Bounding self-dual L-functions: the Conrey-Iwaniec method revisited

Yongxiao Lin (EPFL)
a joint work with
Ramon Nunes (UFC/MPIM) and Zhi Qi (Zhejiang U.)

KSU Number Theory Seminar
February 16, 2022

Content

- The subconvexity problem
- Pioneering work by Conrey-Iwaniec
- Xiaoqing Li's results revisited
- q-aspect case: a result of Blomer's

L-functions

Given F an automorphic form on GL_{d}, let $\lambda_{F}(n)$ be its associated Hecke eigenvalues. Let

$$
L(F, s)=\sum_{n \geq 1}^{\infty} \frac{\lambda_{F}(n)}{n^{s}}, \Re s \gg 1
$$

be the L-function attached to F. Define the completed L-function

$$
\Lambda(F, s):=q_{F}^{\frac{s}{2}} \pi^{-\frac{d s}{2}} \prod_{j=1}^{d} \Gamma\left(\frac{s+\kappa_{j}}{2}\right) L(F, s)
$$

where q_{F} is the "arithmetic conductor" of $L(F, s)$, and $\kappa_{j} \in \mathbb{C}$ are local parameters of $L(F, s)$ at infinity.
This satisfies a functional equation

$$
\Lambda(F, s)=\varepsilon(F) \wedge(\widetilde{F}, 1-s)
$$

where $\varepsilon(F)$ (of absolute value 1) is the root number and \widetilde{F} is the "dual" form of F, with $\lambda_{\tilde{F}}(n)=\overline{\lambda_{F}(n)}$.

Analytic Conductor

Associated to $L(F, 1 / 2)$ one defines the "Analytic Conductor" (Iwaniec-Sarnak, 2000)

$$
Q(F):=q_{F} \prod_{j=1}^{d}\left(1+\left|s+\kappa_{j}\right|\right)
$$

measuring the "complexity" of $L(F, 1 / 2)$ as F varies.
Examples:

- if $F=\chi|\cdot|^{i t}$, where χ : Dirichlet character modulo q and $|\cdot|^{i t}: n \rightarrow n^{i t}$, then

$$
Q(F)=q(1+|t|)
$$

- if F is a cusp form on $\Gamma_{0}(q) \backslash \mathbb{H}$ of weight k_{F} (if F is holomorphic) or of Laplacian eigenvalue $1 / 4+k_{F}^{2}$ (if F is Maass), then

$$
Q(F)=q\left(1+\left|k_{F}\right|^{2}\right) .
$$

The subconvexity problem

The Phragmén-Lindelöf principle \Rightarrow Convexity bound:

$$
L(F, 1 / 2) \ll Q(F)^{1 / 4+o(1)}
$$

GRH \Rightarrow the Generalised Lindelöf hypothesis:

$$
L(F, 1 / 2) \ll Q(F)^{\varepsilon}
$$

The subconvexity problem: Find an $\delta>0$ such that

$$
L(F, 1 / 2) \ll Q(F)^{1 / 4-\delta}
$$

Subconvexity on GL_{1}

- t-aspect (i.e., $F=|\cdot|^{i t}$): Weyl (1922)

$$
\zeta(1 / 2+i t) \ll(1+|t|)^{\frac{1}{6}+o(1)}
$$

Subsequent works by many authors. Bourgain ($1 / 6 \rightarrow 13 / 84$).

- q-aspect: Burgess (1963), χ mod q Dirichlet characters

$$
L(\chi, 1 / 2+i t)<_{t} q^{3 / 16+o(1)}
$$

and Weyl-bound

$$
L(\chi, 1 / 2) \ll q^{1 / 6+o(1)}
$$

by Conrey-Iwaniec/Petrow-Young, Nelson, Balkanova-Frolenkov-Wu, etc.

The GL_{2} case: twist aspect

Let $\chi \bmod q$ be Dirichlet characters, f be GL_{2} automorphic forms, and let $L(f \times \chi, s)=\sum_{n \geq 1} \lambda_{f}(n) \chi(n) n^{-s}$.

Theorem (Duke-Friedlander-Iwaniec, BykovskiĬ, ...)

Let f be fixed GL_{2} automorphic forms. Then

$$
L(f \times \chi, 1 / 2)<_{f}\left(q^{2}\right)^{1 / 4-\delta+\varepsilon}, \text { for } \delta=1 / 16
$$

- The saving $\delta=1 / 16$ represents the Burgess-type subconvex bounds:

$$
L(F, 1 / 2) \ll Q(F)^{1 / 4-1 / 16+\varepsilon}
$$

proving ground for new methods: Blomer-Harcos, Han Wu, Munshi, Aggarwal-Holowinsky-L.-Sun, etc.

- Best: $\delta=1 / 12$ (Weyl-type), Conrey-Iwaniec/Petrow-Young:

$$
L(\chi, 1 / 2) \ll q^{1 / 4-1 / 12+\varepsilon}
$$

$$
0 \leq L(F \times \chi, 1 / 2) \ll\left(q^{2}\right)^{1 / 4-1 / 12+\varepsilon}
$$

by Nelson, Balkanova-Frolenkov-Wu over other number fields. Why one cares?

The GL_{2} case: twist aspect

Let $\chi \bmod q$ be Dirichlet characters, f be GL_{2} automorphic forms, and let $L(f \times \chi, s)=\sum_{n \geq 1} \lambda_{f}(n) \chi(n) n^{-s}$.

Theorem (Duke-Friedlander-Iwaniec, BykovskiĬ, ...)

Let f be fixed GL_{2} automorphic forms. Then

$$
L(f \times \chi, 1 / 2)<_{f}\left(q^{2}\right)^{1 / 4-\delta+\varepsilon}, \text { for } \delta=1 / 16
$$

- The saving $\delta=1 / 16$ represents the Burgess-type subconvex bounds:

$$
L(F, 1 / 2) \ll Q(F)^{1 / 4-1 / 16+\varepsilon}
$$

proving ground for new methods: Blomer-Harcos, Han Wu , Munshi, Aggarwal-Holowinsky-L.-Sun, etc.

- Best: $\delta=1 / 12$ (Weyl-type), Conrey-Iwaniec/Petrow-Young:

$$
\begin{aligned}
L(\chi, 1 / 2) & \ll q^{1 / 4-1 / 12+\varepsilon} \\
0 \leq L(F \times \chi, 1 / 2) & \ll\left(q^{2}\right)^{1 / 4-1 / 12+\varepsilon} ;
\end{aligned}
$$

by Nelson, Balkanova-Frolenkov-Wu over other number fields. Why one cares?

The GL_{2} case: twist aspect

Let $\chi \bmod q$ be Dirichlet characters, f be GL_{2} automorphic forms, and let $L(f \times \chi, s)=\sum_{n \geq 1} \lambda_{f}(n) \chi(n) n^{-s}$.

Theorem (Duke-Friedlander-Iwaniec, Bykovskĭ̃, ...)

