ ∈ ∂{g ≤ 0}, there exists ȳ ∈ Bε(x̄) such that g(ȳ) ≥ 2η̄. (6.2)

Indeed, otherwise we would have a sequence x̄k ∈ ∂{g ≤ 0} → x̄∞ ∈ ∂{g ≤ 0} (since
∂{g ≤ 0} is compact) such that g(y) ≤ 0 for all y ∈ Bε(x̄∞), hence x̄∞ /∈ ∂{g ≤ 0},
a contradiction.

Let x ∈ ∂{g ≤ 0}, and let y ∈ Bε(x) such that g(y) ≥ 2η̄ given by (6.2). Let
xt := (1 − t)x + ty for t ∈ [0, 1]. By assumption, x0 ∈ A and x1 /∈ A. Hence, there
exists τ ∈ [0, 1] such that xτ ∈ ∂A. Since |xτ − x| < ε, we have dist(x, ∂A) ≤ ε. In
all, we have distH(∂A, ∂{g ≤ 0}) ≤ ε, as we wanted. □

We show next that any subzero level set of a polynomial can be approximated by
global solutions with polynomial growth:

Proposition 6.2. Let n ≥ 2. Let f ∈ Pn with {f < 0} compact (or bounded below,
for f nonconstant). Then, for any δ > 0 there exists a solution u = uδ to (1.1) with
polynomial growth such that

{f ≤ −δ} × {0} ⊂ Λ(uδ) ⊂ {f ≤ 0} × {0}.

Proof. Since {f < 0} is compact we have that f is bounded below (they are equiva-
lent, for f nonconstant), and up to multiplying by a constant and rescaling we can
assume

f ≥ −1 in Rn and {f ≤ 0} ⊂ B′
1.
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For each k ∈ N, define the (single-variable) polynomial

p2k(t) := 1−
(
t+ 1

1− δ

)2k

∈ P1.

We know that
f + 1

1− δ
≥ 0 in Rn,

and
f + 1

1− δ
≥ 1 ⇔ f ≥ −δ.

In particular,
p2k(f) ≤ 1 in Rn,

and

p2k(f(x)) ↑ 1 for x ∈ {f < −δ}, as k → ∞,

p2k(f(x)) ≤ 0 for x ∈ {f ≥ −δ}.

That is, p2k(f) is a polynomial with compact positive set in Rn, such that

max{p2k(f(x)), 0} ↑ χ{f<−δ}(x), for x ∈ Rn, (6.3)

where χA denotes the characteristic function of a set A.
We let wk be the monotonically nondecreasing sequence of global solutions to the

thin obstacle problem (2.4) with thin obstacle given by the polynomial −p = p2k(f).
Then, each wk satisfies

0 ≤ wk ≤ 1 in Rn+1 for all k ∈ N, (6.4)

and
Λ(wk) ⊂ {p2k(f) > 0} × {0} ⊂ {f < −δ} × {0} ⊂ {f ≤ 0} × {0}.

They also satisfy, by comparing them with the fundamental solution (thanks to
Lemma 2.2, since p2k(f) ≤ 1 in Rn and p2k(f) ≤ 0 in Rn \B′

1),

wk(x) ≤ |x|1−n for x ∈ Rn+1, (6.5)

so that they all vanish uniformly to zero at infinity.
Notice that p2k(f) is uniformly C1,1

loc in {f < −δ}. More precisely, we have

lim
k→∞

∥p2k(f)− 1∥C2(K′) = lim
k→∞

∥∥∥∥∥
(
f + 1

1− δ

)2k
∥∥∥∥∥
C2(K′)

= 0

for any K ′ ⋐ {f < −δ} =
{

f+1
1−δ

< 1
}
. In particular, by classical C1,α estimates

for the thin obstacle problem, [3], (together with local harmonic estimates), wk

converges in C1
loc in ({f < −δ} × {0})∪{xn+1 ̸= 0} to some w∞ (up to subsequences),

which also satisfies (6.4)-(6.5), and is harmonic in {xn+1 ̸= 0}. Also, from (6.3) we
have w∞ ≡ 1 in {f < −δ} × {0} (and w∞ ̸≡ 1 by (6.5)), and by Hopf’s lemma
∂n+1w∞ < 0 in {f < −δ} × {0}.
Since f is a polynomial and {f ≤ 0} is compact, we know

{f < −2δ} ⋐ {f < −δ},
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and so, the previous Hopf’s lemma actually implies that there exists cδ > 0 with

∂n+1w∞ < −cδ < 0 in {f < −2δ}.
From the local uniform convergence in C1

loc ({f < −δ} × {0}), we obtain that for all
k large enough,

∂n+1wk < −cδ/2 < 0 in {f < −2δ}.
That is, {f < −2δ} × {0} ⊂ Λ(wk) if k is large enough. By renaming 2δ into δ, we
get the desired result with uδ = wk + p̃ and a sufficiently large k, where p̃ denotes
the harmonic extension of −p2k(f) from {xn+1 = 0} towards {xn+1 ̸= 0}. □

As a consequence of the previous results, we obtain the proof of Theorem 1.5:

Proof of Theorem 1.5. Up to a rescaling, we assume K ⊂ B1/4, and denote K =
K ′ × {0}. Let d(x′) = dist(x′, K ′) : Rn → R, which is a 1-Lipschitz continuous
function. Let η̄ be given by Lemma 6.1, which depends only on ε > 0 and K ′

(through the continuous function g(x′) = d(x′) in Rn).
Let p ∈ Pn be a polynomial such that

|p(x′)− d(x′)| ≤ η̄/4, for x′ ∈ B′
1.

Let

Pn ∋ f̄(x′) := p(x′) +

(
3

2
|x′|

)2k

, with k ∈ N.

Then, for k large enough, f̄ > 0 in Rn \B′
1 and

|f̄(x′)− d(x′)| ≤ η̄/3, for x′ ∈ B1/2.

Define, finally,
f(x′) := f̄(x′)− 2η̄/3.

Then, we have
K ′ ⊂ {d ≤ η̄/3} ⊂ {f ≤ 0} ⊂ {d ≤ η̄}.

That is, we have by Lemma 6.1

distH({f ≤ 0}, K ′) ≤ distH({d ≤ 0}, {d ≤ η̄}) ≤ ε,

and, taking A = {f ≤ 0} in Lemma 6.1,

distH(∂K
′, ∂{f ≤ 0}) ≤ ε.

Finally, for any δ > 0 we can find uδ a global solution with polynomial growth,
given by Proposition 6.2 with f − 2δ, such that

{f ≤ δ} × {0} ⊂ Λ(uδ) ⊂ {f ≤ 2δ} × {0}.
We choose δ small enough, given by Lemma 6.1 with g = f , so that

distH({f ≤ 0} × {0},Λ(uδ)) ≤ distH({f ≤ 0}, {f ≤ 2δ}) ≤ ε,

and
distH(∂{f ≤ 0} × {0},Γ(uδ)) ≤ ε.

Thus, we have K ⊂ {f ≤ 0} × {0} ⊂ Λ(uδ), and by the triangle inequality,

distH(Λ(uδ), K) ≤ distH({f ≤ 0}, K ′) + distH({f ≤ 0} × {0},Λ(uδ)) ≤ 2ε,
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and

distH(Γ(uδ), ∂RnK) ≤ distH(∂{f ≤ 0}, ∂K ′) + distH(∂{f ≤ 0} × {0},Γ(uδ)) ≤ 2ε,

Up to renaming 2ε into ε, we get the desired result. □
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