Let f be fixed GL_{2} automorphic forms. Then

$$
L(f \times \chi, 1 / 2)<_{f}\left(q^{2}\right)^{1 / 4-\delta+\varepsilon}, \text { for } \delta=1 / 16
$$

- The saving $\delta=1 / 16$ represents the Burgess-type subconvex bounds:

$$
L(F, 1 / 2) \ll Q(F)^{1 / 4-1 / 16+\varepsilon}
$$

proving ground for new methods: Blomer-Harcos, Han Wu, Munshi, Aggarwal-Holowinsky-L.-Sun, etc.

- Best: $\delta=1 / 12$ (Weyl-type), Conrey-Iwaniec/Petrow-Young:

$$
\begin{aligned}
L(\chi, 1 / 2) & \ll q^{1 / 4-1 / 12+\varepsilon} \\
0 \leq L(F \times \chi, 1 / 2) & \ll\left(q^{2}\right)^{1 / 4-1 / 12+\varepsilon} ;
\end{aligned}
$$

by Nelson, Balkanova-Frolenkov-Wu over other number fields.

The GL_{2} case: twist aspect

Let $\chi \bmod q$ be Dirichlet characters, f be GL_{2} automorphic forms, and let $L(f \times \chi, s)=\sum_{n \geq 1} \lambda_{f}(n) \chi(n) n^{-s}$.

Theorem (Duke-Friedlander-Iwaniec, Bykovskĭ̃, ...)

Let f be fixed GL_{2} automorphic forms. Then

$$
L(f \times \chi, 1 / 2)<_{f}\left(q^{2}\right)^{1 / 4-\delta+\varepsilon}, \text { for } \delta=1 / 16
$$

- The saving $\delta=1 / 16$ represents the Burgess-type subconvex bounds:

$$
L(F, 1 / 2) \ll Q(F)^{1 / 4-1 / 16+\varepsilon}
$$

proving ground for new methods: Blomer-Harcos, Han Wu, Munshi, Aggarwal-Holowinsky-L.-Sun, etc.

- Best: $\delta=1 / 12$ (Weyl-type), Conrey-Iwaniec/Petrow-Young:

$$
\begin{aligned}
L(\chi, 1 / 2) & \ll q^{1 / 4-1 / 12+\varepsilon} \\
0 \leq L(F \times \chi, 1 / 2) & \ll\left(q^{2}\right)^{1 / 4-1 / 12+\varepsilon} ;
\end{aligned}
$$

by Nelson, Balkanova-Frolenkov-Wu over other number fields.
Why one cares?

Sum of three squares

Let $q \geq 1$ be an integer. Then $q=x^{2}+y^{2}+z^{2},(x, y, z) \in \mathbb{Z}^{3}$ (Legendre 1798; Gauss 1801) iff q is not of the form $4^{k}(8 \ell-1)$. Denote $\mathcal{R}_{q}:=\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=q\right\}$, the set of representations.
Gauss showed that

$$
\# \mathcal{R}_{q}^{*}= \begin{cases}12 h(-q) & \text { if } q \equiv 1,2 \bmod 4 \\ 8 h(-q) & \text { if } q \equiv 3 \bmod 8\end{cases}
$$

where $h(-q)$ is the class number of $\mathbb{Q}(\sqrt{-q})$.
Gauss plus Dirichlet's class number formula
$h(-q)=\frac{w}{2 \pi} L\left(\chi_{-q}, 1\right) q^{1 / 2}$ implies

$$
\# \mathcal{R}_{q}^{*}=\frac{12}{\pi} L\left(\chi_{-q}, 1\right) q^{1 / 2} \asymp q^{1 / 2+o(1)}
$$

by appealing to Siegel's theorem: $L\left(\chi_{-q}, 1\right) \asymp q^{o(1)}$

Sum of three squares

Let $q \geq 1$ be an integer. Then $q=x^{2}+y^{2}+z^{2},(x, y, z) \in \mathbb{Z}^{3}$ (Legendre 1798; Gauss 1801) iff q is not of the form $4^{k}(8 \ell-1)$. Denote $\mathcal{R}_{q}:=\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=q\right\}$, the set of representations.
Gauss showed that

$$
\# \mathcal{R}_{q}^{*}= \begin{cases}12 h(-q) & \text { if } q \equiv 1,2 \bmod 4 \\ 8 h(-q) & \text { if } q \equiv 3 \bmod 8\end{cases}
$$

where $h(-q)$ is the class number of $\mathbb{Q}(\sqrt{-q})$.
Gauss plus Dirichlet's class number formula $h(-q)=\frac{w}{2 \pi} L\left(\chi_{-q}, 1\right) q^{1 / 2}$ implies

$$
\# \mathcal{R}_{q}^{*}=\frac{12}{\pi} L\left(\chi_{-q}, 1\right) q^{1 / 2} \asymp q^{1 / 2+o(1)}
$$

by appealing to Siegel's theorem: $L\left(\chi_{-q}, 1\right) \asymp q^{o(1)}$

Sum of three squares

Let $q \geq 1$ be an integer. Then $q=x^{2}+y^{2}+z^{2},(x, y, z) \in \mathbb{Z}^{3}$ (Legendre 1798; Gauss 1801) iff q is not of the form $4^{k}(8 \ell-1)$. Denote $\mathcal{R}_{q}:=\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=q\right\}$, the set of representations.
Gauss showed that

$$
\# \mathcal{R}_{q}^{*}= \begin{cases}12 h(-q) & \text { if } q \equiv 1,2 \bmod 4 \\ 8 h(-q) & \text { if } q \equiv 3 \bmod 8\end{cases}
$$

where $h(-q)$ is the class number of $\mathbb{Q}(\sqrt{-q})$.
Gauss plus Dirichlet's class number formula $h(-q)=\frac{w}{2 \pi} L\left(\chi_{-q}, 1\right) q^{1 / 2}$ implies

$$
\# \mathcal{R}_{q}^{*}=\frac{12}{\pi} L\left(\chi_{-q}, 1\right) q^{1 / 2} \asymp q^{1 / 2+o(1)}
$$

by appealing to Siegel's theorem: $L\left(\chi_{-q}, 1\right) \asymp q^{o(1)}$.

Equidistribution of representations

Deeper question: the distribution of representations.
Recall $\mathcal{R}_{q}=\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=q\right\}$. Then
$\frac{\mathcal{R}_{q}}{\sqrt{q}}=\left\{\left(\frac{x}{\sqrt{q}}, \frac{y}{\sqrt{q}}, \frac{z}{\sqrt{q}}\right):(x, y, z) \in \mathcal{R}_{q}\right\} \subset \mathbb{S}^{2}=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$.
Question: How do $\vec{v} \in \frac{\mathcal{R}_{q}}{\sqrt{q}}$ distribute on \mathbb{S}^{2} as $q \rightarrow \infty$?

Conjecture (Equidistribution of lattice points on the 2-sphere)

 Let q be such that $q \neq 0,4,7 \bmod 8$. Let$$
\mu_{q}:=\frac{1}{\# \mathcal{R}_{q}} \sum_{\vec{v} \in \frac{\mathcal{R}_{q}}{\sqrt{q}}} \delta_{\vec{v}} .
$$

Then μ_{q} weak \star converges to $\mu_{\mathbb{S}^{2}}$, as $q \rightarrow \infty$. Equivalently, for "nice" $\Omega \subset \mathbb{S}^{2}, \mu_{q}(\Omega) \rightarrow \mu_{\mathbb{S}^{2}}(\Omega)$.

Equidistribution of representations

Deeper question: the distribution of representations.
Recall $\mathcal{R}_{q}=\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=q\right\}$. Then
$\frac{\mathcal{R}_{q}}{\sqrt{q}}=\left\{\left(\frac{x}{\sqrt{q}}, \frac{y}{\sqrt{q}}, \frac{z}{\sqrt{q}}\right):(x, y, z) \in \mathcal{R}_{q}\right\} \subset \mathbb{S}^{2}=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$.
Question: How do $\vec{v} \in \frac{\mathcal{R}_{q}}{\sqrt{q}}$ distribute on \mathbb{S}^{2} as $q \rightarrow \infty$?
Conjecture (Equidistribution of lattice points on the 2-sphere)
Let q be such that $q \not \neq 0,4,7 \bmod 8$. Let

$$
\mu_{q}:=\frac{1}{\# \mathcal{R}_{q}} \sum_{\vec{v} \in \frac{\mathcal{R}_{q}}{\sqrt{q}}} \delta_{\vec{v}}
$$

Then μ_{q} weak \star converges to $\mu_{\mathbb{S}^{2}}$, as $q \rightarrow \infty$. Equivalently, for "nice" $\Omega \subset \mathbb{S}^{2}, \mu_{q}(\Omega) \rightarrow \mu_{\mathbb{S}^{2}}(\Omega)$.

Integer points on \mathbb{S}^{2}

Examples of Equidistribution of integer points on the 2-sphere:

Integer points on spheres of radii 101, 8011, 104851, respectively Image credit: Ellenberg, Michel, and Venkatesh. (screenshot from I. Petrow)

Equidistribution of integer points on \mathbb{S}^{2}

Linnik (1950's-60's): Equidistribution holds if q satisfies an extra congruence condition, by ergodic methods.

Theorem (Duke, 1988; Golubeva-Fomenko, 1990)
Let $q \rightarrow \infty$ be such that $q \not \approx 0,4,7 \bmod 8$. Then

$$
\frac{1}{\# \mathcal{R}_{q}} \sum_{\vec{v} \in \frac{\mathcal{R}_{q}}{\sqrt{q}}} \varphi(\vec{v}) \rightarrow \int_{\mathbb{S}^{2}} \varphi(y) \mathrm{d} \mu_{\mathbb{S}^{2}},
$$

for every $\varphi \in C\left(\mathbb{S}^{2}\right)$.
One such proof can be reduced to a subconvex bound of the χ-twisted GL_{2} L-functions: $L\left(f \times \chi_{-q}, 1 / 2\right) \ll_{f} q^{1 / 2-\eta^{\prime}}$.

Equidistribution of integer points on \mathbb{S}^{2}

Linnik (1950's-60's): Equidistribution holds if q satisfies an extra congruence condition, by ergodic methods.

Theorem (Duke, 1988; Golubeva-Fomenko, 1990)

Let $q \rightarrow \infty$ be such that $q \not \approx 0,4,7 \bmod 8$. Then

$$
\frac{1}{\# \mathcal{R}_{q}} \sum_{\vec{v} \in \frac{\mathcal{R}_{q}}{\sqrt{q}}} \varphi(\vec{v}) \rightarrow \int_{\mathbb{S}^{2}} \varphi(y) \mathrm{d} \mu_{\mathbb{S}^{2}},
$$

for every $\varphi \in C\left(\mathbb{S}^{2}\right)$.
One such proof can be reduced to a subconvex bound of the χ-twisted $\mathrm{GL}_{2} L$-functions: $L\left(f \times \chi_{-q}, 1 / 2\right) \ll_{f} q^{1 / 2-\eta^{\prime}}$.

A fundamental work of Conrey-Iwaniec

Let $\chi \bmod q$ be characters. C-I established
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \ll_{t_{j}} q^{\varepsilon}$.
$\operatorname{Rmk}: \operatorname{Cond}\left(L\left(f_{j} \times \chi, 1 / 2\right)^{3}\right)=q^{6}, \operatorname{size}(\mathcal{B}(q$, triv $))=q$,
$\Rightarrow \frac{\log (\text { conductor })}{\log (\text { family })}=6$.
Restricting to $\chi=\chi_{q}$ real and appealing to Lapid:

$$
L\left(f_{j} \times \chi_{q}, 1 / 2\right) \geq 0,
$$

C-I derived

Theorem (Conrey-Iwaniec, 2000)

Let $\chi_{q} \bmod q$ be real characters with square-free conductor q.

$$
L\left(f_{j} \times \chi_{q}, 1 / 2\right) \ll_{t_{j}} q^{1 / 3+\varepsilon}, \quad L\left(\chi_{q}, 1 / 2+i t\right)<_{t} q^{1 / 6+\varepsilon} .
$$

A fundamental work of Conrey-Iwaniec

Let $\chi \bmod q$ be characters. C-I established
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \ll_{t_{j}} q^{\varepsilon}$.
$\operatorname{Rmk}: \operatorname{Cond}\left(L\left(f_{j} \times \chi, 1 / 2\right)^{3}\right)=q^{6}, \operatorname{size}(\mathcal{B}(q$, triv $))=q$,
$\Rightarrow \frac{\log (\text { conductor })}{\log (\text { family })}=6$.
Restricting to $\chi=\chi_{q}$ real and appealing to Lapid:

$$
L\left(f_{j} \times \chi_{q}, 1 / 2\right) \geq 0
$$

C-I derived

Theorem (Conrey-Iwaniec, 2000)

Let $\chi_{q} \bmod q$ be real characters with square-free conductor q.

$$
L\left(f_{j} \times \chi_{q}, 1 / 2\right) \ll_{t_{j}} q^{1 / 3+\varepsilon}, \quad L\left(\chi_{q}, 1 / 2+i t\right)<_{t} q^{1 / 6+\varepsilon} .
$$

Remarks on the Weyl bound

The bound $L\left(\chi_{q}, 1 / 2\right) \ll q^{1 / 6+\varepsilon}$: first improvement of Burgess's 1963 bound $L(\chi, 1 / 2) \ll q^{3 / 16+\varepsilon}$.
The Conrey-Iwaniec bounds were extended to

- hybrid (χ_{q}, t_{j})-aspect by Young;
- all characters $\chi \bmod q$, all q, over \mathbb{Q} by Petrow-Young;
- Hecke characters χ over number fields K by P. Nelson and by Balkanova-Frolenkov-Wu (for K totally real) independently.

Remarks on the Weyl bound

The bound $L\left(\chi_{q}, 1 / 2\right) \ll q^{1 / 6+\varepsilon}$: first improvement of Burgess's 1963 bound $L(\chi, 1 / 2) \ll q^{3 / 16+\varepsilon}$.
The Conrey-Iwaniec bounds were extended to

- hybrid $\left(\chi_{q}, t_{j}\right)$-aspect by Young;
- all characters $\chi \bmod q$, all q, over \mathbb{Q} by Petrow-Young;
- Hecke characters χ over number fields K by P. Nelson and by Balkanova-Frolenkov-Wu (for K totally real) independently.

A Motohashi-type formula

A spectral identity is visible from the proof:

$$
\begin{aligned}
& \frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q)} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \\
& \rightsquigarrow M T+\frac{1}{q} \sum_{\psi \bmod q}^{\star} g(\psi, \chi)|L(\psi, 1 / 2)|^{4} \widetilde{H}(h),
\end{aligned}
$$

where

$$
g(\psi, \chi)=\frac{1}{q} \sum_{u, v(q)} \chi(u(v+1)) \bar{\chi}(v(u+1)) \psi(u v-1)
$$

The next move of $C-I$ is to ignore possible sign change from the arguments of $g(\psi, \chi)$:

and appeal to Deligne's RH $\|g(\psi, \chi)\|_{\infty} \ll 1$ (interpreted as a "trace function" modulo q, q primes).

A Motohashi-type formula

A spectral identity is visible from the proof:

$$
\begin{aligned}
& \frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q)} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \\
& \rightsquigarrow M T+\frac{1}{q} \sum_{\psi \bmod q}^{\star} g(\psi, \chi)|L(\psi, 1 / 2)|^{4} \widetilde{H}(h)
\end{aligned}
$$

where

$$
g(\psi, \chi)=\frac{1}{q} \sum_{u, v(q)} \chi(u(v+1)) \bar{\chi}(v(u+1)) \psi(u v-1)
$$

The next move of $C-I$ is to ignore possible sign change from the arguments of $g(\psi, \chi)$:

$$
R H S \ll\|g(\psi, \chi)\|_{\infty} \frac{1}{q} \sum_{\psi \bmod q}^{\star}|L(\psi, 1 / 2)|^{4}
$$

and appeal to Deligne's $\mathrm{RH}\|g(\psi, \chi)\|_{\infty} \ll 1$ (interpreted as a "trace function" modulo q, q primes).

Remark II on the Weyl bound

- To improve the Weyl-bound, one wants to detect cancellation from sign changes of ψ in $g(\psi, \chi)$:

$$
\sum_{\psi \bmod q}^{\star} g(\psi, \chi)|L(\psi, 1 / 2)|^{4} \ll q^{1-\delta}
$$

more generally, to prove

$$
\sum_{\psi \bmod q}^{\star} g(\psi, \chi)|L(f \times \psi, 1 / 2)|^{2}<_{f} q^{1-\delta}
$$

is related to the mixing conjecture of Michel-Venkatesh.

- If $g(\psi, \chi) \equiv 1, M$. Young (2011):

$$
\sum^{\star}|L(\psi, 1 / 2)|^{4}=M T+O\left(q^{1-\delta}\right)
$$

Kowalski-Michel-Sawin (2017):

$$
\sum^{\star} L(f \times \psi, 1 / 2) \overline{L(g \times \psi, 1 / 2)}=M T_{f, g}+O\left(q^{1-\delta}\right)
$$

Remark II on the Weyl bound

- To improve the Weyl-bound, one wants to detect cancellation from sign changes of ψ in $g(\psi, \chi)$:

$$
\sum_{\psi \bmod q}^{\star} g(\psi, \chi)|L(\psi, 1 / 2)|^{4} \ll q^{1-\delta}
$$

more generally, to prove

$$
\sum_{\psi \bmod q}^{\star} g(\psi, \chi)|L(f \times \psi, 1 / 2)|^{2} \ll_{f} q^{1-\delta}
$$

is related to the mixing conjecture of Michel-Venkatesh.

- If $g(\psi, \chi) \equiv 1, \mathrm{M}$. Young (2011):

$$
\sum_{\psi \bmod q}^{\star}|L(\psi, 1 / 2)|^{4}=M T+O\left(q^{1-\delta}\right) .
$$

Kowalski-Michel-Sawin (2017):

$$
\sum_{\psi \bmod q}^{\star} L(f \times \psi, 1 / 2) \overline{L(g \times \psi, 1 / 2)}=M T_{f, g}+O\left(q^{1-\delta}\right)
$$

GL_{3} : Xiaoqing Li's work

Recall Conrey-Iwaniec ($E_{\text {min }}=1 \boxplus 1 \boxplus 1$):

$$
\begin{aligned}
& \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \\
= & \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(E_{\text {min }} \times f_{j} \times \chi, 1 / 2\right)+\int_{\mathbb{R}} h(t)\left|L\left(E_{\text {min }} \times \chi, 1 / 2+i t\right)\right|^{2} \ll q^{1+\varepsilon} .
\end{aligned}
$$

Xiaoqing Li replaced $E_{\text {min }}$ by $F \in \mathrm{GL}_{3}$ cuspidal and obtained:

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \ll T^{1+\varepsilon} M
$$

under $M>T^{3 / 8}$; Lindelöf-on-average, according to Weyl's law:

$$
\#\left\{f_{j}: t_{j} \in[T-M, T+M]\right\} \asymp T M .
$$

Theorem (Xiaoqing Li, 2011)

Let F be self-dual.

$$
L\left(F \times f_{j}, 1 / 2\right),|L(F, 1 / 2+i t)|^{2}<_{F} t^{11 / 8+\varepsilon}=t^{3 / 2-1 / 8+\varepsilon} .
$$

GL_{3} : Xiaoqing Li's work

Recall Conrey-Iwaniec ($E_{\text {min }}=1 \boxplus 1 \boxplus 1$):

$$
\begin{aligned}
& \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \\
= & \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(E_{\text {min }} \times f_{j} \times \chi, 1 / 2\right)+\int_{\mathbb{R}} h(t)\left|L\left(E_{\text {min }} \times \chi, 1 / 2+i t\right)\right|^{2} \ll q^{1+\varepsilon} .
\end{aligned}
$$

Xiaoqing Li replaced $E_{\text {min }}$ by $F \in \mathrm{GL}_{3}$ cuspidal and obtained:

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \ll T^{1+\varepsilon} M
$$

under $M>T^{3 / 8}$; Lindelöf-on-average, according to Weyl's law:

$$
\#\left\{f_{j}: t_{j} \in[T-M, T+M]\right\} \asymp T M .
$$

Theorem (Xiaoqing Li, 2011)

Let F be self-dual.

GL_{3} : Xiaoqing Li's work

Recall Conrey-Iwaniec $\left(E_{\text {min }}=1 \boxplus 1 \boxplus 1\right)$:

$$
\begin{aligned}
& \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi, 1 / 2\right)^{3}+\int_{-\infty}^{\infty} h(t)|L(\chi, 1 / 2+i t)|^{6} \mathrm{~d} t \\
= & \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(E_{\min } \times f_{j} \times \chi, 1 / 2\right)+\int_{\mathbb{R}} h(t)\left|L\left(E_{\min } \times \chi, 1 / 2+i t\right)\right|^{2} \ll q^{1+\varepsilon} .
\end{aligned}
$$

Xiaoqing Li replaced $E_{\text {min }}$ by $F \in \mathrm{GL}_{3}$ cuspidal and obtained:

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \ll T^{1+\varepsilon} M
$$

under $M>T^{3 / 8}$; Lindelöf-on-average, according to Weyl's law:

$$
\#\left\{f_{j}: t_{j} \in[T-M, T+M]\right\} \asymp T M .
$$

Theorem (Xiaoqing Li, 2011)

Let F be self-dual.

$$
L\left(F \times f_{j}, 1 / 2\right),|L(F, 1 / 2+i t)|^{2}<_{F} t^{11 / 8+\varepsilon}=t^{3 / 2-1 / 8+\varepsilon} .
$$

Main result

We give an improvement over Li's saving.

Theorem (L.-Ramon Nunes-Zhi Qi, 2021+)

It holds true that

$$
\begin{aligned}
& \sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \\
& \ll T^{1+\varepsilon} M\left(1+T^{1 / 4} / M^{5 / 4}\right) .
\end{aligned}
$$

Corollary

Let F be self-dual.

$$
L\left(F \times f_{j}, 1 / 2\right),|L(F, 1 / 2+i t)|^{2}<_{F} t^{6 / 5+\varepsilon} .
$$

- Previous improvements: Mckee-Sun-Ye, Nunes, etc. The exponent $6 / 5$ is the natural limit of this method.
- F not necc. self-dual: $|L(F, 1 / 2+i t)|^{2} \ll t^{27 / 20+\varepsilon}$, Aggarwal (building on Munshi).

Main result

We give an improvement over Li's saving.

Theorem (L.-Ramon Nunes-Zhi Qi, 2021+)

It holds true that

$$
\begin{aligned}
& \sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \\
& \ll T^{1+\varepsilon} M\left(1+T^{1 / 4} / M^{5 / 4}\right)
\end{aligned}
$$

Corollary

Let F be self-dual.

$$
L\left(F \times f_{j}, 1 / 2\right),|L(F, 1 / 2+i t)|^{2}<_{F} t^{6 / 5+\varepsilon} .
$$

- Previous improvements: Mckee-Sun-Ye, Nunes, etc. The exponent $6 / 5$ is the natural limit of this method.
- F not necc. self-dual: $|L(F, 1 / 2+i t)|^{2} \ll t^{27 / 20+\varepsilon}$, Aggarwal (building on Munshi).

Remarks: Motohashi-type formula

An underlying spectral identity

$$
\frac{1}{T M} \sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\frac{1}{T M} \int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t
$$

$$
\leftrightarrow \rightsquigarrow L(F, 1) \widetilde{H}(h)+\int_{-T / M}^{T / M} \widetilde{h}(t) L(F, 1 / 2+i t) \zeta(1 / 2-i t) \mathrm{d} t
$$ obtained independently (apart from localizing support of $\widetilde{h}(t)$) by

- Chung-Hang Kwan (2021), by period integral approach (via Poincaré series);
- Humphries-Khan (forthcoming), via analytic continuation of Dirichlet series.
- Motohashi's original formula (corresp. to $F=1 \boxplus 1 \boxplus 1$)
$\int_{\mathbb{R}}|\zeta(1 / 2+i t)|^{4} g(t) \mathrm{d} t$
$\longleftrightarrow \rightsquigarrow \sum_{t_{j} \in \mathcal{B}(1)} \widetilde{g}\left(t_{j}\right) L\left(f_{j}, 1 / 2\right)^{3}+$ holo $+\int_{\mathbb{R}} \widetilde{g}(t)|\zeta(1 / 2+i t)|^{6} \mathrm{~d} t+$ linear.

Remarks: Motohashi-type formula

An underlying spectral identity

$$
\begin{aligned}
& \frac{1}{T M} \sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\frac{1}{T M} \int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \\
& \rightsquigarrow L(F, 1) \widetilde{H}(h)+\int_{-T / M}^{T / M} \widetilde{h}(t) L(F, 1 / 2+i t) \zeta(1 / 2-i t) \mathrm{d} t
\end{aligned}
$$ obtained independently (apart from localizing support of $\widetilde{h}(t)$) by

- Chung-Hang Kwan (2021), by period integral approach (via Poincaré series);
- Humphries-Khan (forthcoming), via analytic continuation of Dirichlet series.
- Motohashi's original formula (corresp. to $F=1 \boxplus 1 \boxplus 1$)
$\int_{\mathbb{R}}|\zeta(1 / 2+i t)|^{4} g(t) \mathrm{d} t$
$\longleftrightarrow \sum_{t_{j} \in \mathcal{B}(1)} \widetilde{g}\left(t_{j}\right) L\left(f_{j}, 1 / 2\right)^{3}+$ holo $+\int_{\mathbb{R}} \widetilde{g}(t)|\zeta(1 / 2+i t)|^{6} \mathrm{~d} t+$ linear.

Remarks: Motohashi-type formula

An underlying spectral identity

$$
\begin{aligned}
& \frac{1}{T M} \sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\frac{1}{T M} \int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t \\
& \leftrightarrow \angle L(F, 1) \widetilde{H}(h)+\int_{-T / M}^{T / M} \widetilde{h}(t) L(F, 1 / 2+i t) \zeta(1 / 2-i t) \mathrm{d} t
\end{aligned}
$$ obtained independently (apart from localizing support of $\widetilde{h}(t)$) by

- Chung-Hang Kwan (2021), by period integral approach (via Poincaré series);
- Humphries-Khan (forthcoming), via analytic continuation of Dirichlet series.
- Motohashi's original formula (corresp. to $F=1 \boxplus 1 \boxplus 1$) $\int_{\mathbb{R}}|\zeta(1 / 2+i t)|^{4} g(t) \mathrm{d} t$ unc $\sum_{t, \mathcal{B}(1)} \widetilde{g}\left(t_{j}\right) L\left(f_{j}, 1 / 2\right)^{3}+$ holo $+\int_{\mathbb{R}} \widetilde{g}(t)|\zeta(1 / 2+i t)|^{6} \mathrm{~d} t+$ linear.

Remarks: Motohashi-type formula

An underlying spectral identity
$\frac{1}{T M} \sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\frac{1}{T M} \int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t$
$\leftrightarrow \rightsquigarrow L(F, 1) \widetilde{H}(h)+\int_{-T / M}^{T / M} \widetilde{h}(t) L(F, 1 / 2+i t) \zeta(1 / 2-i t) \mathrm{d} t$,
obtained independently (apart from localizing support of $\widetilde{h}(t)$) by

- Chung-Hang Kwan (2021), by period integral approach (via Poincaré series);
- Humphries-Khan (forthcoming), via analytic continuation of Dirichlet series.
- Motohashi's original formula (corresp. to $F=1 \boxplus 1 \boxplus 1$)
$\int_{\mathbb{R}}|\zeta(1 / 2+i t)|^{4} g(t) \mathrm{d} t$
$« \rightsquigarrow \sum_{t_{j} \in \mathcal{B}(1)} \widetilde{g}\left(t_{j}\right) L\left(f_{j}, 1 / 2\right)^{3}+$ holo $+\int_{\mathbb{R}} \widetilde{g}(t)|\zeta(1 / 2+i t)|^{6} \mathrm{~d} t+$ linear.

Sketch of our proof

We use classical approach (approximate functional equation, Kuznetsov, Voronoï, stationary phase). Some tools:

- Approximate functional equation

$$
L(F, 1 / 2) \approx \sum_{n \ll \sqrt{Q(F)}} \frac{\lambda_{F}(n)}{n^{1 / 2}}+\varepsilon(F) \sum_{n \ll \sqrt{Q(F)}} \frac{\overline{\lambda_{F}(n)}}{n^{1 / 2}} .
$$

- Kuznetsov trace formula

$$
\begin{aligned}
& \sum_{t_{j}} h\left(t_{j}\right) \lambda_{j}\left(n_{1}\right) \lambda_{j}\left(n_{2}\right)+(\text { Eis }) \\
& \quad=\delta_{n_{1}, n_{2}} H+\sum_{ \pm} \sum_{c=1}^{\infty} \frac{S\left(n_{1}, \pm n_{2} ; c\right)}{c} H^{ \pm}\left(\frac{4 \pi \sqrt{n_{1} n_{2}}}{c}\right) .
\end{aligned}
$$

- $\mathrm{GL}_{\mathrm{d}}(\mathbb{Z})$-Voronoï summation:

$$
\sum_{n \sim N} \frac{\lambda_{F}(n)}{\sqrt{n}} K I_{i}(a n ; c) w\left(\frac{n}{N}\right) \approx \sum_{\tilde{n} \ll \frac{c^{d}}{N}} \frac{\overline{\lambda_{F}(\tilde{n})}}{\sqrt{\tilde{n}}} K I_{d-i}(\bar{a} \tilde{n} ; c) \widehat{w}\left(\frac{\tilde{n}}{c^{d} / N}\right) .
$$

Sketch of our proof

We use classical approach (approximate functional equation, Kuznetsov, Voronoï, stationary phase). Some tools:

- Approximate functional equation

$$
L(F, 1 / 2) \approx \sum_{n \ll \sqrt{Q(F)}} \frac{\lambda_{F}(n)}{n^{1 / 2}}+\varepsilon(F) \sum_{n \ll \sqrt{Q(F)}} \frac{\overline{\lambda_{F}(n)}}{n^{1 / 2}}
$$

- Kuznetsov trace formula

$$
\begin{aligned}
& \sum_{t_{j}} h\left(t_{j}\right) \lambda_{j}\left(n_{1}\right) \lambda_{j}\left(n_{2}\right)+(\text { Eis }) \\
& \quad=\delta_{n_{1}, n_{2}} H+\sum_{ \pm} \sum_{c=1}^{\infty} \frac{S\left(n_{1}, \pm n_{2} ; c\right)}{c} H^{ \pm}\left(\frac{4 \pi \sqrt{n_{1} n_{2}}}{c}\right)
\end{aligned}
$$

- $\mathrm{GL}_{\mathrm{d}}(\mathbb{Z})$ - Voronoï summation:

$$
\sum_{n \sim N} \frac{\lambda_{F}(n)}{\sqrt{n}} K I_{i}(a n ; c) w\left(\frac{n}{N}\right) \approx \sum_{\tilde{n} \ll \frac{c^{d}}{N}} \frac{\overline{\lambda_{F}(\tilde{n})}}{\sqrt{\tilde{n}}} K l_{d-i}(\bar{a} \tilde{n} ; c) \widehat{w}\left(\frac{\tilde{n}}{c^{d} / N}\right)
$$

Proof sketch

Start from

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t
$$

Proof steps: approx functional eq+Kuznetsov+Voronoï+inverse Mellin+functional eq+large sieve ineq.

- AFE gives

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) \sum_{m^{2} n \leq T^{3+\epsilon}} \frac{A_{F}(n, m) \lambda_{j}(n)}{\left(m^{2} n\right)^{1 / 2}}+(\text { Eis }) ;
$$

- Kuznetsov gives

Proof sketch

Start from

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t
$$

Proof steps: approx functional eq+Kuznetsov+Voronoï+inverse Mellin+functional eq+large sieve ineq.

- AFE gives

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) \sum_{m^{2} n \leq T^{3+\epsilon}} \frac{A_{F}(n, m) \lambda_{j}(n)}{\left(m^{2} n\right)^{1 / 2}}+(\text { Eis })
$$

- Kuznetsov gives

Proof sketch

Start from

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t
$$

Proof steps: approx functional eq+Kuznetsov+Voronoï+inverse Mellin+functional eq+large sieve ineq.

- AFE gives

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) \sum_{m^{2} n \leq T^{3+\epsilon}} \frac{A_{F}(n, m) \lambda_{j}(n)}{\left(m^{2} n\right)^{1 / 2}}+(\text { Eis })
$$

- Kuznetsov gives

$$
\sum_{n \leq T^{3+\epsilon}} \frac{A_{F}(n, 1)}{n^{1 / 2}}\left(M T \delta_{n, 1}+\sum_{ \pm} \sum_{c \geq 1} \frac{1}{c} S(n, \pm 1 ; c) B^{ \pm}\left(\frac{4 \pi \sqrt{n}}{c}\right)\right)
$$

Proof sketch

Start from

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) L\left(F \times f_{j}, 1 / 2\right)+\int_{T-M}^{T+M} h(t)|L(F, 1 / 2+i t)|^{2} \mathrm{~d} t
$$

Proof steps: approx functional eq+Kuznetsov+Voronoï+inverse Mellin+functional eq+large sieve ineq.

- AFE gives

$$
\sum_{\left|t_{j}-T\right| \leq M} h\left(t_{j}\right) \sum_{m^{2} n \leq T^{3+\epsilon}} \frac{A_{F}(n, m) \lambda_{j}(n)}{\left(m^{2} n\right)^{1 / 2}}+(\text { Eis })
$$

- Kuznetsov gives

$$
\sum_{n \leq T^{3+\epsilon}} \frac{A_{F}(n, 1)}{n^{1 / 2}}\left(M T \delta_{n, 1}+\sum_{ \pm} \sum_{c \geq 1} \frac{1}{c} S(n, \pm 1 ; c) B^{ \pm}\left(\frac{4 \pi \sqrt{n}}{c}\right)\right)
$$

- Voronoï transforms the off-diagonal into

Proof sketch (cont.)

$$
(\text { off })=\sum_{c \geq 1} \frac{1}{c^{2}} \sum_{\tilde{n} \geq 1} A_{F}(1, \tilde{n}) e\left(\pm \frac{\tilde{n}}{c}\right) \mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) .
$$

- M. Young (stationary phase+inverse Mellin):

$$
\mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) \approx(\text { factor }) \times e\left(\mp \frac{\tilde{n}}{c}\right) \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t)\left(\frac{\tilde{n}}{c}\right)^{i t} d t,
$$

cancelled out!

$$
\Longrightarrow(\text { off })=(\text { factor }) \times \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t) \sum_{c \ll T^{1 / 2}} \frac{1}{c^{1 / 2+i t}} \sum_{\tilde{j} \ll T^{3 / 2}} \frac{A_{F}(1, \tilde{n})}{\tilde{n}^{1 / 2-i t}} d t .
$$

- Functional equation in the \tilde{n}-variable if \tilde{n}-sum is long;
- Cauchy (Large sieve inequality):

$$
(\mathrm{int}) \ll\left(\int_{-\frac{T}{M}}^{\frac{T}{M}}\left|\sum_{c \ll T^{1 / 2}} \frac{1}{1^{1 / 2+i t}}\right|^{2} d t\right)^{1 / 2}\left(\int_{-\frac{T}{M}}^{\frac{T}{M}}\left|\sum_{\tilde{n} \ll\left(\frac{T}{M}\right)^{3 / 2}} \frac{A_{F}(1, \tilde{n})}{\tilde{n}^{1 / 2-i t}}\right|^{2} d t\right)^{1 / 2} .
$$

Proof sketch (cont.)

$$
\text { (off) }=\sum_{c \geq 1} \frac{1}{c^{2}} \sum_{\tilde{n} \geq 1} A_{F}(1, \tilde{n}) e\left(\pm \frac{\tilde{n}}{c}\right) \mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) .
$$

- M. Young (stationary phase+inverse Mellin):

$$
\mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) \approx(\text { factor }) \times e\left(\mp \frac{\tilde{n}}{c}\right) \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t)\left(\frac{\tilde{n}}{c}\right)^{i t} d t
$$

cancelled out!
$\Longrightarrow($ off $)=($ factor $) \times \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t) \sum_{c \ll T^{1 / 2}} \frac{1}{c^{1 / 2+i t}} \sum_{\tilde{n} \ll T^{3 / 2}} \frac{A_{F}(1, \tilde{n})}{\tilde{n}^{1 / 2-i t}} d t$.

- Functional equation in the \tilde{n}-variable if \tilde{n}-sum is long;
- Cauchy (Large sieve inequality):

Proof sketch (cont.)

$$
(\text { off })=\sum_{c \geq 1} \frac{1}{c^{2}} \sum_{\tilde{n} \geq 1} A_{F}(1, \tilde{n}) e\left(\pm \frac{\tilde{n}}{c}\right) \mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) .
$$

- M. Young (stationary phase+inverse Mellin):

$$
\mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) \approx(\text { factor }) \times e\left(\mp \frac{\tilde{n}}{c}\right) \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t)\left(\frac{\tilde{n}}{c}\right)^{i t} d t
$$

cancelled out!

$$
\Longrightarrow(\text { off })=(\text { factor }) \times \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t) \sum_{c \ll T^{1 / 2}} \frac{1}{c^{1 / 2+i t}} \sum_{\tilde{n} \ll T^{3 / 2}} \frac{A_{F}(1, \tilde{n})}{\tilde{n}^{1 / 2-i t}} d t .
$$

- Functional equation in the \tilde{n}-variable if \tilde{n}-sum is long;
- Cauchy (Large sieve inequality):

Proof sketch (cont.)

$$
(\text { off })=\sum_{c \geq 1} \frac{1}{c^{2}} \sum_{\tilde{n} \geq 1} A_{F}(1, \tilde{n}) e\left(\pm \frac{\tilde{n}}{c}\right) \mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) .
$$

- M. Young (stationary phase+inverse Mellin):

$$
\mathcal{W}^{ \pm}\left(\frac{N \tilde{n}}{c^{3}} ; \frac{\sqrt{N}}{c}\right) \approx(\text { factor }) \times e\left(\mp \frac{\tilde{n}}{c}\right) \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t)\left(\frac{\tilde{n}}{c}\right)^{i t} d t
$$

cancelled out!

$$
\Longrightarrow(\text { off })=(\text { factor }) \times \int_{-\frac{T}{M}}^{\frac{T}{M}} \widetilde{h}(t) \sum_{c \ll T^{1 / 2}} \frac{1}{c^{1 / 2+i t}} \sum_{\tilde{n} \ll T^{3 / 2}} \frac{A_{F}(1, \tilde{n})}{\tilde{n}^{1 / 2-i t}} d t .
$$

- Functional equation in the \tilde{n}-variable if \tilde{n}-sum is long;
- Cauchy (Large sieve inequality):

$$
\text { (int) <<(} \left.\int_{-\frac{T}{M}}^{\frac{T}{M}}\left|\sum_{c \ll T^{1 / 2}} \frac{1}{c^{1 / 2+i t}}\right|^{2} d t\right)^{1 / 2}\left(\int_{-\frac{T}{M}}^{\frac{T}{M}}\left|\sum_{\tilde{n} \ll\left(\frac{T}{M}\right)^{3 / 2}} \frac{A_{F}(1, \tilde{n})}{\tilde{n}^{1 / 2-i t}}\right|^{2} d t\right)^{1 / 2}
$$

$\mathrm{GL}_{3}: q$-aspect case

Let $\chi \bmod q$ be Dirichlet characters. Let $F \in \mathrm{GL}_{3}$ be a fixed cusp form.
By a similar method, Blomer obtained

Theorem (Blomer, 2012)

For F self-dual and χ_{q} real characters, we have

$$
L\left(F \times f_{j} \times \chi_{q}, 1 / 2\right), L\left(F \times \chi_{q}, 1 / 2\right)^{2}<\kappa_{, f_{j}} q^{\frac{5}{4}+\varepsilon}=q^{3 / 2-1 / 4+\varepsilon} .
$$

- The exponent $5 / 4<11 / 8$ (Li's bound), due to the use of large sieve ineq. in place of second Voronoï in the later case.
- extended to F and χ not necessarily self-dual by Munshi and Sharma respectively, by a δ-method approach.

$\mathrm{GL}_{3}: q$-aspect case

Let $\chi \bmod q$ be Dirichlet characters. Let $F \in \mathrm{GL}_{3}$ be a fixed cusp form.
By a similar method, Blomer obtained

Theorem (Blomer, 2012)

For F self-dual and χ_{q} real characters, we have

$$
L\left(F \times f_{j} \times \chi_{q}, 1 / 2\right), L\left(F \times \chi_{q}, 1 / 2\right)^{2}<\kappa_{, f_{j}} q^{\frac{5}{4}+\varepsilon}=q^{3 / 2-1 / 4+\varepsilon} .
$$

- The exponent $5 / 4<11 / 8$ (Li's bound), due to the use of large sieve ineq. in place of second Voronoï in the later case.
- extended to F and χ not necessarily self-dual by Munshi and Sharma respectively, by a δ-method approach.

$\mathrm{GL}_{3}: q$-aspect case

Let $\chi \bmod q$ be Dirichlet characters. Let $F \in \mathrm{GL}_{3}$ be a fixed cusp form.
By a similar method, Blomer obtained

Theorem (Blomer, 2012)

For F self-dual and χ_{q} real characters, we have

$$
L\left(F \times f_{j} \times \chi_{q}, 1 / 2\right), L\left(F \times \chi_{q}, 1 / 2\right)^{2}<\kappa_{, f_{j}} q^{\frac{5}{4}+\varepsilon}=q^{3 / 2-1 / 4+\varepsilon} .
$$

- The exponent $5 / 4<11 / 8$ (Li's bound), due to the use of large sieve ineq. in place of second Voronoï in the later case.
- extended to F and χ not necessarily self-dual by Munshi and Sharma respectively, by a δ-method approach.

Comparison: Blomer vs Conrey-Iwaniec

Conrey-Iwaniec $(F=1 \boxplus 1 \boxplus 1)$:
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi_{q}, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)\left|L\left(\chi_{q}, 1 / 2+i t\right)\right|^{6} \mathrm{~d} t \ll q^{\varepsilon}$;

Blomer:

$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(F \times f_{j} \times \chi_{q}, 1 / 2\right)+\frac{1}{q} \int_{-\infty}^{\infty} h(t)\left|L\left(F \times \chi_{q}, 1 / 2+i t\right)\right|^{2} \mathrm{~d} t$
$\rightsquigarrow M T+\frac{1}{q} \sum_{\psi \bmod q}^{\star} g(\psi, \chi) L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2) \widetilde{H}(h) \ll q^{\varepsilon}+q^{1 / 4+\varepsilon}$,
resulting from Cauchy-Schwarz
$R H S \ll \frac{1}{q}\|g(\psi, \chi)\|_{\infty}\left(\sum_{\psi \bmod q}^{\star}|L(F \times \psi, 1 / 2)|^{2} \sum_{\psi \bmod q}^{\star}|L(\bar{\psi}, 1 / 2)|^{2}\right)^{1 / 2}$

$$
\ll \frac{1}{q}\left(q^{3 / 2} \cdot q\right)^{1 / 2} .
$$

Recall

$$
g(\psi, \chi)=\frac{1}{q} \sum_{u, v(q)} \chi(u(v+1)) \bar{\chi}(v(u+1)) \psi(u v-1) \ll 1 .
$$

Comparison: Blomer vs Conrey-Iwaniec

Conrey-Iwaniec $(F=1 \boxplus 1 \boxplus 1)$:
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi_{q}, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)\left|L\left(\chi_{q}, 1 / 2+i t\right)\right|^{6} \mathrm{~d} t \ll q^{\varepsilon}$;
Blomer:
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(F \times f_{j} \times \chi_{q}, 1 / 2\right)+\frac{1}{q} \int_{-\infty}^{\infty} h(t)\left|L\left(F \times \chi_{q}, 1 / 2+i t\right)\right|^{2} \mathrm{~d} t$
$\rightsquigarrow M T+\frac{1}{q} \sum_{\psi \bmod q}^{\star} g(\psi, \chi) L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2) \widetilde{H}(h) \ll q^{\varepsilon}+q^{1 / 4+\varepsilon}$,
resulting from Cauchy-Schwarz
$R H S \ll \frac{1}{q}\|g(\psi, \chi)\|_{\infty}\left(\sum_{\psi \bmod q}^{\star}|L(F \times \psi, 1 / 2)|^{2} \sum_{\psi \bmod q}^{\star}|L(\bar{\psi}, 1 / 2)|^{2}\right)^{1 / 2}$

$$
\ll \frac{1}{q}\left(q^{3 / 2} \cdot q\right)^{1 / 2}
$$

Recall

$$
g(\psi, \chi)=\frac{1}{q} \sum_{u, v(q)} \chi(u(v+1)) \bar{\chi}(v(u+1)) \psi(u v-1) \ll 1 .
$$

Comparison: Blomer vs Conrey-Iwaniec

Conrey-Iwaniec $(F=1 \boxplus 1 \boxplus 1)$:
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { triv })} h\left(t_{j}\right) L\left(f_{j} \times \chi_{q}, 1 / 2\right)^{3}+\frac{1}{q} \int_{-\infty}^{\infty} h(t)\left|L\left(\chi_{q}, 1 / 2+i t\right)\right|^{6} \mathrm{~d} t \ll q^{\varepsilon}$;
Blomer:
$\frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q, \text { rriv })} h\left(t_{j}\right) L\left(F \times f_{j} \times \chi_{q}, 1 / 2\right)+\frac{1}{q} \int_{-\infty}^{\infty} h(t)\left|L\left(F \times \chi_{q}, 1 / 2+i t\right)\right|^{2} \mathrm{~d} t$
$\rightsquigarrow M T+\frac{1}{q} \sum_{\psi \text { mod } q}^{\star} g(\psi, \chi) L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2) \widetilde{H}(h) \ll q^{\varepsilon}+q^{1 / 4+\varepsilon}$,
resulting from Cauchy-Schwarz

$$
\begin{aligned}
R H S & \ll \frac{1}{q}\|g(\psi, \chi)\|_{\infty}\left(\sum_{\psi \bmod q}^{\star}|L(F \times \psi, 1 / 2)|^{2} \sum_{\psi \bmod q}^{\star}|L(\bar{\psi}, 1 / 2)|^{2}\right)^{1 / 2} \\
& \ll \frac{1}{q}\left(q^{3 / 2} \cdot q\right)^{1 / 2} .
\end{aligned}
$$

Recall

$$
g(\psi, \chi)=\frac{1}{q} \sum_{u, v(q)} \chi(u(v+1)) \bar{\chi}(v(u+1)) \psi(u v-1) \ll 1 .
$$

Remarks on Blomer

To improve Blomer for q primes, one can try to improve

$$
\sum_{\psi \bmod q}^{\star}|L(F \times \psi, 1 / 2)|^{2} \ll F q^{3 / 2}
$$

or (if ambitious) to improve

$$
\sum_{\psi \bmod q}^{\star} g(\psi, \chi) L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2) \ll q^{5 / 4}
$$

seems difficult! e.g. We do not know how to study

$$
\sum_{\star}^{\star} L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2)
$$

$$
\psi \bmod q
$$

not even

$$
\sum_{q \sim Q} \sum_{\psi}{ }_{\bmod q}^{\star} L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2)!
$$

We tried the case q composite, then...

Remarks on Blomer

To improve Blomer for q primes, one can try to improve

$$
\sum_{\psi \bmod q}^{\star}|L(F \times \psi, 1 / 2)|^{2} \ll F q^{3 / 2}
$$

or (if ambitious) to improve

$$
\sum_{\psi \bmod q}^{\star} g(\psi, \chi) L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2) \ll q^{5 / 4}
$$

seems difficult! e.g. We do not know how to study

$$
\sum_{\psi \bmod q}^{\star} L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2)
$$

not even

$$
\sum_{q \sim Q \psi} \sum_{\bmod q}^{\star} L(F \times \psi, 1 / 2) L(\bar{\psi}, 1 / 2)!
$$

We tried the case q composite, then...

GL_{3} revisited: q composite

Theorem (L.-Ramon Nunes, in progress)

Let F be self-dual. Let $q=q_{1} q_{2} . \exists \delta=\delta\left(\frac{\log q_{1}}{\log q_{2}}\right)>0$, s.t.

$$
L\left(F \times f_{j} \times \chi, 1 / 2\right),|L(F \times \chi, 1 / 2)|^{2} \ll q^{5 / 4-\delta}
$$

$\mathbf{R m k}$: The strongest saving is when $q_{1} \asymp q^{1 / 5}, q_{2} \asymp q^{4 / 5}$, then

$$
L(\cdots, 1 / 2) \ll q^{6 / 5+\varepsilon}
$$

consistent with the t-aspect case.

